

FAO 2009: Irrigated agriculture in semi-arid areas represents **20%** of the total cultivated land, and contributes **40%** of the total worldwide produced food

Nearly 11% of irrigated semi-arid soils are saturated with salts (primary and/or secondary formation), which is a widespread problem that threatens food security

Salinity: refers to high loads of water-soluble salts within the soil, which is typical for Solonchaks, while sodicity is understood to mean high levels of Na⁺ on the exchange sites (Bischoff et al., 2018):

$$SAR = \frac{Na^{+}}{(Ca^{2+} + Mg^{2+})^{0.5}}$$

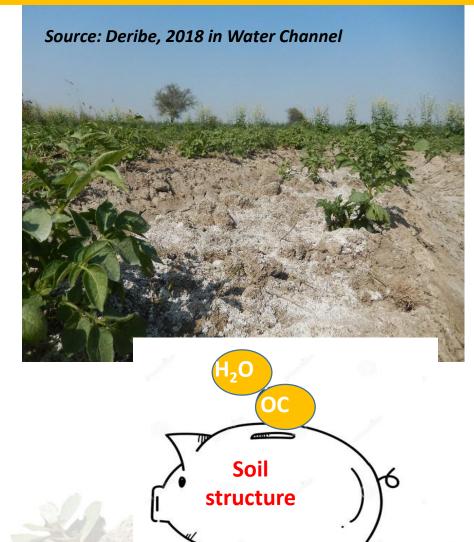
EC: electric conductivity

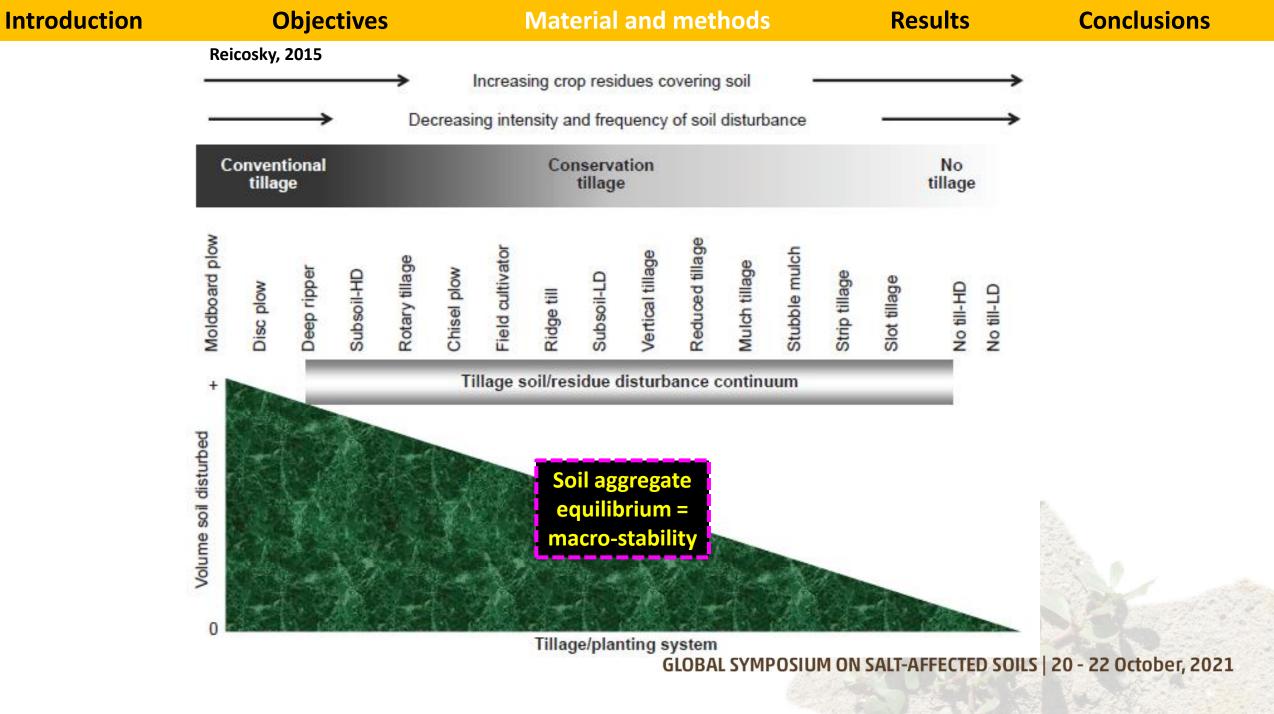
> SAR: sodium adsorption ratio

EC > 4 dSm⁻¹ and SAR < 13 dSm⁻¹ → Salt-affected soil

FAO 2009; FAO 2001; FAO 2009; Qadir et al. 2001; Wicke et al. 2011, 2013

Poor soil structure (FAO,2016): desertification, erosión, salinity, loss of nutrients...


Historical land use: Low SOC saturation, high potential capacity of SOC storage.


Hot spots: importance for crop production and human food security

Restauration of these areas is a major challenge (Six and Paustian, 2014; Almagro et al., Almagro et al., 2016; Garcia-Franco et al., 2018)

