

Food and Agriculture Organization of the United Nations

GLOSOLAN Soil spectroscopy training workshops

Can we take vis-NIR spectroscopy to field to leverage digital soil mapping?

UG

Biswas Soil lab

Asim Biswas

OAC Research Chair in Soils and Precision Agriculture Member, Royal Society of Canada College Professor and Graduate Program Coordinator Soil

🗢 ses

uoguelph.ca/ses

Status of Soil

2025

NEW HORIZONS

Ontario's Agricultural Soil Health and Conservation Strategy

uoguelph.ca/ses

POntario

"If you can't measure it, you can't manage it"

Better Management through Better Measurement

uoguelph.ca/ses

Traditional Soil Measurement Harsh chemical

- Proximal soil sensing (PSS) offers an alternative approach
 - Use of spectroscopy to determine several properties simultaneously

Spectroscopy

- Type of PSS that evaluates electromagnetic radiation against an object
 - Visible (vis) 342-1023 nm
 - Near Infrared (NIR) 1070-2220 nm

Soil Spectroscopy

uoguelph.ca/ses

Soil Spectra

Ses school of environm

ses

(a) (b) Disclaimer: The spectrometers mentioned are examples from the market and are not an exhaustive list. I am not affiliated company represented VILII oreXpress (c)**ASD FieldSpec 4 Pro Spectral Evolution, Inc.** Veris Technologies, Inc. (Salina, Kansas) (Haverhill, MA) https://www.malvernpanalytical.com/

http://www.veristech.com

https://spectralevolution.com/

uoguelph.ca/ses

PRODUCT SPOTLIGHT

uoguelph.ca/ses

SoilReader, Inc. (Winnipeg, Manitoba)

https://soilreader.com/

uoguelph.ca/ses

Status, Challenges and Opportunities

- Spectroscopy
 - Measures multiple soil properties simultaneously
 - Cheaper, simpler, less labour, environmentally safe, portable, scalable
- Laboratory vs field measurements
 - Lab measurements-
 - Highly promising
 - Ex-situ, ground & processed samples, controlled conditions
 - Field measurements-
 - On-site measurement and decision making, transportation and preparation
 - Environmental and physical conditions, variability, instrument performances

Today's Focus

Can we take vis-NIR spectroscopy to field to leverage digital soil mapping?

Today's Focus

Can we take vis-NIR spectroscopy to field to leverage digital soil mapping?

uoguelph.ca/ses

Can we predict soil properties from processed samples using vis-NIR spectroscopy?

Ses school of environmental sciences

@Asim Biswas | vis-NIR Spectroscopy and Digital Soil Mapping | 18

Soil Samples

Descriptive Statistics

Soil Property		Median	Min	Max	S	n
OM %	5.3	1.8	0.0	85.2	12.5	9452
pH_H ₂ O	6.9	7.2	3.3	9.1	0.9	9459
TN %	0.2	0.1	0.0	3.3	0.4	8789
AvailP ug/g	38.3	5.7	0.3	1506.0	1.3	8825
K mg/L _d soil	200.5	80.9	1.9	6688.0	465.2	8888
Ca mg/L _d soil	4235.1	2940.0	18.2	157040.0	9944.5	9158
Mg mg/L _d soil	316.2	187.0	8.2	4240.0	333.9	8722

Ses school of anticommental sciences uoguelph.ca/ses

Scanning Soil Samples

21

Data Processing

Spectra cleaning

- Trim edges (350-399 nm and 2451 and 25900 nm)
- log1/R (to reduce linearization)

Spectra pre-processing

• Pre-processing algorithms

Modeling

- Data splitting (calibration, cross validation, external validation)
- Modelling
- Uncertainty estimation

Data Processing

Preprocessing Algorithms	Modelling Algorithms
1st Derivative	Partial Least Square Regression (PLSR)
1 st Derivative + Gap	Random Forest
2nd Derivative	Cubist
2 nd Derivative + Gap	
Savitzky Golay + Gap	
Gap Derivative	
Savitzky Golay	
Savitzky Golay + 1 st Derivative	
Savitzky Golay + 2 nd Derivative	
Savitzky Golay + SNV	
Savitzky Golay + SNV + Detrend	
SNV	
SNV + Detrend	

uoguelph.ca/ses

Modelling Performance (SOM)

