

ORGANIC CARBON (WALKLEY-BLACK TITRATION AND COLORIMETRIC METHOD)

Ma. Joerdette N. Jimenez
Chemist I, Laboratory Services Division
Bureau of Soils and Water Management

A food-secure and resilient Philippines

with empowered and prosperous farmers and fisherfolk

Soil carbon is probably the most important component in soils as it affects almost all soil properties.

PHYSICAL CHEMICAL BIOLOGICAL

A food-secure and resilient Philippines

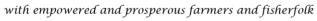
 $with\ empowered\ and\ prosperous\ farmers\ and\ fisher folk$

- Better crop yields
- Reduces soil erosion
- Increases biological diversity
- Increases plant nutrient retention

A food-secure and resilient Philippines

Increases in soil organic carbon enhances the biomass and diversity of the soil biodata.

A food-secure and resilient Philippines


with empowered and prosperous farmers and fisherfolk

The content of organic carbon of mineral horizons can be estimated from the Munsell color of dry and/or moist soil, taking the textural class into account.

Scope and Field of Application

This protocol applies to the determination of the Oxidizable Organic Carbon content in soil. This test method does not routinely apply correction for chloride.

Principle

POINTS TO BE NOTED:


- Walkley and Black found that on the average about 77% of the organic C was recovered by the heat of dilution procedure, a correction factor of 1.3 be used to account for unrecovered organic C;
- Chloride, ferrous iron and higher oxides of Mn have been shown to undergo oxidation-reduction reactions in chromic acid mixtures leading to incorrect values for organic carbon;
- Smaller sample weights should be used for samples with very high carbon content;
- It is not applicable to soils containing significant amounts of carbonized materials.

 A food-secure and resilient Philippines

Principle in Titration Method

$$6 \text{ Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14 \text{ H}^+ \longrightarrow 2 \text{ Cr}^{3+} + 6 \text{ Fe}^{3+} + 7 \text{ H}_2\text{O}$$

The organic C can then be estimated by measuring the remaining unreduced dichromate by back-titrating with ferrous sulphate or ammonium ferrous sulphate using diphenylamine or ophenanthroline-ferrous complex as an indicator.

A food-secure and resilient Philippines

Apparatus (Titration Method)

□ Analytical Balance
□ Burette, 50 mL
□ Volumetric burette/dispenser, 10 mL
□ Volumetric dispenser
□ Erlenmeyer flasks, 500 mL
□ Magnetic stirrer and bar
□ Oven (105° C)
□ Volumetric flasks, 1000 mL
□ Glass rod

□ Beaker, 100 mL, 250 mL

☐ Fume hood

□ Burette stand

A food-secure and resilient Philippines

with empowered and prosperous farmers and fisherfolk

Materials (Titration Method)

- 1. Deionized water/distilled water, it should have an EC < 1.5 *10^-3 dS m^-1
- 2. Potassium dichromate, 0.167 M (10 N)
- 3. Sulfuric Acid, Concentrated (not less than 96%)
- 4. Phosphoric Acid, 85% (If Diphenylamine indicator is used)
- 5. Indicator (either 5.1 or 5.2)
 - 5.1. o-Phenanthroline Ferrous Complex, 0.025 M
 - 5.2. Barium diphenylamine sulfonate Indicator, 0.16% aqueous solution
- 6. Titrant (either 6.1 or 6.2)
 - 6.1. Ferrous Sulphate (FeSO4) solution, 0.5 M
 - 6.2 Ferrous Ammonium Sulphate, 0.5 M

Procedure (Titration Method)

1. Weigh 1.0 g of air-dried soil

6. Add 200 mL of water to the flask

2. Add 10 mL of 0.167 M $K_2Cr_2O_7^{2-}$

7. Add 10 mL of 85% H3PO4 (if barium diphenylamine sulfonate indicator is used)

3. Swirl the flask gently to dispense the soil in the solution.

3. Add 3-4 drops of o-phenanthroline or barium diphenylamine indicator.

4. Add 20 mL of concentrated sulfuric acid, directing the stream into the suspension

4. Titrate the solution with 0.5 M FeSO4 solution or 0.5 M (NH₄)₂Fe(SO₄)₂ * 6H₂O

5. Immediately swirl the flask gently until soil and reagents are mixed.

5. Observe for color change from blue to red (maroon color in white background)

Calculation (Titration Method)

% Organic Carbon = $(V blank - V sample) \times M Fe \times 0.003 \times 100 \times f \times mcf$

W

Where:

V blank = volume of titrant in blank, mL

V sample = volume of titrant in sample, mL

0.003 = carbon oxidized

= correction factor, 1.3

W = weight of soil, g

mcf = Moisture correction factor

Principle in Colorimetric Method

$$2 \operatorname{Cr}_{2} \operatorname{O}_{7}^{2-} + 3 \operatorname{C}^{0} + 16 \operatorname{H}^{+} \longleftrightarrow 4 \operatorname{Cr}^{3+} + 3 \operatorname{CO}_{2} + 8 \operatorname{H}_{2} \operatorname{O}_{2}$$

Organic carbon can be calculated from the amount of chromic ion formed, using a colorimetric procedure.

