

Data Warehousing and Web 2.0 Data Dissemination

Joel Lehman
United States Department of Agriculture
National Agricultural Statistics Service
1400 Independence Ave
Washington, DC 20250
joel_lehman@nass.usda.gov

Mojo Nichols
MojoSoft
1400 Independence Ave
Washington, DC 20250
mojo_nichols@nass.usda.gov

ABSTRACT

 In 2008 the United States Department of Agriculture’s (USDA) National Agricultural
Statistics Service (NASS) was seeking to enhance the electronic data dissemination products for the
2007 U.S. Census of Agriculture. NASS improved upon the legacy web based data dissemination
tool and underlying database by creating a generalized data model and a Web 2.0 query application
utilizing hierarchical metadata. NASS approached the issues posed by the legacy system by
redesigning the data model, web application, and the aggregate metadata at the same time to create
a fully integrated data dissemination platform. The redesign included a generalized data warehouse
model capable of storing all of NASS’ published estimates in a simplified data structure. A data
model utilizing data warehousing technology was specifically designed for expedient data retrieval
while maintaining ease of browsing. A metadata repository was developed to standardize metadata
across NASS’ aggregate data processing systems. Standardized metadata, a simplified data model,
and an application purely driven by data have reduced the time and effort involved in adding new
data sources for public dissemination, reduced the potential for errors, and provides the ability to
compare data at every point in aggregate data processing stream. A data driven, Web 2.0, ad-hoc
query application (Quick Stats 2.0 http://quickstats.nass.usda.gov) was developed in a rapid
application development (RAD) environment using open source development tools to provide
public access to all NASS published statistics. In addition to being a web based ad-hoc query tool,
Quick Stats 2.0 was designed to be a data dissemination engine capable of feeding data to external
applications. Quick Stats 2.0 provides the ability for public users to view data, create maps,
download large datasets, and create and save custom queries. Since the public release in February
2009, Quick Stats 2.0 currently provides access to over 24 million data points from 23 thousand
different statistics dating back to 1866. Over 50 thousand users have accessed Quick Stats 2.0 from
over 100 countries issuing over 200 thousand queries since February 2009.

Keywords: Electronic Data Dissemination, Metadata, Taxonomies, AJAX, Dojo, Star Schema, Web
2.0, Rapid Application Development

JOEL M. LEHMAN

EDUCATION

USDA Graduate Program, Information Management Systems 2003-2004
George Mason University Fairfax, Virginia

Master of Science, Agricultural Economics 1996-1998
University of Delaware Newark, Delaware

Bachelor of Science, Agricultural Economics 1985-1991
University of Delaware Newark, Delaware

RESEARCH EXPERIENCE

Research Assistant 1996-1998

University of Delaware

Newark, Delaware

PROFESSIONAL EXPERIENCE

Lead Analytical Database Architect 2003-Present

National Agricultural Statistics Service, USDA Washington, DC

Agricultural Statistician 1997-2003

National Agricultural Statistics Service, USDA Dover, Delaware, Phoenix, Arizona

Regional Development Planner 1993-1995

United State Peace Corps Tafea Province, Republic of Vanuatu

Tanna Coffee Plantation Project Manager 1994-1995

Ministry of Agriculture Port Vila, Republic of Vanuatu

PUBLICATIONS

“Consumer Preference Measurement for Delaware Farmer Direct Markets,” Journal of Food

Distribution Research, 1998

“A Conjoint Analysis of Delaware Farmer Direct Markets.” American Journal of Agricultural

Economics, 1997

1. Introduction

 The purpose of this paper is to provide a higher level framework for creating a web based
data driven dissemination environment for Statistical Agencies based on experience from the United
States Department of Agriculture’s (USDA) National Agricultural Statistics Service (NASS) Quick
Stats 2.0 project. This paper will outline the design of the metadata, or data about data, database
design considerations, and finally the application design. Since most research for the project was
web based it is fitting that the references for this paper be derived mainly from the web.

2. Background

In 2008 NASS was seeking to enhance the portfolio of electronic data dissemination
products for the 2007 U.S. Census of Agriculture. Previous electronic data dissemination products
were proving to be difficult to maintain and expand due to database and application design issues
and non-standardized metadata. Standardization of metadata, redesign of the underlying data
structures, and the creation of a web 2.0 based application were the three main areas of focus for
this project. The objective was the creation of a generalized, data driven dissemination environment
capable of servicing all of NASS’ published statistics from both the U.S. Census of Agriculture and
Federal Survey Programs. Project deliverables included a searchable, Web 2.0 based ad-hoc query
and data download tool (Quick Stats) for external data users, a simplified database design to
provide internal ad-hoc query capability, and finally a metadata management system to aid in
metadata standardization. The project was broken into three phases allowing for concurrent
development and implementation reducing overall project completion time. The first phase
involved standardization of metadata, creating rules for governance, assigning metadata
stewardship, and the creation and population of a metadata repository. The second phase created
and began population of the underlying data warehousing structures for the published statistics. The
third phase involved development of the web based data dissemination tool. An underlying theme
of this project was to use non-proprietary or open source software when available and an
application framework decoupling the database software from the application software allowing
design flexibility and reduced budgetary requirements. An initial production system was released
February 4th of 2009 coinciding with the release of the 2007 U.S. Census of Agriculture
publications. Presently, NASS continues to add new data sources to Quick Stats 2.0 including
several electronic publications only available within Quick Stats 2.0.

