

22-24 November 2022

GLOSOLAN PT 2022: global outcomes and perspectives

Christian Hartmann

GLOSOLAN steering committee

IRD – France

6th Meeting of the Global Soil Laboratory Network (GLOSOLAN)

Context:

«The mandate of the GSP is to improve governance of the limited soil resources of the planet

What you cannot (*correctly*) measure, you cannot (*correctly*) manage.

(PHOTO WIKIPEDIA)

Soil data can be obtained in different ways

Many data come from by soil laboratory analysis

=> data provided by soil laboratories are essential for soil governance

6th Meeting of the Global Soil Laboratory Network (GLOSOLAN) | 22-24 November 2022

(PHOTO WIKIPEDIA)

Laboratories are essential for soil data production

Laboratories are essential for soil data production

The good news : soil labs already exist all around the planet

Laboratories are essential for soil data production

The good news : soil labs already exist all around the planet The bad news: soil labs are working without coordination among them...

> GLOBAL SOIL PARTNERSHIP

Laboratories are essential for soil data production

The good news : soil labs already exist all around the planet

The bad news: soil labs are working without coordination among them...

An option for improvement:

Purpose: to improve the quality of soil laboratory data to support decision making at field and policy levels

Objectives :

- 1. To strengthen the performance of laboratories through use of standardized methods and protocols.
- 2. To harmonize soil analysis methods so that soil information would be comparable and interpretable across laboratories, countries and regions.
- 3. To provide a certification for technical competencies in laboratory analysis.

For 5 years now GLOSOLAN helped these labs producing reliable and comparable soil data by providig SOPs, video explaining SOPs, trainings, webinars, technical publications, etc...

For 5 years, GLOSOLAN has been helping soil labs producing reliable and comparable soil data by providing SOPs, video explaining SOPs, trainings, webinars, technical publications, etc...

Now GLOSOLAN questions are:

How reliable and comparable are the data produced by soil laboratories?
 How can GLOSOLAN help all labs to reach a minimum data quality?

Part 1 = assessment:

how reliable and comparable are the data produced by soil laboratories?

⇒ Launching a global (planet) proficiency testing (PT) or inter-laboratory comparison.

The PT design was decided according to:

our QUESTIONS (reliability / comparability)

& FEASABILITY

(number of soil types, cost of preparation including irradiation, cost of sending worlwide, etc)

QUESTIONS: 2 + 1 more

1. RELIABILITY: for each lab, what is its precision?

(i.e. when analysing several times the same sample, how close are the results?)

2. COMPARABILITY: among all labs, dispersion of their results? (i.e. when the same sample is analysed by several labs, how close are the results?)

3.

CLOBAL SOIL PARTNERSHIP

QUESTIONS: 2 + 1 more

1. RELIABILITY: for each lab, what is its precision?

(i.e. when analysing several times the same sample, how close are the results?)

2. COMPARABILITY: among all labs, dispersion of their results?

(i.e. when the same sample is analysed by several labs, how close are the results?)

3. REFERENCE VALUE : at global scale, consensus value = reference value? (i.e. on a statistical and practical view point, can we provide samples with reference values acceptable worldwide?)

> GLOBAL SOIL PARTNERSHIP

1. Which soil characteristics?

2. How many replicates?

3. Which range?

1. Which soil characteristics?

pH: top priority but difficult because to much soil weight is needed

1. Which soil characteristics?

pH: top priority but difficult because to much soil weight is needed

C: top priority because

- soil is a main compartment in C cycle... global warming...

- and...

Protocol for the assessment of Sustainable Soil Management

List of contributors:

