REPORT OF THE SECOND REGIONAL EXPERTISE TRAINING WORKSHOP ON PEST SURVEILLANCE

29 July-01 August 2014 Hanoi, Viet Nam

Summary

The 2nd Regional Expertise Training Workshop on Pest Surveillance has been implemented in Hanoi, Viet Nam from 29 July to 1 Aug. 2014 with 32 participants including 25 trainees from 5 participating countries, 5 experts and 2 RAP officers. Welcome remark was delivered by Mr. Chang-Ho Shin, Project Coordinator, on behalf of Dr. Yongfan Piao, Lead Technical Officer of the project and Senior Plant Protection Officer, RAP. Dr. Deuk-Soo Choi, Senior Researcher of Animal and Plant Quarantine Agency of the Korean Government, gave a lecture on "Fruit-fly surveillance and identification" as an expertise subject, which was followed by country reports on "Introduction of surveillance status and activities on fruit-fly" by Viet Nam, Thailand and Nepal experts. One more expertise subject "Stored product insect pest surveillance and identification" was delivered by Dr. Ki-Jeong Hong, Professor of Sunchon National University of Korea. As an expertise event, there was a field trip to "lychee orchard" where a Viet Nam government project on fruit-fly is being performed, making sure of placed pest traps and lures. Practical training has been implemented at the meeting room with two microscopes provided by Viet Nam NPPO, identifying diverse fruit-flies and stored produce insect pests using the specimens and samples brought from participating countries. Just before concluding the workshop, there was a workshop appraisal by trainees through the questionnaires, asking to rate the level of lectures and lecturers, training contents and logistics. Mr. Shin delivered the closing remark, summarizing the agendas one by one with highlights of achievement made by the workshop. He concluded that the workshop was very good opportunity to share and to exchange the information on pest surveillance status among participating countries and to increase participants' practical capacity.

REPORT

1. Welcome remark

Mr. Shin, Project Coordinator, delivered the opening remark on behalf of Dr. Piao, Lead technical officer of FAO/RAP. He welcomed the participants and experts to the workshop and expressed his special gratitude to NPPO of Viet Nam for its sincere cooperation and elaboration as a hosting country of the workshop. He highlighted the importance of capacity development for pest surveillance and identification in South-East Asian countries and recommended participants to use this training as good opportunity to polish the knowledge and to share information and experience on pest surveillance and to maximize the benefit from the workshop.

2. Lecture on fruit-fly surveillance and identification

Dr. Deuk-Soo Choi, Senior Researcher of Animal and Plant Quarantine Agency of the Korean Government, gave a lecture on fruit-fly as an expertise subject, introducing diverse kinds of fruit-fly's families one by one and their geographic distribution, species-level taxonomic characters as well as fruit-fly trapping and lures. He provided the trainees with reference books on the fruit-fly surveillance and identification to be used for their further study.

3. Country reports

Three experts from Viet Nam, Thailand and Nepal presented country reports on "Introduction of surveillance status and activities on fruit-fly".

Dr. Ha Thanh Huong, Deputy Head of Plant Quarantine Division of Viet Nam NPPO, introduced the achievements of fruit-fly surveillance during 1977-2010 in Viet Nam and identification results for 4 kinds of fruit-flies as well as ongoing cooperation program with China on fruit-fly monitoring as well as various activities on fruit-fly in connection with trade market access strategies such as for dragon fruit (Japan, Korea, USA and New Zealand), mango fruit (Japan, Korea and New Zealand) and rambutan fruit (USA). She also introduced in detail the surveillance, detection, identification and preservation methods including

attractants, traps and specimens for fruit-fly and the procedures of Vapor Heat Treatment (VHT) from sorting stage to transport stage for export.

Dr. Sunyanee Srikachar, Plant Protection Research and Development Office of Thailand NPPO, introduced the current status of 9 kinds of fruit-flies existing in Thailand, describing their distribution, the number of hosts and economic pest status. She also introduced integrated fruit-fly control system performed in rose apples orchard for export including details of method on how to sanitize the orchards, how to monitor for population survey, how to use the protein bait and how to and when bag the fruits.

Mr. Dilli Ram Sharma, National Project Coordinator of Nepal, highlighted the importance of fruit-fly as main insect pest threatening the horticultural crops and their efforts to provide the farmers with national level of services regarding surveillance, monitoring and management of the pests. He also introduced 5 species of fruit-fly status in Nepal in connection with quarantine inspection in exporting Citrus fruit to China including distribution of fruit-fly, past survey on fruit-fly and damage aspect by the attack of fruit-fly as well as Citrus fruit-fly surveillance activities and their recent identification results. Regarding this matter, he specially requested to send an expert on taxonomy of fruit-fly to Nepal for further study and survey activities as one of project in-country programs.

4. Lecture on Stored Product Insect Pest Surveillance and Identification

Dr. Hong, Professor of Sunchon National University in Korea, gave a lecture on stored product insect pest as an expertise subject. He introduced various kinds of pest family one by one, describing their characteristics, classification, spreading aspects, damage aspects, boring capacities and survey methods with a lot of colorful pictures. He provided the trainees with reference books on the stored product insect pests surveillance and identification to be used for their further study.

5. Field trip

To experience real pest survey method, participants took a field trip to a lychee orchard which is around 120km away from Hanoi. In 3ha-wide lychee orchard, a lot of traps were placed for fruit-fly monitoring as one of Viet Nam government projects. Every trap was set up at a distance of 20m each other, using four kinds of chemical lure. A Viet Nam-NPPO officer guided the participants, explaining when and how to set up and remove the traps, what kinds of traps and lures they use, how often they change the lures, how long traps are placing and so on as well as general information on lychee cultivation.

6. Laboratory practice

To improve personal capacity in implementation of pest identification, laboratory practice has been included in the training program. Two microscopes were provided by Viet Nam NPPO for the practice. Microscope practice for fruit-fly identification was performed in the morning session, while stored products insect pest in the afternoon session. Participants actively participated in practical training to identify the pest species by using the pest specimens or samples brought from participating countries and by comparing the target pests with the pictures provided by lecturers. Participants were especially interested in the pest species closely related to market access or quarantine inspection of their own countries. They have learned how to differentiate between similar pest species by minute distinctions of morphological characters such as mouthpart, wing, abdomen, genitalia, vein, pupa, eggs, larva etc. as well as how to handle the microscopes and lab tools in pest identification. This practice session could contribute to improving expertise knowledge on pest's characteristics and trainees' identification skill, but they could not have enough time to practice because of limited number of equipment and insufficient space.

7. Workshop assessment

As a last session of the workshop, prepared questionnaires were distributed to the participants to evaluate the workshop. Questionnaires were composed of five sections such as overall assessment of the project, rating the lecture and lecturers, rating the impact of the workshop, rating the logistics and description on the strength, weakness of the workshop and suggestion.