3. Metadata Design

 Historically, disparate micro data summarization systems and a lack of centralized,
structured data repositories within NASS had created an environment of non-standardized metadata.
Standardization of NASS' macro or aggregated metadata would be essential to successfully create a
data driven dissemination environment.

The metadata for published estimates contained in the Quick Stats 2.0 database are
classified into three high level categories defining the “what” (commodities), the “where”
(locations) and the “when” (reference periods) of the specific data item. These categories are then
further decomposed into the lower level attributes further defining either the commodity, location or
reference period. Commodity, for example, is defined by the attributes; sector, group, commodity,
statistic, unit, production practice, marketing practice, utilization practice, unit, and domain

categories. These attributes are subsequently decomposed into sparsely populated attributes of even
lesser granularity.

 Defining the specific attributes, depth of decomposition, metadata stewardship, and
governance rules was a collaborative effort between the commodity experts, application developers,
database architects, and metadata managers. Once the data item attributes and taxonomy were
defined, a central Metadata Repository System (MRS) system was developed to maintain these
relationships. MRS would also enforce governance and stewardship rules. MRS combines a
MySQL database with an web based Graphical User Interface (GUI) allowing for the creation and
maintenance of metadata. MRS operates within a service oriented architecture (SOA) providing
metadata population and management services to estimation tools, publication tools and other
databases involved in the processing of macro data helping to ensure standardization of metadata.

 The MRS aggregate data model is organized around the concept that an aggregate data item
(i.e., summarized data and estimates) can be defined in terms of the “what”, “where” and “when”
represented by the commodities, locations and reference periods respectively. These categories are
generalized, intuitive to end users, and provide high level taxonomy. Taxonomy is a hierarchical
structure for the classification or organization of data. Historically used by biologists to classify
plants or animals according to a set of natural relationships, in information architecture, taxonomies
can be leveraged as a tool for organizing content to aid data discovery. Metadata describes an asset
and provides a meaningful set of attributes that can further classify content. While much metadata is
flat or one-dimensional in nature (e.g., size or weight), some of it is hierarchical (e.g., taxonomies),
making the definition and distinction between metadata and taxonomy vague and fuzzy (Ricci).
Utilizing taxonomies in metadata is a common practice in web development to organize content and
create intuitive navigation. MRS uses these taxonomies to define parent child and sibling
relationships for attributes. These relationships are in turn used by Quick Stats 2.0 to provide the
navigational basis for the ad-hoc query functionality.

 Commodities are defined by the twelve individual attributes described in table 1. The first
five components (Sector, Group, Subgroup, Commodity, and Class) create the taxonomy for the
commodity. Sector contains the broadest categories; Class contains details about the commodity
such as variety, color, and size. These five components combine to provide a complete description
of the commodity. Other components give more description about the specific data associated with
the commodity. The “Required” column in table 1. indicates the minimum set of attributes required
to define a commodity item. All other attributes are only necessary when the commodity items need
to be further differentiated. For instance, corn harvested acres may be broken down according to its
final utilization; for grain, silage and seed. Each attribute has two components: a description and an
associated code. The descriptions, not the codes, are the most important part of the model because
that is all an average user should need to query data. Table 2 illustrates how the metadata for
harvested irrigated acres of corn for grain is created. The attribute descriptions are concatenated
programmatically to create a unique (long) description for each data item to optimize readability.
This automated description creation is important because it ensures that they are created
consistently across all commodity items promoting standardization. The commodity long
description corresponding to the table 1 example is: “CORN, GRAIN, IRRIGATED - ACRES
HARVESTED”. This model provides end users and data analysts with a great deal of data querying
power. Let’s say for example that a user is interested in querying estimates for all harvested
irrigated acres, not only for corn, but for ALL field crops. Using the hierarchy along with the
multiple attributes provided, we can define a simple query with the following selection criteria:
sector =”CROPS”, group = “FIELD CROPS”, production practice = “IRRIGATED” and statistic
category = “HARVESTED”. In addition to increased querying power, analytical power is also
enhanced. Because a commodity item is defined in terms of multiple attributes, we are not limited
to using the complete long description. All attributes are available individually for querying or

grouping. For example, if we query acreage, yield and production data for multiple field crops, we
can pivot and present the results in tabular form as shown in figure 1:

Table 1: Commodity attributes define the “what” of a data item.

Attribute Name Required Attribute Description

SECTOR Y
The highest classification level for a commodity item. The list of available sectors is very
small; crops, animal & products, economics, demographics and agricultural business.

GROUP Y
The second highest classification level for a commodity item. For example, the sector
"crops" include the groups "field crops", "vegetables", "fruits and tree nuts" and others.

SUBGROUP
This is used to represent subsets of commodity groups. Not all groups have subgroups.
When this is the case, the default value of this attribute is "NOT SPECIFIED".

COMMODITY Y
A commodity is the subject we are measuring or estimating for. Examples include wheat,
corn, cattle and labor.

CLASS
Sub-classifications of the commodity. Not all commodities have sub-classifications. When
this is the case, default value of this attribute is "ALL CLASSES".

STATISTIC CATEGORY
(STATISTICCAT)

Y
This represents what is being measured about the commodity. Examples include area planted,
inventory, and price.

UNIT Y
The unit of measurement corresponding to the statistic category. Examples include percent
of operations, heads, acres, and bushels.

