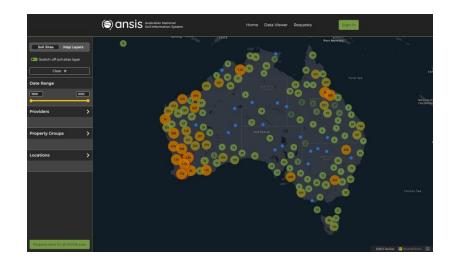


GLOBAL SYMPOSIUM ON SOIL INFORMATION AND DATA

MEASURE MONITOR MANAGE


Australian National Soil Information System:
Soil Information Models
Alistair Ritchie

September 25-28, 2024 Nanjing, China

Australian National Soil Information System

- ANSIS delivers soil data from
 - private parties
 - research institutes
 - government agencies
- These are managed in different ways and for different purposes
- Must be harmonised for ANSIS

Sub-theme 1.2: Soil Data Standardization And Harmonization

Innovative technology, soil information modelling and distributed query allow delivery of nationally standardised soil site and analytical data through a well-governed Australian national soil information system (ANSIS)

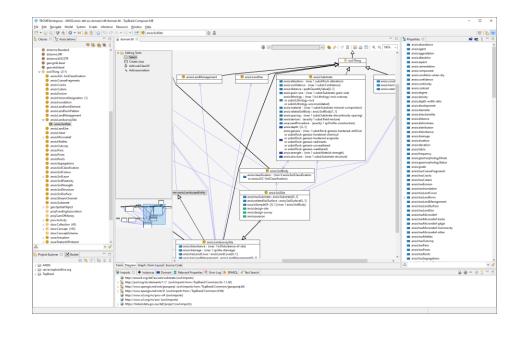
Peter Wilson - Commonwealth Scientific And Industrial Research Organisation (CSIRO), Australia

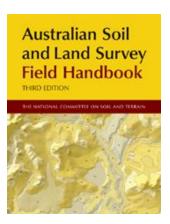
ANSIS information models for harmonization

- Need a common information model to which the provider data can be mapped
 - Ontology: a conceptual view of soils

- Need schema for implementation and data delivery formats
 - JSON Schema: a physical data model for soils

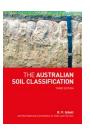
ANSIS Soil Ontology

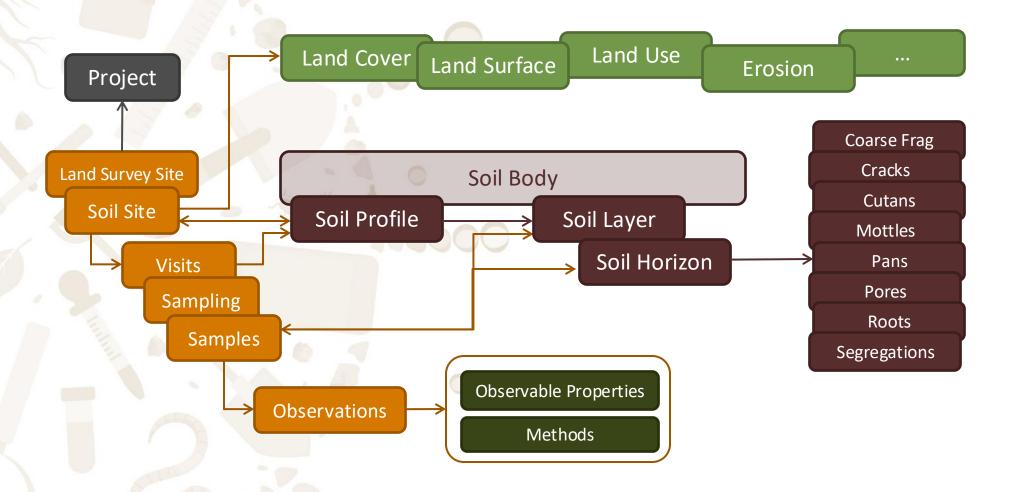

- Defined according to
 - a scientific understanding of soils
 - nationally agreed practices for sampling and describing them
- Based on other environmental models
 - Terrestrial Ecosystem Research Network
 - Global Soil Information System
 - ANZSoilML
 - multi-national soil and environmental data exchange experiments
- But prioritises the work of the Australian soil community
 - e.g. the Australian Soil and Land Survey Field Handbook