According to the result of the analysis of the questionnaires collected from 24 participants, 99% of the participants were content with overall project content, structure and organization and 97% of the participants were "satisfied" or "fully satisfied" with the lectures and lecturers' expertise. However, a third of participants were not satisfied with the field trip and laboratory practices. 95% of the participants think that this workshop will impact on their technical knowledge, professional activities, regional networking and improving the work service. As for the workshop logistics such as flight arrangement, accommodation, meeting facilities and other things, 93% of the participants expressed their satisfaction.

Meanwhile, participants described the main strength, weakness of the workshop and made suggestion as follows.

<Strength>

- Lecturers' highly specialized expertise level and enthusiastic attitude
- Very good contents and arrangement of the training
- Good opportunity to increase capacity in pest identification
- Good interaction opportunity among participant countries

<Weakness>

- Inefficient lab equipment and conference room in order to have enough practices
- Lack of information sharing on field trip

- Poor arrangement of field trip and no expert's guidance
- Not enough and limited distribution of hand-out (books)
- Short duration of training
- Poor logistic support (notebook, reading material, reference books etc.)
- No airport pick-up services and poor food of the hotel

<Suggestion>

- Distribution of enough technical books and colourful hand-outs
- Arrangement of enough lab equipment and conference room for practice
- Longer duration of training

8. Closing Remarks

Mr. Shin expressed his gratitude to the lecturers and other participants for their hard work and cooperation as well as to Viet Nam NPPO for its sincere cooperation and arrangement for the workshop as a hosting country.

He evaluated the workshop as it was very good opportunity for the trainees to increase their expertise on two specialized subjects and to share information on each country's status on fruit-fly survey as well as to develop their practical capacity of pest identification through the field trip and lab practice training. On the other hand, he expressed a sense of frustration at inappropriate preparation of lab equipment and insufficient space for lab practices. To conclude the workshop, he recommended the trainees to keep digesting and reminding the contents of the lectures to maximize the benefit of training program, emphasizing that using this opportunity to increase country's capacity is quite important for the successful implementation of the project.

9. The results of the Workshop

This workshop produced significant results in association with forthcoming training workshops as follow.

Firstly, participants could increase specialized knowledge on fruit-fly and stored product insect pests and have upgraded skill on how to identify pest species by their morphological characters with the pest specimens and samples through real microscope practice. Field trip contributed to increasing practical understanding on fruit-fly trap's functions such as how to set up the traps and how the traps are working. Detailed reference books provided by lecturers also enable the participants to have further study and to share with other colleagues.

Secondly, presentations on country reports were good material for the participants to share and exchange information on each country's fruit-fly survey status, concerned crops and related activities in association with export strategies. Thirdly, although lab practices was surely good practical events in increasing the expertise level of the participants, participants could not have enough opportunity to take part in the practices because of insufficient and inefficient lab equipment as well as limited practice space. As we can see the results of the workshop assessment, many trainees pointed out this matter. In this regard, more careful attention has to be paid in preparation of lab practices for the forthcoming workshop.

Lastly, a matter for regret was that the trainees of Myanmar could not take part in the workshop this time again because of the delay of administrative decision-making procedures on the workshop participation.

10. A list of follow-up actions

Based on the project work-plan and the results of this workshop, some actions to be followed up in implementation of the project will be as follows.

- Preparation of the 3rd regional expertise training workshop on pest surveillance and the 1st regional training workshop on pest information management.
- Preparation of Steering Committee to adjust the training program and project workplan
- Consultation with hosting countries of the scheduled workshops about detailed training program
- Consultation with potential experts/trainers to adjust and finalize the in-country trainings
- Undertaking the procedures for laboratory equipment procurement to support diagnostic capacity of the participating countries
- Close collaboration with Myanmar NPPO for their participation in the next workshop

Annex 1

Agenda for Regional Workshops on Pest Surveillance

Day-1 (July 29, 2014)

Time	Session	Facilitator
09:00 - 09:30	Registration	
Opening Session		
09:30 - 09:45	Welcome remark	Dr. Yongfan Piao
09:45 - 10:00	Group photo and Coffee break	
Session 1: Lecture (1)		
10:00 - 12:00	Lecture on Fruit-fly surveillance and identification	Dr. Deuk-Soo Choi
12:00 - 13:30	Lunch	
Session 2: Lecture (2)		
13:30 - 14:10	Introduction of Surveillance Status and Activities on Fruit-fly in Viet Nam	Dr. Ha Thanh Huong
14:10 - 14:40	Introduction of Surveillance Status and Activities on Fruit-fly in Thailand	Ms. Sunyanee Srikachar
14:40 - 15:10	Introduction of Surveillance Status and Activities on Fruit-fly in Nepal	Mr. Dilli Ram Sharma
15:10 - 15:30	Coffee break	
Session 3: Lecture (3)		
15:30 - 17:20	Lecture on Stored product insect pest surveillance and identification	Dr. Ki-Jeong Hong
18:30 - 20:30	Welcome party	

Day-2 (July 30, 2014)

Time	Session	Facilitator
Session 4: Field Trip		
09:00 - 17:00	Field trip	NPC of Viet Nam

Day-3 (July 31, 2014)

Time	Session	Facilitator
Session 5: Laboratory Pro	actice	
09:00 - 17:00	Laboratory practice for pest identification	NPC of Viet Nam, Dr. Choi and Dr. Hong

Day-4 (Aug. 01, 2014)

Time	Session	Facilitator
Session 6: Training Asses	ssment	
09:30- 10:30	Training Assessment by questionnaires	Project Coordinator
Session 7: Closing		
10:30 - 11:00	Closing remark	Dr. Yongfan Piao

Annex 2

List of Participants

FAO RAP:

Chang-Ho Shin (Mr) Project Coordinator GCP/RAS/286/ROK FAO Regional Office for Asia and the Pacific 39 Phra Athit Road Bangkok, Thailand Tel: +66 (0) 2 697 4102 Fax: +66 (0) 2 697 4445 Email: ChangHo.Shin@fao.org

Angvanitchakul Patitta (Ms)

Project Secretariat GCP/RAS/286/ROK FAO Regional Office for Asia and the Pacific 39 Phra Athit Road Bangkok, Thailand Tel: +66 (0) 2 697 4108 Fax: +66 (0) 2 697 4445 Email: patitta.angvanitchakul@fao.org

Republic of KOREA:

Ki-Jeong Hong (Mr) Sunchon National University Department of Plant Medicine, College of Life Science and Natural Resources 255 Jungang-ro, Suncheon-si, Jeonnam Province 540-950 Rep of Korea Tel: +82 61 750 3867 Fax: +82 61 750 3208 Email: curcul@sunchomn.ac.kr; curcul@hanmail.net

Deuk-Soo Choi (Mr)

