

Principles about Sampling

Last update: January 2021

U. Ruth Charrondiere, PhD FAO

Sources of Variability

Natural variation

- Growing location
- Climate
- Breed/Cultivar
- Age/Ripeness
- Formulation/Recipe
- Brandnames

Other variations

- Analytical methods
- Nutrient definition including conversion factors

Nutrient composition of banana cultivars

Banana Variety	Edible Portion	Water g	Energy kJ (kcal)	Calcium mg	Phos mg	Iron mg	ß carotene mcg
Cavendish	64	74.4	435 (104)	139	20	0.8	75
Botoan	57	74.4	422 (101)	21	27	0.4	25
Ternatensis	62	66.3	552 (132)	15	19	0.9	370
Lacatan	69	68	527 (126)	21	34	0.8	360
Violacea	67	73.1	447 (107)	19	21	0.7	285
Compressa	57	72.2	460 (110)	23	36	0.9	190
Ternatensis	64	66.2	560 (134)	11	24	0.7	325
Tuldoc	76	74.8	414 (99)	26	28	1.6	1370
Uht en yap		69.5					2780

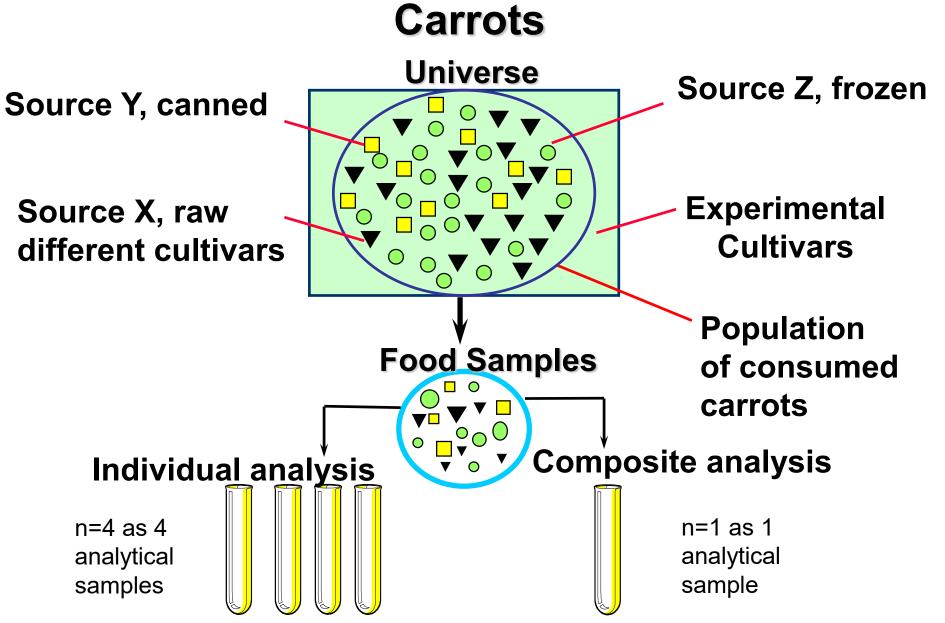
Carotene content of mango varieties

Mango variety and carotene	Immature	Partially mature	Mature
	(mcg/100g	(mcg/100g	(mcg/100g
	pulp)	pulp)	pulp)
Mango Badami - beta carotene - gamma carotene - beta cryptoxanthin	20	1130	4520
	trace	10	20
	trace	50	40
Mango Keitt - beta carotene - beta cryptoxanthin	170	420	670
	trace	trace	20
Mango Tommy Atkins - beta carotene - beta cryptoxanthin	200	400	580
	10	10	30

Basic terms (1)

Term	Definition	Comments on application in food composition studies
Sam ple	A portion selected from a larger quantity of material	A general term for a unit taken from the total amount (the population) of a food
Sampling protocol	A predetermined procedure for the selection, withdrawal, preservation and preparation of the sample	Sometimes called a sampling plan
Characteristic	The property or constituent that is to be measured or noted	Description of the food, nutrient and other analyses
Homogeneity	The extent to which a property or constituent is uniformly distributed	Foods are usually heterogeneous or must be assumed to be so
Sampling error	The part of the total error associated with using only a fraction of the total population of food and extrapolating it to the whole population. This arises from the heterogeneity of the population	Because of the heterogeneous nature of foods, replicate samples must always be taken when estimating the composition of the population of a food
Batch	A quantity of food that is known, or assumed, to be produced under uniform conditions	Batch numbers should always be noted when sampling foods
Unit	Each of the discrete, identifiable units of food that are suitable for removal from the population as eamples and that can be individually described, analysed or combined	These units form the basis of most food analysis work (e.g. an apple, a bunch of bananas, a can of beans, a prepared dish

