

GLOBAL SYMPOSIUM ON SOIL INFORMATION AND DATA

MEASURE MONITOR MANAGE

Mapping SOC In Farmland Of Southern china Using A Bayesian Spatial Model

Hanjie Ni, Bifeng Hu*

Outline

- 1. Introduction
- 2. Main objectives
- 3. Materials and methods
- 4. Results
- 5. Discussion & Conclusion

1. Introduction

> The Critical Role of Soil Organic Carbon in Climate and Agriculture

SOC significantly impacts climate change and soil fertility, making its spatial prediction essential for sustainable land management.

> Advances and Limitations in Predicting Soil Properties

Various methods, including OK, GWR, and machine learning, have been developed to predict soil properties. OK is widely used but limited by sampling density and environmental factors. GWR accounts for spatial heterogeneity, while machine learning models like RF handle non-linear relationships effectively but lack spatial autocorrelation integration. A more comprehensive approach is needed to overcome these limitations.

> INLA-SPDE: A Bayesian Approach for Spatial Modeling

INLA-SPDE is a flexible and efficient Bayesian spatial model widely used in fields like air pollution and disease mapping. It enhances model explainability by providing posterior distributions and has been successfully applied to digital soil mapping, especially for SOC prediction. However, its performance in complex terrains like southern China remains to be validated.

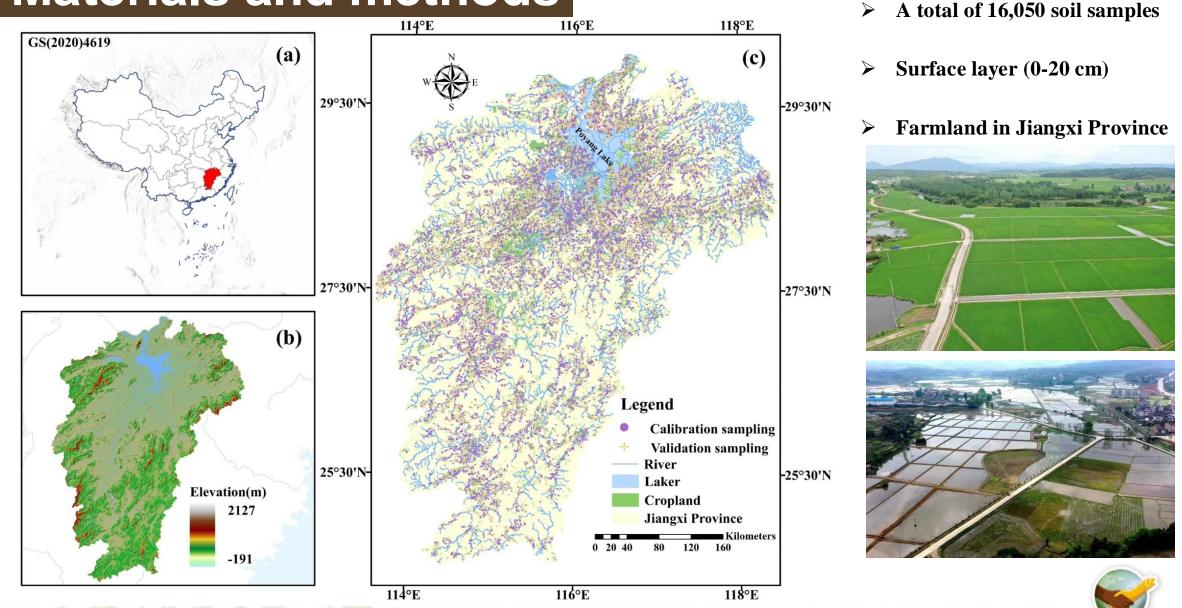
GLOBAL SYMPOSIUM ON SOIL INFORMATION AND DATA | MEASURE MONITOR MANAGE | September 25-28, 2024 Nanjing, China