PRODUCTION
PRACTICE
(PRODN_PRACTICE)

 This represents production practices that further qualify a commodity item, when applicable.
 When not applicable, it will have the default value of "ALL PRODUCTION PRACTICES".
 Examples of production practices applied to crops are “irrigated”, “following another crop”
and “herbicide resistant”. Examples of production practices applied to livestock are “on
feed” (cattle) and “in cages” (aquaculture).

MARKETING
PRACTICE
(MKT_PRACTICE)

 This represents marketing practices that further qualifies a commodity item, when applicable.
 When not applicable, it will have the default value "ALL MARKETING PRACTICES".
 Examples of marketing practices are “contract” (sales), “wholesale”, “on-farm” (storage),
“cold storage”.

UTILIZATION
PRACTICE
(UTIL_PRACTICE)

 This represents utilization practices that further qualify a commodity item, when applicable.
 When not applicable, it will have the default value of “ALL UTILIZATION PRACTICES".
 Examples of utilization practices are “for feed”, “for grain”, “abandoned”, “for fresh
market” and “slaughtered”.

DOMAIN

 A criterion that is used to classify a commodity item by operation characteristics rather than
commodity characteristic. For example, an operation can be classified in terms of its value of
sales, storage capacity, or type of farm. If no domains are used, the default value of “NOT
SPECIFIED” will be used.

DOMAIN CATEGORY
(DOMAINCAT)

 This represents the partitions or categories corresponding to the domain. For example, if the
domain is value of sales, possible domain categories are $1,000 to $9,999, $10,000 to
$19,999, $20,000 TO $40,000, etc. If no domains are used, the default value of “NOT
SPECIFIED” will be used.

COMMODITY ITEM
DESCRIPTION
(LONG_DESC)

 The description corresponding to the commodity item. This description is created
automatically using the individual attributes listed above.

Table 2: Metadata for harvested irrigated acres of corn for grain.

Attribute Description Code

SECTOR Crops 01

GROUP Field crops 11

SUBGROUP Not Specified 00

COMMODITY Corn 063

CLASS All classes 0000

STATISTIC CATEGORY Harvested 077

UNIT Acres 001

PRODUCTION PRACTICE Irrigated 002

MARKETING PRACTICE All marketing practices 000

UTILIZATION PRACTICE Grain 051

DOMAIN Total 0000

DOMAIN CATEGORY Not Specified 00000

Figure 1: Commodity attribute tabulation example.

Although the model was designed to describe agricultural statistics (e.g. corn for grain harvested,
cattle inventory), it could be adapted to describe administrative survey data such as response rates
and interview time for example.

Location or geographical attributes defining the “Where” are described in table 3.

Table 3: Location attributes define the “where” of a data item.

Attribute Name Attribute Description

AGGREGATION LEVEL
(AGG_LEVEL)

Geographical aggregation level corresponding to the data item, e.g., county, ASD,
state, national, etc.

COUNTRY
The name of the country. The corresponding country codes are defined by the
Foreign Trade Division of the U.S. Census Bureau.

REGION

Groups of states (multi-state), counties (sub-state), or combination of both (also
multi-state) within the context of a commodity (e.g. 20 major milk producing
states). While region descriptions may be duplicated across commodities, region
codes are unique and assigned to a particular commodity.

STATE The name of the state.

AGRICULTURAL
STATISTICAL DISTRICT
(ASD)

An Agricultural Statistical District is a “permanent” NASS defined region within a
state. The corresponding codes are unique within each state.

COUNTY_NAME The name of the county. The corresponding codes are unique within each state.

CONGRESSIONAL DISTRICT
(CONGR_DISTRICT)

The Congressional District. Added for future consideration.

ZIP CODE (ZIP_5) US Postal Service Zip Code. Added for future consideration.

WATERSHED The US Geological Survey (USGS) watersheds.

LOCATION DESCRIPTION The description corresponding to the location.

The aggregation level determines which attributes are used for any particular location (Table 4).
For example, with county level data, only the country, state, agricultural district and county
attributes are used; all other attributes are null. For state level data, only the country and the state
attributes are used.

Table 4: Valid Location Attributes by Aggregation Level

Aggregation Level Country Region State Ag Stat

District

County Congr.

District

ZIP-

Code

Watershed

International Y

National Y Y

Region: multi-state Y Y

Region: Sub-state Y Y Y

State Y Y

ASD Y Y Y Y

County Y Y Y Y

Cong. District Y Y Y

ZIP 5 Y Y Y

Watershed Y Y

The reference period or “when” metadata model in MRS partially defines the reference period
associated with a data item. Since the model does not include specific years or dates it only
partially defines the reference period. In order to fully define the reference period of a data item,
these partial reference periods must be complemented with reference years and, if necessary, dates
(e.g. weekly data). This reference period model was designed considering an extensive variety of
NASS estimates and should provide a basic, enterprise level framework that will allow users to
easily query the data they are looking for.

Table 5: Reference Period attributes define the “when” of the data.

Attribute Name Attribute Description

PERIOD

The granularity of the time span corresponding to the data item. The weekly,
monthly, annual, marketing year and season periods are used for estimates
with reference periods that span over a period of time of a week of longer, e.g.
production of corn in a year, the average price of wheat in August, broiler-
type eggs set during week # 24, etc. Point-in-time is used for estimates that
use a single day as a reference period, e.g. hog inventory as of the first of
September, the price of hay as of the middle of the month (15th), etc.