Basic terms (2)


Method	Definition and characteristics	Notes on application
Pandom campling	Samples are taken in a way that ensures that any one unit has an equal chance of being included	The theoretical ideal but rarely practicable when compling foods for nutritional databases
Stratified cam pling	Units of eampling are taken from defined strate (subports) of the parent population. Within each stratum the eamples are taken randomly	Often the most suitable method for use in database work. Strata may be regional, seasonal, retail sale point, etc., as defined by knowledge of the food being studied
Selective compling	Samples are taken according to a campling plan that excludes material with certain characteristics or selects only those with defined characteristics	Most commonly used in the analysis of contaminants. Can be used, with caution, for database work
Convenience sampling	Samples are taken on the basis of accessibility, expediency, cost or other reason not directly concerned with sampling parameters	Parely suitable for database work but may be the only practicable way to sample wild or uncultivated foods or composite dishes from households

Basic terms (3)

compo	osition studies	
Terms	Description	Main use in food composition studies
Primary sample	The collection of one or more units initially taken from the total population of the food	The usual starting point in compositional studies. The ideal is the collection of several replicates that are treated separately. Primary samples are often mixed to form composites
Reduced sample	A representative part of the primary sample obtained by a division or reduction process	Frequently used to reduce the primary sample to a more manageable weight
Composite sample	Mixtures formed by combining primary samples	Frequently used in food composition studies. Composites may be samples of the same food or combinations of different brands or cultivars
Laboratory cample	The sample sent to or received by the laboratory	The primary sample (or a reduced sample) often requires further handling in the laboratory (e.g. thawing, cooking, separation of inedible matter). The edible portion may need further reduction or mixing
Analytical sample	The portion prepared from the laboratory eample from which the portions for analysis are taken	This is usually the form in which the food samples are prepared for analysis
Analytical portion	The quantity of food of the proper weight for each analytical measurement	The analysis of duplicate analytical portions is the minimum acceptable; several replications are preferable

Source: adapted from Joanne Holden

What can we achieve?

- → with individual samples mean + variability
- → with composite sample only mean but no variability between samples
- → the larger number of units the better the estimation of the true mean

Sampling and analytical protocol

To be elaborated together by compilers and analysts to ensure:

- a better data quality
- a smooth process from sample collection to analysis
- grouped collection and analysis of similar foods (advantage for sample preparation and analysis, e.g. calibration)

Sampling protocol **Transport** Analytical protocol

Responsibility for preparing the combined protocols (1)

- Database compilers
 - control the sampling and analytical work
 - responsible, in collaboration with the analysts, for preparing the written combined protocols

Analysts

 assure that the plan is feasible in terms of transport to the laboratories, their capacities to store, handle and analyze the samples adequately

Responsibility for preparing the combined protocols (2)

In most countries, sampling and analytical work may be contracted

- then the compilers' input may be restricted to establishing the broad outlines of the work required
- the written contract should include the following:
 - the preferred analytical methods per nutrient
 - the minimum quality assurance
 - the components to be analyzed with their definition, units (preferably metric units and precision of denominator, e.g. if total food or edible portion), and an internationally recognized component identifier, e.g. INFOODS tagnames
 - the foods to be analyzed
 - storage (temperature, duration) and sample handling
 - · date to submit results

Sampling plan

- Is based on a clear understanding of the population of foods studied
- Describes the sampling type and its particular design
- Defines the sampling sites
- Provides a detailed description of the sampling process to be undertaken
- Is written with the objective of ensuring that no changes in composition occur between collection and analysis
- Defines the number and size of samples

Sampling strategy

- Population based
 - identify where population is located who eats the foods
 - mostly sampling in big cities
- Based on agricultural production
 - identify where the food is produced
 - sampling in production area
- → mostly population based and mostly stratified sampling

Knowledge of Foods

- Where and when the food is consumed/produced?
- What forms/types/brands of the food are consumed?
- Where is the food produced? When?
- By whom consumed? Specific groups, urban/rural
- How is the food prepared?
- Is the food prepared from a recipe or formulation?
- Statistics?