Researcher Animal and Plant Quarantine Agency (QIA) Ministry of Agriculture, Food and Rural Affairs (MFRA) 178 Anyang-ro, Manan-gu, Anyang-si, Gyeonggi-do, Rep of Korea Tel: +82 31 420 7654 Fax: +82 31 420 7606 Email: dschoi@korea.kr

CAMBODIA:

Chanthy Sar (Mr) Staff of Researcher and Diagnostic Office Ministry of Agriculture Forestry and Fisheries #54B/49F, Street 395-656, Sangkat Touk Laak 3, Khan Toul Kok, Phnompenh, Cambodia Tel: +855 23 883 427 Fax: +855 23 883 427 Email: sarchanthy@gmail.com

Dara Leang (Mr)

Staff of Research and Diagnostic Office Ministry of Agriculture Forestry and Fisheries #54B/49F, Street 395-656, Sangkat Touk Laak 3, Khan Toul Kok, Phnompenh, Cambodia Tel: +855 23 883 427 Fax: +855 23 883 427 Email: daraleang25@yahoo.co.nz

Romney Khiev (Ms)

Deputy of Diagnostic Office Ministry of Agriculture Forestry and Fisheries #54B/49F, Street 395-656, Sangkat Touk Laak 3, Khan Toul Kok, Phnompenh, Cambodia Tel: +855 23 883 427 Fax: +855 23 883 427 Email: rumneykhiev@ymail.com

Sareth Kang (Mr)

Chief of Plant Protection Office Department of Plant Protection Sanitary and Phytosanitary, General Directorate of Agriculture Ministry of Agriculture Forestry and Fisheries #54B/49F, Street 395-656, Sangkat Touk Laak 3, Khan Toul Kok, Phnompenh, Cambodia Tel: +855 23 883 427 Fax: +855 23 883 427 Email: kangsareth_bsc@yahoo.com

LAO PDR:

Bounvilayvong Touy (Mr)

Entomology Staff Ministry of Agriculture and Forestry, Department of Agriculture, Plant Protection Centre, Tongpong Village, Sikod District, Vientiane Capital, PO Box 811, Lao PDR Tel: +855 21 812 164 Fax: +855 23 812 164 Email: bounvilayvongtouy@yahoo.com

Khanxay Somchanda (Mr)

Entomology Unit Plant Protection Center, Department of Agriculture, Ministry of Agriculture and Forestry Km 13, Taduea Road Road P.O Box 811, Vientiane, Lao PDR Tel: +856 20 224 81038 Email: <u>khbombay2004@yahoo.com</u>

Lamnao Sichanthavong (Ms)

Entomology Staff Ministry of Agriculture and Forestry Department of Agriculture, Plant Protection Center, KM13 Thaduae Road, Salakham Village, Hadsayfong District, Vientiane, PO Box 811, Lao PDR Tel: +856 21 812 164 Fax: +856 21 812 164 Email: lamnao_ppc@hotmail.com

Seamphai Luangoudom (Ms)

Entomology Staff Ministry of Agriculture and Forestry Department of Agriculture, Plant Protection Nonghai Village, Hadsaifong District, Vientiane, PO Box 811, Lao PDR Tel: +856 21 812 164

Fax: +856 21 812 164 Email:

Sisomphone Athisack (Mr)

Entomology Staff Ministry of Agriculture and Forestry Department

of Agriculture, Plant Protection Center, KM13 Thaduae Road, Salakham Village, Hadsayfong District, Vientiane, PO Box 811, Lao PDR

Tel: +856 21 812 164 Fax: +856 21 812 164 Email: <u>sisomphone.ats@gmail.com</u>

NEPAL:

Basudev Sharma Pokhrel (Mr) Pesticide Registration and Management Division, Hariharbhawan, Lalitpur, Nepal Tel: +977 1 501 0111 Fax: +977 1 554 1601 Email: basupokhrel30@gmail.com; basupokhrel30@yahoo.com

Debraj Adhikari (Mr) District Agriculture Development Office Sindhuli, Nepal Tel: +977 47 520166 Fax: +977 47 521042 Email: debhorti@yahoo.com adhikari.debraj@gmail.com

Dilli Ram Sharma (Mr)

Plant Protection Directorate Department of Agriculture Ministry of Agriculture Development Harihar Bhawan, Lalitpur, Nepal Tel: +977 1 552 1597 Fax: +977 1 501 0112 Email: <u>sharmadilli@yahoo.com</u>

Manoj Pokhrel (Mr)

Plant Protection Directorate Department of Agriculture Ministry of Agriculture Development Harihar Bhawan, Lalitpur, Nepal Tel: +977 1 552 1579 Fax: +977 1 501 0112 Email: manojpkrl@gmail.com

Parshu Ram Rawat (Mr)

Regional Plant Protection Laboratory, Banke, Nepal Tel: +977 081 521785 Fax: +977 081 521 785 Email: rawatpr79@yahoo.com

Prakash Paudel (Mr)

Plant Protection Directorate Department of Agriculture Ministry of Agriculture Development Harihar Bhawan, Lalitpur, Nepal Tel: +977 1 555 3798 Fax: +977 1 555 3798 Email: prakashpaudel4@gmail.com; prasash_paudel67@yahoo.com

Sahasram Chaudhary Kurmi (Mr)

Ministry of Agriculture Development Dhankauli-, Kapilvastu, Nepal Tel: +97 082 560130 Fax: +97 082 560130 Email: <u>sahasram2012@yahoo.com</u>; <u>sahasram2013@gmail.com</u>

THAILAND:

Ittiporn Bannakan (Mr)

Professional Entomologist Insect Taxonomy Group, Entomology and Zoology Division, Plant Protection Research and Development Office, Department of Agriculture 50 Phaholyothin Road Chatucahk, Bangkok 10900 Thailand Tel: +66 2 940 6304 Fax: +66 2 561 0744 Email: bannakan@hotmail.com

Kessuda Sonsiri (Ms)

Entomologist Department of Agriculture, Ministry of Agriculture and Cooperatives 50 Phaholyothin Road, Ladyao Chatuchak, Bangkok 10900 Thailand Tel: +66 2 940 6304 Fax: +66 2 940 5396 Email: kess sl3@hotmail.co.th

Natthaporn Uthaimongkol (Ms)

Chief of Pest Risk Analysis Section Agricultural Research Officer, Senior Professional Level Plant Quarantine Research Group, Department of Agriculture 50 Phaholyothin Road, Ladyao Chatuchak, Bangkok 10900 Thailand Tel: +66 2 940 6670 ext 102 Fax: +66 2 561 0744 Email: <u>n.uthaimongkol@gmail.com</u>

Sarute Sudhiaromna (Mr)

Senior Entomologist Plant Protection Research and Development Office, Department of Agriculture, Ministry of Agriculture and Cooperatives 50 Phaholyothin Road, Ladyao Chatuchak, Bangkok 10900 Thailand Tel: +66 2 579 5583 Fax: +66 2 940 5396 Email: sarutes@yahoo.com

