

5th Meeting of the Asian Soil Laboratory Network (SEALNET)

20 October 2021

Ms. Lucrezia Caon, GLOSOLAN Coordinator

So far priority was given to:

- Soil chemical parameters. In 2020, GLOSOLAN started to work also on soil physical and soil biological parameters
- The most important parameters for soil fertility
- The most used methods in the world

2018	2019	2020 (ongoing)
 Sample pre-treatment Inorganic carbon (CaCO3 eq.) OC Walkley and Black Total carbon (Dumas – dry combustion) 	Bray I Bray II Olsen P Mehlich I Mehlich III (postponed to 2020) pH in water pH in KCl pH in CaCl2 EC saturated paste EC in water N Dumas N Kjeldahl Mineral N (still under writing) Tyurin	 particle size-distribution by pipette method and hydrometer bulk density moisture content by gravimetric method Particulate organic carbon by physical fractionation Quasi-total elements by digestion using aqua regia and EPA. This includes total heavy metals Exchangeable bases and CEC by ammonium acetate Available micronutrients (Fe Zn Cu Mn Mo Ni Cd) – extraction using DTPA Boron by hot water extraction Mehlich III for macro and micronutrients (including S and B) Microbial biomass C and N by chloroform fumigation-extraction Microbial enzyme activities
		Soil respiration rate

Five years after the establishment of GLOSOLAN, we might be ready to make a step forward and start working on those methods that are less frequently used but have lower risks for the human health and the environment.

Available phosphorous

Available phosphorous refers to inorganic P dissolved in a water/soil solution that is readily available for plant uptake. Inorganic P forms are primarily mixtures of aluminum (Al-P), iron (Fe-P), and calcium (Ca-P) phosphates; the relative percentages between these three forms are a function of soil pH, with higher percentages of Al-P and Fe-P occurring in acid soils, and a higher percentage as Ca-P in neutral to alkaline soils.

The methods to assess phosphorous in soil already harmonized by GLOSOLAN are the following:

- SOP on soil available P Bray I method
- SOP on soil available P Bray II method
- SOP on soil available P Mehlich I method
- SOP on soil available P Mehlich III method (available soon)
- SOP on soil available P Olsen method

Soil Availab	le Phosphorous : Sustainabi	lity of methods				
Method	Risk for human health related to the use of chemicals and the overall implementation of procedure by staff	Environmental risk (waste disposal)	Level of technology required	Average duration of the analysis	Global median price of the analysis (for the customers)	
Bray I	Medium	Medium	Medium	> 1 working day	6.3 USD	
Bray II	Medium	Medium	Medium	Up to half working day	6.3 USD	
Mehlich I	Medium	Medium	Medium	Up to half working day	13 USD	
Mehlich III	High	High	Medium	Up to half working day	6.3 USD	ctober 202
Olsen	Medium	Medium	Medium	Up to half working day	6.5 USD	010001 202

Five years after the establishment of GLOSOLAN, we might be ready to make a step forward and start working on those methods that are less frequently used but have lower risks for the human health and the environment.

This might promote the transition towards the use of more sustainable methods.

What do you think?

regional leaders should be confident using the methods they take the leadership for

What shall a regional leader do?

- Contribute to prepare the SOP matrix

Clip	board	F5	Font		G	Alig	Inment	Fs.	Number	Es.	Styles		Cell	s E	diting	
17	*	: 🗙	\checkmark fx													
A	В	с	D	E	F	G	н	I.		к	L	м	N	0	P	
Laborato	ry Submis	sion Forms														
Please prov	ide the follo	wing informatio	n on the procedure you a	are using to asse	ss Soil Organic (Carbon (SOC) by <u>V</u>	Wakley-Black Meth	od								
I. Titration M	Method															
Full Name	E-mail Address	Country	Institute name	Particle Size, mm	Mass of Sample, g	K ₂ Cr ₂ O ₇ Concentration, M	Volume of K2Cr2O7 Added to the Sample, mL	Volume of Concentrated H ₂ SO ₄ Added to the Sample + K ₂ Cr ₂ O ₇ , mL	Standing Time, min	Volume of H ₂ O Added to the Mixture, mL	Volume of 85% H ₃ PO ₄ Added, mL	No. of drops of o- phenanthroline indicator	Lab Ware Used	Quality Control Measures	Computation	Cor
XXXX	xxxx@gmail .com	XXX	X000X	4	1	0.1667	10	20	30	200	10	3-4	50 mL Glass Burette	Precision Test (Perform duplicate analysis on one sample for every 10 tests) Recovery Test (Perform recovery test on 2 samples of Check Sample once for every must be between 97-103% Accuracy Test (Perform analysis of CRM and participate in inter-laboratory Proficiency Test at least once a year) 4. Control Chart (Perform analysis with Check Samples; incorporate statistical treatment of data)	Organic C, % = (V _{blank} - V _{sample})(M _{Fe2-})(0.003)(100)(f) W	
																<u> </u>
																t

regional leaders should be confident using the methods they take the leadership for

What shall a regional leader do?

