

Component conventions and expressions

Last update: January 2021

U. Ruth Charrondiere, PhD FAO

Units, denominators, modes of expression

- Units (how much of the component):
 - g, mg, mcg, kJ (kcal)
- Denominators (in where):
 - per 100g edible portion (usually used in FCDB)
 - per kg
 - per g nitrogen
 - per 100g total fatty acids
 - per 100g dry matter
 - per 100g total food (as purchased)
 - per 100ml
- Mode of expression
 - calculation method (e.g. in monosaccharide equivalent or vitamin equivalents, algorithms using conversion factors such as energy or protein
 - units and denominators
 - significant figures
 - rounding

Table 9.1 Modes of expression of food composition values in reference and user databases (per 100 g edible portion of food)

Constituent	Unit	Number of significant digits	Suggested limits in database		Trace =
			Value	Limit	less than
Energy	kJ (kcal)	3	1–999	±1	0.6
			>1000	±10	6
Major constituents (water, protein, fat, carbohydrates, dietary fibre, alcohol, organic acids)	g	3		±0.1	0.06
Amino acids	mg	3		±0.1	0.06
Fatty acids	g	3		±0.1	0.06
	mg	3		±0.1	0.06
Cholesterol	mg	3		±1	0.6
Inorganic constituents	mg	3	1–9	± 0.1	0.06
	mg	3	10–99	±1	
	mg	3	>100	±10	
	μg	2	100–1000	±10	6

Source: Greenfield & Southgate, 2003

Constituent	Unit	Number of significant digits	Suggested limits in database		Trace =
			Value	Limit	less than
Vitamins					
Vitamin A					
Retinol	μg	3		±1	0.6
Carotenes	μg	3		±1	0.6
Vitamin D	μg	2		±0.1	0.06
Vitamin E					
Tocopherols	mg	2		±0.01	0.006
Vitamin K	μg	2		±0.1	0.06
Group B vitamins					
Thiamin	mg	2		±0.01	0.006
Riboflavin	mg	2		±0.01	0.006
Niacin	mg	2		±0.01	0.006
Vitamin B ₆	mg	2		±0.01	0.006
Pantothenic acid	mg	2		±0.01	0.006
Biotin	mg	2		±0.01	0.006
Vitamin B ₁₂	μg	2		±0.01	0.006
Folates	μg	2		±0.1	0.06
Vitamin C	mg	3		±0.1	0.06

Source: Greenfield & Southgate, 2003

Significant figure

- The last digit should reflect the precision of the analysis and the value cited should not give a false impression on the precision the constituent can be measured
- is different from decimal places
- 123 or 12.3 or 1.23 or 0.123 have all three significant figures
- in reference DB useful to have one more significant figure than in user DB
- record values as reported from lab or from calculations (may be more than useful number of significant figures)

Rounding

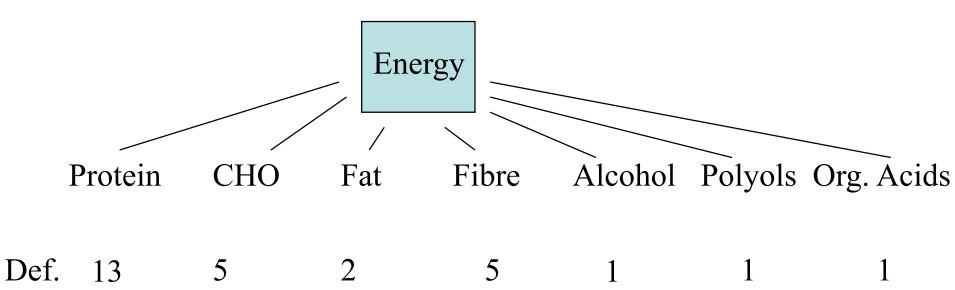
- mostly after aggregation of calculation use rounding
- convention:
 - 0-4 rounded down
 - 6-9 rounded up
 - 5 rounded down with even figures (0.25 -->
 0.2) and rounded up with uneven figures (0.55 --> 0.6)

Data values

- Analytical values
- Missing values (never assign zero value)
- Zero values (presumed or assumed)
- Trace values (Tr, present but < LOD or LOQ, should not have zero value)
- Imputed values
- Calculated values

Why would we calculate values?

- some nutrients are always calculated
 - energy
 - protein
 - Retinol equivalents
 - beta carotenes equivalent
 - vitamin D
 - alpha tocopherol equivalent
 - niacin equivalent
 - dietary folate equivalent
 - fatty acids in food
- missing data in FCDB but important for users


Energy

Energy value depend on:

- macronutrient definitions (CHO, protein, fat, fibre)
- conversion factors used
 - Gross energy ' (for Protein, CHO, fat, alcohol, fibre in kJ/g: 24, 17 (16), 40,30,17 (in kcal/g: 5.65, 4.0 (3.7), 9.4, 7, 4),
 - general Atwater factors (for Protein, CHO, fat, alcohol in kJ/g: 17, 17, 37, 29 (in kcal/g: 4,4,9,7)
 - specific Atwater factors as indicated in Merrill & Watt (1973)
 - dietary fibre 8 kJ/g (2 kcal) applied or not

Combination of macronutrient values

==> theoretical 650 combinations of definitions, meaning different nutrient values, before even applying the different energy conversion factors

