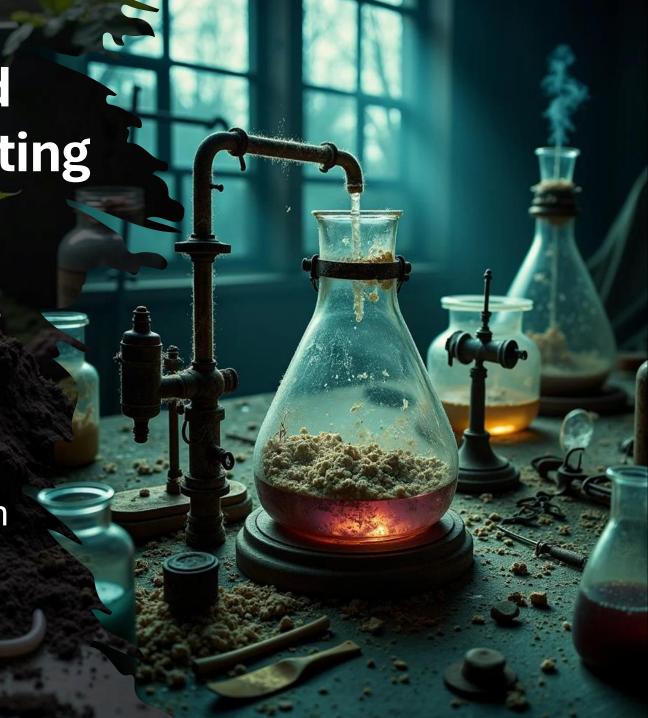


Analytical Method Validation for Soil Testing Laboratories



 Key validation parameters for common soil testing methods

Validating empirical methods

 Interpretation of the validation data and implications for decision making



A little less magic and a little more Science...

Analytical Method Validation

A little less magic and a little more Science...

INTERNATIONAL STANDARD

ISO/IEC 17025

> Third edition 2017-11

General requirements for the competence of testing and calibration laboratories

verification (3.8), where the specified requirements are adequate for an intended use A measurement procedure, ordinarily used for the measurement of mass concentration of

nitrogen in water, may be validated also for measurement of mass concentration of nitrogen in human serum.

[SOURCE: ISO/IEC Guide 99:2007, 2.45]

Reference number ISO/IEC 17025:2017(E)

© ISO/IEC 2017

Analytical Method Validation

3.8 verification

provision of objective evidence that a given item fulfils specified requirements

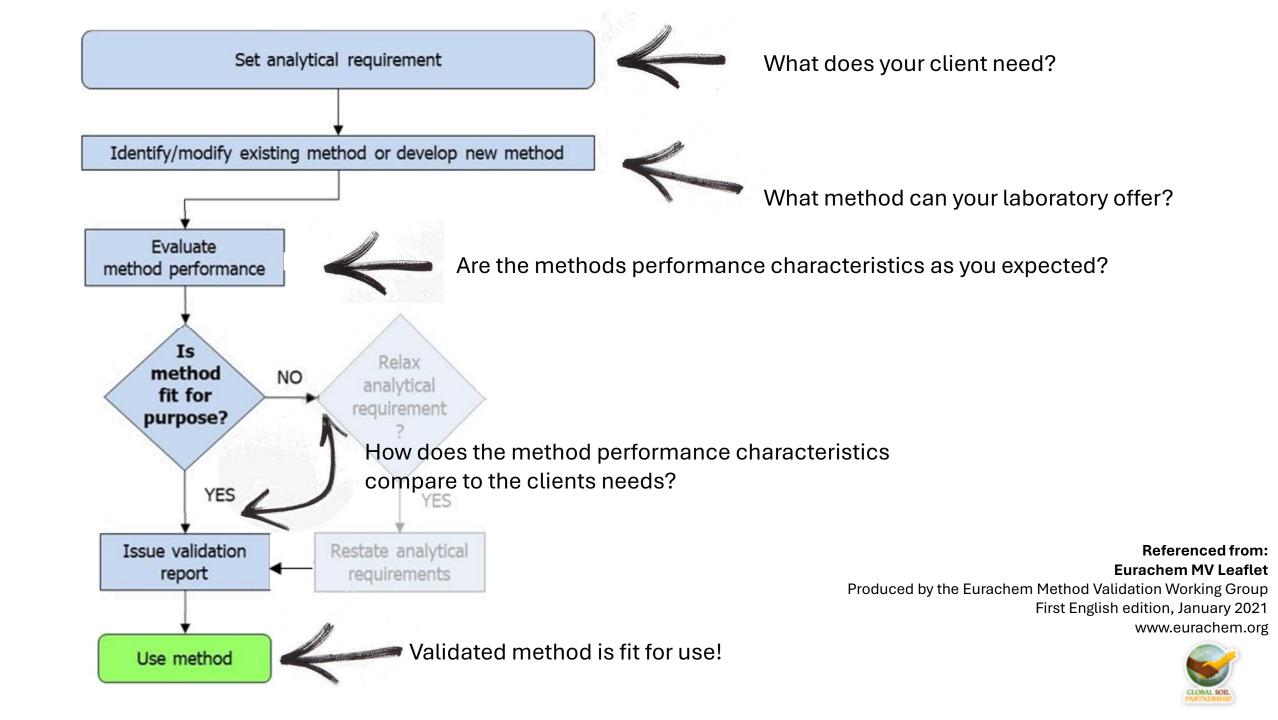
Method Validation is the process where the laboratory proves that their method is fit for purpose.

Fit for purpose means the method is performed while taking the customer's analytical requirements, uncertainty of measurement, cost, time, laboratory requirements and methods performance characteristics etc. into consideration for both the laboratory and the client.

Method validation includes evaluating performance characteristics and comparing them with the analytical requirements.

When should a Soil laboratory validate a method?

When should a Soil laboratory validate a method?



When should a Soil laboratory validate a method?

A few days before the audit is scheduled to arrive......

- A need to verify the method's performance characteristics are fit for use
- Development of a new method
- Revision of the method to address a new customer requirement
- Laboratory QC shows the method is changing with time
- A new laboratory space, or new instruments are being used

Where to begin?

Documents:

ISO 17025

TR-26

Validation Plan

Internal Quality Management System

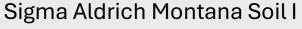
Soil samples:

Certified Reference Material

Proficiency testing samples

Internal Soil Control samples*

Agromat AG-1 & Agromat AG-2


Alpha Resources
Synthetic Soils

Proficiency testing samples

Accreditation Documents Database

Accreditation Documents for Comment

Welcome to SANAS

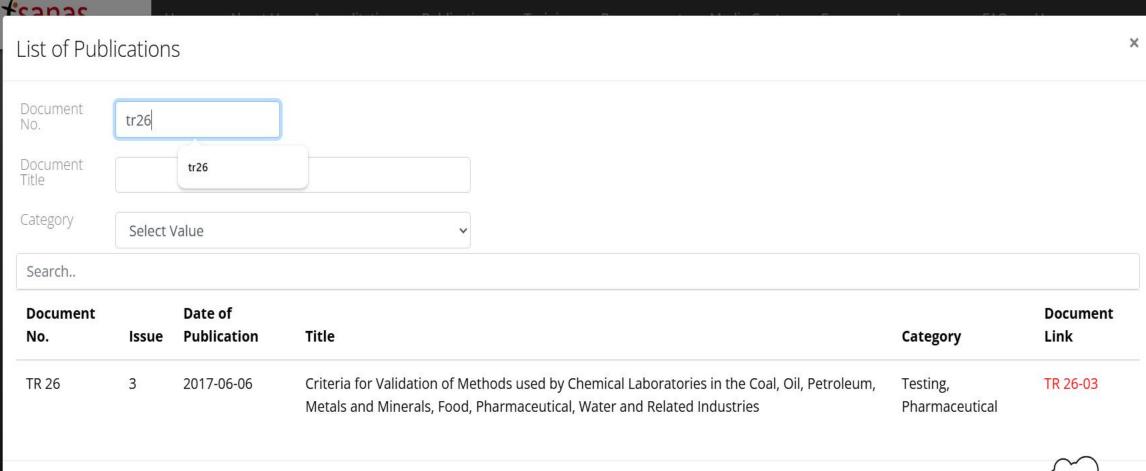
The South African National Accreditation System (SANAS) is the only national body responsible for carrying out accreditations in respect of conformity assessment, as mandated through the Accreditation for Conformity Assessment, Calibration and Good Laboratory Practice Act (Act 19 of 2006)