Principle (Colorimetric Method)

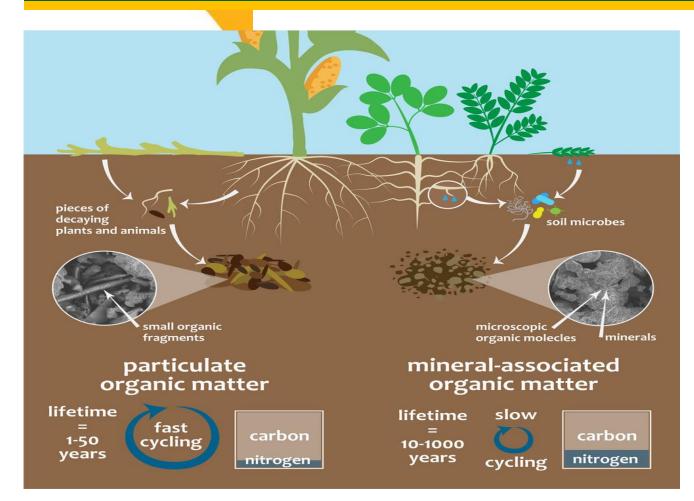
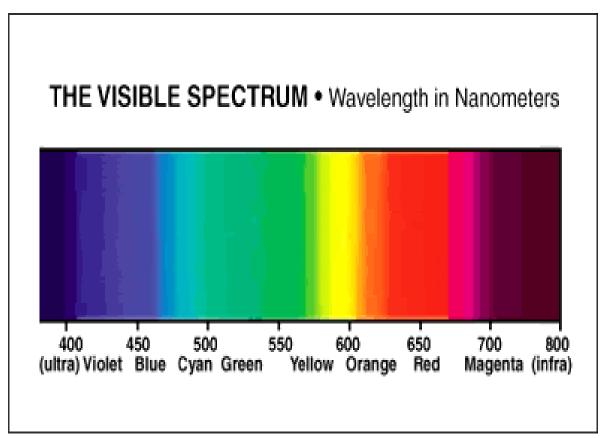
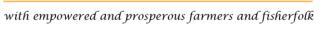


Figure 1. Overview of how particulate and mineral associated organic matter form and function.

Retrieved from https://theconversation.com/soil-carbon-is-a-valuable-resource-but-all-soil-carbon-is-not-created-equal-129175


- Walkley & Black chromic acid wet oxidation method.
- OC is oxidized by 0.167 M potassium dichromate solution in concentrated sulfuric acid.



Principle (Colorimetric Method)

- Green chromic ions (Cr 3+) produced from the reaction is in direct proportion to the carbon oxidized which is measured by colorimetric estimation.
- Oxidation can be determined by measuring the concentration at wavelength near 600 nm.

Apparatus (Colorimetric Method)

- □ Analytical Balance
- **□ S**pectrophotometer
- ☐ Centrifuge tubes/glass conical tubes, 50 -70 mL
- □ **D**ispensing or volumetric pipettes
- ☐ **G**raduated pipettes
- ☐ Calibrated dispenser
- **□ G**lass rod
- **□V**olumetric flasks
- **□ B**eaker

A food-secure and resilient Philippines

 $with\ empowered\ and\ prosperous\ farmers\ and\ fisherfolk$

Equipment and Laboratory Ware

Analytical **B**alance

UV-VisSpectrophotometer

A food-secure and resilient Philippines

with empowered and prosperous farmers and fisherfolk

Materials (Colorimetric Method)

- 1. Deionized water/distilled water, it should have an EC < 1.5 *10^-3 dS m^-1
- 2. Potassium dichromate, 10% (0.34 M)
- 3. Sucrose Standard, 4mg/mL
- 4. Sulfuric Acid, Concentrated (not less than 96%)

Procedure (Colorimetric Method)

PREPARATION OF STANDARDS

- 1. Place volumes of sucrose standard and DI water in Table 1.
- 2. Add 2 mL of 10 % Potassium Dichromate and mix.
- 3. Add 5.0 mL of Sulfuric acid, cool and stand for 30 mins.
- 4. Add 18 mL DI water. Mix. Stand overnight.
 - 5. Read absorbance set at 600 nm.

