GSID24

Minimizing Vegetation Influence on Soil Salinity Mapping with Novel Bare Soil Pixels from Multi-Temporal Images

Presenter: Danyang Wang Supervisor: Prof. Zhaofu Li

E-mail:2021203039@stu.njau.edu.cn

• Problem Statement

Research Progress

• Scientific issues and Methodology

Research Results

• Discussion, Conclusions and Prospects

• Problem Statement

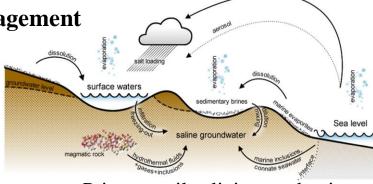
Research Progress

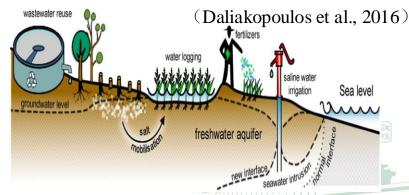
• Scientific issues and Methodology

Research Results

• Discussion, Conclusions and Prospects

资源与环境科学学院 College of Resource & Environmental Sciences 1. Problem Statement


Soil salinization is a prominent global issue associated with soil degradation

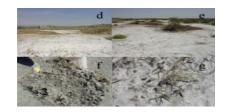

Mapping salinization is crucial for land management

Global soil salinization

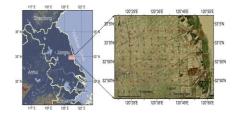
Primary soil salinity mechanisms

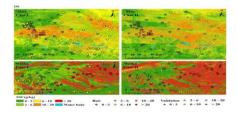
Secondary soil salinity mechanisms

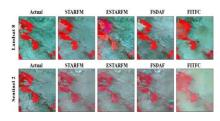
资源与环境科学学院 College of Resource & Environmental Sciences 1. Problem Statement



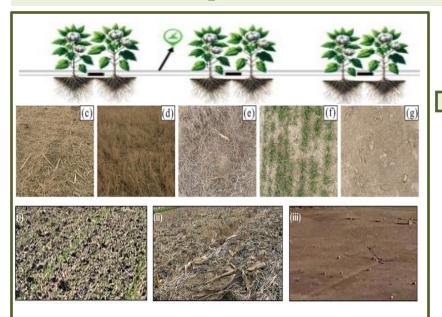
Field investigation

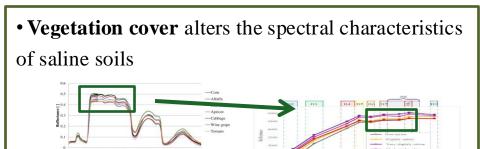


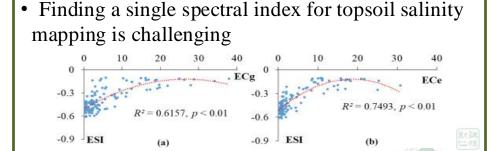



- ✓ provided precise information
- Limited in scope and slow for large areas.

Remote sensing




- ✓ broad coverage
- ✓ abundant spectral information
- Optical remote sensing satellites are now mainstream for predicting and mapping soil salinization (Liu et al., Geoderma, 2019; Wang et al., STOEN, 2021; Hesam et al., Catena, 2023; Wang et al., Geoderma, 2023; Neena et al., 2024)


资源与环境科学学院 College of Resource & Environmental Sciences 1. Problem Statement

The salt return period is considered optimal for observing topsoil salinity

• The salt return period often overlaps with key crop growth stages

(Thuong V. et al., STOEN, 2021; Gordana Kaplan et al., 2023)

Wey focus: mitigating vegetation impact on spectra and extract soil reflectance

• Problem Statement

Research Progress

• Scientific issues and Methodology

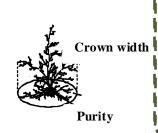
Research Results

• Discussion, Conclusions and Prospects

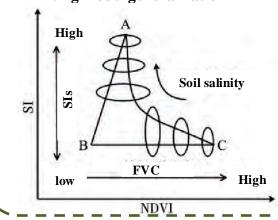
资源与环境科学学院 College of Resource & Environmental Sciences 2. Research Progress