Apply for Accreditation

Apply for Training

Accredited Organisations

Latest News and Events


NOTIFICATION OF B-BBEE RATING AGENCY WITHDRAWALS

2025-05-22 | Trending News

At times, the Accreditation of a B-BBEE Rating Agency can be withdrawn voluntarily or involuntarily or may even expire, and in order to assist the end user of a B-BBEE Verification Certificate to ensure that the B-BBEE Verification Certificate is valid and has not been fraudulently issued, please take note of the attached announcement: B-BBEE Rating Agency Withdrawals - May 2025.pdf

Home About Us Accreditation Publications Training Procurement Media Centre Careers Assessors FAQ User

whether products, services, or systems meet specified standards and requirements. These bodies play a crucial role in ensuring quality, safety, and compliance in various industries. Read more on attached: **@SANAS Statement - Suspension of Laboratories.pdf**

TR 26-03

CRITERIA FOR VALIDATION OF METHODS USED BY CHEMICAL LABORATORIES IN THE COAL, OIL, PETROLEUM, METALS AND MINERALS, FOOD, PHARMACEUTICAL, WATER AND RELATED INDUSTRIES

Approved By:	Chief Executive Officer: Executive: Accreditation:	Ron Josias Mpho Phaloane		
Reviewed By:	Specialist Technical Committee Members			
Date of Approval:	2017-06-06			
Date of Implementation:	2017-06-06			

The purpose of this document is to define the concepts and processes of method validation, and to provide technical requirements in order to facilitate a uniform approach. This document amplifies ISO/IEC 17025 requirements and lists SANAS requirements applicable to chemical laboratories.

The following do not form part of this document: sampling, sample handling and transportation.

- References, Definitions, Abbreviations
- Performance characteristics and criteria for a test method
- Validation Plan
- Implementation and Review
- Summary Report
- Revalidation

Validation Plan = Blueprint

Performance Characteristics

Accuracy

Bias

Precision

Reproducibility

Linearity

Working Range

Limit of Detection

Limit of Quantification

Sensitivity

Specificity

Uncertainty of Measurement

Robustness

Validation Criteria

Which analytes are being determined and why?

What is the sample matrices?

Are there potential interferences?

Are there legal requirements?

How robust must the method be?

What are the expected concentration levels of the analytes?

Are there environmental conditions to be considered?

What instrumentation is being used?

^{*} Is there a method available that covers sample preparation, sub-sampling, etc.? *

Parameters which define how well an analytical method performs its intended purpose

Identification What is being measured?

Working range What is a valid range for the result?

Precision How do repeated results compare to each other?

Accuracy How far off the true value is the result?

Uncertainty How far off the true value could the result be?

Stability Do the results degrade over time?

Robustness What could become a problem?

Identification

What is being measured, and where?

Instruments

The method validation report MUST specify which instrument the method was validated on.

If there are multiple instruments of the same kind e.g. ICP-OES each unit must have a unique identifier/name. When validating a method on an ICP-OES or similar, all the details and specifications of the instrument must be recorded including the positions of the wavelengths.

Interferences

List all known and important interferences.

These interferences will be addressed when determining selectivity/specificity.

Accuracy

How close the measured value is to the true value?

Four ways to determine accuracy:

Spiked Recovery Test X

Proficiency Testing Scheme/ Interlaboratory testing samples ()

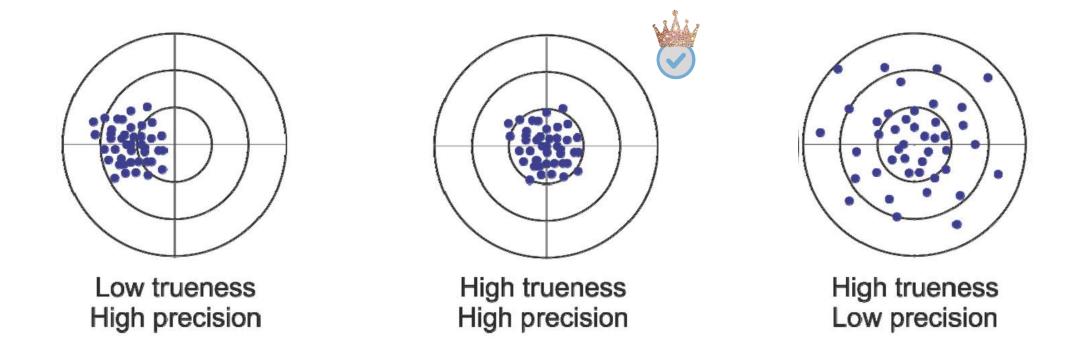
Alternative Method X

Certified Reference Materials

Two ways to report accuracy:

MS Excel

Validation Report Template (

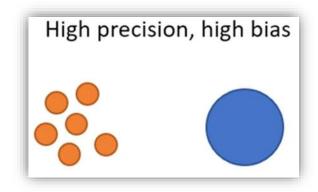

The result is expressed as absolute difference and relative error, for a specific concentration.

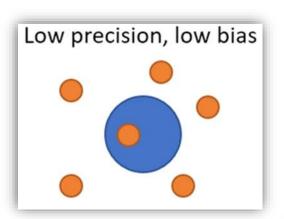
For certified reference materials, the consensus value and uncertainty is given by the certificate of the material. For PT Schemes or Interlaboratory testing, it is calculated by the scheme and reported.

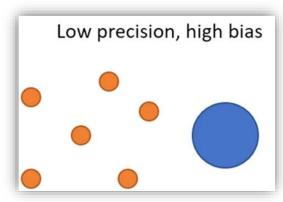
Accuracy Includes Precision and Trueness

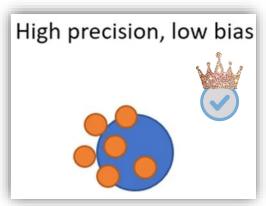
<u>Trueness:</u> How close is the mean of the TEST results compared to the result of the CRM?

<u>Precision:</u> How similar are the TEST results when compared to the result of the CRM?


Accuracy


Results can be used to determine a Bias in the analytical method




Bias?

A measure of systematic measurement error

Parameters which define how well an analytical method performs its intended purpose

Accuracy

Limit of Detection

Bias

Limit of Quantification

Precision

Sensitivity

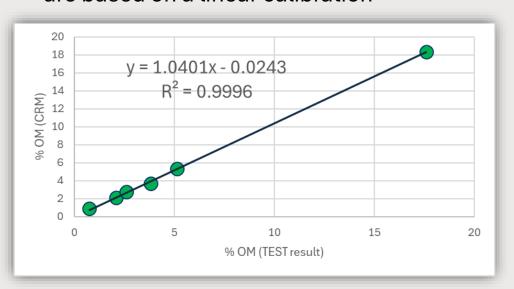
Reproducibility & Repeatability

Specificity

Linearity

Uncertainty of Measurement

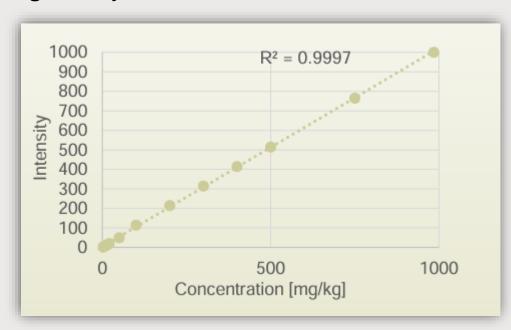
Working Range


Robustness

Linearity

The ability of the method to accurately measure an analyte across a given range

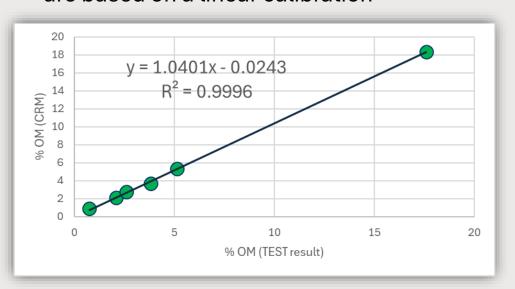
The TEST results are directly proportional to the concentration of the analyte, most quantitative analytical methods are based on a linear calibration



A given analyte e.g. Carbon in soils; determined by titration via Walkley Black; shall be analysed at several concentrations. Each concentration must have at least six determinations

Minimum acceptable $R^2 > 0.999$ covering a concentration range of 80 - 120% of the target analyte concentration

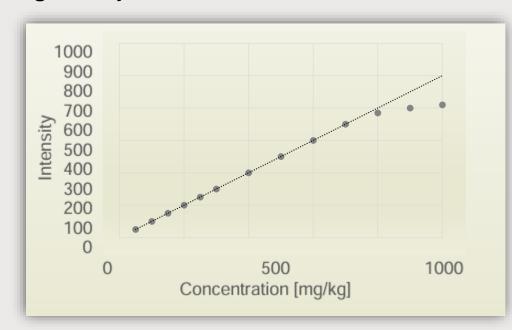
Determination of the working range can be dependent on the composition of the soil.