	General coordination Ronald Vargas Rojas (IAO-GSP)	
	Managing Editors Carolina Olivera (IAO-GSP), Zin Megan Balks (ITPS), Rosa Poch	
Contributors • Ahmed Floubshawi, Bahrain	Fernando garcia Prechac, Uruputy	Maya Zahavi, Israel
 Alberto Origazzi, European Union 	Filiberto Altobelii, Italy Cabriella Rossi, Italy	Melissa Lis Gutiensz, Colombia Mirco Barbero, Europeen Union
 Aleksi Lehtonin, Finland 	Gaonesa Kossi, Key Gaius Eudoxie, Grenada	
Alireza Moridhejad, IMAN		Mirelys Rodriguez Alfaro, Cube
 Amanda] Ashworth, USA 	Generose Nziguheba. (775	MonicaFarfan, Globel Sol Biodiversity
Amanullah, Rekistan	Gerando Djeda, Colombia Guseope-Corti, Italy	Initiotive
 Andre Franco, Globel Sail Biodiversity 	Guseppecorb.may Guedoniaen.france	Nader Noureldeen Mohamed, Egipt
initiative		Nakasi Harriet, Uganda Napoleon Ordonez, Calombia
 Andrea Spanischberger, Austria 	Guillermo Peralta, Argentina Guictwishra Khasanishanova,	Napoleon Orbonez, Lalomba Nat Tukavalaci, Micronesia
Anthony John Mouzas, Ognus	 Guichekhra khasankhanova, Uzbekidan 	Nat Tukakag, Micronola Natala Rodriguer Eugenio, GO-GSP
 António Perdigão, Portugal 	Lanckard The Methelands	Netrala Hoonguez Eugenio, McHair Noomanee Suvannang, Theland
 Antonio Sanchez, Venezulla 	Hansetand, the Nethenands Hanspeter Linicer, MOCAT	Nopmanee Suvannang, Makand Olga Lucia Ospina, Calombia
 ArkadiyLevin, Ukusne 	Hanspeter Uniger, WUCAL Hervé Guibert, Annor	Gas Lucia Organa, Calombia Francis Frances European Union
Arwin Jones, European Union	Idrivia Boubacar Align	Parios Hanagos, European Union Patricia VerBisteroul Martinez, Spain
Bente Foreid, Norway	Iomia Boubacar, Night Ieda de Carvalho Mendes, Brazil	Patrica veraistega Marchez, span Paul Luu, 4 poursoo
Bernard Fungo, Ugonda	loorVidal Brazil	Plan Lou, 4 pour loco Plan Andhis, Spain
Bo Sun, China Bravo Penters, European Union	Igor vicali, brazil Iman Sahib Salman, Irag	Hiar Antonio, Spain Rémi Candinael, France
	Ingeborg Baver, Germany	 Remaido Bismarck Mendoza.
Cairo Robb, United Kingdom Charles Rice, USA	Jacques Tavares, Cabe Verde	 Negrado brumarce services, Nicaragua
Charles Roce, USA Christian Omuto, RAD-GSP	Jacques ravares, cabe verae Jesus Viloria, Venetuela	Resa Cuevas, MO-CSP
Carateleve (AO-OP	 Jin Ke, ITPS 	Rosario Napoli, Italy
		Samual Francke, ITPS
Claudia Rojas, Chile Cristina Grandi, Italy	Juan Carlos Rey, Venezuela Juan Comerma, Venezuela	Samuel Sahakuan, Ammia
	Juan Comerna, Velesea Julien Demenois, France	Sarkai takhwo Netal
Dan MacDonald, Canada	Klass Mampholog, South Africa	Sanda Sanda Faril Oman
Daniela viketten, Malawi	Laura Bertha Reves, 8.65	Serphei Concimany, Moldolva
Dardo Escobar, Argentina David B. Knaebel, USA	Lenin Medina, Mexico	Sol Ortiz Cardia, Melica
David 5. Knamber, USA David Lobb. ITPS	Luca Montananella, Europeant.Inion	Somula Maneeoong, Thailand
Devanira Lobo, Venezuela	Lucia Anjos, ITPS	 Su Su Winowiecki, Myanmar
	Lucresta Caon, INO-CSP	Tarik Topcu, Turkey
 Diana Wall, Global Soli Biodiversity Initiative 	Lydia Chabala, (TPS	Tom Bruutsema, Canada
Eduardo Costantini, Italy	Manuel Camillo, Ecuador	Tusheng Ren, China
Ekaterine Sanadze, Georgia	· Marc Van Liedekerke, European Union	 Ummed Singh, India
Elmobariak Elhadi Sudan	Maria Fanta, Italy	 Vinisa Saynes, Mexico
Emanuelle Lugato, European Union	Maria Konyushkova, ITPS	 Volodymyr Ivanov, Ukraine
Erica Lumini, Italy	Marija Dragovic, Sethia	Muxin Tong, IAO-CSP
Fernando Delgado Espinoza.	Martha Bolaños, ITPS	
Venezuela	Martin Verneflack, Comercon	
THE SECOND		

Protocol for the assessment of Sustainable Soil Management

List of contributors:

Contributors		
	General coordination Ronald Vargas Rojas (IAO-GSP)	
	Managing Editors	
	Carolina Olivera (FAO-GSP), Zine	
	Megan Balks (ITPS), Rosa Pochi	(/TPS)
Contributors		
Ahmed Elgubshawi, Bahrain	Fernando garcia Prechac, Urugudy	Maya Zahavi, Israel
Alberto Origazzi, European Union	 Filberto Altobelli, Italy 	Melissa Lis Gutiernez, Colombia
 Aleksi Lehtonin, Finland 	 Gabriella Rossi, Italy 	Mirco Barbero, European Union
Alireza Moridhejad, RAN	 Galus Eudoxie, Grenada 	Mirelys Rodriguez Alfaro, Cuba
 Amanda J. Ashworth, USA 	 Generose Nziguheba, //7/5 	 MonicaFarţan, Globel Soll Biodivers
Amanullah, Pakistan	 Gerando Djeda, Colombia 	Initiative
 Andre Franco, Global Soil Biodiversity 	 Gkuseppe-Corti, Italy 	 Nader Noureldeen Mohamed, Eg
initiative	 Guedon jean, Annor 	Nakasi Harriet, Ugondo
 Andrea Spanischberger, Austria 	Guillermo Peralta, Argentina	 Napoleon Ordoñez, Calombia
Anthony John Mouzas, Ognus	 Gulchekhra Khasankhanova, 	 Nat Tukavalagi, Micronesia
 António Perdigão, Portugal 	Lizbekistan	Natalia Rodriguez Eugenio, IAO-0
 Antonio Sanchez, Venezuela 	Hans Brand, The Netherlands	 Nopmanee Suvannang, TheRed
 ArkadiyLevin, Ukusine 	Hanspeter Liniger, WOGR	Olga Lucia Ospina, Colombia
 Arwin jones, European Union 	Hervé Guibert, Annor	Panos Panagos, European Union
Bente Foreid, Norway	 Idrissa Boubacar, Niger 	Patricia Verästegui Martinez, Spail
 Bernard Fungo, Uganda 	leda de Carvalho Mendes. Brasil	Paul Luu, 4 peur loco
Bo Sun, China	 Igor Vidal, Brazil 	 Pilar Andrés, Spain
Bravo Peeters, European Union	Iman Sahib Salman, Inag	Rémi Cardinael, Prance
Cairo Robb, United Kingdom	 Ingeborg Bayer, Germany 	 Reynaldo Bismarck Mendoza,
Charles Rice, USA	 Jacques Tavares, Gabe Verde 	Nicaragua
Christian Omuto, MO-GSP	 Jesus Viloria, Venezuela 	 Rosa Cuevas, FAO-CSP
 Clara Lefevre, FAO-GSP 	 Jin Ke, ITPS 	 Rosario Napoli, Ibaly
Claudia Rojas, Chile	 Juan Carlos Rey, Venezuela 	 Samual Francke, ITPS
 Cristina Grandi, Italy 	 Juan Comerma, Vincuela 	 Samsel Sahakyan, Antenia
Dan MacDonald, Canada	Julien Demenois, France	 Sarkal Jushhwo. Nepdl
Daniella'ikktten. Malawi	Klaas Mampholog, South Africa	 Saud Al Farsi, Oman
 Dardo Escobar, Argentina 	Laura Bertha Reyes, R.65	 Serghei Corcimaru, Moldolva
David 8. Knaebel, USA	Lenin Medina, Molico	 Sol Ortiz Garcia, Merico
David Lobb, /TPS	Luca Montanarella, Europeon Union	 Somsak Maneepong, Thailand
Deyanira Lobo, Venezuela	Lucia Acijos, ITPS	 Su Su Winowiecki, Myanmar
 Diana/Wall, Global Sol Biodiversity 	Lucrezia Caon, IAO-CSP	 Tarik Topcu, Tarkey
initiative	 Lydia Chabala, ITPS 	 Tom Bruulsema, Canada
Eduardo Costantini, Italy	Manuel Camillo, Ecuador	Tusheng Ren, China
Ekaterine Sanadze, Georgia	Marc Van Liedekerke, European Union	
Emobarak Ehag, Safan	Maria Fanta, Italy	 Vinisa Saynes, Mexico
Emanuelle Lugato, European Union	Maria Konyushkova, ITPS	Volodymyr Ivanov, Ukraine
Erica Lumini, italy	Marija Dragovic, Setka	 HasinTong, IAO-CSP
 Fernando Delgado Espinoza. 	Martha Bolaños, ITPS Martin Vernefack, Common	