Three methods for "mitigating" vegetation spectral interference

Optical vegetation cover

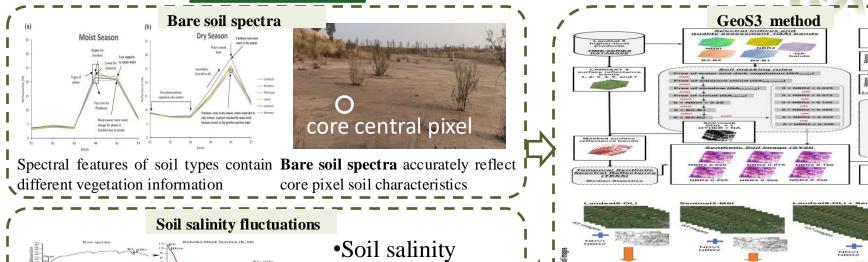

Eigenspace method

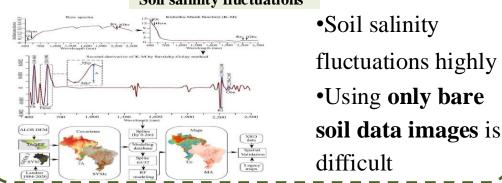
Mixed element decomposition

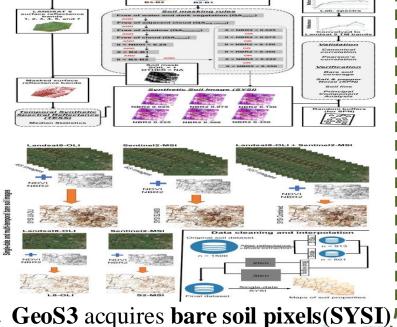

Ratio of actual vegetation's optical information to total vegetation in the observation range

- •The bare soil biomass baseline
- The near-infrared spectral brightness of full vegetation
- > Complex to invert and difficult to operate

- •Indirect estimation of soil salinity through *spectral-vegetation relationships*
- ➤ Soil salinization alone doesn't determine vegetation growth
- limiting model generalization


- •Non-negative Matrix Factorization (NMF)method:
- •Extracts positive spectra, simple operation;
- •Based on spectral angle of **central** and nearby bare soil pixels
- > Difficult to represent the central pixel's true spectral information




资源与环境科学学院 College of Resource & Environmental Sciences 2. Research Progress

•Using only bare soil data images is difficult

Thinking: Fusing spectral data from the salt return period with SYSI and accounting for soil types effectively could capture pixel-level salinity characteristics???

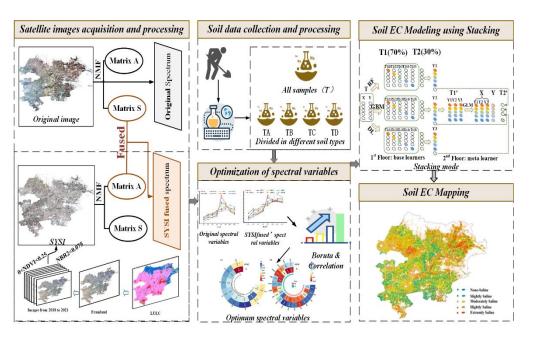
• Problem Statement

Research Progress

• Scientific issues and Methodology

Research Results

Disscussion, Conclusions and Prospects



A new strategy: minimize vegetation influence on soil salinity mapping by fusing spectral information of salt recurrence period and SYSI

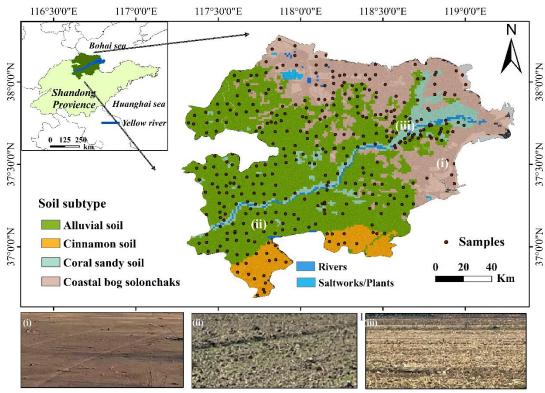
Objectives:

- ☐ To explore the influence of fusing SYSI with the original image on the accuracy of soil salinity prediction
- ☐ To investigate the impact of **different soil subtypes** on the accuracy of soil salinity prediction
- ☐ To evaluate the effectiveness of the **stacking algorithm** for soil salinity prediction

Hypothesis: The NMF method improves central pixel soil representation by fusing spectral data from vegetation and bare soil periods

Method

Applied NMF to Sentinel-2 MSI images to obtain endmember matrix A and abundance matrix S for SYSI and original image


□ Correction

Original matrix S used as a correction coefficient, fused with SYSI matrix A to reconstruct fused spectra

Outcome

Created salt content prediction maps for different soil types using fused spectra and stacking ensemble learning algorithm

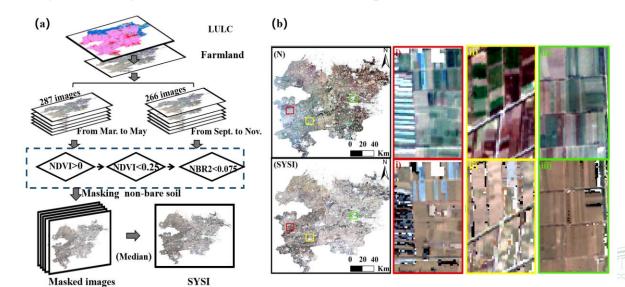
Study area

The location of the study area and the distribution of sample points (i:no vegetation cover area; ii:winter wheat seeding area; iii:straw mulching area)

Yellow River Delta

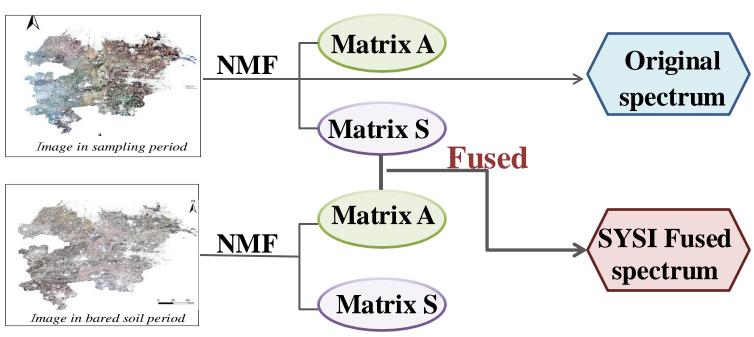
Soil types: saline-alkali soil tidal soil

Land surface: covered by vegetation for extended periods


Seasonal salt return

Soil dataset

255 soil observations obtained at 0-10 cm from soil surveys performed October, 2020, with the soil surfaces covered straw or wheat seedlings


Imagery datasets and preprocessing

Remote sensing images: original image and the SYSI of bare soil pixels (S2,GEE,10m)

Incorporation of SYSI based NMF

MATLAB 2018a

The matrix A: Consists of columns representing individual endmember spectra

The matrix S: Comprised columns representing the abundance values of different endmembers for each pixel

Matrix A of SYSI, unaffected by surface vegetation, contained pure spectra reflecting soil salinity more accurately

TBI

VSDI

Three-band index

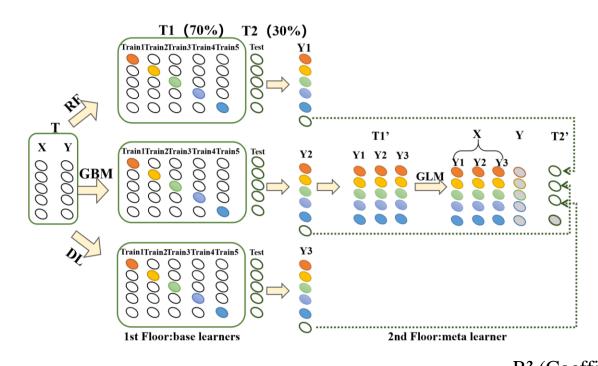
Visible and shortwave-

infrared drought

资源与环境科学学院 College of Resource & Environmental Sciences 3. Scientific issues and Methodology