Salt-affected soils will **become more frequent** as a result of climate change (Bischoff et al., 2018).

Nevertheless, little is known about organic matter (OM) dynamics in salt-affected soil soils, though OM is crucial for soil fertility and represents an important carbon sink.

Combination of different agricultural management practices in **long-term**

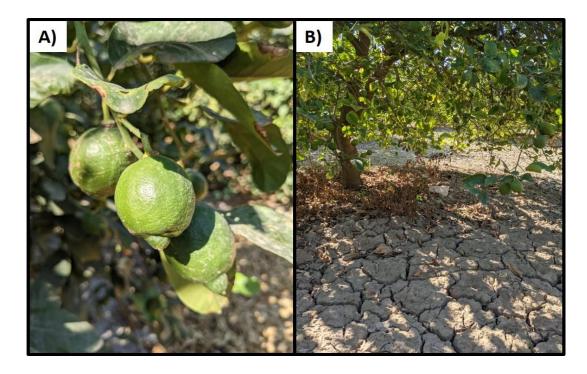
SOC (and N) stock? Soil aggregate
stability and
associated OC (and
N) ?

Qualitiy and quantity of different OM pools?

Villain = Source of OC?

Semiarid Mediterranean ecosystems $MAP = 300-370 \text{ mm yr}^{-1}$

MAT = 18-16°C


EVAP = $800-1000 \text{ mm yr}^{-1}$

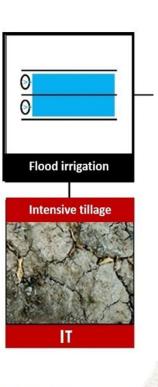
50 % of total lemon production in Spain is from Murcia

Calcaric Solonchak (WRB, 2015)

GLOBAL SYMPOSIUM ON SALT-AFFECTED SOILS | 20 - 22 October, 2021

Garcia-Franco et al., 2021. Soil & Tillage

A) Citrus lemon tree and B) salt-affected soil in the studied semi-arid area (Librilla, Spain)

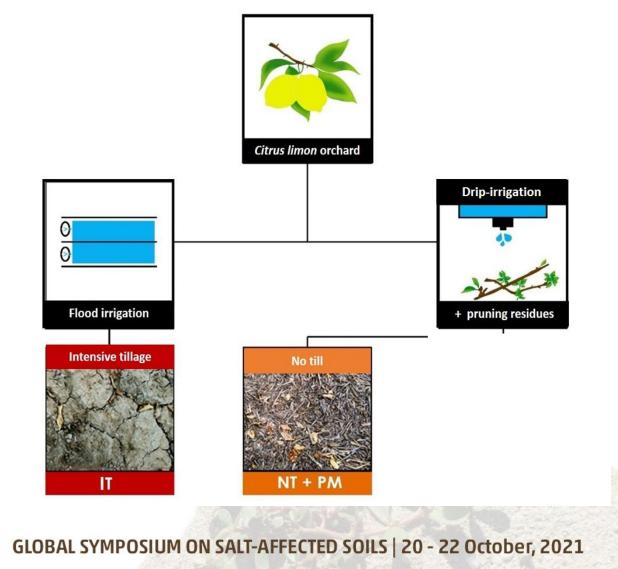

Canal of Taibilla
(Source: https://www.mct.es/web/mct)

