

Mangrove carbon estimator and monitoring guide

F

Food and Agriculture Organization of the United Nations

Jeremy Broadhead (SIG-NAL)

Jacob Bukoski (UC Berkeley) Nick Beresnev (ICEM)

Overview

- Methodology for measuring mangrove carbon stocks and monitoring mangroves
- Provides the basis for incentive allocation
 Verification of activity implementation
 Verification of performance
- Integral part of project agreement
- Described in detail in the 'Mangrove carbon estimator and monitoring guide' publication (<u>http://www.fao.org/3/a-i6500e.pdf</u>)

System structure

Overview

- Replicable and Scalable, Transparent, Participatory, Recognizable
- Provides proxy for other goods and services
- Protection of smaller mangrove areas
- Alternative/pre-cursor to carbon crediting
- Aimed at potential financiers
- Existing projects
- Assumes local community organization with standing and capacity

Carbon estimation and monitoring

- 1. Project area mapping
 - i. Perimeter walk
 - ii. Create polygon/s in QGIS
- 2. Carbon stock estimation
 - i. Sample point selection
 - ii. Basal area measurement
- 3. Mangrove monitoring
 - i. Photo point monitoring
 - ii. Analysis of high resolution satellite imagery
 - iii. Patrolling and physical examination

Project area mapping

GPS/phone and QGIS to delineate project area:

Carbon stock estimation

• Biomass and soil organic carbon stock estimated from latitude and mean basal area (and location)

Carbon stock estimation

Based on regression analysis of published data and validation using SWAMP methodology:

 Bukoski, J.J., Broadhead, J.S., Donato, D.C., Murdiyarso, D, Gregoire, T.G. 2016. The Use of Mixed Effects Models for Obtaining Low-Cost Ecosystem Carbon Stock Estimates in Mangroves of the Asia-Pacific. PLoS ONE.

Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests

J. Boone Kauffman Daniel C. Donato

Biomass carbon stock estimation

- Biomass carbon in metric tonnes per hectare $\geq \beta_0 + \beta_1 \times Basal area + \beta_2 \times (Basal area \times Latitude) + \beta_3$
- Root-mean-square-error:
 ➢ Fixed effects model: ±37.7 Mt C/ha (28.2%)
 ➢ Mixed effects model: ±24.6 Mt C/ha (18.4%)
- Mean biomass carbon stock from model data:
 ▶133.8 Mt C/ha
- Higher uncertainty but much lower cost

Soil carbon stock estimation

- Soil carbon stock in milligrams per cubic centimeter
 - $\geq = \beta_0 + \beta_1 \times \log_e(\text{Latitude}) + \beta_2 \times \log_e(\text{Basal area}) + \beta_3$
 - multiply by soil depth in centimeters and then by 0.1 to give metric tonnes per hectare
 - > (Soil depth measurements are taken at sampling plots)
- Root-mean-square-error:
 - Fixed effects model: ±13.4 mg C/cm3 (38.6%)
 Mixed effects model: ±4.9 mg C/cm3 (18.4%)
- Mean soil organic carbon density from model data
 ≫ 34.6 mg C/cm³ (346 tonnes/ha to depth of 1m)
- Total 479 t/ha, low compared to CIFOR study

Mangrove monitoring

- 1. Photo point monitoring
- 2. Satellite image analysis
- 3. Global Forest Watch auto alerts
- 4. Mangrove patrolling
- 5. Monitoring of seedlings (restoration only)
- 6. Reporting

Photo point monitoring

 Photography of a point of interest at regular intervals from the same location

Satellite image analysis

Krabi, October 2014 and December 2015

Mangrove patrolling

- Undertaken by community members to prevent and detect encroachment
- Encroachment details included in monitoring reports

Monitoring of restored mangrove sites

- 1. Seedlings counted at randomly selected points using 5.6 metre string (100m²)
- 2. Measure seedling height
- 3. Note seedling condition and probable cause of death

Reporting

- 1. Project area map (at the start of project, with updates as necessary)
- 2. Biomass and carbon stock estimation (at the start of project)
- 3. Photo point monitoring map, photos and analysis (at project start and 6-month intervals)
- 4. Satellite images and analysis (at project start and 6-month intervals)
- Results of physical monitoring of recently restored mangroves (monthly for 3 months then every 3 months up to 2 years)

Mangrove mapping exercise

- 1. Walk perimeters of selected strata
 - i. Three groups, three strata
 - ii. Use GPS and/or phone apps
- 2. Upload tracks to QGIS
- 3. Create area boundary (polygons layer)
- 4. Calculate area of each stratum