Selection of characteristic spectral indices

/(G-SWIR1)


1-(SWIR+R-2B)

	Spectral index	Description	Formula	Reference		Spectral index	Description	Formula	Reference
Vegetable indices (VIs)	CRSI	Canopy salinity response vegetation index	$ \left[\frac{(\text{NIR} \times \text{R}) - (\text{G} \times \text{B})}{(\text{NIR} \times \text{R}) + (\text{G} \times \text{B})} \right]^{0.5} $	(Scudiero et al. 2014) (Yang et al. 2023)		Int1	Intensity index 1	(G+R)/2	(Yang et al. 2023)
	DDI	Distance drought index	$\frac{\sqrt{R^2 + NIR^2}}{1 + NDVI}$			Int2	Intensity index 2	(G+R+NIR)/2	
	EVI	Enhanced vegetation index	$G\frac{\text{NIR-R}}{\text{NIR+C}_{1\times R}\text{-C}_{2}\times \text{B+L}}$			SI	Salinity index	R×NIR/G	
	NDSI	Normalized difference salinity index	(R-NIR)/(R+NIR)			SI1	Salinity index1	\sqrt{GxR}	
	NDVI	Normalized difference vegetation index	(NIR-R)/(NIR+R)			SI2	Salinity index2	$\sqrt{G^2 + R^2 + NIR^2}$	
	SAVI	Soil adjusted vegetation index	(1+L)(NIR-R) /(NIR+R+L)			SI3	Salinity index3	$\sqrt{G^2+R^2}$	
	SIWSI	Shortwave infrared water stress index	(SWIR-NIR) /(SWIR+NIR)	(Wang et al. 2019)		SI4	Salinity index4	(G-RGE) /(G+RGE)	
	STR	Shortwave infrared transformed reflectance	(1–SWIR) ² /2SWIR			SI5	Salinity index5	$\sqrt{G \times RGE}$	A TE
	TRI	Three-hand index	(SWIR2-G)						

Modelling and Mapping

H2O package in the R software

Model Evaluation Method: Repeated 5-fold cross-validation Performance Metrics:

R² (Coefficient of Determination) RMSE (Root Mean Square Error) MAE (Mean Absolute Error)

Impact of FVC on EC Prediction from Original Images

Objective:

Analyze the effect of different FVC thresholds on salinity prediction accuracy

Method:

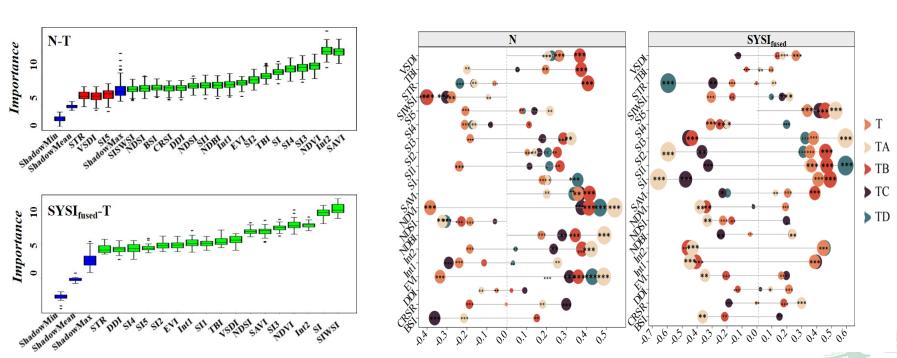
- Pixel dichotomy to obtain median FVC values during the sampling period
- Discussed EC distribution and prediction accuracy based on sampling points and original images

$$FVC = \frac{NDVI - NDVI_{soil}}{NDVI_{veg} - NDVI_{soil}}$$
(Hu et al., 2019)