On an ICP-OES a presence of large amount of Na can limit the working range of other elements like Ca.

Linearity

The ability of the method to accurately measure an analyte across a given range

The TEST results are directly proportional to the concentration of the analyte, most quantitative analytical methods are based on a linear calibration



A given analyte e.g. Carbon in soils; determined by titration via Walkley Black; shall be analysed at several concentrations. Each concentration must have at least six determinations

Minimum acceptable $R^2 > 0.999$ covering a concentration range of 80 - 120% of the target analyte concentration

Determination of the working range can be dependent on the composition of the soil.

On an ICP-OES a presence of large amount of Na can limit the working range of other elements like Ca.

Working Range

What is a valid range for the result?

The defined interval from the Minimum (Quantification Limit) to the Maximum (Linearity determination)

The working range is expressed in the same units as the TEST results obtained by the analytical method

Analyse a set of standards, covering the expected sample analyte concentration. Each standard concentration must be determined no less than six times

e.g. to determine % Organic Material and % Carbon determined by Carbon Walkley Black titration a concentration range of ± 0.1-14% was considered.

Standard concentration levels: 0.1; 0.3; 0.5, 1, 5, 10, 14*

CRM's are not widely available for Carbon or Organic Material therefore PT/Interlaboratory testing samples were used

Limit of Detection (LOD)

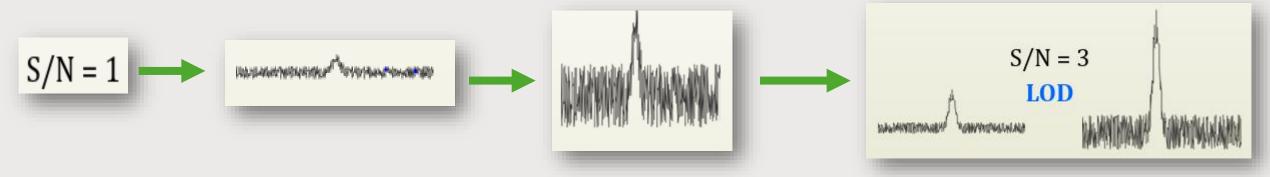
The lowest concentration of an analyte that can be consistently detected

Limit of Quantification (LOQ)

The lowest concentration of an analyte that can be consistently measured

The Detection Limit is calculated as three times the standard deviation

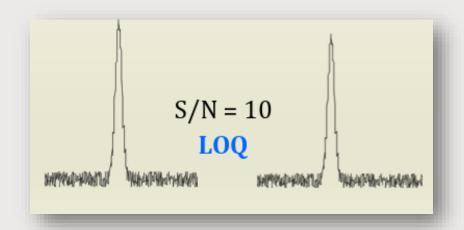
LOD = $3*\sigma$


The Quantification Limit is calculated as three times the LOD

LOQ = 3*LOD

When different matrixes are used in the method, limits must be reported for all matrices, or the absence of matrix influence must be validated.

Limit of Detection

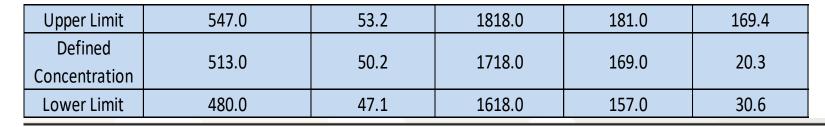

Is the signal larger than the noise?

Lowest amount of an analyte that can be distinguished from a blank (signal > its uncertainty)

Limit of Quantification

Quantity of the analyte that provides a S/N = 10

Using an ICP – BLANK measurements are the easiest way to determine LOD and LOQ


For titrations – Make use of the WORKING RANGE to determine LOD and LOQ

Calculating Standard Deviation


	AVERAGE, SD & RSD - Agromat AG-2										
	К	Na	Ca	Mg	S	TRACKING DETAILS					
	ppm	ppm	ppm	ppm	ppm	TRACKING DETAILS					
1	332	43	1092	113	17	Week One - 2025 03 04					
2	316	78	1969	213	27	Week Two - 2025 03 12					
3	348	46	1085	103	16	Week Three - 2025 03 18					
4	348	45	1209	114	21	Week Four - 2025 03 26					
AVERAGE	335.9	53.0	1338.8	135.9	20.3						
SD	17.2	22.1	466.4	56.7	7.0						
%RSD	5.1	41.7	34.8	41.7	34.7						
True Value	337.0	71.3	2030.0	214.0	22						

^{51.6} 66.4 170.0 21.1 3S 1399.2 MAX 670.0 63.5 2186.0 224.0 41.4 356.0 36.9 1250.0 114.0 -0.8 MIN

^{*} Sulphur is not a certified value on the Agromat COA - the values used are calculated from the establishment data

Analysis Report

Providing Innovative Solutions to Analytical Chemists

1.0 DESCRIPTION: Matrix Reference Material AgroMAT - Sandy Soil (AG-2)

Catalogue Number: 140-025-102 Lot Number: \$220425004

Expiration Date: 2 years from date of shipment (See Ship Date label on bottle) Jul 2024

2.0 CONSENSUS VALUES (See section 8 for additional details):

Parameters	Extraction Method	Units	Consensus Value	Uncertainty (+/-)	Confidence Interval	Tolerance
DI L	Mehlich III	mg/kg	69.9	9.5	60.4 - 79.4	10.9 - 129
Phosphorus	Olsen	mg/kg	51.5	2.8	48.7 - 54.3	37.1 - 66.0
	Ammonium Acetate pH 7	mg/kg	513	33	480 - 547	356 - 670
Potassium	Mehlich III	mg/kg	525	30	495 - 555	326 - 723
Calcium	Ammonium Acetate pH 7	mg/kg	1718	100	1618 - 1818	1250 - 218
Calcium	Mehlich III	mg/kg	1666	88	1578 - 1754	1083 - 225
Managalium	Ammonium Acetate pH 7	mg/kg	169	12	157 - 181	114 - 224
Magnesium	Mehlich III	mg/kg	254	11	243 - 266	184 - 325
Codless	Ammonium Acetate pH 7	mg/kg	50.2	3.0	47.1 - 53.2	36.9 - 63.5
Sodium	Mehlich III	mg/kg	57.1	3.9	53.2 - 61.0	36.5 - 77.7
90000	DTPA	mg/kg	(1.11)			
Zinc	Mehlich III	mg/kg	4.0	0.3	3.7 - 4.3	2.0-6.1
	Amm. Ace. pH 7 + EDTA	mg/kg	(2.5)			
	DTPA	mg/kg	(22.9)			
Manganese	Mehlich III	mg/kg	155	11	144 - 165	89.4 - 220
	Amm. Ace. pH 7 + EDTA	mg/kg	(43.3)			
	DTPA	mg/kg	(1.3)		1	17
Copper	Mehlich III	mg/kg	1.2	0.1	1.0-1.3	0.4-1.9
	Amm. Ace. pH 7 + EDTA	mg/kg	(2.8)			
	DTPA	mg/kg	(100)			
Iron	Mehlich III	mg/kg	969	101	869 - 1070	345 - 1594
	Amm. Ace. pH 7 + EDTA	mg/kg	(221)			T.
Boron	Hot Water	mg/kg	0.44	0.08	0.36 - 0.51	0.14 - 0.73
Boron	Mehlich III	mg/kg	0.67	0.12	0.55 - 0.79	0.10 - 1.25
Sulfur	Mehlich III	mg/kg	25.1	1.2	23.8 - 26.3	19.2 - 30.9
Aluminum	Mehlich III	mg/kg	1502	93	1409 - 1596	932 - 2072
	1 :1 (Soil:Water)		6.94	0.07	6.87 - 7.01	6.50 - 7.39
	1 :2 (Soil:Water)		6.99	0.11	6.88 - 7.10	6.42 - 7.57
pH	1 :5 (Soil:Water)		(7.15)			
19752	Saturated Paste		6.78	0.11	6.67 - 6.89	6.33 - 7.23
	Buffer SMP		7.06	0.03	7.02 - 7.09	6.90 - 7.22
Ornania Matter	LOI	%	3.5	0.2	3.3 - 3.7	2.3 - 4.8
Organic Matter	Walkley Black	%	2.6	0.3	2.3 - 2.9	1.2 - 4.0
Nitrogen as Nitrate	KCI	mg/kg	143	2	141 - 145	129 - 156
Soluble Salts	1 :2 Soil :Water	uS/cm	643	53	591 - 696	389 - 898
Soluble Salts	Saturated Paste	uS/cm	(1177)			

Note: Values in bracket are not certified. They are listed for information only.