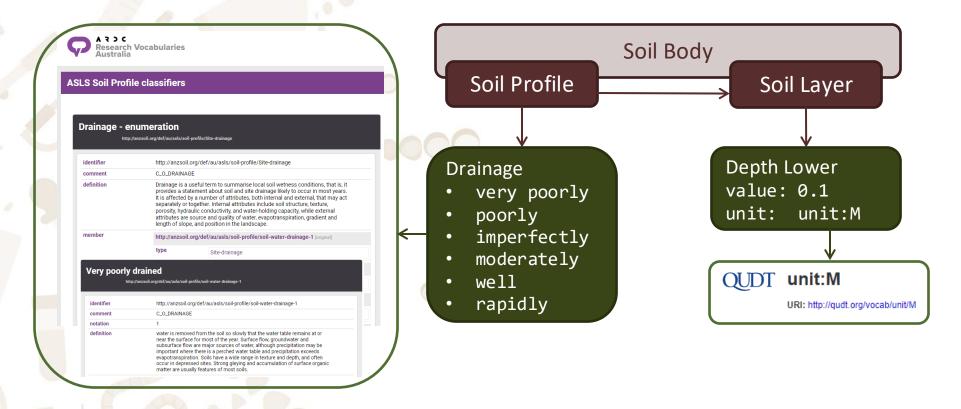
ANSIS Soil Ontology

- Developed using Semantic Web modelling languages and tools
 - Web Ontology Language (OWL)
 - Resource Description Framework (RDF)


Concepts from Australian soil community publications



... something new, something borrowed ...


ANSIS Soil Ontology Primer

ANSIS Soil Ontology Primer

Extensive use of controlled vocabularies and structured values

Observable Properties

- Asserted Properties
 - names; identifiers; projects
- Observed Properties ... AKA Soil Properties
 - value estimated by a particular sensor (includes people) according to a method
 - matrix colour; drainage; total Carbon; ...
- ISO/OGC Observations and Measurements
 - Observation event/activity metadata

Extensions to the Semantic Sensor Network Ontology

Home / Standards / Observations and Measurements

Observations and Measurements

Observations

ansis:drainage

hasResult: sp:soil-water-drainage-3

ansis:slope

hasResult: value: 42

unit: unit:DEG

usedProcedure: lf:slope-evaluation-A

ansis:cationExchangeCapacity

hasResult: value: 42

unit: unit:CentiMOL-PER-KiloGM

usedProcedure: scm:15I4

resultTime: 2023-01-26T07:50:00Z

http://anzsoil.org/def/au/asls/soil-profile/soil-water-drainage-3

sp:soil-water-drainage-3

prefLabel: imperfectly drained

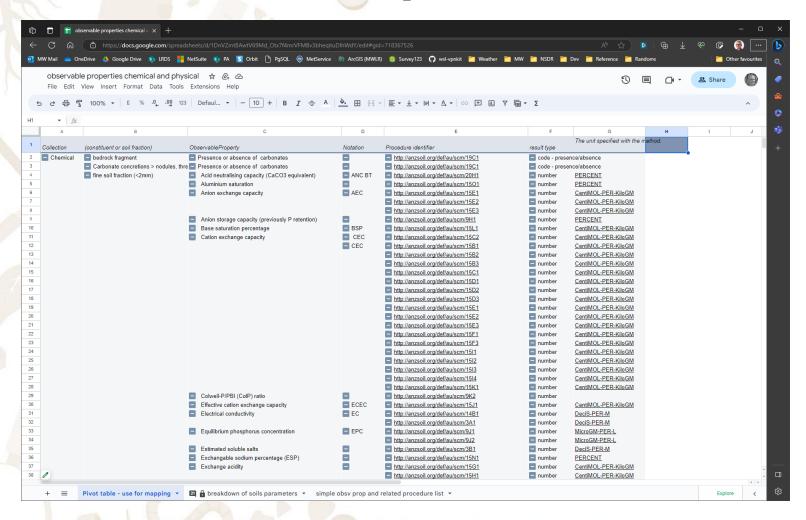
http://anzsoil.org/def/au/asls/landform/slope-evaluation-A