Sunyanee Srikachar (Ms)

Plant Protection Research and Development Office, Department of Agriculture and Cooperatives, Chatucahk, Bangkok 10900 Thailand Tel: +66 2 579 5583 Fax: +66 2 579 5396 Email: sunyaneesrikachar@gmail.com

Waranya Malee (Ms)

Plant Quarantine Research Group, Plant Protection Research and Development Office, Department of Agriculture 50 Phaholyothin Road Chatucahk, Bangkok 10900 Thailand Tel: +66 2 579 8516 Fax: +66 2 561 0744 Email: <u>mawaranya@yahoo.com</u>; <u>wmalee@gmail.com</u>

VIETNAM:

Dinh Hoang Hao (Mr)

Plant Quarantine Sub-department Zone II Ministry of Agriculture and Rural No 28 Mac Dinh Chi Street, District 1, Ho Chi Minh, Vietnam Tel: +84 838 222 429 Fax: +84 838 293 266 Email: hoanghaodinh@gmail.com

Le Xuan Chien (Mr)

Plant Quarantine Officer Vietnam Ministry of Agriculture and Rural Development, Plant Protection Department, Plant Quarantine Sub-department Region No 5 No 53, lane 337/73, Dinh Cong Street, Hoang Mai District, Hanoi, Vietnam Tel: +84 4 35334649 Email: mrlechien@gmail.com

Nhan Thi Minh Uyen (Ms)

Post Entry Plant Quarantine Center II Plant Protection Department Ministry of Agriculture and Rural Development of Vietnam No.28 Mac Dinh Chi Street, Dakao Ward, 1 Distrcit, Ho Chi Minh, Vietnam Tel: +84 8 38226369 Fax: +84 8 38226370 Email: nhanminhuyen@yahoo.com; nhanuyen1705@gmail.com

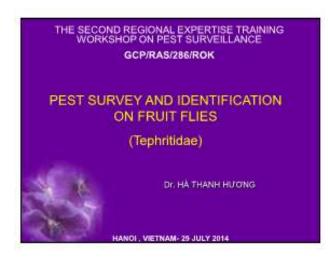
Phan Manh Hung (Mr)

Head of Deputy Import – Export Plant Quarantine Division Plant Quarantine Sub-Department No I 2f Tran Quang Khai Street, Hai Phong Vietnam Tel: +84 313 842104

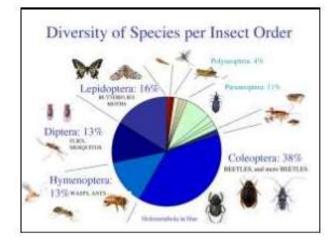
Email: pmhung78@yahoo.com

Quach Hong Linh (Ms)

Technical Officer Plant Quarantine Diagnostic Centre Plant Protection Department 149 Ho Dac Di Street, Dong Da District Hanoi, Vietnam Tel: +84 4 3857 3424 Fax: +84 4 3851 3746 Email: <u>linhyc@gmail.com</u>


Ha Thanh Huong (Ms)

Deputy Head of Plant Quarantine Division Plant Protection Department Ministry of Agriculture and rural Development 149 Ho Dac Di, Dong Da, Hanoi, Vietnam Tel: +84 4 3533 1033 Fax: +84 4 353 30043 Email: pphuong@yahoo.com: ppdhuong@gmail.com


Le Son Ha (Mr)

Chief of Quarantine Division, Plant Protection Department Ministry of Agriculture and Rural Development Hanoi, Vietnam Tel: Fax: Email: hals.bvtv@mard.gov.vn

Annex 3.1 Country Report: Viet Nam

Fruit files (Diptera: Tephritidae) include some of the world's most serious agricultural pests. Besides causing billions of dollars in direct losses to a wide variety of fruit, vegetable and flower crops (e.g., citrus, apple, mango, sunflower), they limit the development of agriculture in many countries because of the strict trade quarantines imposed to prevent their spread. Of the more than 4,400 species known worldwide (Norrbom 2004), nearly 200 are considered pests.

Some fruit flies (Tephritidae) were quarantine pests of the USA, Australia, Japan, Vietnam,...

INTRODUCTION OF SURVEILLANCE STATUS ON FRUIT FLIES IN VIETNAM

ACHIEVEMENT SURVEILLANCE OF FRUIT FLIES

 <u>1977-1978</u>: Survey on 16 fruit tree species in Southern, including Citrus spp., Mangifera indica, Musa spp., Annanas sativa, Zizyphus jujuba, Artocapus Integrifolia (Jackfruit), Nephilium lappaceum (rambutant), Psidium guajava, Vitis vinifera, Euphoria longana, Hylocereus undatus, Durio zibethinus, Annan recticulata, Garcinia mangostana, Eugenia Jambos, Spondlas cytherea

Fruit trees	Collected and identified
Citrus spp.	Bactrocera dorsalts
Mangifera Indica	Bactrocera dorsalis
Zizyphus jujuba	Bactrocera dorsalis
Psidium guajava	Bactrocera dorsalis Bactrocera cucurbétae
Atis vinifera	Bactrocera dorsalis
hylocereus undatus	Bactrocera dorsalis
Eugenía jambos	Bactrocera dorsalis

ACHIEVEMENT SURVEILLANCE OF FRUIT FLIES

2. 1997-1998: Additional survey on 16 fruit tree species in Vietnam.

Fruit trees	Collected and identified
Ciérus spp.	Bactrocera dorsalis Bactrocera correcta
Euphorie longune and Litchi chinensis	Bactrocera dorsalis
Mangifera indica	Bactrocera dorsalis
Maniikara zapota (L.) P. Royen	Bactrocera dorsalis
Psidium guajava	Bactrocera dorsalis
Eugenia jambos	Bactrocera dorsalis
Nephrillum lappaceum	Bactrocera dorsalis
Vitis vinifera	Bactrocera dorsalis
Hylocereus undatus	Bactrocere dorsalis
Prunus salicilus	Bactrocera dorsalis

ACHIEVEMENT SURVEILLANCE OF FRUIT FLIES

- 3. 2006-2010: Conducted a surveillance on major crops and post- harvest products in Vietnam. Survey on 8 fruit tree species, including:
- Pomelo Citrus grandis,
- Orange Citrus sinensis,
- Lime Citrus limonia,
- Tangerine Citrus reticulata,
- Longan Euphoria longana, .
- Dragon Hylocereus undatus, Lichee - Litchi chinensis,
- Mango Mangtfera Indica.
- Collected and identified: Bactrocera dorsalis, Bactrocera correcta

Scientific name of fruit fly Hos lactrocera correcta (Bezzi) Man lactrocera dorsalis (Hendel) Man