3.0 APPROVAL AND REVISION:

Approval:

Daniel Boisvert, Chemist

Date of Issue of Report: Date of revision: August 25th, 2022 December 15th, 2022 David Boismut

4.0 DESCRIPTION AND INTENDED USE:

The Matrix Reference Material (MRM) AG-2 is a naturally agricultural sandy soil (not spiked or fortified) with a particle size of -200 mesh. It is designed to be used for quality control verification, internal standards validation or methods development for the analysis of the listed parameters using the indicated extraction methods. Not intended for calibration.

5.0 INSTRUCTIONS FOR USE AND STABILITY:

Instructions for use: Before weighing, mix the material by shaking the container to avoid segregation in the bottle. In order to have a representative sample, the minimum use quantity must be 1 g to conform to previous homogeneity testing. Analysis has been performed on a dry weight basis.

Stability: This MRM is guaranteed to be stable up to 2 years from the shipping date provided the material is kept sealed, stored under normal laboratory conditions and used according to good laboratory practices. Shipping date will be stamped on container at time of shipping. SCP SCIENCE will monitor the stability of representative samples regularly and if any changes occur that invalidate the reported results, SCP SCIENCE will notify purchasers.

Date of last verification: N/A

6.0 HAZARDOUS INFORMATION:

Please refer to the associated Safety Data Sheet (SDS) for information regarding this product (available at http://www.scpscience.com/ecert).

7.0 PREPARATION METHOD AND HOMOGENEITY:

Preparation Method: The initial sample has been dried, crushed and sieved through a 0.5 inch sieve. The "fines" portion has been further crushed and sieved with 80% of the material passing through a 200 mesh screen. This portion has been re-pulverized and sieved through a 200 mesh sieve to obtain 100% less than 200 mesh. The final material has then been packaged in 175 g containers and tested for homogeneity.

Homogeneity: The homogeneity of the material has undergone third party verification by Particle Size Analysis and by metals oxides analysis using X-ray fluorescence spectrometer. The method used for material homogeneity determination is based on ISO Guide 35.

8.0 ANALYSIS AND DETERMINATION OF CONSENSUS VALUES:

These values were the result of an inter-laboratory study involving thirteen laboratories. Each laboratory was asked to supply analysis data for a specific list of parameters employing specific extraction methods. Not all the laboratories supplied data for the different parameters. Consensus Values are based on an average of 19 values per parameter (36 values being the lighest and 6 values being the lowest). Values in brackets are not certified as less than 9 values were received. They are provided for information only.

Several extraction methods have been used by lab participants. Mehlich III, Olsen, Ammonium and Acetate at pH 7 are methods that we had enough results to do statistical calculation. Almost all labs did their sampling by weight rather than by calibrated scoop. Extraction method soil ratio used by most labs is: Mehlich III (1:10), Olsen (1:20), Ammonium acetate pH 7 (1:10), DTPA (1:2).

Agricultural extraction methods for all elements are listed on section 2.0 of this certificate. Most participating labs used ICP or AA to test metals. ICP and colorimetric method have been used for phosphorus testing: Colorimetric for Olsen extraction methods, ICP for Mehlich III extraction method. For nitrates analysis, cadmium reduction with colorimetric method, ionic chromatography or segmented flow analyser have been used by most participating laboratories.

Parameters	Extraction Method	Units	Consensus Value	Uncertainty (+/-)	Confidence Interval	Tolerance Interval
Detection	Ammonium Acetate pH 7	mg/kg	513	33	480 - 547	356 - 670
Potassium	Mehlich III	mg/kg	525	30	495 – 555	326 - 723
Calcium	Ammonium Acetate pH 7	mg/kg	1718	100	1618 - 1818	1250 - 2186
Calcium	Mehlich III	mg/kg	1666	88	1578 - 1754	1083 - 2250
Magnasium	Ammonium Acetate pH 7	mg/kg	169	12	157 – 181	114 - 224
Magnesium	Mehlich III	mg/kg	254	11	243 - 266	184 - 325
Cadlum	Ammonium Acetate pH 7	mg/kg	50.2	3.0	47.1 - 53.2	36.9 - 63.5
Sodium	Mehlich III	mg/kg	57.1	3.9	53.2 - 61.0	36.5 - 77.7

The Tolerance Interval is an indication of the lowest possible value and the highest possible value based on the complete set of data, exclusive of outliers, used to calculate the Consensus Value.

The following table is a guideline on how to interpret the results:

Results within Confidence Interval	Method working properly
Results outside Confidence Interval but within Tolerance Interval	Method may need improvement
Results outside Tolerance Interval	Method not working properly

Parameters	Extraction Method	Units	Consensus Value	Uncertainty (+/-)	Confidence Interval	Tolerance Interval
Datassium	Ammonium Acetate pH 7	mg/kg	513	33	480 - 547	356 - 670
Potassium	Mehlich III	mg/kg	525	30	495 - 555	326 - 723
Calcium	Ammonium Acetate pH 7	mg/kg	1718	100	1618 - 1818	1250 - 2186
Calcium	Mehlich III	mg/kg	1666	88	1578 - 1754	1083 - 2250
Magnasium	Ammonium Acetate pH 7	mg/kg	169	12	157 - 181	114 - 224
Magnesium	Mehlich III	mg/kg	254	11	243 - 266	184 – 325
Cadlum	Ammonium Acetate pH 7	mg/kg	50.2	3.0	47.1 - 53.2	36.9 - 63.5
Sodium	Mehlich III	mg/kg	57.1	3.9	53.2 - 61.0	36.5 - 77.7

	K	Na	Ca	Mg	S
	ppm	ppm	ppm	ppm	ppm
1	332	43	1092	113	17
2	316	78	1969	213	27
3	348	46	1085	103	16
4	348	45	1209	114	21
AVERAGE	335.9	53.0	1338.8	135.9	20.3
SD	17.2	22.1	466.4	56.7	7.0
%RSD	5.1	41.7	34.8	41.7	34.7
True Value	337.0	71.3	2030.0	214.0	22
3S	51.6	66.4	1399.2	170.0	21.1
MAX	670.0	63.5	2186.0	224.0	41.4
MIN	356.0	36.9	1250.0	114.0	-0.8
Upper Limit	547.0	53.2	1818.0	181.0	169.4
Defined Concentration	513.0	50.2	1718.0	169.0	20.3
Lower Limit	480.0	47.1	1618.0	157.0	30.6

Average = $\times \sqrt{f_x} = \text{AVERAGE(B4:B203)}$

SD = $\times \sqrt{f_x} = \text{STDEV(B4:B203)}$

 $%RSD = \times \sqrt{f_x} = B205/B204*100$

True Value = CONSENSUS value

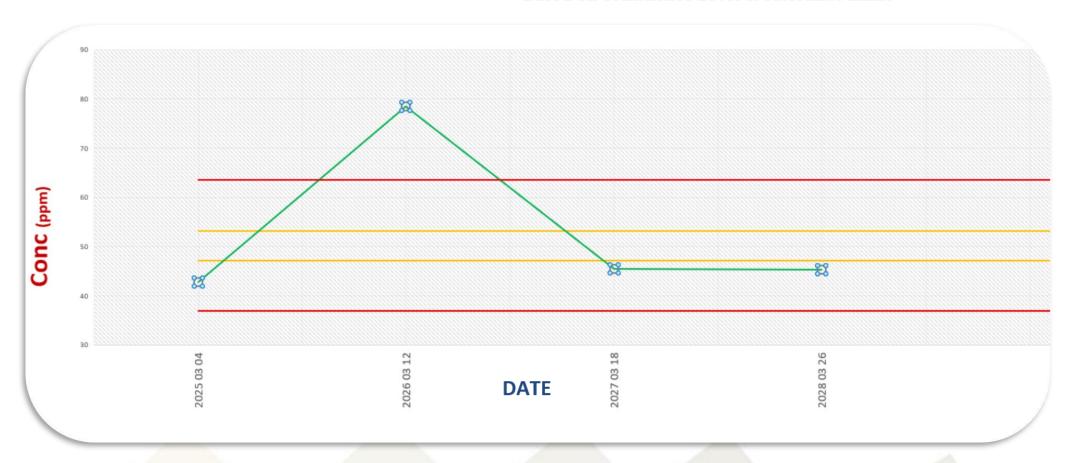
3S (LOD) = $\times / f_x = B205*3$

Max Limit = Upper value of TOLERANCE value

Min Limit = Lower value of TOLERANCE value

Upper Limit = Upper value of CONFIDENCE interval

Defined concentration = CONSENSUS value (TRUE value)