BEGIN The beginning of the period.

END The end of the period.

SUPPLEMENTAL
This is a multi-purpose attribute that is used to include additional information
about the reference period. For example, if the reference period corresponds
to a forecast, it defines the month when the forecast is made.

REFERENCE PERIOD
DESCRIPTION

The description corresponding to the reference period.

Table 6 shows how the values of the “begin” and “end” attributes are determined by the type of
period. The beginning and ending attributes are essential and provide an easy method for ordering
data.

Table 6: Content of the “Begin” and “End” Attributes by Period.

Period Begin End

Weekly Beginning week number Ending week number

Monthly Beginning month Ending month

Annual

Marketing Year

Season Season Season

Point-in-time Reference month Reference month

With the goal of creating a truly data driven dissemination environment the quality of metadata was
paramount. MRS utilizes the underlying highly structured database to ensure referential integrity.
Referential integrity is a database concept that ensures that relationships between tables remain
consistent (Chappel). When one table has a foreign key to another table, the concept of referential
integrity states that you may not add a record to the table that contains the foreign key unless there
is a corresponding record in the linked table. Referential integrity in this case reduces the potential
to create duplicate metadata entries. A well ordered taxonomy, clearly defined attributes, strict
review process and clearly defined roles and responsibilities are also critical to ensure the creation
of quality metadata.

4. Database Design

 Originally, NASS' legacy electronic data dissemination database was a simple structure with
relatively few tables. Over the years, this evolved into over 200 disparate data tables lacking
referential integrity which created an environment prone to data and metadata inconsistencies. The
lack of referential integrity was partially solved by the creation of over 150 database views which
preselected, categorized and formatted data for the legacy web application. This made the addition
of new data sources time consuming and resource intensive as database administrators, application
developers and commodity specialists were required to modify both the database and web
application. A simple database redesign was difficult since the legacy web application partially
utilized proprietary SQL statements making the decoupling of the web application from the
database difficult requiring significant application redesign. The Quick Stats 2.0 redesign would
partially focus on creating a database environment which utilized as few proprietary features as
possible to make decoupling the application from the database simpler allowing flexibility in
software choices.

 Database specifications would require strict referential integrity rules with a generalized
data model, limited view creation and the ability to accommodate any published statistic within
NASS. Estimates for the size of the redesigned database showed the number of potential published
statistics to be populated from NASS' various data collection programs within the next 5 years to be
approximately 50 million. Based on this large number, the underlying database management
software and database schema for an ad-hoc, web based, data dissemination tool would have to be
purposely designed to quickly resolve any query from the database with reasonable speed.

 Since many web based applications involve transactional processing such as placing orders
or updating user information, web developers may be inclined to utilize an OLTP or on-line
transactional processing data model or schema. OLTP data models seek to improve transaction
performance by utilizing a technique called entity relation modeling removing redundancy within
the data. Entity relationship models work by dividing the data into many discrete entities or tables
within a database. The tables are then joined with similar attributes with almost every table
generally having the ability to be connected in some form to every other table. This creates many
potential paths by which to join tables together and the results of those joins, while similar in
attributes, may not return the same result. This type of data model allows insert, update and delete
transactions to occur quickly, but in an ad-hoc environment where attribute constraint combinations
are unknown and large swaths of data are involved generally performs poorly (Kimball).

 Dimensional Models or Star Schema can be described as database structures that match the
ad-hoc user’s need for simplicity with performance. Dimensional models are generally simple with
one large central table containing the “facts” or published statistics in our case and several smaller
tables “dimensions” containing the textual representation of attributes used for constraining the
query. This is an asymmetrical model where the fact table contains row numbers that are many,
many magnitudes greater than the dimensions (Kimball). The fact table will have one join path to
each of the dimensions while each dimension only joins to the fact table once. This limited choice
of paths guarantees that there can only be one result returned from a given query. In addition to the
fact, or published statistic in NASS' case, the fact table contains a set of keys linking the facts back
to the various dimension tables. The dimension tables contain the key that joins to the fact and the
textual representation a particular attribute to be used. Well designed dimensions will have many
well classified attributes that are textually discrete. These attributes will be used as the source of the
query constraints while the classifications will be used as the row headers for the users result set.
The dimensional model seemed well suited for use in a web based ad-hoc query environment.

The Quick Stats 2.0 dimensional model intentionally followed the design of the aggregate
metadata closely utilizing the taxonomies defined in the metadata for simplified browsing. Similar
to the organization within MRS, four dimensions were decided upon answering the questions
what”,”when”,”where” and additionally “How” with the tables Commodity, Reference Period,
Location and Source respectively. Commodity, Location, and Reference Period contains the textual
attributes that when combined uniquely describe the “what” of a published estimate. In addition to
the textual attributes, each dimension table also contains a surrogate key representing the unique
combination of those textual attributes and contains a corresponding entry in the fact table. While
upon initial inspection surrogate keys may seem to be simply integers serving as meaningless
place holders or links between the fact and the dimensions, their flexibility is significant. The use
of surrogate keys would greatly enhance the ability to store any of NASS' published statistics within
this data model. Each dimension contains a certain set of attributes that guarantee the uniqueness of
that row called the natural key and this will often not be the full set of attributes within a given
dimension. Surrogate keys are assigned based upon the uniqueness of a set of natural keys. When
populating data, if it is discovered at any time that the natural keys are insufficient to guarantee
uniqueness, new attributes can be added to the dimension and included in the set of natural keys, or
existing attributes can simply be included in set of natural keys. New surrogate keys will be
generated for data to include the new attribute(s), while existing surrogate keys may continue to be
used without modification. This creates extreme flexibility within the data model however, there is
a cost associated with surrogate keys. When loading data, one of two things must occur; surrogate
keys for existing natural keys are looked up or new surrogate keys for new natural key
combinations are assigned. Both cases require the additional steps of identifying the surrogate key
making data loads slightly more complex.