<u>In 2017:</u> Composited samples 0-5 and 5-15 cm (3 samples x 3 blocks x 2 depths) \rightarrow In total 18 samples

Description of different management practices in the management systems: i) intensive tillage with flood irrigation (IT); ii) no-tillage plus lemon pruning residues on the topsoil as mulch (NT+PM); and iii) reduced tillage plus incorporation of lemon pruning residues (RT + PI).

Management	IT	
practices	"	
	until 40 cm soil	
Tillage	depth, 3 times per	
	year	
Addition of pruning	-	
Addition of Ca ²⁺ and		
Mg ²⁺	-	
Irrigation	Flood	
Irrigation	(since 1987)	
Fertilization	-	
Pesticides	+	
usia Fusuas at al. 1	2024 Cail O Tillage	

Introduction

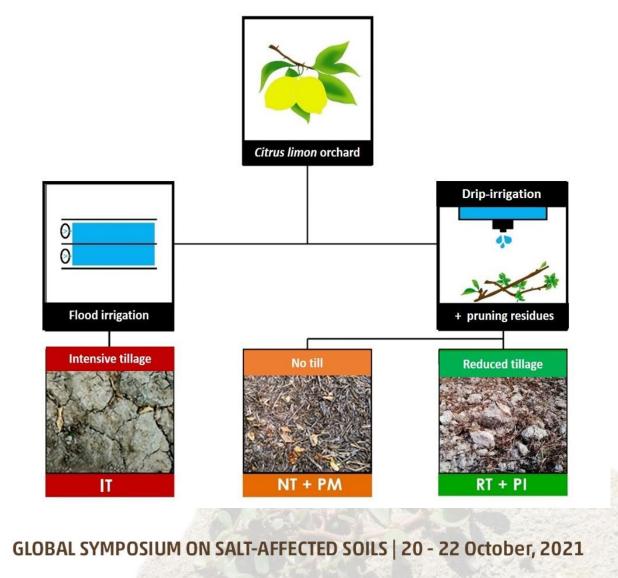

GLOBAL SYMPOSIUM ON SALT-AFFECTED SOILS | 20 - 22 October, 2021

Garcia-Franco et al., 2021. Soil & Tillage

In 2017: Composited samples 0-5 and 5-15 cm (3 samples x 3 blocks x 2 depths) \rightarrow In total 18 samples

Description of different management practices in the management systems: i) intensive tillage with flood irrigation (IT); ii) no-tillage plus lemon pruning residues on the topsoil as mulch (NT+PM); and iii) reduced tillage plus incorporation of lemon pruning residues (RT + PI).

Management practices	ΙΤ	NT+PM
	until 40 cm soil	
Tillage	depth, 3 times per	-
	year	
Addition of pruning	-	Mulching
Addition of Ca ²⁺ and		
Mg ²⁺	-	+
luviantian	Flood	Drip-irrigation (since
Irrigation	(since 1987)	2000)
Fertilization	- +	
Pesticides	+	+



Garcia-Franco et al., 2021. Soil & Tillage

In 2017: Composited samples 0-5 and 5-15 cm (3 samples x 3 blocks x 2 depths) \rightarrow In total 18 samples

Description of different management practices in the management systems: i) intensive tillage with flood irrigation (IT); ii) no-tillage plus lemon pruning residues on the topsoil as mulch (NT+PM); and iii) reduced tillage plus incorporation of lemon pruning residues (RT + PI).