Lower Limit = Lower value of CONFIDENCE interval

ICP QC CHART

Element: Na

Based on Confidence Level & Tolerance Limit

Parameters which define how well an analytical method performs its intended purpose

Accuracy

Limit of Detection

Bias

Limit of Quantification

Precision

Sensitivity

Reproducibility & Repeatability

Specificity

Linearity

Uncertainty of Measurement

Working Range

Robustness

Sensitivity

The method can differentiate between small differences of concentrations of the analyte measured

Specificity

The method can detect the analyte measured even in the presence of interferences

Sensitivity

Can be determined from the WORKING RANGE

Different concentrations of analyte were determined – make sure there are at least two concentration values close to each other

For analytes determined by ICP – specific concentrations can be made and used to determine the working range

Lab number	Consensus value %OM	% OM	%C	Range %OM	Analyst	Date
SMP 2403	2.09	2.14	1.24			
SMP 2403	2.09	2.08	1.21			
SMP 2403	2.09	2.20	1.28	. 2.716		
SMP 2403	2.09	2.11	1.23		H	4
SMP 2403	2.09	2.10	1.22			.10.24
SMP 2403	2.09	2.10	1.22	65 -	Analyst	22.1
SMP 2403	2.09	2.12	1.23	1.465	◀	2
SMP 2403	2.09	2.05	1.19			
SMP 2403	2.09	2.07	1.21			
SMP 2403	2.09	2.09	1.22]		
Avg	2.09	2.11	1.22			
sd		0.04083264	0.023739909			
%rsd		1.93804602	1.938046021			

Lab number	Consensus value %OM	% OM	%C	Range %OM	Analyst	Date					
Agromat AG2	2.6	2.66	1.54		Analyst 2						
Agromat AG2	2.6	2.72	1.58								
Agromat AG2	2.6	2.81	1.63								
Agromat AG2	2.6	2.76	1.61			4					
Agromat AG2	2.6	2.79	1.62	- 2.9		0.2					
Agromat AG2	2.6	2.72	1.58	2.3	nal	22.10.24					
Agromat AG2	2.6	2.70	1.57		⋖	7					
Agromat AG2	2.6	2.76	1.60								
Agromat AG2	2.6	2.76	1.61								
Agromat AG2	2.6	2.77	1.61								
Avg	2.60	2.74	1.60								
sd		0.044874103	0.02609								
%rsd		1.635459156	1.635459			4					

Specificity

Analyse a CRM that represents the sample matrix.

Alternatively spike samples with high, medium, and low concentrations of the analyte being measured.

Spiking samples is possible for analytes measured by ICP, but spiking samples is not always possible, eg, Carbon content in soils

To determine Carbon content in soil Agromat AG-1 and AG-2 CRM's are used to represent different matrices; Sandy soils and Clay soils

Lab number	Consensus value %OM	% OM	%C	Range %OM	Analyst	Date	
Agromat AG1	2.21	2.15	1.25				
Agromat AG1	2.21	2.19	1.27				
Agromat AG1	2.21	2.21	1.29	2.02 - 2.40			
Agromat AG1	2.21	2.19	1.27		\vdash	4	
Agromat AG1	2.21	2.24	1.30		Analyst	22.10.24	
Agromat AG1	2.21	2.17	1.26			2.1	
Agromat AG1	2.21	2.13	1.24	7	⋖	2	
Agromat AG1	2.21	2.15	1.25				
Agromat AG1	2.21	2.13	1.24				
Agromat AG1	2.21	2.22	1.29				
Avg	2.21	2.18	1.27				
sd		0.03789895	0.022034272				
%rsd		1.73990962	1.73990962				

Lab number	Consensus value %OM	% OM	%C	Range %OM	Analyst	Date
Agromat AG2	2.6	2.68	1.56			
Agromat AG2	2.6	2.77	1.61			
Agromat AG2	2.6	2.79	1.62			
Agromat AG2	2.6	2.83	1.65		က	4
Agromat AG2	2.6	2.78	1.61	2.9	yst	0.2
Agromat AG2	2.6	2.80	1.63	2.3	Analyst 3	22.10.24
Agromat AG2	2.6	2.81	1.63		< <	2
Agromat AG2	2.6	2.81	1.63			
Agromat AG2	2.6	2.71	1.57			
Agromat AG2	2.6	2.74	1.59			
Avg	2.60	2.77	1.61			
sd		0.049529165	0.028796026			
%rsd		1.787571399	1.787571399			

Robustness

What could become a problem?

The methods ability to detect the analyte measured despite small, deliberate changes made to the method parameters

Can also be considered Intermediate Precision, and is the laboratory variability in the short term

Small changes can occur:

- Single or different analysts
- Single or different instruments
- Within a single day

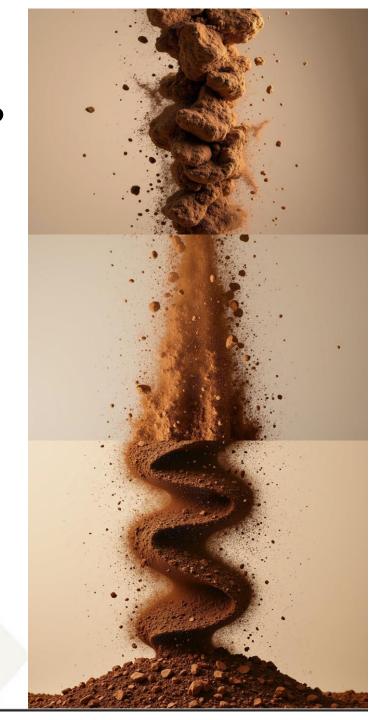
Temperatures

Reagent Supplies

Dilutions

Weighing

Plasma Stability


Injection

Flow variation

Sample stability

Easiest way to determine TEST values? Run control samples over an extended period of time

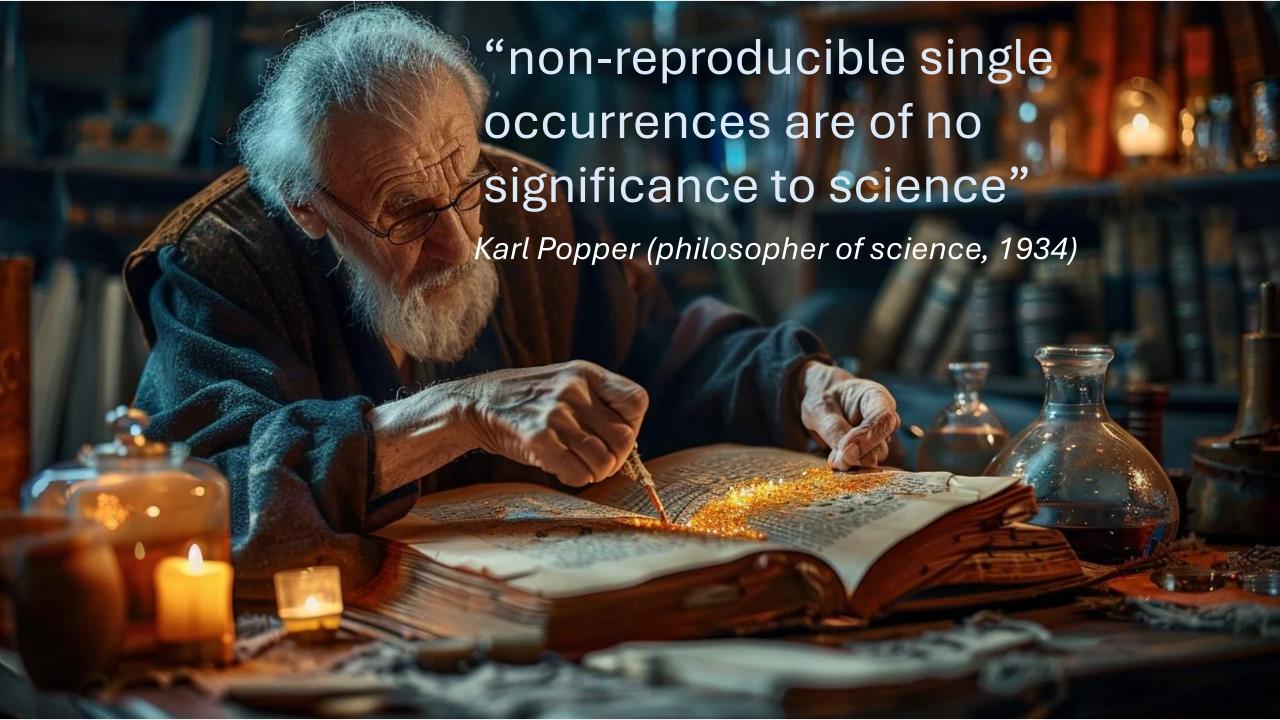
Reproducibility

The ability of the method to accurately determine the analyte despite changing conditions