• Problem Statement

Research Progress

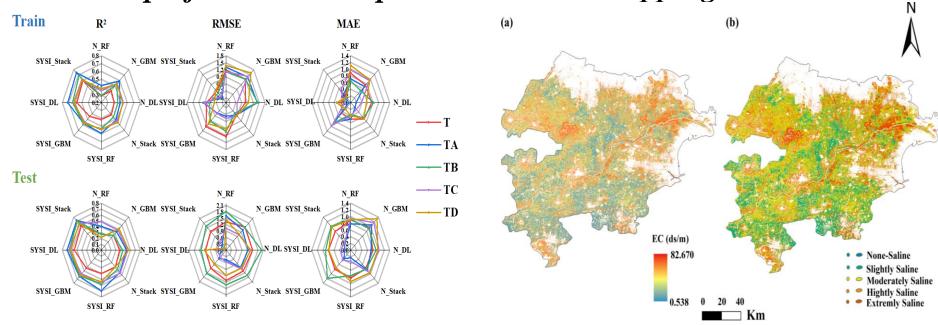
• Scientific issues and Methodology



Research Results

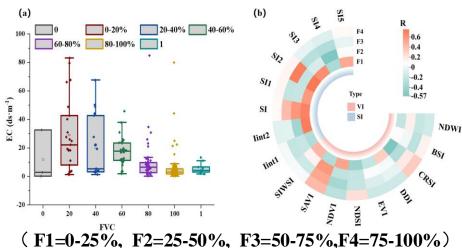
• Discussion, Conclusions and Prospects

Spectral variables selection

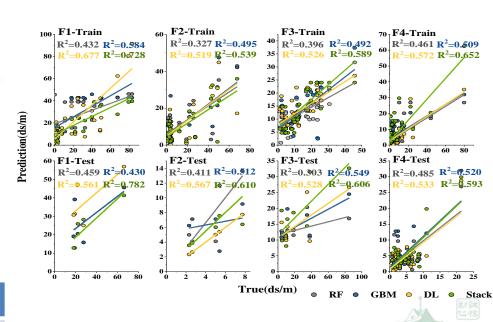


Important index: Vegetable index of original image;

Soil index of pured spectral


资源与环境科学学院 College of Resource & Environmental Sciences **4. Research Results**

Prediction performance comparison and EC mapping


- Stacking model outperforms other models with significant reductions in RMSE and MAE.
- Soil type classification enhances prediction accuracy, with coral sand and brown soils achieving the highest accuracy.
- Incorporating bare soil pixels further improves model performance across all soil types.

FVC's Effects on soil EC prediction from original image

> FVC>40%: EC decreased with increasing FVC

	Low Vegetation Cover	FVC>40%
Spectral Indices (SIs)	Positive	Decreases
Vegetation Indices	Positive	Strengthens

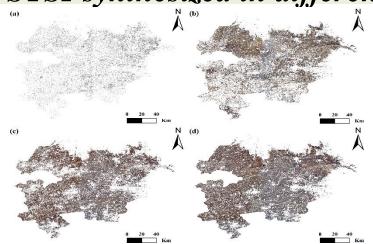
F1 > F4 > F3 > F2

• Problem Statement

Research Progress

• Scientific issues and Methodology

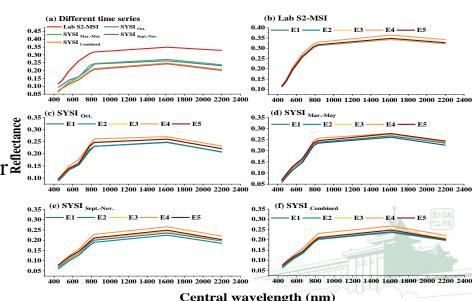
Research Results



Discussion, Conclusions and Prospects

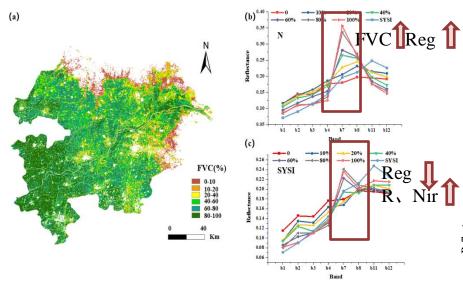
资源与环境科学学院 College of Resource & Environmental Sciences 5. Discussion, Conclusions and Prospects 1.

SYSI synthesized in different time windows


SYSI Combined:

38% higher than SYSI Mar.-May 23% higher than SYSI Sept.-Nov.