Figure 2: Quick Stats 2.0 Dimensional Data Model.

 Even with a simplified five table dimensional data model (figure 2), previous data
warehousing experience at NASS has shown evidence that joining tables was problematic to end
users. Application development was also slightly more complex when required to write SQL to join
tables. A single normalized, pre-joined view (figure 3) of the fact and dimension tables containing
all of the dimensions, textual attributes and fact published statistics were created to resemble an
Excel Spreadsheet or SAS dataset with tens of millions of rows of data. This would be the only
view of data presented to internal data users and application developers thus, eliminating the need
to join the fact and dimension tables.

Figure 3: Quick Stats 2.0 Single Data View.

Q U IC K S T A T S

C O M M O D IT Y _ ID : C O M M O D IT Y . C O M M O D IT Y _ ID

S E C T O R _ D E S C : C O M M O D IT Y . S E C T O R _ D E S C

G R O U P _ D E S C : C O M M O D IT Y . G R O U P _ D E S C

S U B G R O U P _ D E S C : C O M M O D IT Y . S U B G R O U P _ D E S C

C O M M O D IT Y _ D E S C : C O M M O D IT Y . C O M M O D IT Y _ D E S C

C L A S S _ D E S C : C O M M O D IT Y . C L A S S _ D E S C

S T A T IS T IC C A T _ D E S C : C O M M O D IT Y . S T A T IS T IC C A T _ D E S C

U N IT _ D E S C : C O M M O D IT Y . U N IT _ D E S C

P R O D N _ P R A C T IC E _ D E S C : C O M M O D IT Y . P R O D N _ P R A C T IC E _ D E S C

M K T _ P R A C T IC E _ D E S C : C O M M O D IT Y . M K T _ P R A C T IC E _ D E S C

U T IL _ P R A C T IC E _ D E S C : C O M M O D IT Y . U T IL _ P R A C T IC E _ D E S C

D O M A IN _ D E S C : C O M M O D IT Y . D O M A IN _ D E S C

D O M A IN C A T _ D E S C : C O M M O D IT Y . D O M A IN C A T _ D E S C

L O N G _ D E S C : C O M M O D IT Y . L O N G _ D E S C

L O C A T IO N _ ID : L O C A T IO N . L O C A T IO N _ ID

A G G _ L E V E L _ D E S C : L O C A T IO N . A G G _ L E V E L _ D E S C

C O U N T R Y _ N A M E : L O C A T IO N . C O U N T R Y _ N A M E

S T A T E _ F IP S _ C O D E : L O C A T IO N . S T A T E _ F IP S _ C O D E

S T A T E _ A L P H A : L O C A T IO N . S T A T E _ A L P H A

S T A T E _ N A M E : L O C A T IO N . S T A T E _ N A M E

A S D _ D E S C : L O C A T IO N . A S D _ D E S C

C O U N T Y _ N A M E : L O C A T IO N . C O U N T Y _ N A M E

R E G IO N _ D E S C : L O C A T IO N . R E G IO N _ D E S C

R E G IO N _ D E S C 2 : L O C A T IO N . R E G IO N _ D E S C 2

R E G IO N _ C O M M O D IT Y _ D E S C : L O C A T IO N . R E G IO N _ C O M M O D IT Y _ D E S C

M E M B E R _ C O D E : L O C A T IO N . M E M B E R _ C O D E

L O C A T IO N _ D E S C : L O C A T IO N . L O C A T IO N _ D E S C

R E F E R E N C E _ P E R IO D _ ID : R E F E R E N C E _ P E R IO D . R E F E R E N C E _ P E R IO D _ ID

Y E A R : < IN T (E S T _ Y E A R) >

C R O P _ Y E A R : R E F E R E N C E _ P E R IO D . C R O P Y E A R

F R E Q _ D E S C : R E F E R E N C E _ P E R IO D . F R E Q _ D E S C

B E G IN _ D E S C : R E F E R E N C E _ P E R IO D . B E G IN _ D E S C

E N D _ D E S C : R E F E R E N C E _ P E R IO D . E N D _ D E S C

P E R IO D _ D E S C : R E F E R E N C E _ P E R IO D . P E R IO D _ D E S C

R E F E R E N C E _ P E R IO D _ D E S C : R E F E R E N C E _ P E R IO D . R E F E R E N C E _ P E R IO D _ D E S C

S O U R C E _ D E S C : S O U R C E . S O U R C E _ D E S C

P U B L IS H E D _ E S T IM A T E : E S T IM A T E S . P U B L IS H E D _ E S T IM A T E

E S T IM A T E : E S T IM A T E S . E S T IM A T E

S O U R C E

S O U R C E _ K E Y : IN TE G E R

S O U R C E _ ID : C H A R (4)