- Contribute to prepare the SOP matrix
- Harmonize the information in the matrix from your region

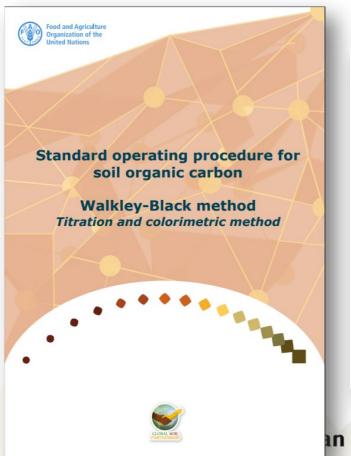
Cl	ipboard 🕞	Font 🕞	Alignment	rs Nun	nber 🕞 Styles	Cells	
L 0 9	• E 🗙 🗸	<i>fx</i> 1. Duplicate standard an	alysis in ev	ery 10 samples as Drift,	,		
А	В	С	D	E	F	G	н
ASIA							
Total nu	mber of respondents - 9						
	Step	Breakdown	No. of Labs	Lab Code	Prevailing Practice	Remarks	
	Particle size (mm)	≤2mm	9	2, 3, 8, 9, 15, 16, 18, 24, 118	≤2mm		
			9	Total			
	Sample weight, g	2.0 g	5	15, 16, 18, 24, 118	2.0 g		
		2.5 g	2	2, 9			
		5.0 g	2	3, 8			
			9	Total			
		1. Analytical Balance 2. Reciprocating Shaker 3. Vortex Mixer 4. UV-Vis Spectrophotometer	5	9, 16, 18, 24, 118			
		1. Analytical Balance 2. Reciprocating Shaker 3 UV-Vis Spectrophotometer	1	2		Basic equipment for this	
		1. Digital Balance: OHAUS Traveler TA302 2.Spectrophotometer APEL PD 303UV UV-Vis	1	15	1. Analytical Balance 2. Reciprocating Shaker 3. Vortex Mixer 4. UV-Vis Spectrophotometer	analysis. One lab uses segmented analyser.	
		Electronic balance, spatula, tissue, polythen bottles 100 ml, Volumetric flask of 100 ml,filter paper Whatman No.5 or equivalent, funnel, Segmented Flow Analyzer.	1	3			ctober
		Mechanical shaker. Spectrophotometer, weighing balance	1	8			
			9	Total			
	Volume of Extracting Solution, mL (0.03 M NH4F + 0.025 M HCl)	10.0 mL	1	15			

regional leaders should be confident using the methods they take the leadership for

What shall a regional leader do?

- Contribute to prepare the SOP matrix
- Harmonize the information in the matrix from your region
- Contribute to the global harmonization of information
- Contribute to draft/review/finalize the GLOSOLAN SOP

Each SOP has a regional leader serving as global leader too. The global leader takes the overall responsibility for the writing of the SOP

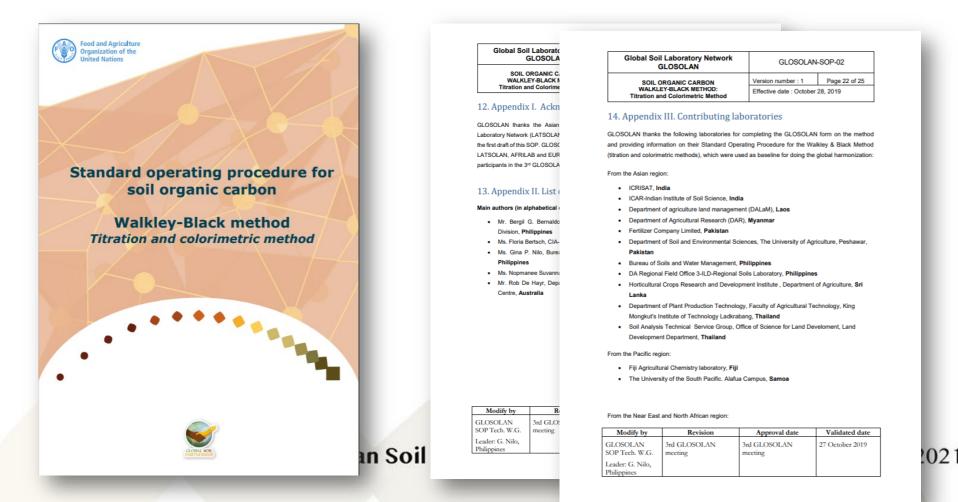

regional leaders should be confident using the methods they take the leadership for