10	CHIMA ON FRUIT FLI	ca mui	ALLONGING I
From Trap 21 21 21 21 21	009: 169 110: 387 211: 216 712: 204	ollected pl 2009: 24 2010: 27 2011: 24 2012: 24 2013: 28 Total: 28	aces:
U	ST OF MAJOR FRUIT FL		
No	Scientific name of fru	and the second second	Traps
1	Bactrocera correcta (Bezzi		Me, Pb
2	Bactrocera dorsalis (Hende	d) (Je	Cue, Me, Pb
3	Bactrocera cucurbitae (Co	quillett)	Cue, Me, Pb
3			

SURVEILLANCE METHOD

PURPOSE:

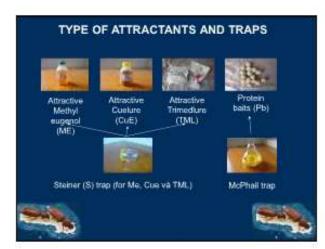
- Pest status and survey types
- · Pest present under eradication, The pest is present and subject to control measures. Includes FFALPP
- Detection surveys, applied to determine if the pest is present in an area
- METHOD FOR DETECTION
- IDENTIFY
- · RECORD

METHOD FOR DETECTION

« Fruit flies may be detected

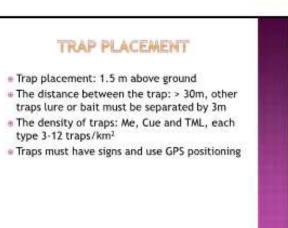
- as eggs or larvae in fruit imports, as attacked growing fruit or as adults caught in detection
- as adults caught in monitoring traps

Collecting attacked fruit:


- Collected fruit had puncture marks made by the entry of the female's ovipositor in the field.
- · Field sampling should be transported to the Lab.
- . In Lab., sampling fruit should be placed in a container. Sample should be checked every 2 days for pupa and larvae have emerged should be discarded
- · Pupa can be transferred to Petri dishes and provide some sugar solution as food for the emerging adults and to keep the adult alive for at least 4 days after emergence (flies will be develop their full body coloration and normal shape

METHOD FOR DETECTION

. Fruit fly trapping and baits


- Population of fruit flies are sometimes first detected in monitoring traps set in areas susceptible to fruit fly attack.
- The male of most Bactrocera, Ceratitis, Dacus genus can be collected in traps. Male lures are Methyl Eugenol (ME), Cue Lure (CuE), Trimedlure (TML)
- Both females and males of any fruit associated species may be collected in traps balted (e.g. yeast autolysate, hydrolyzed protein or ammonium carbonate)

ATTRACTANT AND TRAPS FOR FRUIT FLIES SURVEYS

- * FOR MALE FRUIT FLIES SURVEYS
- ISPM 26, Appendix 1, table 2a
- Attracts the males of some Bactrocera spp.
 81 species recorded at methyl eugenol
 211 species recorded at cue lure
- **# FOR FEMALE FRUIT FLIES SURVEYS**
- * ISPM 26, Appendix 1, table 2b

						1			
	tribite.	57	4848	Nition the	8.	7.46748	\$1 \$50 Him	8.5	1000
ī.	Allerbig	A140	Kan IV	- 10	1.00	Kist-W	No.	31.00	500.0
ć	164	401113569	WPN2014	Johns Mad	L'INDIAN .	117-45-4114	8791 3941	arriantes.	10-5-03
i.	Web.	10111-008	10742 668	2411.016	2730340	117-48-445	BPST baut	自己的ない。	10 miles and
ł.	. Which	2117.1201	107111070	INSCOL	11 10000	127 201 4991	89511363	11/100/10200	off-late and
	364	20121-001	minipeti	Descard.	privation (and	10" #2/071	SPALCed.	atheanalk.	10.96403
l.	fiel.	1001158	INTERNA .	HENCTORY.	prosents.	10740404	SPRI THES	12794274400	11796-03
ł.	field	10271829	1074-108	pencifietz.	10000	11740403	2015171022	17/10/19/01	10 million of
ł,	640	1011110	107 11 10 10	pencinte	10 million	101108	BPSI (W)	administ.	10"340-045
	(filed)	201110W	and sold	1012181	21 million	in"milette	8751781	107362503	12"46483
4	THE	0011070	1111100	141123-0	20100-0K	10*125488	APRE SALE	printered in	11742903
e,	1967	2011/1646	all followski	Heric Hul	ACCHERNIN	LOP"ADDARD	anst biot	a Princiani	10100
ł,	THU	200.098	HOLDER.	PPS:(wi)	2010/0440	1071300010	Amit Calif	211-1110-1110	HTARN
ł.	1181.4	LICT.HDI	10112-004	(Profiled	2075045	1071032910	tertiet.	prvnoeni	11152801
6	199	07711689	#P4) mtl	APTIC FIREJ	10100.00	154,000,000	87473383	10°79DHTH	10" COMPANY
ł.	740	PCH1091	101112-0028	APRIL EVEL.	21110-010	10""222440	8751 1168.2	artemate.	107000100
ł,	191	ATV1 1440	air'si isii	1012101	arriscen.	10"44440	8713 781	province and the	ier'saaime
ł.	154	2/11108	074100	10101100	arrystan.	10"40000	8791781	anitarity.	10"stams
ŝ,	1980	DOT NOT	10741044	\$8959.18+L	L'YMER	147110114	8741 94-1	31111111111	10100.00
	1960	10111100	0171224018	SPAT Had	2. Pyresease	1.07 (100.00040)	ares have	al'esserem	10" Mariant
	180	1070F Long		Margarian I	Loring and	Lot Manual Provide State	strikt 4 mill	Lorymannia.	Longin a

ADDITIONAL OR REPLACEMENT ATTRACTANT AND TRAPS

- Image: O- Me and Cue attractants usually added 1month/time, each time adding 2-3ml. Cotton must be replaced after 2 months.
- © Each month instead TML attractant, each time 1 table.
- I Construction of the second secon

COLLECTED METHODS

- Collect specimen in trap: 15 days/time
- Minimum number of specimen: at leats 3 specimens / one species
- . Currating method: Pinned
- Collection techniques: traps (attractive or bait)
- Keepping speciments:
 - Kill Jar: to keep only specimens from a single locality together with label
- · Freezer: to keep fresh specimens with label

PRESERVATION METHOD

· Specimen Labels, Types of Labels

= 1. Locality Label

- Country, state cterritory, provinces, and county (township) information abouid be presented atrons the top of the label.
- A general descriptive geographic location, including a site name, how many biterestars and compass direction from the nearest major quelific map location, town, mountain peak, lake, specific pack or refuge, etc.
- A specific geographic location
- Date of collection: The date should include the year, month and day
- The name of the perioritizediecting the specimen should appear at the bottom
 of the label.
- = 2. Additional Information Labels
- = 3. Taxonomic Name, Determination Label: provides the name of the
- specimen, to the lowest taxonomic rank possible (species or subspecies) = Labels for Different Preservation Methods
- Spectmeraprised dry: Labels are positioned under the spectmen on the pin. A locality table is on rap, and a taxoniarin: identification table underseeft the locality under. The tables is hold the oriented paramiller to the location under table and an of the spectmen, positioned to be read from the left side of the spectmen.