Energy

kcal/g

- 4, 4, 7, 9: most
- 3.75, 4, 7, 9: UK
- USDA: specific Atwater factors + 4, 4, 7, 9
- dietary fibre: 2 kcal/g

kJ/g

- 17 (16), 17, 29, 37 kJ/g
- or kcal x 4.2 (or 4.184) not recommended
- dietary fibre: 8 kJ/g

Protein

- Selection of nitrogen value (3)
 - total N (= as analysed through Kjeldahl) *
 - amino N
 - protein N
- Selection of nitrogen conversion factors (4)
 - N x 6.25 for all foods
 - N x Jones factors(4.17 6.38) depending on food
 - N x adapted Jones factors
 - N x lower factors (5.7 or 5.33 and specific factors)
- Sum of amino acids

Fat

- Fat, total. Sum of triglycerides, phospholipids, sterols and related compounds. The analytical method is a mixed solvent extraction (Tagname: FAT)
- Fat, total. Derived by analysis using continuous extraction (Soxhlet method). The nutrient values are lower for cereals but comparable for other food groups (Tagname: FATCE)
- Total fat by NLEA definition (triglyceride equivalents of fatty acids). This is used for labelling in the United States of America (Tagname: FATNLEA)
- = fatty acids/ fatty acid conversion factor

Table 9.2 Conversion factors to be applied to total fat to give values for total fatty acids in the fat

Food	Factor	Food	Factor	
Wheat, barley and rye1		Beef ³		
wholegrain	0.72	lean	0.916	
flour	0.67	fat	0.953	
bran	0.82	Lamb, take as beef		
Oats, whole1	0.94	Pork ⁴		
Rice, milled ¹	0.85	lean	0.910	
Milk and milk products	0.945	fat	0.953	
Eggs ²	0.83	Poultry	0.945	
Fats and oils, all except coconut	0.956	Brain ⁴	0.561	
Coconut oil	0.942	Heart ⁴	0.789	
Vegetables and fruit	0.80	Kidney ⁴	0.747	
Avocado pears	0.956	Liver4	0.741	
Nuts	0.956	Fish ⁵		
		fatty	0.90	
		white	0.70	

Source: Greenfield & Southgate, 2003

Fat

- total fat: most countries
- Fat (Soxhlet): China, Egypt, (Lesotho)
- triglycerides: NZ
- fatty acid conversion factor: in introduction but not at food level
- FA fractions (sat., monounsat., polyunsat.): many in g, some also in % but contributing FAs might be different
- trans FA: NZ, USDA, Norway, Denmark, NEVO, UK
- individual FAs: few, e.g. UK, USDA, NZ, China
- need for revised nomenclature of fatty acids

Retinol equivalent

- Total vitamin A activity (mcg) in retinol equivalent
 - = mcg retinol + 1/6 mcg beta-carotene + 1/12 mcg alpha-carotene + 1/12 mcg beta-cryptoxanthin
 - = mcg retinol + 1/6 mcg beta-carotene equivalent
- RAE (retinol activity equivalent) in mcg in USDA, DK
 - = mcg retinol + 1/12 mcg beta-carotene + 1/24 mcg 1/12 alpha-carotene + 1/24 mcg beta-cryptoxanthin
- all-trans retinol equivalents in mcg (UK)
 - = all-*trans* retinol + 0.75 13-*cis* retinol + 0.90 retinaldehyde

β-carotene equivalent

• = 1 β -carotene + 0.5 α -carotene + 0.5 β -cryptoxanthin

• = 1 β -carotene + 0.5 α -carotene + 0.5 α -cryptoxanthin + 0.5 β -cryptoxanthin

Vitamin D

- = ergocalciferol (vitamin D2) + cholecalciferol (vitamin D3)
- = cholecalciferol (vitamin D3)
- = Vitamin D3 + 5x 25hydroxycholecalciferol (used in UK, DEN)

Vitamin E

- alpha-tocopherol (TOPHA)
- α -TE (VITE) = α -tocopherol + 0.5 β -tocopherol + 0.1 γ -tocopherol + 0.3 α -tocotrienol
- UK: α -TE (VITE) = α -tocopherol + 0.4 β -tocopherol + 0.1 γ -tocopherol + 0.01 δ -tocopherol + 0.3 α -tocotrienol + 0.05 β -tocotrienol + 0.01 γ -tocotrienol
- α -TE (VITE) = α -tocopherol + 0.4 β -tocopherol + 0.1 γ -tocopherol + 0.01 δ -tocopherol

BUT: DRI (2001) found that only TOPHA and 3 synthetic forms have vitamin E activity

Niacin equivalent

niacin + 1/60 tryptophan

VS.

niacin

 but in case of limited protein supply tryptophan is not available for niacin activity

Folates

- folate (= food folate)
- total folate = food folate + folic acid
- Dietary Folate Equivalent (DFE in mcg) = food folate (pteroylpolyglutamates) + 1.7 x synthetic folic acid (pteroylmonoglutamic acid)

Example for USDA all-purpose flour, enriched

Total folate 194 mcg

Food folate 29 mcg * 1 = 29

Folic Acid 165 mcg * 1.7 = 280

309 mcg DFE

Usage of units and expressions

- important that every value has a clear unit and denominator, and a well-defined expression
- all necessary elements to calculate the different expressions should be stored in the DB, if possible with other components
- less errors occur in user DBs when nutrient values of calculated components are calculated in own DB (instead of copied from other sources)

For more on food composition, visit www.fao.org/infoods