	R ²	CCC	MSE	RMSE	bias	MSE _c	RMSE _c	RPD	RPIQ
cal.PLSR	0.81	0.89	33.78	5.81	0.00	33.78	5.81	2.27	0.62
val.PLSR	0.84	0.91	24.82	4.98	-0.46	24.61	4.96	2.54	0.72
val.PLSR.ext	0.81	0.88	21.12	4.60	-0.61	20.75	4.56	2.30	0.72
cal.Cubist	0.94	0.97	10.01	3.16	-0.10	10.00	3.16	4.18	1.15
val.Cubist	0.92	0.96	13.04	3.61	-0.30	12.95	3.60	3.50	0.99
val.Cubist.ext	0.93	0.96	7.92	2.81	-0.38	7.78	2.79	3.75	1.17
cal.RF	0.97	0.98	4.93	2.22	0.00	4.93	2.22	5.95	1.63
val.RF	0.89	0.94	17.43	4.17	-0.21	17.38	4.17	3.03	0.85
val.RF.ext	0.90	0.94	10.84	3.29	-0.16	10.81	3.29	3.21	1.00

**cal.xxx- Calibration; val.xxx- validation; Val.xxx.ext- external validation

uoguelph.ca/ses

Ca-Extractable

Cubist

PLSR

uoguelph.ca/ses

Cubist

PLSR

Ses stool of environmental acknoos uoguelph.ca/ses

Soil Properties Combined- Soil Quality Index

Indicators	Weights	Scoring function
OM %	0.35	More is better
pH_H ₂ O	0.20	Optimum
TN %	0.15	More is better
P ug/g	0.10	More is better
K mg/L soil dry	0.10	More is better
Ca mg/L soil dry	0.05	More is better
Mg mg/L soil dry	0.05	More is better

$$SQI = \sum_{i=1}^{i=n} Wi \times Si$$

uoguelph.ca/ses

	Mean	Median	Min	Max	S	n
Measured SQI	0.271	0.221	0.047	0.790	0.160	8093
Predicted SQI	0.355	0.340	0.069	0.763	0.166	8093
Direct prediction of SQI	0.270	0.227	0.000	0.836	0.152	8093

uoguelph.ca/ses

Soil Properties Combined- Soil Quality Index

Can we predict soil properties from un-processed samples using vis-NIR spectroscopy?

uoguelph.ca/ses

Case Study 2

• 205 soil cores were collected from 13 farms

uoguelph.ca/ses

Soil samples

• Profile Description completed by Woodrill Ltd.

• Samples split by horizon – 1046 samples total

uoguelph.ca/ses

Soil samples

- 1046 samples total
- Each sample was split in half
 - 1/2 air dried and ground (processed)
 - ½ left at field condition (unprocessed)
- pH, EC, OM on all samples
- Texture on a subset
- •2 sets of spectra in lab
 - Dry (processed- Air dried, sieve, ground)
 - Field (unprocessed- Field moist)

uoguelph.ca/ses

Ses ses store of environmental sources

uoguelph.ca/ses

Prediction of Soil Properties

	1st Derivative + Gap			2nd Derivative + Gap				SNV				
	PLSR	Cubist	RF	ELM	PLSR	Cubist	RF	ELM	PLSR	Cubist	RF	ELM
	$_{Adj}R^2$	_{Adj} R ²	_{Adj} R²	_{Adj} R²	_{Adj} R²	_{Adj} R ²	_{Adj} R ²	_{Adj} R²	$_{Adj} R^2$	_{Adj} R ²	_{Adj} R²	_{Adj} R ²
EC	-0.02	0.00	-0.02	-0.02	-0.01	-0.03	-0.03	<mark>0.22</mark>	-0.01	-0.01	0.04	-0.04
OM	0.76	<mark>0.83</mark>	<mark>0.83</mark>	<mark>0.83</mark>	0.82	0.82	0.81	0.67	0.58	0.69	0.66	0.66
рН	0.57	0.62	<mark>0.63</mark>	0.52	0.48	0.54	0.53	0.48	0.49	0.61	0.48	0.35
%Sand	0.48	0.47	<mark>0.70</mark>	0.53	0.29	0.40	0.46	0.45	0.54	0.43	0.47	0.39
%Silt	0.46	0.53	<mark>0.70</mark>	0.60	0.40	0.39	0.42	0.25	0.59	0.55	0.44	0.26
%Clay	0.13	0.26	0.20	0.19	0.23	0.20	0.25	0.25	<mark>0.36</mark>	0.23	0.22	0.16
%VCS	0.18	-0.02	0.17	0.04	0.11	0.00	0.02	-0.01	0.29	0.16	<mark>0.55</mark>	0.09
%CS	<mark>0.68</mark>	0.08	0.15	0.46	0.30	0.58	0.22	0.02	0.07	0.00	0.09	0.04
%Med	0.50	0.24	<mark>0.53</mark>	0.39	0.31	0.28	0.32	0.09	<mark>0.53</mark>	0.26	0.51	0.39
%fs	-0.01	<mark>0.49</mark>	-0.02	-0.02	0.01	0.03	0.14	-0.01	0.08	0.01	0.03	0.03