Lf:slope-evaluation-A

prefLabel: Abney level or clinometer

and tape

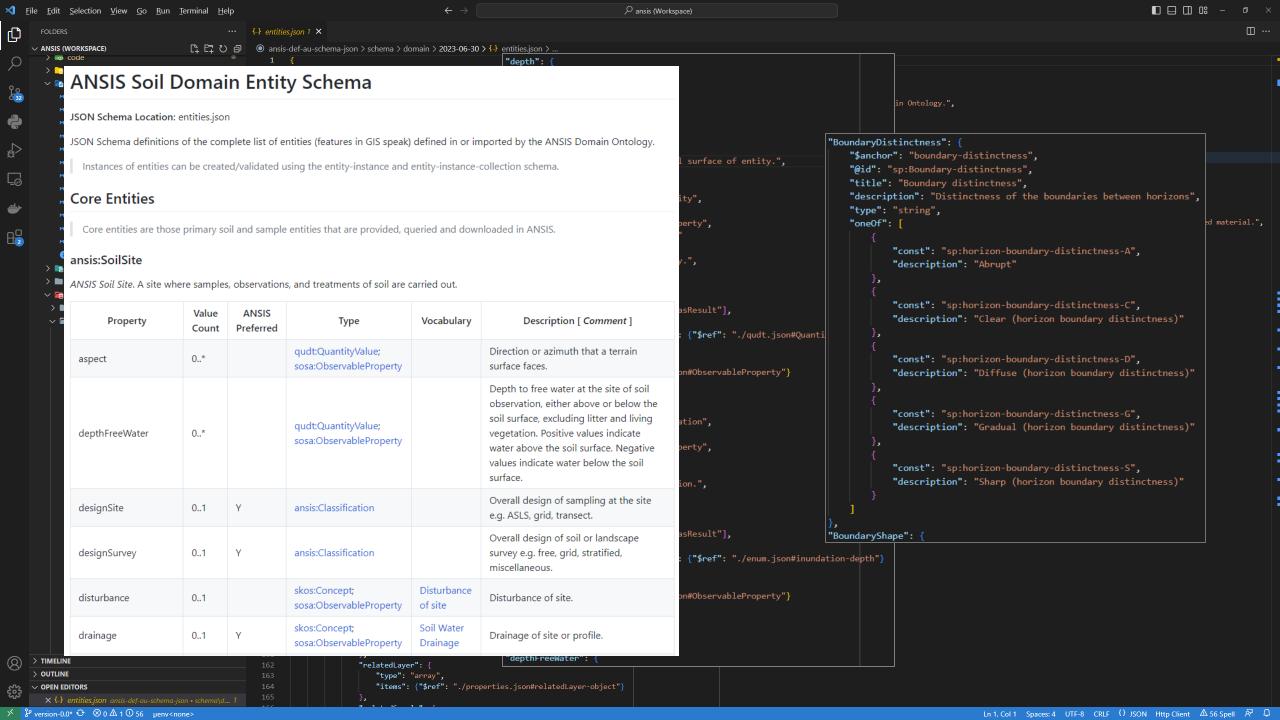
http://anzsoil.org/def/au/scm/15I4


scm:15I4

prefLabel: CEC measurement - titration

of NH+4 and CL-

Observable Properties and Methods


```
electricalConductivity": {
   "Sanchor": "electricalConductivity",
   "@id": "nil:template",
   "title": "electrical conductivity",
   "description": "Electrical conductivity (EC).",
   "type": "object",
   "range@type":
       "qudt:QuantityValue"
   "required": [
       "usedProcedure'
   "properties": {
       "hasResult": {
           "type": "object",
           "required": [
               "value",
           "properties":
               "value":
                   "$ref": "./qudt.json#value"
                   "$ref": "./qudt.json#unit",
                   "enum": [
       "usedProcedure": {
               "scm:14B1",
       "resultTime": {
           "$ref": "./sosa.json#resultTime"
       "qualityOfObservation": {
           "$ref": "./sosa.json#qualityOfObservation'
```