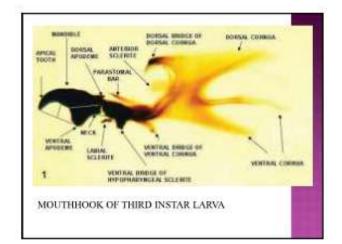
PRESERVATION METHOD

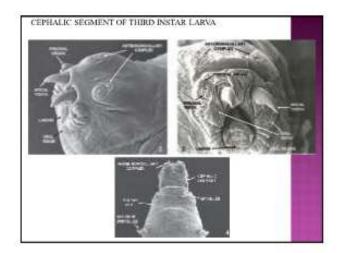
- + ADULT:
- Pinning: Fruit flies are pinned dorsal side up at a specific place on their body.
- Diptera speciments are often glued to special paper points.
- The fruit flies is glued to the tip of the point dorsal side up.
- The point is then mounted on an insect pin about 6mm from the top of the pin

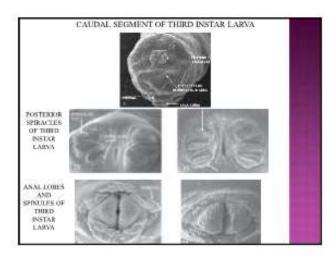
COLLETED SPECIMENTS

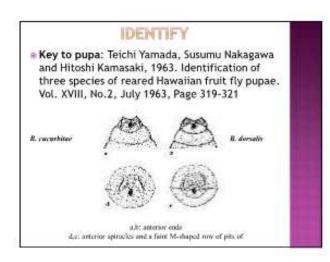
IDENTIFY

Exercise Key to adults: White I.M and Elson-Harris M.M. 1992. Fruit flies of economic significance: their identification and bionomics, Page 53-111

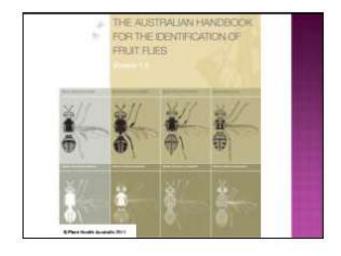

- Key to Bactrocera and Dacus species
- Key to Anastrepha species
- Key Ceratitis species

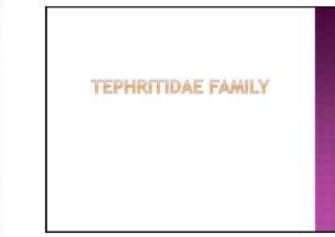

* Morphological diagnosis of adult fruit flies include:

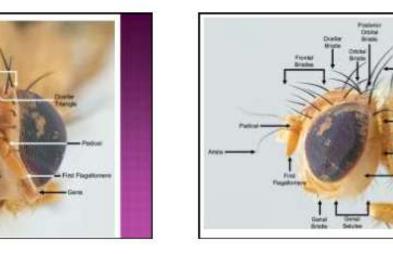

- Wing morphology and infuscation
- Presence or absence of various setae, and relative setal size
- Overall colour and colour patterning
- Presence, shape and colour of thoracic vittae. A vitta is a band or stripe of colour

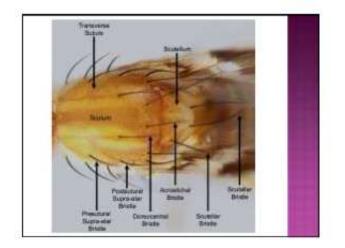

IDENTIFY

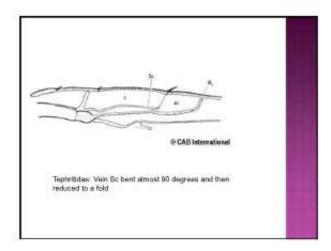
Rey to third instar larvae: White I.M and Elson-Harris M.M, 1992. Fruit flies of economic significance: their identification and bionomics, Page 112-127

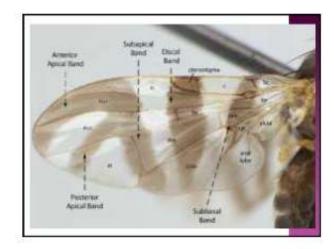


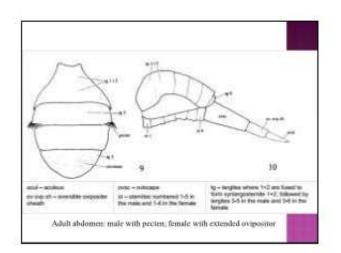


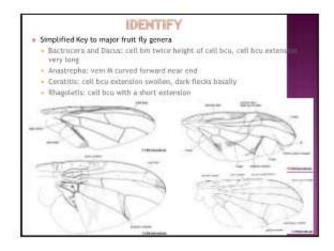


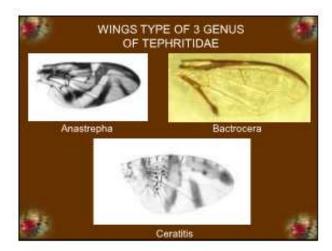


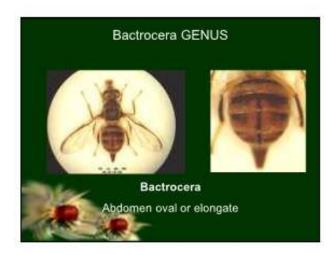


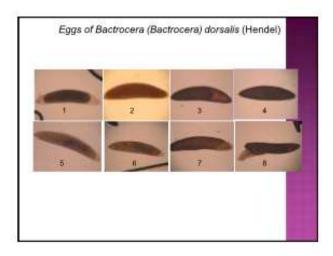

	Trop p	tion and the second	Cardel	Interitication real		itte
Cole map	Longitude	Latituiz	time	Scientific name	Nr.	Identified person
HN- Cue I	21998.258 N	198 ⁹ 42.636 E	13/06/200	Rectinens on Rectinens cocubies	*	Ms. Hong Lz Hong
IIN-Me3	23*58.338 N	105112.616-8	15/06/2004	Sacrocerie decusito	87	Ma. Hearg La flang
HN- PB 1	21958.254 N	106°42,684 E	6962609	Bactracers.docustic Rectrocers.cacarbian Rectrocers.tas	7 2	Ms. Heaty La Horg