Management	IT	NT+PM	RT+PI
practices			
	until 40 cm soil		until 15 cm soil
Tillage	depth, 3 times per	-	depth, 1 time per
	year		year
A Little of Control			Incorporation into
Addition of pruning	-	Mulching	the soil
Addition of Ca ²⁺ and			
Mg ²⁺	-	+	+
	Flood	Drip-irrigation (since	Drip-irrigation
Irrigation	(since 1987)	2000)	(since 2000)
Fertilization	-	+	+
Pesticides	+	+	+

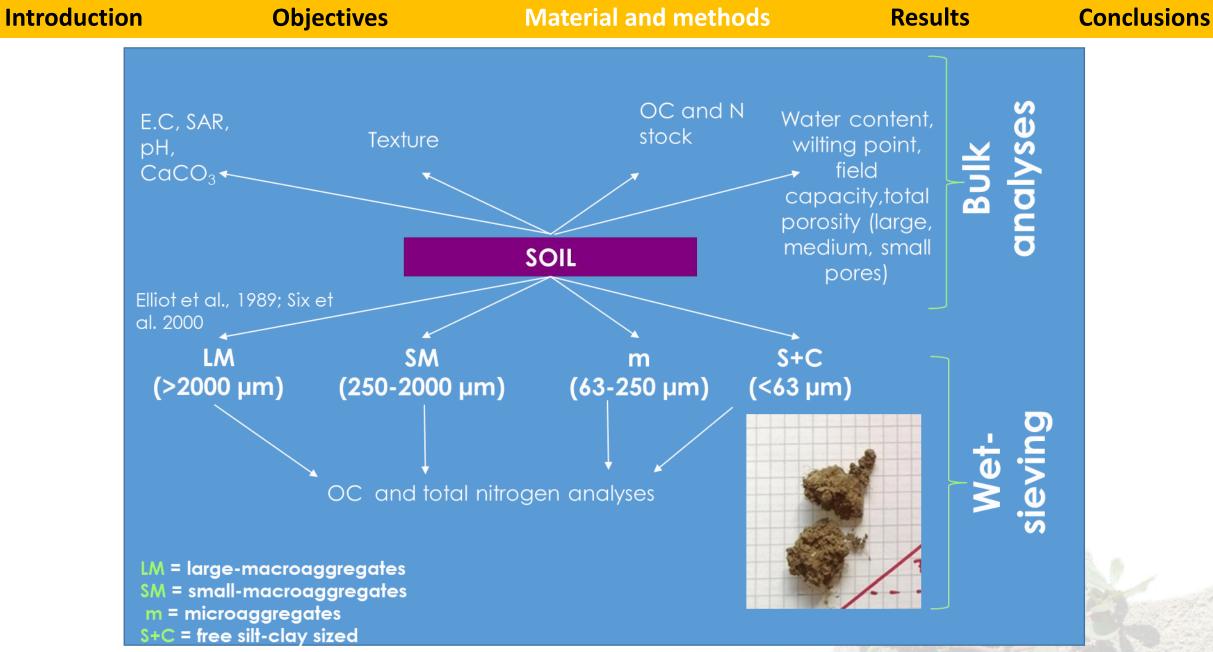
Garcia-Franco et al., 2021. Soil & Tillage

Drip ferti-irrigation system (Copyright: Simeón Ruíz Cayuela)

Soil profile (Copyright: Simeón Ruíz Cayuela)

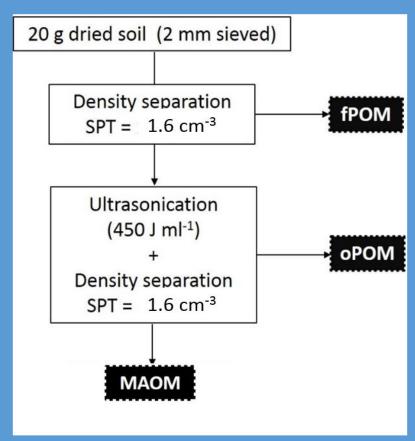
Introduction

IT system (Copyright: Simeón Ruíz Cayuela)



RT+PI system (Copyright: Simeón Ruíz Cayuela)

NT + PM system (Copyright: Simeón Ruíz Cayuela)