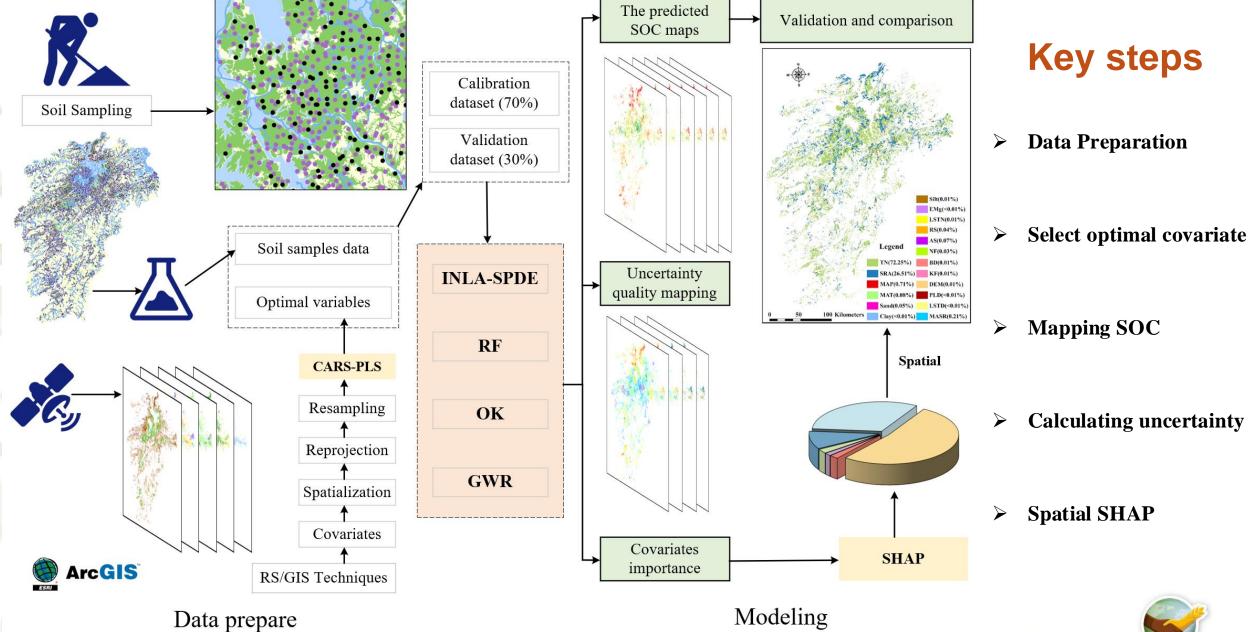
Crops in Farmlands in Southern China

2. Main objectives

- To compare the performance of INLA-SPDE to classic different spatial predictive models on mapping SOC in farmland of Jiangxi Province in southern China which is a hilly regions featured by very complex terrain condition
- To analyze uncertainty of the results produced by INLA-SPDE and RF models
- To quantify the overall importance of different covariates and map the spatially varying primary covariates for mapping SOC at the pixel scale by using INLA-SPDE and an explainable machine learning model termed Shapley Additive explanations (SHAP)