Indicator	Parameter/ metric	Measurement methods ²	Sample characteristics ³
Soil productivity	Agricultural productivity or biomass in dry matter (t ha¹year ¹)	Dry weight of vegetation quadrats, or yield measurements	Quadrat method or yield measurement
Soil organic carbon	Organic carbon (%)	Walkley- Black method http://www.fao.org/3/ca7471en/CA7471EN.pdf or Dumas method http://www.fao.org/3/ca7781en/ca7781en.pdf	Representative soil sample
Soil physical propercies	Bulk density (kg dm ⁻³) In some cases, bulk density can be complemented by	The Core Method	Undisturbed representative sample with known volume
Soil biological	available water capacity, or other relevant soil physical properties (See additional indicators) Soil respiration rate	Laboratory based soil	Representative soil sample
activity	(gCO ₂ m ⁻² d ⁻¹) Ideally combined with at least one other biological indicator (See soil biological activity p. 4 and 5)	respiration measurement (static or dynamic) The most common methods will be presented in the annex.	to be analyzed within hours or refrigerated

1. Which soil characteristics?

pH: top priority but difficult because to much soil is needed...

C: top priority because

- soil is a main compartment in C cycle
- and « Protocole of assessment of sustainable management »
- low soil amount is needed

N & P: main factors of productivity / negative impact on environment low soil amount is needed

CLOBAL SOIL

1. Which soil characteristics?

pH: top priority but difficult because to much soil weight is needed

C: top priority because

- soil is a main compartment in C cycle
- and « Protocole of assessment of sustainable management »
- low soil amount is needed

N & P: main factors of productivity / negative impact on environment low soil amount is needed

Which methods?

For some methods, ≠ procedures are possible

Soil characteristic

Nitrogen -

Dumas

Combustion (controled atmosphere)

≠METHODS **→ ≠**EXTRACTANTS

For some methods, ≠procedures are possible

Bray 2

0.03 M NH4F + <u>0.1 M</u> HCl

1. Which soil characteristics? C N P

2. How many replicates?

GLOBAL SOIL PARTNERSHIP

2. How many replicates?

Enough rep. to be able to make a statistical analysis, Not to much to avoid reduced efficiency

<mark>6 rep:</mark> A B C D E F

Comparability

Compare all labs

of each individual lab

2. How many replicates?

Enough rep. to be able to make a statistical analysis, Not to much to avoid reduced efficiency

<mark>6 rep:</mark> A B C D E F

Comparability

Compare all labs

Reliability

of each individual lab

Estimated through PRECISION

 \Rightarrow Is the analytical process under control?

 \Rightarrow or is random

CLOBAL SOIL PARTNERSHIP

WHY PRECISION IS IMPORTANT:

If you go up and down your balance, you expect the same result everytime

WHY PRECISION IS IMPORTANT:

If you make several times the test (within short time) You expect the same result

5 REPLICATES

relevant, whatever the method and procedures used by the labs)

1. Which soil characteristics? C N P

2. How many replicates? 6 soil types & 5 rep for one soil

1. Which soil characteristics? C N P

2. How many replicates? 6 soil types & 5 rep

3. Which range?

1. Which soil characteristics? C N P

2. How many replicates? 6 soil types & 5 rep

3. Which range?

LOW to HIGH carbon content

FEASABILITY:

1. Which soil characteristics? C N P

2. How many replicates? 6 soil types & 5 rep

3. Which range?

LOW to HIGH carbon content

0.2 to 6 % carbon

FEASABILITY:

1. Which soil characteristics? C N P

2. How many replicates? 6 soil types & 5 rep

3. Which range? 0.2 to 6 % carbon

A B C D E F 10 SOIL SAMPLES

After you sent the analysis , still a lot of work was done

Processes with customs for 'difficult' countries

Contact the labs that were late

Contact the labs that did not follow the recommandations (no C data...)

Make the statistical analyse and check

Individual lab performances

Regional performances

etc...