GLOBAL SYMPOSIUM ON SALT-AFFECTED SOILS | 20 - 22 October, 2021

GLOBAL SYMPOSIUM ON SALT-AFFECTED SOILS | 20 - 22 October, 2021

Density fractionation

Analyses - OC, total N - 130 NMP

fPOM = free particulate orgaic matteroPOM = occluded particulate organic matterMAOM = mineral associated organic matter

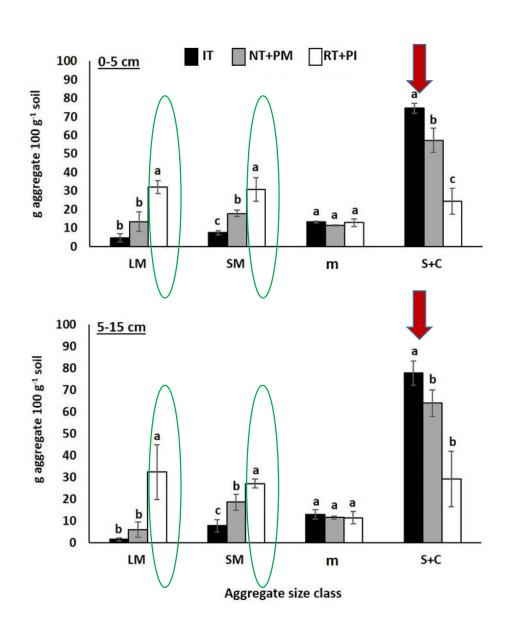
troduction	Objectives	Material and	d methods	Results	Conclusions
Soil properti	es Soil depth (cm)	IT	NT+PM	RT + PI	
11	0- 5	8.5a	8.4a	8.5a	
р Н 	5-15	8.6a	8.5a	8.5a	
FC (C a-m-1)	0- 5	694.3a	356.6b	459.6b	
EC (μS cm ⁻¹)	5-15	391.7a	317.5a	356.1a	
BS (%)	0- 5	99.8a	100.0a	99.9a	
	5-15	99.8a	99.8a	99.9a	
SAR	0- 5	1.1a	0.3b	0.1b	
	5-15	1.1a	0.3b	0.1b	
CaCO ₃	0- 5	51.8a	49.7a	48.6a	
	5-15	53.4a	49.3a	48.3a) - 22 October, 2021
rcia-Franco et al., 2021. Soil	& Tillage				

Texture (%)	Soil depth (cm)	IT	NT+PM	RT + PI
	0- 5	24.0a	22.6a	22.5a
Clay	5-15	25.1b	28.2a	26.5a
	0- 5	— 70.4a	64.4a	70.9a
Silt	5-15	69.8a	69.3a	67.8a
	0- 5	 5.6b	13.0a	6.6b
Sand	5-15	5.2a	2.5b	5.7a
BD (g cm ⁻³)	0- 5	1.6a	1.3b	1.1b
	5-15	1.6 a	1.3b	1.2b
	0- 5	0.3c	0.7b	1.5a
MWD (mm)	5-15	0.2c	0.5b	1.5a

Material and methods

GLOBAL SYMPOSIUM ON SALT-AFFECTED SOILS | 20 - 22 October, 2021

Results


Conclusions

Introduction

Objectives

Introduction	Objectives	Materia	l and metho	ods Re	sults	Conclusions
Pore size distribut		Soil depth (cm)	п	NT+PM	RT + PI	
Fine news		0- 5	16.4 a	18.7a	16.6a	
Fine pores		5-15	15.1c	18.2a	16.9b	
		0- 5	9.9b	11.2b	15.2a	
Medium pores		5-15	10.1b	10.4b	15.5a	
_		0- 5	15.0b	22.0ab	27.2a	
Large pores		5-15	12.6b	21.1a	20.1 a	
WHC (%)		0- 5	26.2c	29.9b	31.8a	
		5-15	25.2c	28.6b	32.4 a	
Total porosity(%)		0- 5	41.2b	51.9ab	59.0a	
		5-15	37.8b	49.7a	50.5a	- 22 October, 2021
Garcia-Franco et al., 2021. So	il & Tillage					17.0