ANSIS JSON Schema

- Converted the ontology into a JSON Schema
 - Rules for the structure and content of JSON documents
- Complimentary schema, not a replacement
- Constrains options in the ontology
 - Manageable 'graph'
- Why?
 - Consistent patterns for structure of data from an API/web service
 - Uses more widely available technology
 - (Slightly) less intimidating than an ontology


```
"$schema": "https://anzsoildata.github.io/def-au-schema-json/schema/domain/2023-06-30/ansis.json
"data": {
   "id": "some-system-id",
   "type": "ansis:SoilSite",
   "ansisType": [
   "relatedActivity": [
           "type": "ansis:SiteVisit",
           "startedAtTime": "2020-02-02",
           "endedAtTime": "2020-02-02",
           "relatedActivity": [
                   "id": "some-sampling-id",
                   "type": "sosa:Sampling",
                   "hasResult": [
                           "type": "ansis:SoilSample",
                           "isSampleOf": [ ...
                           "relatedProfile": [
                            "component": {
                            depthLower": {
                               "hasResult": {
                                   "value": 0.42.
                                   "unit": "unit:M"
                            "depthUpper":
                               "hasResult": {
                                   "value": 0.24,
                                   "unit": "unit:M"
                            "hasGeometry": {
                            "hasResult": {
                               "chemical": {
                                   "type": "ansis:SoilChemicalObservations",
                                   "cationExchangeCapacity": [
                                           "hasResult": {
                                               "value": 0.1,
                                               "unit": "unit:CentiMOL-PER-KiloGM"
                                            "usedProcedure": "scm:15B1",
                                           "resultTime": "2001-12-17T09:30:47.0",
                                            "qualityOfObservation": null
                                            "hasResult": {
                                               "value": 0.1,
                                               "unit": "unit:CentiMOL-PER-KiloGM"
                                            "usedProcedure": "scm:15E1",
                                           "resultTime": "2001-12-17T09:30:47.0",
                                            "qualityOfObservation": null
                                    "effectiveCationExchangeCapacity": [
                                            "hasResult": {
                                               "value": 0.1,
                                               "unit": "unit:CentiMOL-PER-KiloGM"
```

```
"$schema": "https://anzsoildata.github.io/def-au-schema-json/schema/digital-soil-mapping/2023-06-30/dsm-simple.json",
"hasGeometryX": 24,
"hasGeometryY": -42,
"hasGeometrySRID": 4283,
"hasGeometry": "SRID=4283;POINT(24 -42)",
"depthLower": 0,
"depthUpper": 0,
"depthUnit": "unit:M",
"observedProperty@id": "ansis:slope",
"hasResult": 24,
"hasResultUnit": "unit:DEG".
"usedProcedureId": "ansis-x:clinometer",
"isSampleOfType": "ansis:LandformElement",
"sourceObservationId": "observation-a"
"$schema": "https://anzsoildata.github.io/def-au-schema-json/schema/digital-soil-mapping/2023-06-30/dsm-simple.json",
"hasGeometryX": 24,
"hasGeometryY": -42,
"hasGeometrySRID": 4283,
"hasGeometry": "SRID=4283;POINT(24 -42)",
"depthLower": 0,
"depthUpper": 0.1,
"depthUnit": "unit:M",
"observedProperty@id": "ansis-x:sand",
"hasResult": 42,
"hasResultUnit": "unit:PERCENT",
"isSampleOfType": "ansis:SoilHorizon",
"sourceSampleId": "https://example.ansis.net/id/sample/a",
"sourceObservationId": "observation-b"
"$schema": "https://anzsoildata.github.io/def-au-schema-json/schema/digital-soil-mapping/2023-06-30/dsm-simple.json",
"hasGeometryX": 24,
"hasGeometryY": -42,
"hasGeometrySRID": 4283,
"hasGeometry": "SRID=4283;POINT(24 -42)",
"depthLower": 0,
"depthUpper": 0.1,
"depthUnit": "unit:M",
"observedProperty@id": "ansis-x:silt",
"hasResult": 24,
"hasResultUnit": "unit:PERCENT",
"isSampleOfType": "ansis:SoilHorizon",
"sourceSampleId": "sample-a",
"sourceObservationId": "observation-c"
```