S O U R C E _ D E S C : V A R C H A R (6 0)

O R IG IN _ C O D E : C H A R

O R IG IN _ D E S C : V A R C H A R (6 0)

A C TIV ITY _ C O D E : S M A L L IN T

C O M M O D ITY

C O M M O D ITY _ K E Y : IN TE G E R

C O M M O D ITY _ ID : C H A R (4 8)

S E C TO R _ C O D E : C H A R (2)

S E C TO R _ D E S C : V A R C H A R (6 0)

G R O U P _ C O D E : C H A R (2)

G R O U P _ D E S C : V A R C H A R (8 0)

S U B G R O U P _ C O D E : C H A R (2)

S U B G R O U P _ D E S C : V A R C H A R (8 0)

C O M M O D ITY _ C O D E : C H A R (3)

C O M M O D ITY _ D E S C : V A R C H A R (8 0)

C L A S S _ C O D E : C H A R (4)

C L A S S _ D E S C : V A R C H A R (1 8 0)

S TA TIS TIC C A T _ C O D E : C H A R (3)

S TA TIS TIC C A T _ D E S C : V A R C H A R (8 0)

M K T_ P R A C TIC E _ C O D E : C H A R (3)

M K T_ P R A C TIC E _ D E S C : V A R C H A R (1 8 0)

U TIL _ P R A C TIC E _ C O D E : C H A R (3)

U TIL _ P R A C TIC E _ D E S C : V A R C H A R (1 8 0)

P R O D N _ P R A C T IC E _ C O D E : C H A R (3)

P R O D N _ P R A C T IC E _ D E S C : V A R C H A R (1 8 0)

U N IT_ C O D E : C H A R (3)

U N IT_ D E S C : V A R C H A R (6 0)

D O M A IN _ C O D E : C H A R (4)

D O M A IN _ D E S C : V A R C H A R (3 0)

D O M A IN C A T_ C O D E : C H A R (5)

D O M A IN C A T_ D E S C : V A R C H A R (8 0)

S H O R T_ C O M M C O D E : C H A R (1 2)

L O N G _ D E S C : V A R C H A R (2 2 0)

L O C A TIO N

L O C A TIO N _ K E Y : IN TE G E R

L O C A TIO N _ ID : C H A R (4 0)

A G G _ L E V E L _ C O D E : C H A R (2)

A G G _ L E V E L _ D E S C : V A R C H A R (4 0)

C O U N TR Y _ C O D E : C H A R (4)

C O U N TR Y _ N A M E : V A R C H A R (6 0)

R E G IO N _ C O D E : C H A R (4)

R E G IO N _ D E S C : V A R C H A R (8 0)

R E G IO N _ D E S C 2 : V A R C H A R (8 0)

R E G IO N _ C O M M O D ITY _ C O D E : C H A R (1 2)

R E G IO N _ C O M M O D ITY _ D E S C : V A R C H A R (6 0)

S T A T E _ F IP S _ C O D E : C H A R (2)

S T A T E _ A L P H A : C H A R (2)

S T A T E _ N A M E : V A R C H A R (3 0)

A S D _ C O D E : C H A R (2)

A S D _ D E S C : V A R C H A R (6 0)

C O U N TY _ C O D E : C H A R (3)

C O U N TY _ N A M E : V A R C H A R (3 0)

C O N G R _ D IS T R IC T_ C O D E : C H A R (2)

ZIP _ 5 : C H A R (5)

W A TE R S H E D _ C O D E : C H A R (8)

W A TE R S H E D _ D E S C : V A R C H A R (1 2 0)

L O C A TIO N _ D E S C : V A R C H A R (1 2 0)

M E M B E R _ C O D E : S M A L L IN T

R E F E R E N C E _ P E R IO D

R E F E R E N C E _ P E R IO D _ K E Y : IN TE G E R

R E F E R E N C E _ P E R IO D _ ID : C H A R (1 1)

F R E Q _ C O D E : C H A R (2)

F R E Q _ D E S C : V A R C H A R (3 0)

B E G IN _ C O D E : C H A R (2)

B E G IN _ D E S C : V A R C H A R (3 0)

E N D _ C O D E : C H A R (2)

E N D _ D E S C : V A R C H A R (3 0)

P E R IO D _ C O D E : C H A R (2)

P E R IO D _ D E S C : V A R C H A R (3 0)

R E F E R E N C E _ P E R IO D _ D E S C : V A R C H A R (4 0)

E S T_ Y E A R : IN TE G E R

C R O P Y E A R : IN TE G E R

E S TIM A TE S

C O M M O D ITY _ K E Y : IN TE G E R

L O C A TIO N _ K E Y : IN TE G E R

R E F E R E N C E _ P E R IO D _ K E Y : IN TE G E R

S O U R C E _ K E Y : IN TE G E R

P U B L IS H E D _ E S TIM A TE : V A R C H A R (1 2)

E S TIM A TE : D E C IM A L (1 5 ,4)

M D 5 S U M : V A R C H A R (3 2)

L O A D _ F IL E : V A R C H A R (3 0)

A data warehousing management software from IBM called Red Brick Warehouse has been
used by NASS since 1996 to house the reporter level data collected from the US. Census of
Agriculture and Survey Programs and currently contains over 7 billion rows of data. Red Brick
Warehouse is also ANSI SQL compliant which allows the application developers to satisfy the
requirement that the application be database agnostic avoiding lock in with any proprietary database
management software. Usage statistics against the Red Brick Warehouse reporter level data
warehouse show that over 98% of ad-hoc queries against the 7 billion row fact table resolve in less
than 2 seconds and that the general nature of these simple queries was to select or sum a small
amount of data with several constraints applied. This type of well constrained query and those
needed for an ad-hoc web based query tool (Quick Stats 2.0) would be similar in nature. The
indexing and data storage mechanics of Red Brick are also well suited to dimensional data models.
These factors lead to the utilization of Red Brick Warehouse for the Quick Stats 2.0 database.