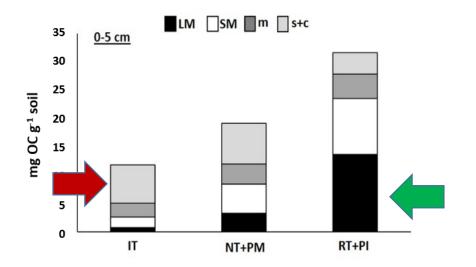
Aggregate size class distribution (g aggregate 100 g⁻¹ soil):

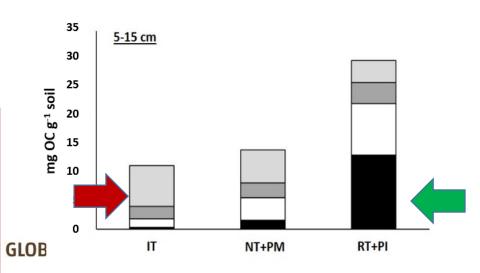
The accumulation of Na⁺ and the dispersion of clay particles, with a subsequent breakdown of soil aggregates

Higher macroaggregate distribution (LM and SM) in both soil depths

Contribution of OC contents (mg g⁻¹ soil) of aggregate size classes to total SOC of bulk soils

RT + PI


Higher contribution of OC in macroaggregates to the total OC of the bulk soil in both depth

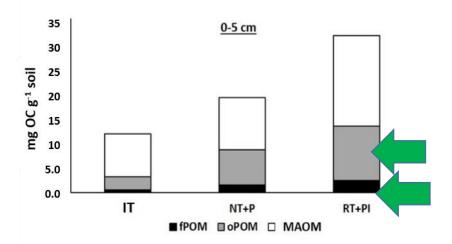


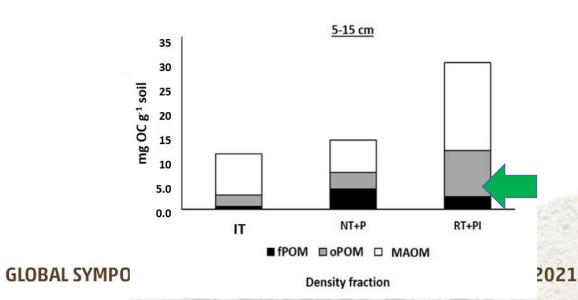
Opposite trend respect to RT+PI: High contribution of the OC of s+c to the total OC of the bulk soil

ber, 2021

Garcia-Franco et al., 2021. Soil & Tillage

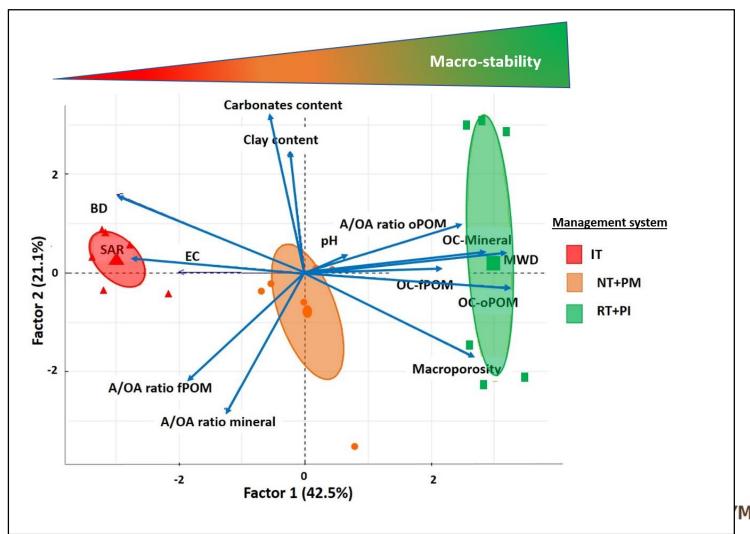
Weight distribution of SOM fractions (g fraction 100 g⁻¹ soil):