Conditions that must be changed include:

- Different locations
- Different operators
- Different instruments
- Replicate measurements on the same instrument on different days
- Replicate measurements on the different instrument on different days

Use PROFICIENCY TESTING DATA to determine Reproducibility


Repeatability

The ability of the method to accurately determine the analyte with no changing conditions

All conditions stay the same:

- Same location
- Same operator
- Same instrument
- Replicate measurements on the same instrument on the same day

Parameters which define how well an analytical method performs its intended purpose

Accuracy

Limit of Detection

Bias

Limit of Quantification

Precision

Sensitivity

Reproducibility & Repeatability

Specificity

Linearity

Uncertainty of Measurement

Working Range

Robustness

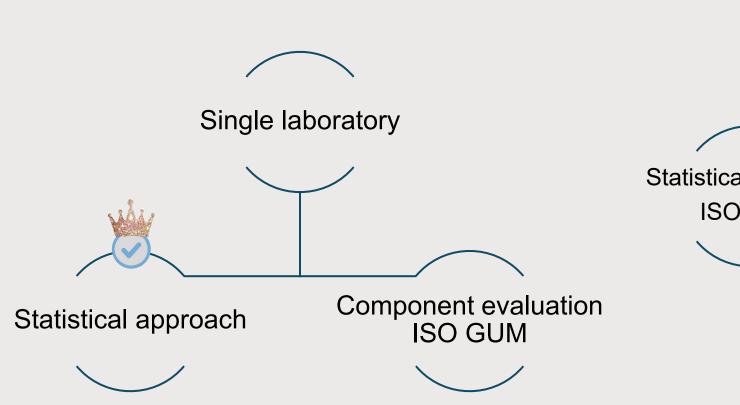
Uncertainty of Measurement

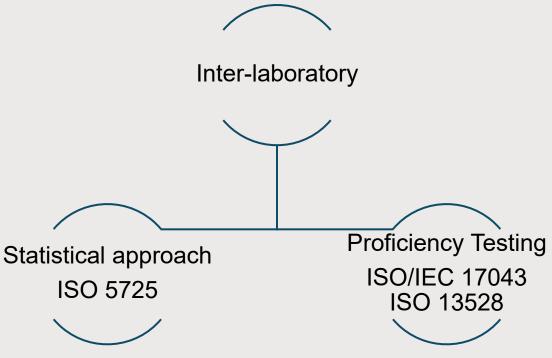
How far off the true value could the result be?

Uncertainty of Measurement

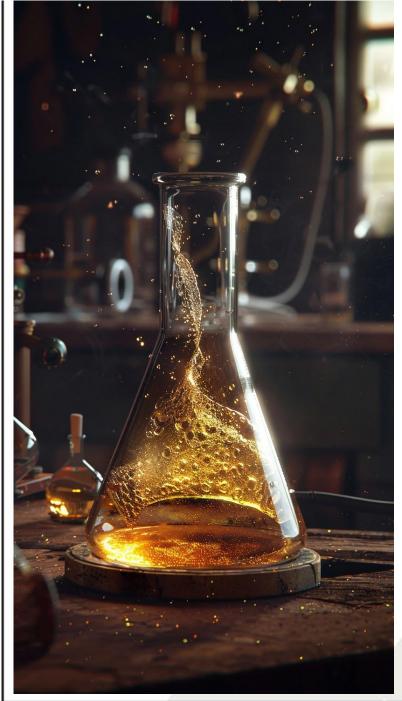
How far off the true value could the result be?

Uncertainty MUST be reported if a customer requests it


Uncertainty MUST be evaluated for ISO 17025 accreditation


Uncertainty is associated with the result of an analysis – not the method

Uncertainty characterises the distribution of the values that could reasonably be attributed to the result of an analysis



Four ways to approach Uncertainty of Measurement

Uncertainty of Measurement Statistical Approach

The analyte of interest is determined in the following manner:

3 operators

3 balances

3 instruments

Multiple days

90 TEST results

mean	75.42%
standard deviation	0.112%
expanded uncertainty (k=2)	0.224%

TEST result = $75.42 \pm 0.22\%$ (k=2)

Calculating Uncertainty

Standard Uncertainty from Certified Reference Materials

Analyte	CRM Identity	Certified	Expanded Uncertainty (U)	Unit		Standard Uncertainty u	Supplier
ОМ	AG-1	2.21		%	2	0.095	SCP Science
ОМ	AG-2	2.6	0.3	%	2	0.15	SCP Science

Mass and volume Weights in g					
Balance 2	0.5	Balance 28	20		
AL 24_1	0.501	RO Water_1	20.0		
AL 24_2	0.509	RO Water_2	20.0		
AL 24_3	0.502	RO Water_3	20.0		
AL 24_4	0.5	RO Water_4	20.0		
AL 24_5	0.498	RO Water_5	20.0		
AL 24_6	0.505	RO Water_6	20.0		
AL 24_7	0.503	RO Water_7	20.0		
AL 24_8	0.5	RO Water_8	20.0		
AL 24_9	0.499	RO Water_9	20.0		
AL 24_10	0.502	RO Water_10	20.0		

Balance 2	0.5	Balance 28	20
Avg	0.5020		20.0000
SD	0.0032		0.0000
(s/x)	0.0064		0.0000
(s/x)^2	0.0000		0.0000

Pipette volumes

	Volume of Sulphuric Acid	Volume of phosphoric acid	Volume of potassium dichromate	Volume of AFS	Volume of RO Water	Volume of RO Water	Volume of RO Water	Volume of RO Water
	Dispenser 4	Dispenser 6	Micro pipette 5	Burette 2	Dispenser 493	Dispenser 6	Micro pipette 5	Burette 2
	20ml	10ml	10ml	20ml	20ml	10ml	10ml	20ml
	mass (g)	mass (g)	mass (g)	mass (g)	mass (g)	mass (g)	mass (g)	mass (g)
1	36.99	16.74	10.17	20.01	19.95	10.3	10.03	20
2	36.92	16.73	10.11	20	19.96	10.12	9.89	20
3	37.07	16.79	10.17	20	19.99	10.05	9.9	20
4	37.02	16.76	10.18	20.01	19.92	10.15	9.87	20
5	36.91	16.79	10.16	20	20.04	10.02	9.91	20
6	36.67	16.93	10.19	20	20.02	10.01	9.83	20
7	36.81	16.98	10.17	20	19.96	10.21	9.96	20
8	36.68	16.89	10.19	20	20	10.19	9.85	20
9	36.83	16.96	10.19	20	19.95	10.1	9.86	20
10	36.77	16.98	10.20	20	20.02	10.12	9.94	20
Avg	36.8533	16.8550	10.1730	20.0020	19.9810	10.1270	9.9040	20.0000
SD	0.1314	0.0977	0.0241	0.0040	0.0367	0.0856	0.0566	0.0000
(s/x)	0.0036	0.0058	0.0024	0.0002	0.0018	0.0084	0.0057	0.0000
(s/x)^2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000