One consideration for data design is to ensure that when users progressively limit data by

adding attributes to constrain result sets the remaining unselected attributes available as constraints
are checked for validity. Given the following selection criteria: sector =”CROPS”, year = “2010”
and state name = “ARIZONA”, the list of commodities available for selections should only include
those with valid data for crops during 2010 in Arizona. To retrieve the list of valid data items the
database must join the various dimensions through the fact table to check for the distinct set of valid
commodities based on those constraints. While not overly complex, this type of query will need to
occur each time a user adds a constraint and must perform well. When checking against 50 million
data items this can become time consuming and slow the process of constraining. Red Brick
maintains data objects called aggregate tables which are used heavily in the Quick Stats 2.0
database, but not in the traditional sense. Normally aggregate objects are used to sum (aggregate)
data to improve query performance. For example, a chain of stores might want to sum all sales for a
month in a given region. Having this information summed in an aggregate table maintained at data
load can significantly improve performance. Quick Stats 2.0 does not sum data but utilizes
aggregate objects that represent various combinations of dimensional attributes to improve the
process of constraining data. The above example of crops for 2010 in Arizona could be aided by an
aggregate table containing the distinct list of commodities by sector, year, and state name. A
balanced set of aggregate tables with the ability to resolve any combination of constraints quickly
will greatly improve performance in an ad-hoc environment. An alternative to aggregate tables can
be found with the use of a column oriented DBMS where data storage is by column rather than by
row. Data warehousing applications can generally benefit from this type of storage as aggregates are
computed over large numbers of similar data items. Two open source databases have shown
promise as alternatives including Infobright (1) and Calpont’s InfiniDB (2).

5. Application Design

Business specifications for the redesign of Quick Stats were limited to the creation of a
generalized, fully ad-hoc, web based, query tool capable of limited mapping and charting
functionalities providing users with the ability to customize and save queries.

With a relatively short development time frame, a Rapid Application Development (RAD)
environment was chosen for Quick Stats 2.0. RAD refers to a software development methodology
favoring minimal specification gathering instead relying on rapid prototyping and iterative
development that allows for development to take place at a faster pace. This methodology is well
suited for situations where minimal specifications are provided which was the case with Quick Stats
2.0. In RAD, structured techniques and prototyping are utilized to define users' requirements as part
of the development process and ultimately used to design the final application (Whitten). The RAD

process begins with development of preliminary data models and business process (controller)
models using more structured techniques. Requirements are then verified using iterative
development and prototyping refining the data and process models with each iteration. RAD
approaches may entail compromises in functionality and performance in exchange for enabling
faster development and facilitating application maintenance.

 The Quick Stats 2.0 application framework is an open source Model-View-Controller
(MVC) called Catalyst that is favored for web applications especially within a RAD environment.
The Catalyst framework is written in Perl, designed to simplify the tasks common in web
applications, and scales and performs well. Since Catalyst is Perl based, developers have thousands
of modules available through the Comprehensive Perl Archive Network (CPAN) to accomplish
various tasks. The basic principle of an MVC is to functionally separate the application into three
main areas including; processing information (Model), outputting the results (View) and handling
application flow or business process (Controller). The areas of the MVC are not only physically
separated allowing modification or replacement of one without affecting others; they are also
logically separated making code easier to organize. The Model serves to allow access to data,
generally a relational database, but can also use other data sources, such as search engines or an
Lightweight Directory Access Protocol (LDAP) server. The purpose of the View is to present data
to the user typically using a templating module to generate HTML code (Template Toolkit in the
case of Quick Stats 2.0), but it's also possible to generate PDF output, send e-mail, etc., from a
View. The Controller handles requests within Controller modules determining what a user is trying
to do, gather the necessary data from a Model, and send it to a View for display (Diment). Utilizing
a MVC allows the application to be generalized by allowing developers to modify one area of the
application without affecting the rest the application. For example, the Model can easily be changed
to utilize a different database or can be extended to include data for other databases. This allows the
application to be generalized and work from a configuration based upon the metadata relationships.
With well defined metadata, a generalized configurable application can then be reused with
different data sources and in fact the Quick Stats 2.0 application has be used for several different
data sources by simply changing the configuration.

The ad-hoc nature of the Quick Stats 2.0 application involved users making selections from

various pick lists progressively limiting data in order to retrieve their required results. This type of
interaction with a web based application benefits greatly from Web 2.0 technologies, namely
Asynchronous JavaScript and XML (AJAX). One such open source AJAX framework, the Dojo
Toolkit not only contained the necessary AJAX component libraries but also has additional libraries
such as the multi-select lists (figure 4.) and a polished interactive data grid (figure 5) making the
framework especially useful for data dissemination applications. AJAX programming uses
JavaScript to upload and download new data from the web server without undergoing a full page
reload. AJAX permits users to interact with objects, such as selections lists, within the page without
the need to reload the entire page after each selection. Since data requests going to the server are
separated from data being posted back to the page (asynchronously), other select lists can be
refreshed with data limited by the first request. This allows the user progressively limit data
interactively, seeing immediate results. In turn this provides the ability to explore available data
without requesting the actual results. AJAX also increases the overall performance of the site by
only updating necessary information rather than updating the entire page.