GLOBAL RESULTS

Statistical procedure

Consensus values

Table 2: Global

		INc	luding o	utliers	EXcluding outliers					
soils	n.labs	min	max	mad	median	mean	sd	$\operatorname{cv}(\%)$	n.lab	
	в									
Α										
в										
\mathbf{C}										
D										
E1										
E2										
E3										
E4										
E5										
\mathbf{F}										
C_Du	m									
Α										
в										
\mathbf{C}										
D										
E1										
E2										
E3										
E4										
E5										
\mathbf{F}										
C_Ig								45		

Table 2: Global

		INc	luding o	utliers	EXcluding outliers					
Soils	n.labs	min	max	mad	median	mean	sd	cv(%)	n.lab	
c_w	в									
Α	150					_			132	
в	160								137	
\mathbf{C}	160								134	
D	160								132	
E1	160								132	
E2	160								126	
E3	160								127	
$\mathbf{E4}$	160								128	
E5	157								128	
F	159								150	
C_D	um									
Α	49								40	
в	52								44	
\mathbf{C}	53								46	
D	52								44	
E1	53								45	
E2	53								45	
E3	52								45	
E4	52								46	
E5	53								44	
\mathbf{F}	53								43	
C_Ig										
Δ	42	0.02	0.73	0.10	0.52	0.40	0.22	45	25	

Table 2: Global

		INc	luding o	utliers	EXcluding outliers					
Soils	n.labs	min	max	mad	median	mean	sd	$\operatorname{cv}(\%)$	n.lab	
C_W	/B									
Α	150				0.18	0.18			132	
в	160				1.79	1.76			137	
\mathbf{C}	160				2.36	2.32			134	
D	160				2.88	2.80			132	
E1	160				3.00	3.01			132	
E2	160				3.08	3.00			126	
E3	160				3.06	3.01			127	
E4	160				3.10	3.03			128	
E5	157				3.03	3.00			128	
\mathbf{F}	159				6.18	5.66			150	
C_D	um									
Α	49				1.20	1.17			40	
в	52				18.26	18.36			44	
\mathbf{C}	53				24.10	24.28			46	
D	52				28.50	28.60			44	
E1	53				34.87	34.93			45	
E2	53				34.58	34.50			45	
E3	52				34.68	34.71			45	
E4	52				34.60	34.71			46	
E5	53				34.53	34.85			44	
F	53				66.20	66.76			43	
C_Ig	5									
Δ	49	0.02	0.73	0 10	0.82	0.40	0.99	45	25	

Table 2: Global

		INclud	ing o	utliers	EXcluding outliers					
Soils	n.labs	min	max	mad	median	mean	sd	cv(%)	n.lab	
C_W	/B									
Α	150			0.10	0.18	0.18	0.11		132	
в	160			0.39	1.79	1.76	0.39		137	
\mathbf{C}	160			0.43	2.36	2.32	0.41		134	
D	160			0.44	2.88	2.80	0.43		132	
$\mathbf{E1}$	160			0.50	3.00	3.01	0.46		132	
E2	160			0.40	3.08	3.00	0.38		126	
E3	160			0.45	3.06	3.01	0.44		127	
E4	160			0.47	3.10	3.03	0.42		128	
E5	157			0.50	3.03	3.00	0.47		128	
F	159			1.36	6.18	5.66	1.77		150	
C_D	um									
Α	49			0.45	1.20	1.17	0.48		40	
в	52			1.02	18.26	18.36	1.00		44	
\mathbf{C}	53			1.22	24.10	24.28	1.12		46	
D	52			2.12	28.50	28.60	1.45		44	
E1	53			1.68	34.87	34.93	1.48		45	
E2	53			1.45	34.58	34.50	1.62		45	
E3	52			2.08	34.68	34.71	1.53		45	
E4	52			1.82	34.60	34.71	1.62		46	
E5	53			2.42	34.53	34.85	1.92		44	
F	53			2.97	66.20	66.76	2.26		43	
C_Ig										
Δ	49	0.02	0.72	0.10	0.52	0.40	0.99	45	25	