- Best Predicted → OM, %sand and %silt
- Worst Predicted → EC and %clay
- Best preprocessing and Modeling →1st Derivative + Gap and RF

uoguelph.ca/ses

Field Moist Samples- Data Transformation

- 3 replications spectral data collected on field samples
- 2 transformation methods were compared
 - External Parameter Orthogonalization (EPO)
 - Direct Standardization (DS)

Transformation Methods

- Both transformation methods determine the difference between the dry and field spectral data
- EPO Difference at specific locations

ses

• DS – Average difference across the data

Optimization of Transformation Methods

	Dry Spectra	Field Spectra Before Transformation	Field Spectra After	Field Spectra After						
	_{Adj} R ²	AdjR ²	AdjR ²	AdjR ²						
1 st Derivative + Gap										
PLSR	0.92	0.90	0.89	0.34						
Cubist	0.89	0.89	0.82	0.29						
RF	0.90	0.85	0.81	0.12						
ELM	0.92	0.89	0.41	0.34						
		2 nd Derivative + Ga	ip							
PLSR	0.89	0.85	<mark>0.92</mark>	0.44						
Cubist	0.91	0.79	<mark>0.88</mark>	0.44						
RF	0.91	0.81	<mark>0.86</mark>	0.20						
ELM	0.87	0.80	0.54	0.42						
SNV										
PLSR	0.93	0.91	0.74	0.42						
Cubist	0.92	0.90	0.73	0.40						
RF	0.86	0.85	0.68	0.11						
ELM	0.89	0.81	0.46	0.36						

uoguelph.ca/ses

Can we predict soil properties in-situ using vis-NIR spectroscopy?

In-situ Spectra Collection

- 3 replications spectral data were collected in-situ at each soil sample location
- DS and EPO for transformation
 - 2 different matrix were used for each = 4 transformations
- Previously optimized preprocessing and modeling algorithms

ses

uoguelph.ca/ses

🗢 ses

uoguelph.ca/ses

Dataset Size

uoguelph.ca/ses

	Bef	ore Transforma	After Trans	sformation			
	Dry	Field	In situ	DS Field Matrix	DS In-Situ Matrix	EPO Field Matrix	EPO In-Situ Matrix
	_{Adj} R ²						
			1 st Deriva	tive + Gap			
PLSR	0.92	0.86	0.59	0.99	0.96	0.53	0.41
Cubist	0.92	0.78	0.51	0.98	0.85	0.59	0.49
RF	0.95	0,84	0.57	0.83	0.49	0.42	0.51
ELM	0.95	0.83	0.56	0.33	0.13	0.34	0.53
			2 nd Deriv	tive + Gap			
PLSR	0.87	0.78	0.62	0.99	0.96	0.46	0.45
Cubist	0.89	0.78	0.61	0.98	0.85	0.50	0.43
RF	0.89	0.82	0.70	0.86	0.53	0.54	0.37
ELM	0.89	0.79	0.60	0.27	0.38	0.44	0.45
			S	NV			
PLSR	0.88	0.69	0.75	0.97	0.80	0.32	0.49
Cubist	0.93	0.77	0.69	0.97	0.84	0.40	0.55
RF	0.88	0.74	0.61	0.79	0.69	0.29	0.29
ELM	0.80	0.62	0.26	0.20	0.69	0.11	0.60