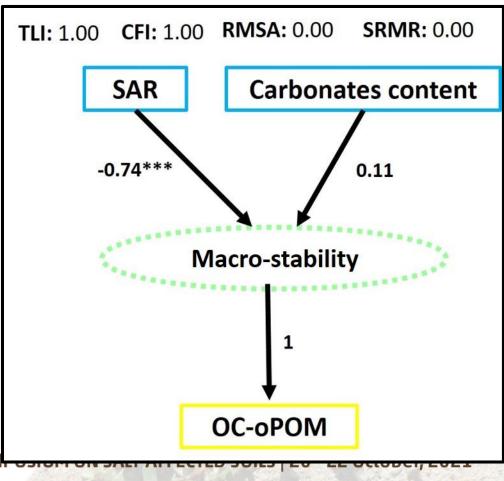

Introduction


(g fraction 100 g⁻¹ soil)

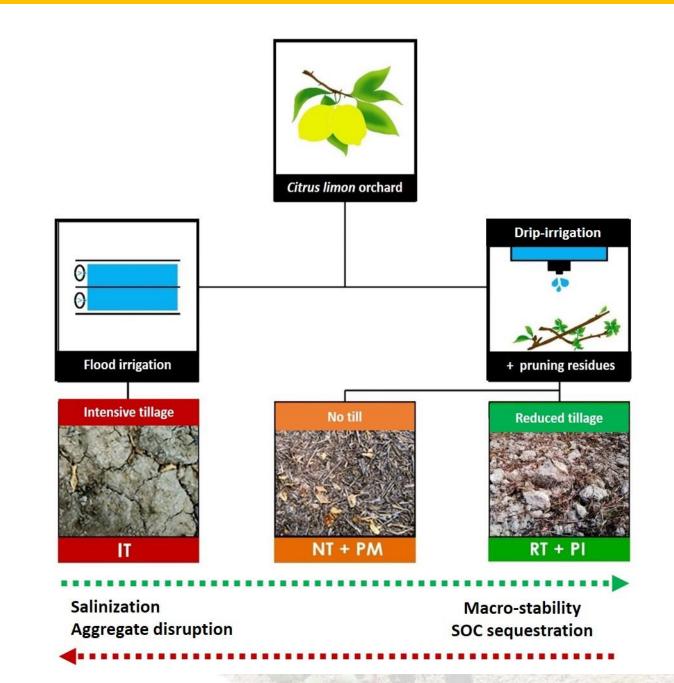
<u>0-5 cm</u>	fPOM	оРОМ	MAOM
IT	0.2c	0.7c	99.2a
NT+PM	0.4b	4.2a	95.4c
RT+PI	0.7a	3.0b	96.4b
<u>5-15 cm</u>			
IT	0.2c	0.8c	96.1a
NT+PM	1.2b	1.4b	97.5a
RT+PI	0.8a	2.6a	96.6a

fPOM (particulate organic matter), oPOM (occluded particulate organic matter) MAOM (mineral-associated organic matter)


OC (mg g⁻¹ soil) in SOM fractions:



Garcia-Franco et al., 2021. Soil & Tillage


PCA (Principal Component Analysis) results of the factors facilitating macro-aggregation and SOC stabilization

SEM (structural equation model)

- Soil structural degradation in *Citrus* orchards after 17 years of intensive tillage and flood irrigation
- Pruning incorporation with reduced tillage and drip-irrigation improve soil structure and OC sequestration
- Application of pruning residues as mulch was less effective
- SOM pools were a good indicator of soil macrostability and soil OC sequestration
- 40% more Citrus production in RT+PI and NT+PM in last 8 years compared with IT. (An socio-economic study about it is course)

Aknowledgement to the farmers

Family Ruíz-Cayuela

Technische Universität München

- Prof. Dr. Ingrid Kögel-Knabner
- Dr. Martin Wiesmeier
- Franzisca Fella
- Dr. Luis Carlos Colocho Hurtarte

- Dr. María Martínez-Mena
- Dr. María Almagro
- Eloisa Garcia Martínez

Intelligence is the ability to adapt to change. —Stephen Hawking

GLOBAL SYMPOSIUM ON SALT-AFFECTED SOILS

20 - 22 October, 2021 Virtual meeting