Table 2: Global

		INcl	luding o	utliers		Е	Xcluding	ς outliers	3
Soils	n.labs	min	\max	mad	median	mean	sd	cv(%)	n.lab
C_W	'B								
A	150				0.18	0.18		61	132
в	160				1.79	1.76		22	137
\mathbf{C}	160				2.36	2.32		18	134
D	160				2.88	2.80		15	132
$\mathbf{E1}$	160				3.00	3.01		15	132
E2	160				3.08	3.00		13	126
E3	160				3.06	3.01		15	127
E4	160				3.10	3.03		14	128
E5	157				3.03	3.00		16	128
\mathbf{F}	159				6.18	5.66		31	150
C_D	um				_				
Α	49				1.20	1.17		41	40
в	52				18.26	18.36		5	44
\mathbf{C}	53				24.10	24.28		5	46
D	52				28.50	28.60		5	44
E1	53				34.87	34.93		4	45
E2	53				34.58	34.50		5	45
E3	52				34.68	34.71		4	45
E4	52				34.60	34.71		5	46
E5	53				34.53	34.85		6	44
\mathbf{F}	53				66.20	66.76		3	43
C_Ig				_					
Δ	49	0.02	0.72	0.10	0.82	0.40	0.99	45	25

				Table	2: Global					
		IN	cluding o	utliers	EXcluding outliers					
Soils	n.labs	min	max	mad	median	mean	sd	cv(%)	n.lab	
C_W	в									
A	150	0.00	9.71	0.10	0.18	0.18	0.11	61	132	
в	160	0.02	20.05	0.39	1.79	1.76	0.39	22	137	
\mathbf{C}	160	0.02	21.00	0.43	2.36	2.32	0.41	18	134	
D	160	0.01	25.66	0.44	2.88	2.80	0.43	15	132	
E1	160	0.03	33.75	0.50	3.00	3.01	0.46	15	132	
E2	160	0.03	28.96	0.40	3.08	3.00	0.38	13	126	
E3	160	0.02	27.82	0.45	3.06	3.01	0.44	15	127	
E4	160	0.02	26.46	0.47	3.10	3.03	0.42	14	128	
E5	157	0.01	27.82	0.50	3.03	3.00	0.47	16	128	
\mathbf{F}	159	0.11	67.85	1.36	6.18	5.66	1.77	31	150	
C_D	um									
Ā	49	0.00	34.80	0.45	1.20	1.17	0.48	41	40	
в	52	0.02	34.20	1.02	18.26	18.36	1.00	5	44	
C	53	0.02	40.70	1.22	24.10	24.28	1.12	5	46	
D	52	0.03	96.77	2.12	28.50	28.60	1.45	5	44	
E1	53	0.03	104.00	1.68	34.87	34.93	1.48	4	45	
E2	53	0.03	104.00	1.45	34.58	34.50	1.62	5	45	
E3	52	0.03	62.20	2.08	34.68	34.71	1.53	4	45	
E4	52	0.03	54.20	1.82	34.60	34.71	1.62	5	46	
E5	53	0.03	66.10	2.42	34.53	34.85	1.92	6	44	
\mathbf{F}	53	0.07	108.00	2.97	66.20	66.76	2.26	- 3	43	
C_Ig										
A	42	0.03	9.73	0.19	0.52	0.49	0.22	45	35	
в	42	1.79	10.68	1.51	6.52	6.22	2.05	33	42	
С	42	2.75	10.19	1.66	7.92	7.24	1.94	27	42	
D	42	1.83	16.15	3.88	10.77	9.98	3.70	37	42	
$\mathbf{E1}$	42	3.17	10.10	1.83	7.33	7.09	1.63	23	42	
E2	42	3.25	10.90	1.58	7.44	7.18	1.77	25	42	
E3	42	2.75	10.40	1.92	7.41	6.95	1.77	25	42	
E4	42	2.32	10.14	1.62	7.44	7.26	1.49	21	41	
E5	41	2.50	11.14	1.66	7.35	7.01	1.48	21	39	
F	42	3.57	18.07	2.47	14.38	13.35	3.10	23	41	

Precision

Precision: interpretation of Z-score standard deviation (sd)

Z scores										
	example 1	example 2	example 3	example 4	example 5					
Rep 1	0	1	0,6	1,6	0,2					
Rep 2	0	1	0,8	1,8	0,6					
Rep 3	0	1	1	2	1					
Rep 4	0	1	1,2	2,2	1,4					
Rep 5	1	2	1,4	2,4	1,8					
mean	0,2	1,2	1	2	1					
SD	0,4	0,4	0,3	0,3	0,6					

Carbon

Nitrogen

CLOBAL SOIL PARTNERSHIP

Phosphorus

Comparability & accuracy

How distant/different are the results from each lab Compared to the consensus value.