Conditional Format as Neutral

42 unit:PERCENT undefined

24 unit:PERCENT undefined

ansis:SoilHorizon

ansis:SoilHorizon

depthLower depthUpper depthUnit observedProperty@id hasResult hasResultUnit usedProcedureId isSampleOfType

Home Insert Page Layout Formulas Data Review View Automate Help

4283 SRID=4283; POINT(24 -42)

4283 SRID=4283:POINT(24 -42)

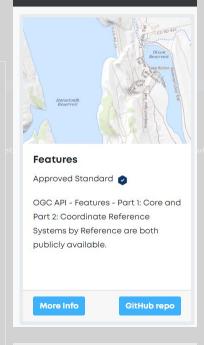
4283 SRID=4283; POINT(24 -42)

Format Painter

▼ : × ✓ f_x

1 hasGeometryX hasGeometryY hasGeometrySRID hasGeometry

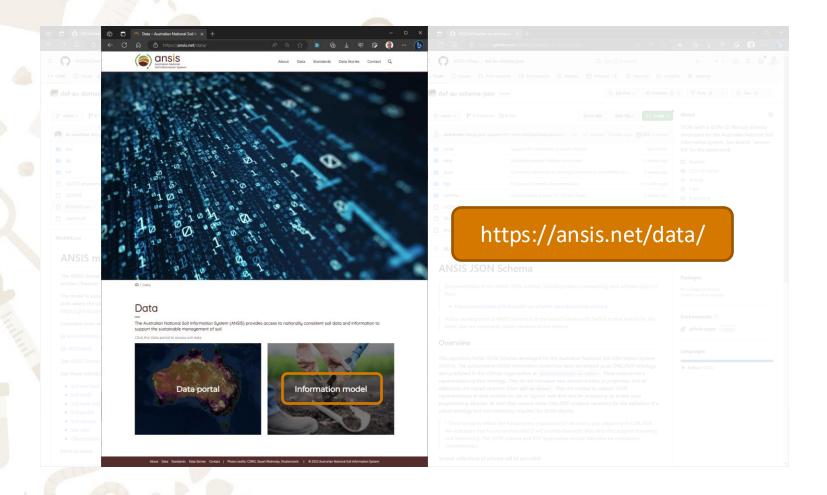
B I U - | ⊞ - | △ - A - | ≡ ≡ ≡ | ⊡ Merge & Center - | \$ - % 9 | % - 40


E F G H

0 unit:M ansis:slope

0.1 unit:M ansis-x:sand

0.1 unit:M ansis-x:silt



ANSIS Information Model Documentation

Conclusion

- Information models ensure scientifically robust harmonisation and delivery of consistent data.
- They support versatile data products that anticipate multiple ways of using the data, including
 - profile reports,
 - GIS layers, or
 - DSM-ready tables of data.
- ANSIS users will have unprecedented access to an Australia-wide soil dataset supporting robust modelling, research, and policy and decision making

Acknowledgements

Peter Wilson; Linda Gregory; Ross Searle; Gerard Grealish; Simon Cox (CSIRO, Australia)

Megan Wong (Federation University of Australia)

THANKOU