Uncertainty of measurement for % OM

Contributor	Instrument	x Value	Standard uncertainty	Relative Std Uncertainty	Rel U²	% Contribution	Combined uncertainty	Expanded uncertainty	Total % Rel expanded uncertainty
Stock Unc		2.2100	0.0950	0.0430	0.0018478	58.98	0.22	0.45	11.19
Regression Uncertainty		3.6459	0.0743	0.0204	0.0004157	13.27			
Mass U 0.5	Balance 2	0.5020	0.0032	0.0064	0.0000406	1.29			
Mass U 20	Balance 2	20.0000	0.0000	0.0000	0.0000000	0.00			
Vol of Sulphuric Acid	Dispenser 4	36.8533	0.1314	0.0036	0.0000127	0.41			
Vol of phosphoric acid	Dispenser 6	16.8550	0.0977	0.0058	0.0000336	1.07			
Vol of potassium dichromate	Micro pipette 5	10.1730	0.0241	0.0024	0.0000056	0.18			
Vol of AFS	Burette 2	20.0020	0.0040	0.0002	0.0000000	0.00			
Volume of RO Water	Dispenser 4	19.9810	0.0367	0.0018	0.0000034	0.11			
Volume of RO Water	Dispenser 6	10.1270	0.0856	0.0084	0.0000714	2.28			
Volume of RO Water	Micro pipette 5	9.9040	0.0566	0.0057	0.0000327	1.04			
Volume of RO Water	Burette 2	20.0000	0.0000	0.0000	0.0000000	0.00			
Intermediate precision		3.9813	0.10299	0.0259	0.0006692	21.36			

[%] Relative expanded uncertainty with k=2 will be reported (k=2; 95% confidence level)

<u>Uncertainty from Certified Reference Materials - Typical Example of ICP-OES Standards used for multiple analytes</u>

Compound	CRM Identity	Company	Certified	%U	Expanded Uncertainty (U)		Coverage Factor (k)	Standard Uncertainty
Al	N 23	Supplier A	10018		35	μg/ml	2	18
Al	V 45	Supplier B	10000	2.4	240	μg/ml	2	120
В	N 63	Supplier A	99.99		0.90	μg/ml	2	0
В	V 21	Supplier B	1000	2.4	24	μg/ml	2	12
Ca	N 3	Supplier A	10013		34	μg/ml	2	17
Co	V0 4	Supplier B	100.04		0.47	μg/ml	2	0
Cr	N 29	Supplier A	1000	2.4	24	μg/ml	2	12
Cu	V 11	Supplier B	100.02		0.49	μg/ml	2	0
Cu	N 10	Supplier A	1000	2.4	24	μg/ml	2	12
Fe	V 49	Supplier B	1000	2	24	μg/ml	2	12
Fe	N 04	Supplier A	1001		4	μg/ml	2	2
K	V 74	Supplier B	10006		30	μg/ml	2	15
K	V 50	Supplier A	10000	2.4	240	μg/ml	2	120
Mg	N 17	Supplier B	10022		30	μg/ml	2	15
Mg	V 97	Supplier A	10000	2.4	240	μg/ml	2	120
Mn	N 76	Supplier B	1000	2.4	24	μg/ml	2	12
Mn	V 36	Supplier A	1000		4	μg/ml	2	2
Мо	N 12	Supplier B	100.04		0.58	μg/ml	2	0
Мо	V 84	Supplier A	1000	2.4	24	μg/ml	2	12
Na	N 77	Supplier B	10033		30	μg/ml	2	15
Na	V 244	Supplier A	10000	2.4	240	μg/ml	2	120
Ni	N 46	Supplier B	1000	2.4	24	µg/ml	2	12
Р	V 27	Supplier A	10000	2.4	240	µg/ml	2	120
S	N 80	Supplier B	10014		35	µg/ml	2	18
S	V 246	Supplier A	10000	2.4	240	μg/ml	2	120
Si	V 644	Supplier B	1000	2.4	24	μg/ml	2	12
Si	N 491	Supplier A	1001		7	μg/ml	2	4
Zn	N 78	Supplier B	100.03		0.62	µg/ml	2	0
Zn	V 82	Supplier A	1000	2.4	24	μg/ml	2	12

TR 26-03

CRITERIA FOR VALIDATION OF METHODS USED BY CHEMICAL LABORATORIES IN THE COAL, OIL, PETROLEUM, METALS AND MINERALS, FOOD, PHARMACEUTICAL, WATER AND RELATED INDUSTRIES

Approved By:	Chief Executive Officer:	Ron Josias	
	Executive: Accreditation:	Mpho Phaloane	
Reviewed By:	Specialist Technical Committee Members		
Date of Approval:	2017-06-06		
Date of Implementation:	2017-06-06		

Page 1 of 10

The purpose of this document is to define the concepts and processes of method validation, and to provide technical requirements in order to facilitate a uniform approach. This document amplifies ISO/IEC 17025 requirements and lists SANAS requirements applicable to chemical laboratories.

The following do not form part of this document: sampling, sample handling and transportation.

References, Definitions, Abbreviations

Performance characteristics and criteria for a test method

Validation Plan

Implementation and Review

Summary Report

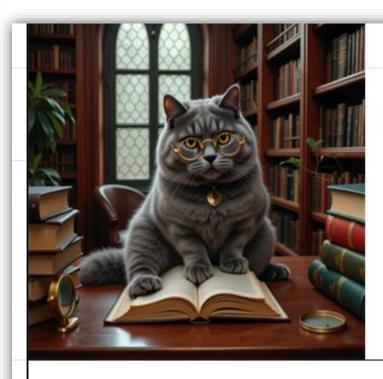
Other Important Requirements

- Traceability
- Proficiency Testing
- Equipment Calibration and Maintenance
- Documented Procedures
- Internal Audits

Validation Report

Validation Report

Excel Workbook


Workbook

Word Document

Validation Template

Internal Laboratory Template

Aboo's Laboratory

Validation Report

This document is the property of Noorunisha and shall not be used, reproduced, transmitted or disclosed without prior written permission

DOC NO. ABC 123

TITLE Validation of organics

	NAME	SIGNATURE AND SO	DATE
PREPARED	Marmaduke	Marinisione	01-Nov-24

Cover Page

- Laboratory Name
- Validation Report
- Document Control Number
- Name of Method
- Person preparing the document
- Date of preparation

 Validation Summary 			
	Criteria	ОМ	С
Sensitivity (slope) Area/μg/L	NR	0.91747	0.91969
correlation coefficient	NR	0.99994	0.99995
Coefficient of determination	NR	0.99989	0.99991
Standard error of a regression	NR	0.06820	0.03602
Relative limit of detection %	NR	0.22	0.12
Relative Limit of Quantitation %	NR	0.74	0.39
Uncertainty in sample analysis Sx0 %	NR	0.07	0.04
T calc	T calc > T crit	19642	23801
Tcrit		2.57	2.57
Working Range in %		0.4 - 10	0.23 - 5.8
Accuracy as % recovery at 1% OM	90-110	100.5	100.5
Precision (Repeatability)at 1% OM as %RSD	<5	2.78	2.78
% Bias at 1 % OM	± 10	-7.0	-7.0
Reproducibility / Selectivity	Z Score <2	Z Score <1	Z Score <1
Ruggedness	F _{calc} <f<sub>crit</f<sub>	F _{calc} <f<sub>crit</f<sub>	F _{calc} <f<sub>crit</f<sub>
Robustness	F _{calc} <f<sub>crit</f<sub>	F _{calc} <f<sub>crit</f<sub>	F _{calc} <f<sub>crit</f<sub>
Intermediate precision	F _{calc} <f<sub>crit</f<sub>	F _{calc} <f<sub>crit</f<sub>	F _{calc} <f<sub>crit</f<sub>
Expanded uncertainty (95% Confidence)	NR	11%	7%

1.TABLE OF CONTENTS	
TABLE OF CONTENTS	Page / Tab No.
Cover Page	
Contents	1
Validation plan and formulas used	2
Method summary	3
Validation summery	4
Regression %OM (Linearity, Limit of Detection, Limit of Quantification, Sensitivity)	5
Regression %C (Linearity, Limit of Detection, Limit of Quantification, Sensitivity)	6
Working Range, accuracy, bias and precision (repeatability)	7
Reproducibility and selectivity	8
Ruggedness and intermediate precision	9
Robustness	10
Intermediate Precision	11
Standard Uncertainty from CRM	12
Mass and volume	13
Uncertainty of measurement % OM	14
Uncertainty of measurement % C	15

- Table of Contents
- Validation Plan & Formulas
- Method Summary
- Validation Summary

2. Validation plan and formulas used

Use the same definitions as is described in TR26-03

Organic matter (%) = Total organic carbon (%) x 100/58 OM (%) = TOC (%) x 1.724138