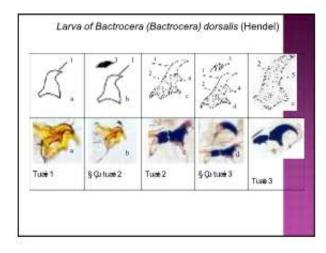


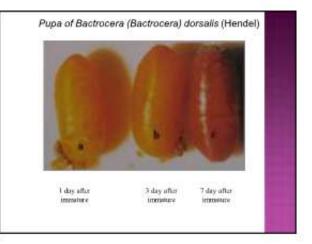


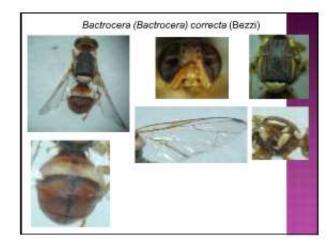












Fruit files	Dimer (m		Wing
	Body	Wing	10000 C
B. dorsalis	7,56±0,14 (7,0-8,30)	6,14±0,05 (6.0-6.20)	
B. correcta	6,27±0,15 (6,20-6,80)	5,12±0,03 (5,0-5,20)	R
8. cucurbitae	9,62 ;0,22 (8,40-10,0)	6.12 +0.02 (6,0-6,20)	57
B. tau	9,44a0,16 (9,05-10,07)	8,73v0.06 (6,61-6,83)	1

ACTIVITIES ON FRUIT FLIES IN VIETNAM

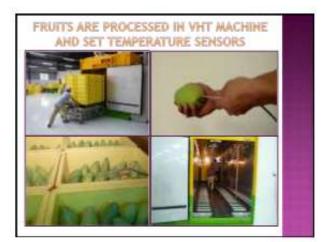
VIETNAM DRAGON FRUIT

- For Japan, Korea and New Zealand market access
- Vietnam exported dragon fruit into Japan by Vapor Heat Treatment (VHT) to treat fruit flies on this fruit before exportation
- . For the United States market access
- Vietnam exported dragon fruit into the United States by Irradiation to treat fruit flies on this fruit before exportation

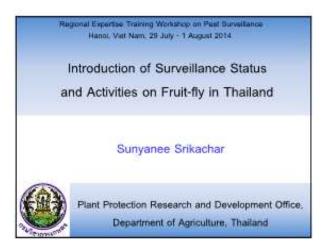
VIETNAM MANGO FRUIT

For Japan market access

- Start submitted technical information packages for NPPO's Japan since 2011, NPPO's Vietnam has so far completed experiments with fruit flies by Vapor Heat Treatment (VHT) and sent to Japan the research results to consider
- . For Korea and New Zealand market access
- Vietnam exported mango fruit into Korea by Vapor Heat Treatment (VHT) to treat fruit flies on this fruit before exportation


VIETNAM RAMBUTAN FRUIT

- For the United States market access:
- Vietnam exported rambutan fruits into the United States by Irradiation to treat fruit flies on this fruit before exportation

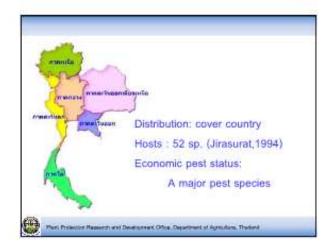


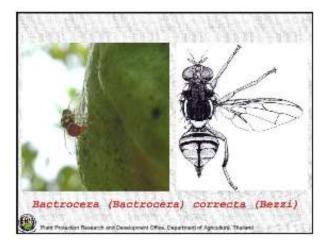
Annex 3.2 Country Report: Thailand

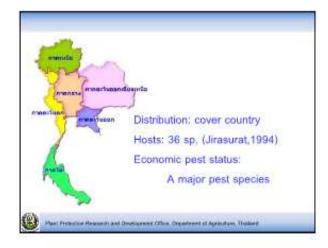
- Thailand is the 50th largest country in the world; most nearly in size to Spain.
- Thailand covers \$10,890 sq km of land and 2,230 sq km of water.

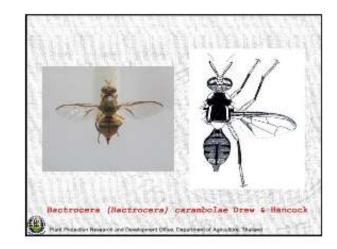
 Thailand has a tropical climate and temperatures typically rang from 19 to 38 degrees C (66-100F).

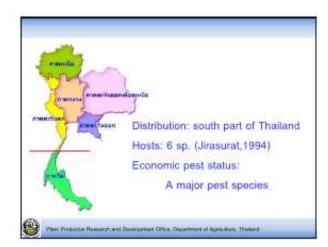
 The economy of Thailand is reliant on exports, which account for 60% of Thailand approximately US\$ 200 billion GDP. The economy of Thailand is the 2nd largest in Southeast Asia. Thailand's export consist primarily of agricultural products including fish and rice, of which it is the largest exporter in the world.

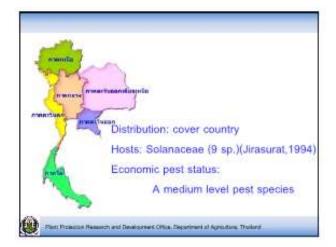


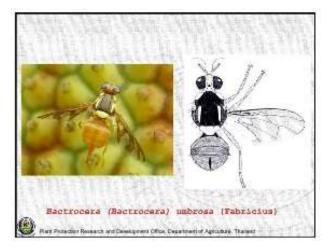

Status of Fruit flies in Thailand

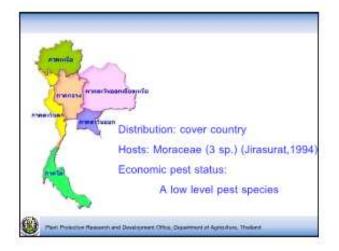

- 1. Bactrocera (Bactrocera) dorsal/s (Hendel)
- 2. Bactrocera (Bactrocera) correcta (Bezzil)
- 3. Bactrocera (Bactrocera) carambolae Drew and Handcock
- 4. (Bactrocera (Bactrocera) latifrons (Hendel)
- 5. Bactrocera (Bactrocera) umbrosa (Fabricius)
- 6. Bectrocera (Bectrocera) zonata (Saundera)
- 7. Bactrocera (Zeugodacus) cucurbitae (Coquiliett)
- 8. Bactrocera (Zeugodacus) tau (Walker)

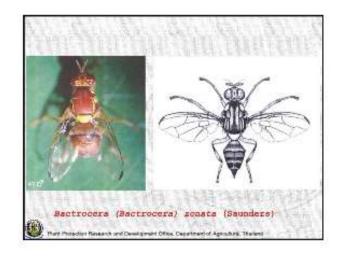

Plant Protection Research and Development Office. Occurrent at Apriculture. The land