SOPs 2021-2022 (AFRILAB)	SOPs 2021-2022 (SEALNET)	Regional leader
Chemical parameters:	Chemical parameters:	
 Exchangeable Acidity by KCl method 	 Total carbon by loss of ignition 	Renuka, Rabindra Adhikari (Nepal)
• Total carbon by loss of ignition	• Exchangeable acidity by KCl	Ch. Shreenivas ANGRAU (India)
 Soil buffer capacity using KOH Available phosphorus by KCI 	 Exch acidity by BaCl2 method 	Gina and her team (Philippines)
	Exchangeable ammonium	Sanjay and Abhay Shirale (India)
Physical parameters:	and nitrate by KCl	
 Water retention (pF) 		
 Density by pycnometer 	Physical parameters:	
	Water retention (pF)	Linca and her team (Indonesia)
Biological parameters:		
 Estimate the amount of 	Biological parameters:	
microbial population in the	Microbial population	Gina and her team (Philippines)
soilcan GLOSOLAN help on this?	identification	
5 th Meeti	ng of the Asian Soil Laborator	y Network (SEALNET) 20 October 2021

GLOSOLAN SOPs

• All laboratories sending information and all authors are acknowledged in the GLOSOLAN SOPs

	-		received by RESOLANs
02	28 October 2019	Final review of the SOP at the 3rd GLOSOLAN meeting	Revision of steps in the SOP, final discussion and agreement
03			
04			


Modify by	Revision	Approval date	Validated date
GLOSOLAN SOP Tech. W.G.	3rd GLOSOLAN meeting	3rd GLOSOLAN meeting	27 October 2019
Leader: G. Nilo, Philippines			

an Soil Laboratory Network (SEALNET) | 20 October 2021

GLOSOLAN SOPs

• All laboratories sending information and all authors are acknowledged in the GLOSOLAN SOPs

Issues encountered in harmonizing the GLOSOLAN SOPs 2020-2021

- Some methods are used by very few laboratories that completed the harmonization matrixes.
 - Can we still talk about globally harmonized SOPs in this case?
 - Shall we review our way to harmonize this type of SOPs?

We should work only on common methods in the region. Countries should be supported in terms of equipment for conducting the analysis. Focus on conversion factors as we did with Walkley and Black, and Tyurin methods

- The working group for some SOPs (e.g. SOPs on biological parameters) count on the support of very few "experts". This slow down the whole harmonization process.
 - How to overcome this issue? It is not a problem of willingness to help but a problem of availability of experts.
- 1. Spread the voice on GLOSOLAN and ask laboratories that do e.g. physical and biological analysis to register to the network.
- 2. Commissioning a group of experts to do the work. Can a TCP project pay for this?
- 3. Make specific requests to experts to do the work volunteer worky Network (SEALNET) | 20 October 2021

Recap on the training requests by SEALNET

Training topic	Language	Trainers	Notes
The preparation of samples for internal and external QC		Michael Watts	
Conduction of interlaboratory comparisons (PT)			
PT statistical analysis and testing		Christian	
 SOPs: Method verification/validation Assess the quality of chemicals used for the analysis Measurement Uncertainty 			
Laboratory management			
Health and safety			
Equipment			
Performance Verification and Calibration of glasswares and basic laboratory equipment		Bergil?	
5 th Me	eting of the	Asian Soil Laboratory Network	(SEALNET) 20 October 2021

GLOBAL SOIL

Definition of range and reference values

The Global Soil Partnership asked GLOSOLAN to work on range and reference values to facilitate the provision of recommendations to farmers and other stakeholders.

Range value: indicate the range of validity of the method. E.g. Method X is reliable for SOC content from xx to xx. This information should be included in the GLOSOLAN SOPs.

GLOBAL SOIL PARTNERSHIP

Definition of range and reference values

The Global Soil Partnership asked GLOSOLAN to work on range and reference values to facilitate the provision of recommendations to farmers and other stakeholders.

Reference value: provide an indication on the status of soil. For example:

- 0-1 g kg-1 indicate soils poor in phosphorus
- 1-2 g kg-1 indicate soils with a low-medium content of phosphorus
- 2-3 g kg-1 indicate soils with medium content of phosphorus
- 3-4 g kg-1 ...

Poll 2: do you agree on defining reference values? YES

Thanks for your attention