PREPARATION OF SAMPLES

- 1. Weigh soil sample according to Table 2.
- 2. Add 2 mL of 10% Potassium Dichromate and mix.
- 3. Add 5.0 mL of Sulfuric acid, cool and stand for 30 mins.
- 4. Add 20 mL DI water. Mix. Stand overnight.
 - 5. Read absorbance set at 600 nm.

Procedure (Colorimetric Method)

TABLE 1. STANDARD PREPARATION

Mass of OC (mg)	Sucrose Standard (mL)	Deionized Water (mL)
0	0.00	2.00
1	0.25	1.75
2	0.50	1.50
3	0.75	1.25
4	1.00	1.00
5	1.25	0.75
6	1.50	0.50
7	1.75	0.25
8	2.00	0

 $\label{eq:Afood-secure} \textit{A food-secure and resilient Philippines}$

Procedure

TABLE 2. Recommended weight of sample.

Weight (g)	OC, %	Color
0.1	>2	Black, dark gray,dark brown
0.25	≤0.2	Brown-dark brown, gray-dark gary
0.5	<0.6	brown

Note: Above is just a guide in determining the appropriate weight to be used for each sample based on soil color. % OC may vary per soil color type. Generally, dark colored soils which are described as dark brown to black show a higher content of carbon and nitrogen than those soils which are lighter in color.

Calculation (Colorimetric Method)

% Organic Carbon = mg C (sample) - mg C (blank) x mcf x f x 100

W, mg

Where:

```
% O.C. = Organic carbon content of the soil, % mg C sample = Analyte/concentration of C in sample mg C blank = Analyte/concentration of C in blank W = Mass of air-dry sample, mg mcf = moisture correction factor f = Correction factor, 1.3
```


Health and Safety

- ✓ Safety glasses, gloves and lab coats must be worn when handling any chemicals
- ✓ Potassium Dichromate: Highly corrosive and is a strong oxidizing agent.
- ✓ Sulfuric Acid: Keep away from naked flames/heat. Always add the acid to the water.

A food-secure and resilient Philippines

with empowered and prosperous farmers and fisherfolk

Quality Assurance/Quality Control

ACCURACY TEST

- Participate in Interlaboratory Proficiency Testing
 Program at least once a year.
- Analyze CRM or QRM.

Quality Assurance/Quality Control

PRECISION TEST

Perform replicate analysis at most in every 10% samples of a batch. Calculate the % RSD and compare the result with the target precision for the analyte concentration.

Quality Assurance Procedure

CONTROL CHART

Analyzed at least duplicate of the Check Sample or Internal Reference Material for every batch of analysis. Plot result in control chart.

References

AOAC. 1998. AOAC Peer Verified Methods Program. Manual on Policies and Procedures. AOAC International Gathersburg. MD.

B. Magnusson & U. Ornemark. 2014. Eurachem Guide: The fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics.

Bowman, R.A. 1998. A Re-evaluation of the Chromic Acid Colorimetric Procedure for Soil Organic Carbon. Commun. Soil Sci. Plant Anal., 29(3&4): 501-508.

Brown, P.E. & O'Neal, A.M. 1923. The Color of Soils in Relation to Organic Matter Content. Research Bulletin No. 75. Retrieved from Agricultural Research Bulletin-v005-b075.pdf.

FAO. 2006. Guidelines for soils description. Fourth edition. Food and Agriculture Organization of the United Nations, Rome, Italy.

References

Garfield, F.M. 1991. Quality Assurance Principles for Analytical Laboratories. AOAC INTERNATIONAL

Nelson, D.W. & Sommers, L.E. 1996. Total Carbon, Organic Carbon and Organic Matter. In D.L. Sparks (Ed.), Soil Science Society of America, Book Series 5. Methods of Soil Analysis Part 3, Chemical Methods. Madison, Wisconsin: Soil Science Society of America, Inc.

Rayment, G.E. & Lyons, D.J. 2011. Soil Chemical Methods - Australasia. CSIRO publishing, Australia

Sims, J. & Haby, V. 1971. Simplified Colorimetric Determination of Soil Organic Carbon Matter. Soil Science, 112(2): 137-141

References

Walkley, A. & Black I.A., 1934. An examination of the Degtjareff Method for Determining Soil Organic Matter, and a proposed Modification of the Chromic Acid Titration Method. Soil Science, 37(1): 29-38

Walkley, A. 1947. A Critical Examination of a Rapid Method for Determining Organic Carbon in Soils – Effect of Variations in Digestion Conditions and of Inorganic Soil Constituents. Soil Science, 63(4): 251-264

Thank you for listening!!!