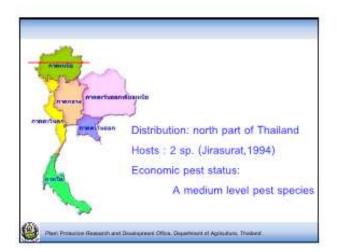


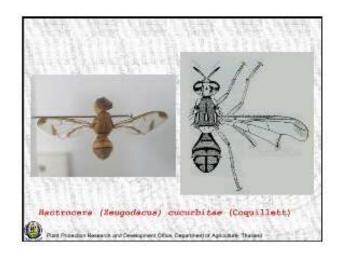


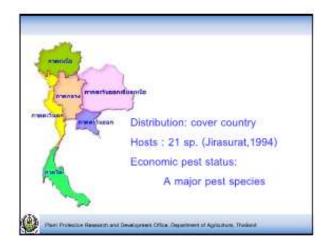


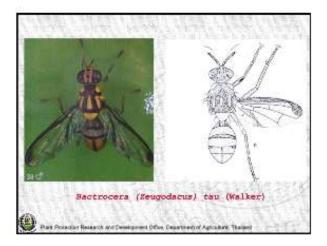


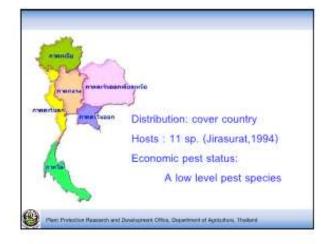


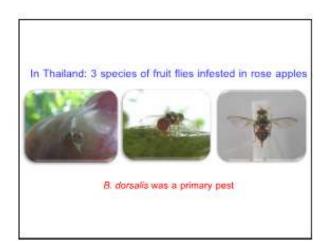


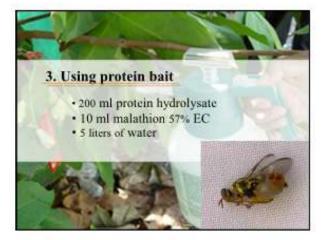


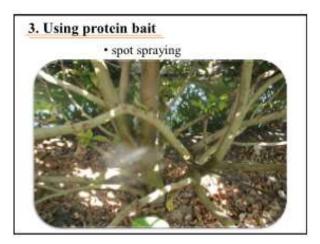




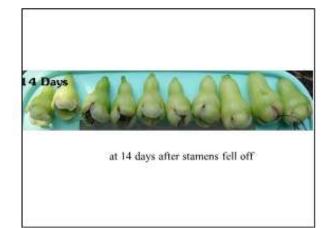




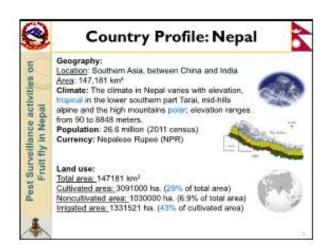

Modified trap

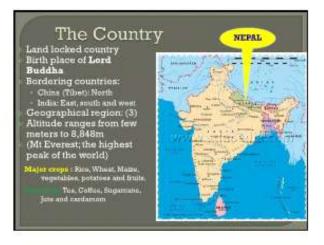


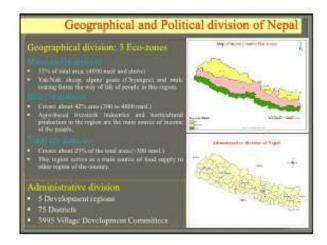
Steiner's trap

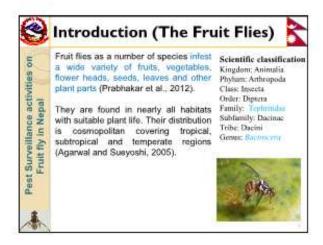


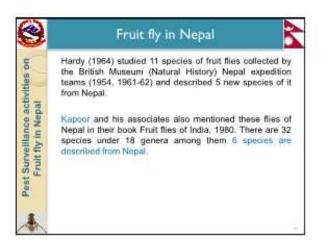
Modified trap






Annex 3.3 Country Report_Nepal

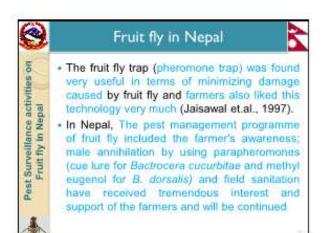


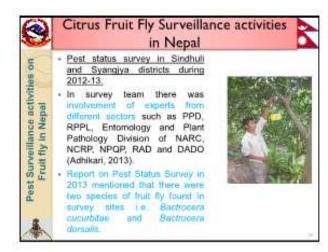


3	Introduction	8
Fruit fly in Nepal	Nepal has vivid geo-climatic conditions and different types of fruits and vegetables are growing here. Among the different pest problems of these horticultural crops fruit fly is an important insect pest in Nepal. Farmers are practicing use of pheromone traps, application of chemical measures and field sanitation as management options. In Nepal MoAD / NPPO and its offices in regional, district and service centre level provides the aervices regarding surveillance, monitoring and management of	



0	Fruit fly in Nepal
Villance activities on ly in Nepal	In Nepal, Fruit flies are among the major pests of cucurbitaceous vegetables and citrus fruits.
	Several study and research activities were conducted to prevent yield loss.
est Surveill Fruit fly	GC in 2001 mentioned there was 42-68% fruit attack by this insect in bitter gourd.


	was done in K	athmandu valle 1994-96 and f	
Kathmandu		Kaure	
Years Period	Honth	Year/Period	Month
1994-1996	February- December	1996	May-September
Critical period	March -Nov	Critical Period	May-jun
B. dorsalis Kathmandu	r and B. cucurb and	only during <mark>Junes</mark> tae was found to tae found in Kavr	be more in



e	Fruit fly in Nepal
Pest Surveillance activities on Fruit fly in Nepal	A study in National Citrus Research Program (NCRP), Paripatie Dhankuta in 2006 confirmed that Chinese citrus fly (Bactrocera minax) is the species affecting the citrus finits of NCRP, Dhankuta and vicinity areas but not the oriental fruit fly. • These previous studies confirmed that in eastern part of Nepal the problematic fruit fly species is Bactrocera minax Thus, there is strong need to identify appropriate method of monitoring and management.

	Conclusion
tivities on	 Fruit fly is one of the major and economic damaged pest of Nepal and found in fruits and vegetables.
	 Different types of fruit fly were observed in fruits like pear, grapes, otrus and chestnut and causing severe problems to the Nepalese farmers. Not only fruits but also serious problem in cucurbitaceous vegetables.
llance acti / in Nepal	 Some activities were accomplished to monitor and manage fruit fly in Nepal. Recently, the surveillance activities were concentrated on quarantine fruit fly species to export Nepalese citrus to China.
Survei Fruit fi	 To declare the Pest Free Area is one of the challenge to Nepal to export the citrus to China.
Pest Sui Fru	 Nepal has not so strong capacity to diagnose(verification and identification) fruit fly species. Thus, it is necessary to maintain a national surveillance system.
*	 Farmer 's awareness, preparation of pheromone traps and sanitation of the field are the major activities conducted for management of fruit fly in Nepal