uoguelph.ca/ses

In-Situ Spectral Prediction

					D	S Field Matr	ix					
	1st Derivative + Gap 2nd Derivative + Gap								SNV			
	PLSR	Cubist	RF	ELM	PLSR	Cubist	RF	ELM	PLSR	Cubist	RF	ELM
	_{Adi} R ²	_{Adi} R ²	_{Adi} R ²	_{Adi} R ²	_{Adi} R ²	_{Adi} R ²	_{Adi} R ²	_{Adi} R ²	_{Adi} R ²	_{Adi} R ²	_{Adi} R ²	_{Adi} R ²
OM(%)	<mark>0.99</mark>	0.98	0.83	0.33	0.99	0.98	0.86	0.27	0.97	0.97	0.79	0.20
рН	<mark>0.95</mark>	0.79	0.43	-0.02	0.94	0.72	0.53	0.29	0.91	0.68	0.35	0.42
%Sand	<mark>0.99</mark>	<mark>0.99</mark>	0.95	0.75	<mark>0.99</mark>	<mark>0.99</mark>	<mark>0.99</mark>	0.86	0.95	0.97	0.86	0.69
%Silt	<mark>0.99</mark>	<mark>0.99</mark>	<mark>0.99</mark>	<mark>0.99</mark>	<mark>0.99</mark>	<mark>0.99</mark>	0.97	0.95	0.98	0.91	0.89	0.72
%Clay	<mark>0.96</mark>	0.86	0.74	0.95	<mark>0.96</mark>	0.84	0.84	0.80	0.91	0.81	0.24	0.20
					DS	S In-Situ Mat	rix					
		1st Derivati	ve + Gap		2nd Derivative + Gap				SNV			
	PLSR	Cubist	RF	ELM	PLSR	Cubist	RF	ELM	PLSR	Cubist	RF	ELM
	_{Adj} R ²	_{Adj} R ²	_{Adj} R ²	_{Adj} R ²	_{Adi} R ²	_{Adi} R ²	_{Adj} R ²	_{Adi} R ²				
OM(%)	<mark>0.96</mark>	0.85	0.49	0.13	<mark>0.96</mark>	0.85	0.53	0.38	0.80	0.84	0.69	0.69
рН	0.76	0.28	0.32	0.28	0.85	0.57	0.47	0.10	0.83	0.60	0.31	0.38
%Sand	0.99	0.99	0.99	0.73	<mark>0.99</mark>	<mark>0.99</mark>	0.88	0.93	0.95	0.64	0.87	-0.25
%Silt	0.97	0.98	0.98	0.91	<mark>0.99</mark>	<mark>0.99</mark>	0.97	0.89	0.97	<mark>0.99</mark>	0.92	0.18
%Clay	<mark>0.99</mark>	0.98	0.83	0.89	<mark>0.99</mark>	0.97	0.96	0.49	<mark>0.99</mark>	0.95	0.90	-0.18

All soil properties were predicted well by DS transformed *in-situ* spectral data

May suggest model overfitting

uoguelph.ca/ses

Can we leverage vis-NIR spectroscopy to fill data gaps in digital soil mapping?

ses

@Asim Biswas | vis-NIR Spectroscopy and Digital Soil Mapping | 46

uoguelph.ca/ses

Spectroscopy and DSM

uoguelph.ca/ses

Field Data Collection

Profile and Profile Spectra

uoguelph.ca/ses

Comparing Sampling Designs

uoguelph.ca/ses

Soil Sampling Designs

uoguelph.ca/ses

school of environmental sciences

Depth-wise RMSE

Ses

uoguelph.ca/ses

Comparing C Stock (0-1 m)

uoguelph.ca/ses

Comparing Error (0-1 m)

uoguelph.ca/ses

3D Digital Soil Maps

uoguelph.ca/ses

3D Digital Soil Maps (uncertainty)

Take-Home Message

- Can we use spectroscopy for soil?
 - Yes- as good as we have seen globally
- Can we take spectroscopy to field?
 - Yes, additional information recommended
 - Additional data processing required
- Should we do field moist or in-situ?
 - No significant difference in predictability
 - In-situ can reduce resources but need specialized equipment
- Can we leverage field spectroscopic data for digital soil mapping?
 - Yes, show promise
 - Need specialized equipment

Acknowledgements- Funding bodies

uoguelph.ca/ses

@Asim Bi

ses

Acknowledgements- Students

Thank You

Contact

- https://ses.uoguelph.ca/people/asim-biswas
- <u>biswas@uoguelph.ca</u>
- y @<u>BiswasSoilLab</u>
- 🍋 +1 (519) 824 4120 Extn. 54249