Carbon

[1] 115

CLOBAL SOIL PARTNERSHIP

CLOBAL SC

CLOBAL SOIL PARTNERSHIP

Nitrogen

Phosphorus

GLOBAL SOIL PARTNERSHIP

GLOBAL SOIL PARTNERSHIP

Part 1 = assessment:

how reliable and comparable are the data produced by soil laboratories?

QUESTIONS: 2 + 1 more

1. RELIABILITY: for each lab, what is its precision?

many labs have insuficient precision: need to develop IQC

QUESTIONS: 2 + 1 more

1. RELIABILITY: for each lab, what is its precision? many labs have insuficient precision: need to develop IQC

2. COMPARABILITY: among all labs, dispersion of their results?

Depends on method but even with high tech Analytical problems &/or transcription mistakes ?

QUESTIONS: 2 + 1 more

1. RELIABILITY: for each lab, what is its precision? many labs have insuficient precision: need to develop IQC

2. COMPARABILITY: among all labs, dispersion of their results?

Depends on method but even with high tech Analytical problems &/or transcription mistakes ?

3. REFERENCE VALUE : at global scale, consensus value = reference value : YES !

Purpose: to improve the quality of soil laboratory data to support decision making at field and policy levels

Done but need to go forward

Objectives :

- 1. To strengthen the performance of laboratories through use of standardized methods and protocols.
- 2. To harmonize soil analysis methods so that soil information would be comparable and interpretable across laboratories, countries and regions.
- 3. To provide a certification for technical competencies in laboratory analysis.

Purpose: to improve the quality of soil laboratory data to support decision making at field and policy levels

Done but need to go forward

Objectives :

- 1. To strengthen the performance of laboratories through use of standardized methods and protocols.
- 2. To harmonize soil analysis methods so that soil information would be comparable and interpretable across laboratories, countries and regions.
- To provide a certification for technical competencies in laboratory analysis.

Record of performances but not yet certificates

- Organisation of regional PTs in 2023

Part 2 = future perspectives:

(suggestions to be discussed)

Which actions/activities to improve all labs performances ?

2 CLOBAL SOIL

let's consider the laboratories as 'factories producing data'

global situation of labs was a black box GLOSOLAN has opend the dor and brought some light...

Keep the duration as short as possible

This is how it looks inside the 'factory':

This is how it looks inside the 'factory':

Labs with poor 'precision' performances need to take action Request GLOSOLAN members support or GSP/GLOSOLAN secretary

(confidentiality garanteed!)

PARTNERSHIP

ABSOLUTELY NECESSARY BUT... Cannot be organised by GLOSOLAN for all labs

REGIONAL PTs are necessary

CLOBAL SOIL PARTNERSHIP

ABSOLUTELY NECESSARY BUT... Cannot be organised by GLOSOLAN for all labs

ABSOLUTELY NECESSARY BUT... Cannot be organised by GLOSOLAN for all labs

REGIONAL PTs are necessary... how to do?

REGIONAL PTs are necessary... how to do?

- Each region or sub-region must organise PTs
- Glosolan will organise GLOBAL PTs involving only high performing labs to assure accuracy and comparability

GLOSOLAN has done many activities to help labs

Now GLOSOLAN needs the help of high performing labs to train the less successful labs, on a regular basis...

GLOSOLAN has done many activities to help labs

Now GLOSOLAN needs the help of high performing labs to train the less successful labs, on a regular basis...

Performances

GLOSOLAN has done many activities to help labs

Now GLOSOLAN needs the help of high performing labs to train the less successful labs, on a regular basis...

Performances

It is important to reach the highest step....

It is also important to help each other to reach the highest step!

6th Meeting of the Global Soil Laborator

GLOSOLAN has done many activities to help labs

Now GLOSOLAN needs the help of high performing labs to train the less successful labs, on a regular basis...

Performances

Data are important

On going, should develop...

Purpose: to improve the quality of soil laboratory data to support decision making at field and policy levels

Objectives :

- 1. To strengthen the performance of laboratories through use of standardized methods and protocols.
- 2. To harmonize soil analysis methods so that soil information would be comparable and interpretable across laboratories, countries and regions.
- 3. To provide a certification for technical competencies in laboratory analysis.

Record of performances but not yet certificates

GLOBAL SOIL LABORATORY NETWORK

Thanks for your attention Thank you to PT participants

Thank you also to Lucrezia, Nok, Michael, Filippo, and many others who all joined the work that I presented. Without their dedication GLOSOLAN would not have such an unique vision of GLOBAL soil labs!