Sources of Information about Foods

- Government/Industry reports
- Census Data
- Production/Sales Data
- Expert Knowledge

Number of samples

Sample size $\geq (t \alpha n-1)^2 SD^2/(accuracy x mean)^2$

Examples of value for t

- sample size 10. For $\alpha = 0.05$ and df = 9, t for 0.025 $(\alpha/2) = 2.262$. $\rightarrow t^2 = 5.1166$
- For a sample size of 20, and $\alpha = 0.05$, df = 19
- t for 0.025 ($\alpha/2$) = 2.093. Thus t^2 = 4.3806

Number of samples

Parameter	Moisture (g/100g)	Fat (g/100g)	Cholesterol (mg/100g)
Actual sample size	10	10	10
Actual mean	49.9	13.4	16
Actual standard deviation (SD)	8.5	3.9	6.7
SD ²	72.25	15.21	44.89
$t_{(\alpha = 0.1)} (t_{(\alpha = 0.05))}$	1.860 (2.262)	1.860 (2.262)	1.860 (2.262)
$t^2_{(\alpha = 0.1)} (t^2_{(\alpha = 0.05))}$	3.4596 (5.1166)	3.4596 (5.1166)	3.4596 (5.1166)
t ² x SD ²	249.96 (369.67)	52.62 (77.82)	155.30 (229.68)
Accuracy set at	0.1 (0.05)	0.1 (0.05)	0.1 (0.05)
Accuracy x mean	4.99 (2.495)	1.34 (0.67)	1.6 (0.8)
(Accuracy x mean) ²	24.9 (6.225)	1.7956 (0.4489)	2.56 (0.64)
Sample size required for accuracy = 0.1	249.96/24.9 = 10	52.62 /1.7956 = 29	155.30 /2.56 = 60
Sample size required for accuracy = 0.05	369.67/6.225 = 59	77.82/0.4489 = 173	229.68/0.64 = 359

Size and number of samples

Application of equation requires knowledge on some parameters (mean, SD) of the food to be acquired through:

- pilot analytical studies (best option)
- literature
- intuitive guesses (least best option)

Minimal number of samples

- most sampling schemes adopt a standard of at least 10 foods sampled and 3 analytical samples
- US nutrition labelling requires 12

Sample collection

- collectors need exact written instructions what to collect, how much and where (with alternative if exact sample is not available) and how to send it when to the laboratory
- collectors need training
- each sample needs to be coded and documented before being sent as quickly as possible to laboratory

Special considerations for transportation

Main objective: to conserve all nutrients to represent levels in food as consumed and avoid contamination:

- maintain water (avoid drying out) and vitamin content
- use sterile containers, preferably sealed
- if frozen, sample needs to be kept frozen (choose appropriate container and travel time – if time too long to laboratory to assure frozen state select other good quality laboratory)

Sampling preparations, handling and storage

Main objective: to conserve all nutrients as initially present in the food while avoiding contamination

- foods are handled differently depending on form, size, matrix and nutrient to be analysed
- storage capacity and possibility determine when food has to be analyzed (e.g. if no deep-freezing possible normally below 70 degree Celsius - food needs to be analyzed quickly except for minerals if the sample is dried)

Example: NFNAP Sampling in for USDA database

- 12 or 24 locations (national): 4 regions (according to population distribution) with 3 strata each, and every strata 1 metropolitan statistical area with 1 urban and 1 rural location. 1 outlet in each location
- brands selected proportional to market share (1% or more of food consumed)
- → covering seasonal and regional differences, including urban vs. rural, and specific populations e.g. tribes
- → purpose: monitoring of Key Foods

Source: Joanne Holden

Sampling for food biodiversity

- Decide for most important features to be included in sampling scheme
- Sample for varieties
- Generate analytical data for varieties
- Compile these data systematically and centrally
- Collect diet survey data on varieties
- Consider nutrient content in crop variety promotions

Conclusions about sampling

- Without adequate sampling the analytical value cannot represent the food as consumed in the population throughout the year
- Sample for varieties, for regional and seasonal variations, different brands and foods of specific populations
- Generate also analytical data for varieties
- Avoid sampling errors

For more on food composition, visit www.fao.org/infoods