Dojo's DataGrid is similar to a mini web based spreadsheet making it especially well suited

for electronic data dissemination projects. In HTML terms, the grid is a “super-table” with its own
scrollable viewport. One area where the grid excels is in the ability to display large amounts of data
by employing a technique called “lazy loading”. The principle behind lazy loading is to only build
nodes for records that are viewable. If a user selects a record set with 50,000 rows, they can only
view 20 rows at a time on the screen. Lazy loading works by creating the nodes as the user scrolls

so that only visible nodes are created. The grid also features nested sorting, drag and drop
functionality, columns reordering, column hiding, and accessibility for screen readers. The Quick
Stats 2.0 implementation of the grid also features the ability for users to pivot or cross tabulate data.
Figure 5 displays data pivoted by the commodity allowing the users greater flexibility in data
presentation.

The interactive mapping requirements (figure 6) were met using MapServer and Open

Layers. MapServer is a Common Gateway Interface (CGI) program residing on the web server
which simply creates an image of the requested map. The request may also return images for
legends, scale bars, reference maps, and values passed as CGI variables. Open Layers is another
open source JavaScript library for displaying the maps created by MapServer. The combination of
these two products allows Quick Stats 2.0 to generate maps dynamically based on results from the
data grid.

One difficulty in a truly ad-hoc web environment is the ability to deal with potentially large

number constraints. Quick Stats 2.0 currently contains statistics for over 23,000 commodities,
40,000 locations, and 10,000 reference periods. Displaying the potential constraints to the end user
is a balancing act as it would be impractical to display a select list with all 23,000 commodities.
Quick Stats 2.0 utilizes the metadata taxonomies and parent, child, sibling relationships to
determine which constraint lists to initially display and when to present the user with additional
constraints. Initially, only the source, sector, group and commodity constraint lists are displayed.
After a user has selected one or more items from one of these, they are presented with the data item
constraint list. Location operates similarly but only displays valid constraint lists based on the
parent child relationships in (table 4). Leveraging the metadata relationships not only allows the
application to dynamically display relevant constraint lists, but allows the developers to
dynamically create objects based on these relationships.

With a large numbers of constraints possible for any given ad-hoc query and the need to be

able to save these queries, a method to easily store and identify query constraints was required.
Unique Universal Identifiers (UUID) is an identification standard that guarantees that with
reasonable confidence a set of information can be uniquely identified without central coordination.
The UUID consists of 32 hexadecimal digits, separated by hyphens, displayed in 5 groups
following the form 8-4-4-4-12 for a total of 36 characters for example “631B5E2C-F4A4-314C-
8A3A-E5A8D86642C2”. For any given query within QuickStats 2.0, the UUID along with all of
the constraints and the order of which the constraints were selected is stored within a database. This
allows for a dataset returned from a query to be identified and reused throughout the application.
The data grid, maps, downloadable files and even the initial constraint lists all operate on the
UUID. This also allows users to save a query by simply saving a link to the application containing
the UUID.

6. Summary

Creating a Web 2.0 based, data warehouse powered data dissemination environment is
greatly aided by taking a three phase approach focusing on metadata, database design and
application design. Standardizing metadata, developing taxonomies, and classifying attributes
provide the ability to automatically generate intuitive text-based navigation. A simplified,
generalized database design closely linked to the metadata will allow for broader usage. Database
performance is also of importance and should be a top design concern. A well organized yet flexible
application framework and iterative development process will speed up time to delivery and ease
application maintenance. Open source software can reduce budget requirements and reduced

licensing requirements can speed up development because the products are readily available and
useable today. Combining these techniques can provide for a powerful data driven dissemination
environment.

Figure 4: Quick Stats 2.0 Ad-hoc User Interface

Figure 5: Quick Stats 2.0 Interactive Data Grid

Figure 6: Quick Stats 2.0 Mapping

REFERENCES

1. Chapple, M (2010) http://databases.about.com/cs/administration/g/refintegrity.htm

2. Diment K., Trout M. (2009) The Definitive Guide to Catalyst: Writing Extendable,
Scalable and Maintainable Perl–Based Web Applications

3. Garshol L. (2004) Metadata? Thesauri? Taxonomies? Topic Maps!
http://www.ontopia.net/topicmaps/materials/tm-vs-thesauri.html#N429#N429.

4. Kimball, R (1996) The Data Warehouse Toolkit

5. Ricci, C (2004) Developing and Creatively Leveraging Hierarchical Metadata and

Taxonomy

6. Whitten, J; Bentley L, Dittman C. (2004). Systems Analysis and Design Methods. 6th
edition.

RESOURCES

1. Infobright : http://infobright.com

2. InfiniDB : http://infinidb.org/

3. Dojo : http://www.dojotoolkit.org/

4. MapServer : http://mapserver.org/

5. Open Layers: http://openlayers.org/

6. Catalyst: http://www.catalystframework.org/