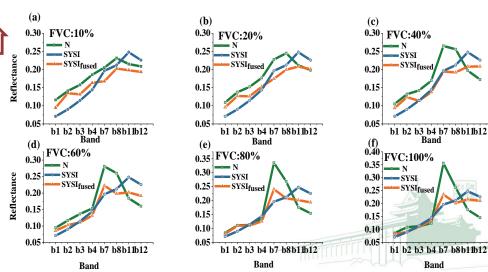
5 times higher than SYSI Oct.


> SYSI_{combined} curves mirror SYSI_{Oct}, a nonlinear in reflectance with increased in the state of the state

➤ Median statistics and integrating images from March-May and September-November reduce external interference

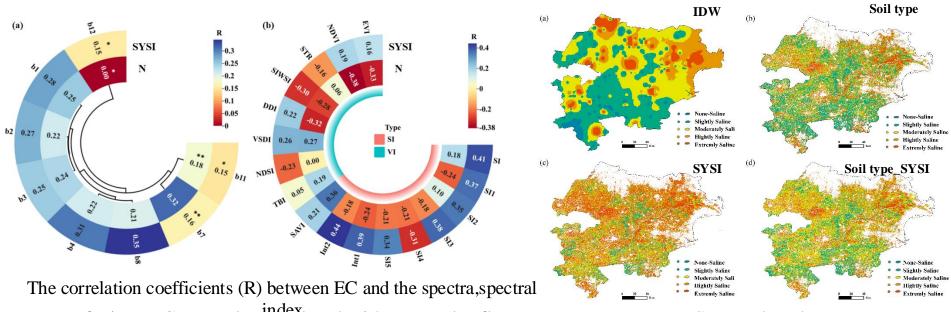
资源与环境科学学院 College of Resource & Environmental Sciences 5. Discussion, Conclusions and Prospects /

The influence of the SYSI fusion on spectra


Impact of FVC on Fusion Performance As FVC increases, post-fusion spectra begin to show vegetation traits, especially in band 7

Fusion performance declines, and soil spectral characteristics become less stable

Spectral Differences Pre- and Post-Fusion


Significant spectral changes after fusion, closely tied to FVC

Fusion effectively reduces the impact of vegetation cover

资源与环境科学学院 College of Resource & Environmental Sciences 5. Discussion, Conclusions and Prospects 1.

Performance of soil EC prediction after incorporating SYSI

- Pre-fusion: EC strongly correlated with spectral reflectance (B7 strongest), SIs weaker than VIs.
- Post-fusion: Opposite trend, SIs stronger than VIs.
- R² increased by 0.054–0.242; RMSE/MAE reduced by 0.049–0.780 / 0.012–0.546 ds/m.
- High salinity areas found in low vegetation regions, regardless of fusion; VIs underestimate soil salinity in areas with low vegetation cover

资源与环境科学学院 College of Resource & Environmental Sciences 5. Discussion, Conclusions and Prospects

Conclusions

- \triangleright SYSI_{fused} outperformed the original image (the R² increased by 0.054-0.242, RMSE and MAE decreased by 0.049-0.780 and 0.012-0.546)
- ➤ Based on the SYSI_{fused}, coastal bog solonchaks > alluvial soil > cinnamon soil > coral saline soil > overall samples, with improvements in R^2 : 0.141, 0.085, 0.022, 0.012
- ➤ Best Prediction Model: Stacking models with the SYSI_{fused} $(R^2=0.742,$ RMSE=0.377, MAE=0.362).

受源与环境科学学院 college of Resource & Environmental Sciences。

The Normand Sciences 5. Discussion, Conclusions and Prospects

Prospects

Study Limitations:

□ Soil salinity can vary over time, but remained stable in the study area from 2017 to 2021

Mitigating Temporal Variability:

■ Used multi-year bare soil images from the salt return period and calculated the median reflectance to align spectra with the sampling period, reducing discrepancies

Recommendations:

- ☐ For areas with fluctuating salinity, narrow the temporal window for bare soil pixel capture
- ☐ Customize SYSI based on regional salinity dynamics for more accurate soil property mapping

Wish this international conference has a complete success!

Wish the soil data and information for deeper and more valuable exploration!

THANK YOU!

Presenter: Danyang Wang Supervisor: Prof. Zhaofu Li