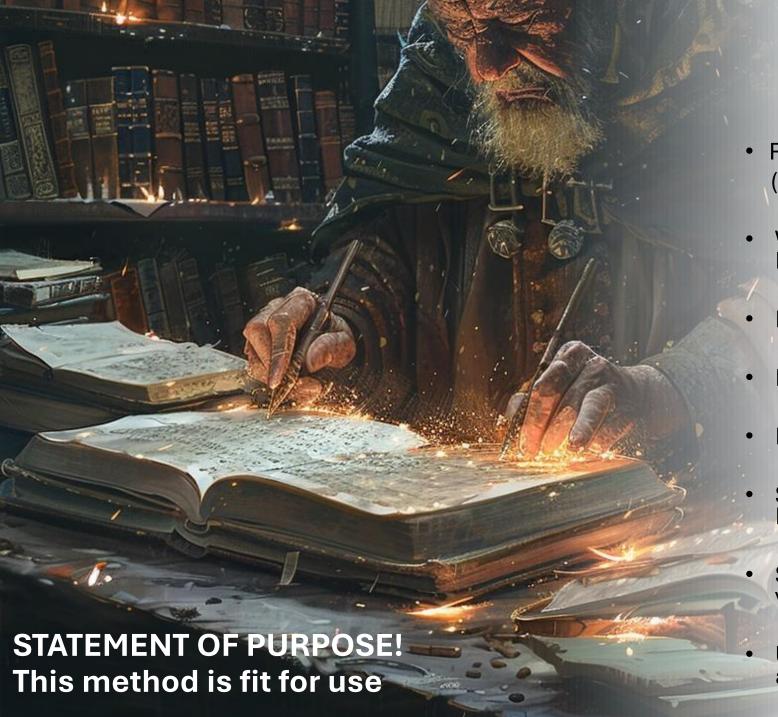
Performance characteristic	Criteria
Linearity	$t_{calc} > t_{crit}$
% RSD	<5
% Recovery	90 - 110%

Parameter	How	Formulas	Explanation
Limit of Detection (LOD)	Analyse a set of standards, covering the	LOD=(3*S _{v/x})/b	LOD and LOQ is calculated from the calibration data
	expected sample analyte concentration	"	and regression statistics instead. The slope standard
	(calibration curve)		error of the regression (S _{v/x}) is used to calculate LOD.
			This is a method recommended by the US EPA and
			is an ISO method, namely, ISO11843.
			S _{v/x} = standard error of the regression.
			b= slope
Line's at Occasion (LOO)	- III - 1		
Limit of Quantification (LOQ)	From calibration curve	LOQ=(10*S _{y/x})/b	
Linearity	From calibration curve	significance of R ²	R ² =Coefficient of determination or coefficient of
Linearity	If tcalc > tcrit then there is significant linearity		r = correlation coefficient, n = the number of
		n-2	measurements and r2 is the coefficient of
		$t_{calc} = r \sqrt{\frac{n-2}{1-r^2}}$	determination. Df=n-2
Sensitivity	From calibration curve	Sensitivity can be viewed as	
		the slope of a response curve	
		(b)	
Accuracy	Analyse CRM	%Relative accuracy=[x̄/μ]*100	\overline{x} = the measured mean value and
Bias	Analyse CRM	$\% Bias = \left[\frac{\overline{x} - \mu}{\mu}\right] 100$	\overline{x} = the measured mean value and
		μ]	μ= the expected or true value
Precision	Analyse CRM/(Std) each prepared and analysed		\overline{x} = the measured mean value and
	once a day over an extended period	%RSD= (s / x̄)x 100	s = Standard deviation
Reproducibility	Analyse CRM/(Std) each prepared and analysed		
	once a day over an extended period	%RSD= (s / x̄)x 100	

Validation Plan & Formulas

Parameter	How	Formulas	Explanation
Repeatability	Analyse an extended range (standards below	%RSD= (s / x̄)x 100	
	and above calibration curve) standards from		
	another supplier 8 times back as samples		
Working Range	The range of an analytical method is the interval		
	between the upper and lower levels of an		
	analyte, including these levels that have been		
	demonstrated to be determined with a suitable		
	and defined level of precision, accuracy and		
	linearity, using the method as written. Use data		
	obtained from accuracy, precision and linearity		
	against set criteria		
Specificity	Analyse CRM that represent the labs matrix.		
	Accuracy and precision must comply against set		Reproducibility - The conditions include different
	criteria		operators, measuring
Ruggedness	Analyse CRM/(Std) each prepared and analysed	Accuracy and %RSD must	
	once a day over an extended period. Use	comply against set criteria	
	different analysts. Each analyst must have at		systems and replicate measurements on the same
	least 5 results		or similar objects.
Uncertainty of Measurement	Uncertainty - All of the Uncertainty		Where a, b and c for example are: mass, precision
	components are calculated/referred to here	$u_c = \sqrt{a^2 + b^2 + c^2}$	and purity and U_c is the combined uncertainty
	from their respective fields. Al certificates for		
	calibration standards, balances, pipettes,		
	diluters etc. Volume: Weigh and note each		
	dilution volume 10X		

Validation Plan & Formulas



Regression of % OM (Linearity, Limit of Detection, Limit of Quantification, Sensitivity) Standards % ом %ом concensus 18 %ом %C value y = 0.9175x + 0.090616 ALP 2405 0.74 0.74 0.43 $R^2 = 0.9999$ ALP 2403 2.09 1.93 1.12 14 Agro AG1 2.21 2.10 1.22 12 ALP 2407 3.817 3.65 2.12 WO% ALP 2401 5.133 4.89 2.83 8 17.6 16.21 9.43 ALP 2406 6 SUMMARY OUTPUT Regression Statistics Multiple R 0.99994308 0 R Square 0.999886163 10 15 20 5 Adjusted R Square 0.999857704 %OM Standard Error 0.068202889 Observations 6 ANOVA df SS Significance F MS Regression 163.4304932 163.430493 4.85975E-09 35133.996 Residual 0.018606536 0.00465163 163.4490997 Total

Each tab contains all the calculations and data generated throughout the Validation testing

A statement of Purpose MUST be included

Validation Report

- Regression
 (Linearity) for each analyte determined
- Working range, Accuracy, Bias, and Precision (Repeatability)
- Reproducibility and Selectivity
- Ruggedness and Intermediate precision
- Robustness
- Standard Uncertainty from Certified Reference Materials
- Standard Uncertainty from Mass and volume
 - Uncertainty of measurement for each analyte determined

Performance Characteristics

Parameters which define how well an analytical method performs its intended purpose

Accuracy

Limit of Detection

Bias

Limit of Quantification

Precision

Sensitivity

Reproducibility & Repeatability

Specificity

Linearity

Uncertainty of Measurement

Working Range

Robustness

References

Principles and framework for assessing the risk of bias for studies included in comparative quantitative environmental systematic reviews; <u>Geoff Frampton</u>, <u>Paul Whaley</u>, et. al, <u>Environmental Evidence</u> volume 11, Article number: 12 (2022)

SANAS TR 26-03; Criteria for validation of methods used by chemical laboratories in the coal, oil, petroleum, metals and minerals, food, pharmaceutical, water and related industries

ISO/IEC 17025:2017; General requirements for the competence of testing and calibration laboratories

A Guide to Method Validation; A Reagecon guide; www.reagecon.com

An auditor's perspective on Method Validation; Jonathan J. Jodry; LBMA Assaying & Refining Conference March 2023

Soil Analysis; Vossie Wilsnach; FERTASA Soil Fertility and Plant Nutrition Symposium; 21 August 2019

I am adept and knowledgeable in ISO standards and requirements, having successfully accredited soil testing methods in my career. I am currently a SANAS approved technical signatory on 12 soil and plant methodologies.

I am most passionate about conserving the environment and am committed to developing young minds through education and training.

When not working or training, I enjoy TNR for community cats, am active in animal rescue and an avid wildlife photographer.

I hold a Chemical Sciences qualification from the University of Johannesburg, and my latest achievement is having a soil pH article published in the People's Library Of Science journal.

Since 2005, I have worked in different laboratory environments and industries, focusing on technological advancements and their implementation in everyday laboratory work to enhance quality control, and improve laboratory turnaround time and capacity.

Never one to shy away from a challenge, I am often pushing boundaries and disrupting the status quo, having recently designed and opened a commercial agricultural laboratory in Lusaka Zambia using Lean Laboratory Principles and employing a hybrid mix of traditional wet chemistry and rapid-analysis technologies for the testing of soil and plant materials across Southern

Africa.

Thankyou