3. Materials and methods



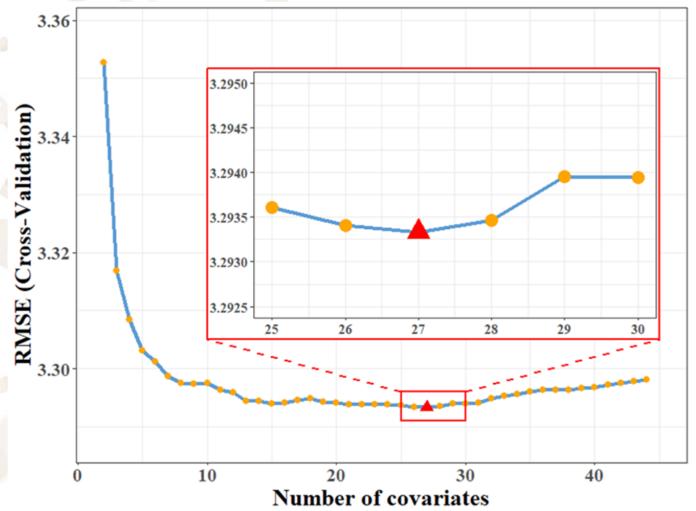


Covariates selection

Environmental factor	Variable	Acronym	Spatial resolution	Unit	Source	Environmental factor	l Variable	Acronym	Spatial resolution	Unit	Source
Climate	Mean annual temperature	MAT	1 km	°C	http://www.resdc.cn/	Soil	Bulk density	BD	30 m	-	This study
					•	properties	Cation exchange capacity	CEC	30 m	cmol/kg(+)	This study
	Mean annual precipitation	MAP	1 km	mm	http://www.resdc.cn/		Soil pH	pН	30 m	-	This study
	Evapotranspiration	ET	1 km	_	https://lpdaac.usgs.gov/		Total nitrogen	TN	30 m	g/kg	This study
	Mean annual solar						Total phosphorus	TP	30 m	g/kg	This study
	radiation	MASR	1 km	MJ/m ²	http://www.geodata.cn		Total potassium	TK	30 m	g/kg	This study
	Land surface temperature,	LSTD	1 km	°C	https://lpdaac.usgs.gov/		Exchangeable Magnesium	EMg	30 m	cmol/kg(+)	This study
	day time		1 Km		https://ipaaac.usgs.gov/		Available silicon	ASi	30 m	$mg kg^{-1}$	This study
	Land surface temperature, night time	LSTN	1 km	°C	https://lpdaac.usgs.gov/		Available sulphur	AS	30 m	$mg kg^{-1}$	This study
Terrain	Elevation	DEM	30 m	m	USGS ASTGTM		Plough layer depth	PLD	30 m	cm	This study
		DEM	30 III	111	USUS ASTUTIVI		Clay	Clay	250 m	-	SoilGrids250m 2.0
	Topographic wetness index	TWI	30 m	-	Calculated from Elevation		Sand	Sand	250 m	-	SoilGrids250m 2.0
	Topographic position	TPI	30 m		Calculated from Elevation		Silt	Silt	250 m	-	SoilGrids250m 2.0
	index	171	30 III	771	Calculated Holli Elevation		Percentage of soil coarse fragment	CF	250 m	-	SoilGrids250m 2.0
	Multi-resolution valley bottom flatness	MRVBF	30 m	-	Calculated from Elevation		(> 2 mm) (%)				
		C1	20			Biota	Normalized Difference Vegetation Index	NDVI	1 km	-	http://www.resdc.cn/
	Slope	Slope	30 m	0	Calculated from Elevation		Net primary production	NPP	1 km	-	http://www.resdc.cn/
	Aspect	Aspect	30 m	0	Calculated from Elevation		Rotation system	RS	-	-	This study
	X7 11 1 1	VID	20		C 1 1 1 1 C F1 1	Lithology	Soil class	SC	1 km	_	The Second National
	Valley depth	VD	30 m	m	Calculated from Elevation	<i></i>	Parental material	PM	1 km		Soil Survey The Second National
	Slope length	SL	30 m	m	Calculated from Elevation	Soil	Input of nitrogen fertiliser	NF		1ra ha-1	Soil Survey
		G 1 G	20					PF	-	$kg ha^{-1}$	This study
	Catchment Slope	CAS	30 m	0	Calculated from Elevation	management	Input of phosphate fertiliser	KF	-	$kg ha^{-1}$ $kg ha^{-1}$	This study
	Convergence Index	CI	30 m		Calculated from Elevation		Input of potash fertiliser		-		This study
							Amount of straw return	SRA	-	$kg ha^{-1}$	This study
	Length-Slope Factor	LSF	30 m	-	Calculated from Elevation		Irrigation capacity	IC DC	-	-	This study
	Catchment Area	CA	30 m	<u> </u>	Calculated from Elevation		Drainage capacity	DC	-	-	This study
	L CVALDOCIUM CM	AN YOU					Soil erosion degree	SED	- ·	- 01.1	This study

GLOBAL SYMPOSIUM ON SOIL INFORMATION AND DATA | MEASURE MONITOR MANAGE | September 25-28, 2024 Nanjing, China

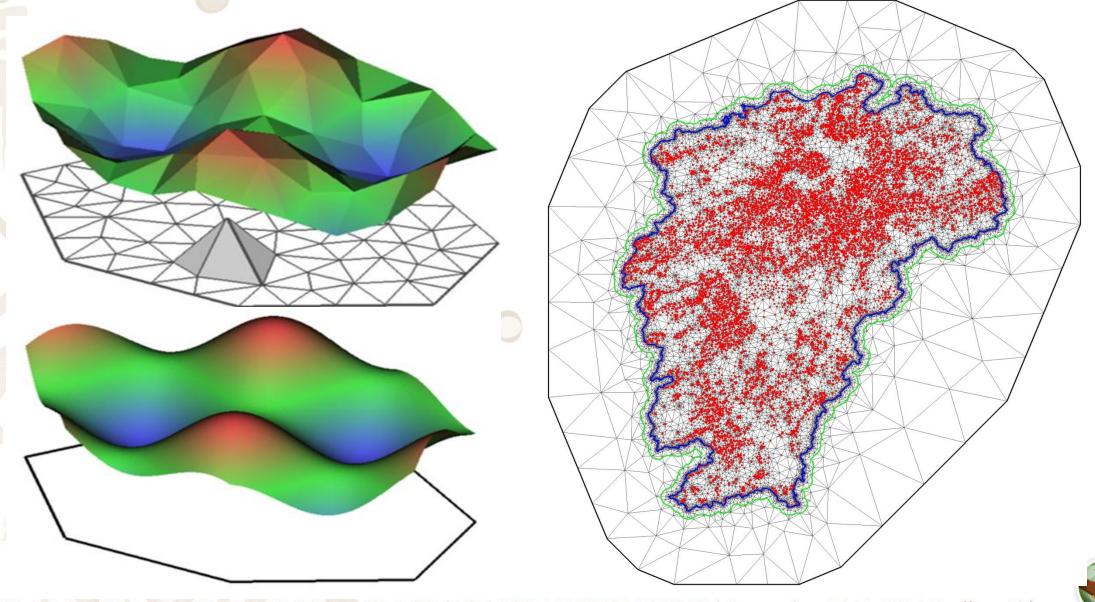
Environmental covariates selection



TableSelected optimal variables for spatial prediction modeling by CARS-PLS algorithm.

by Critics 125 disposition.						
Environmental covariates	CARS-PLS (N=27)					
Climate	MAT, MAP, MASR, LSTD, LSTN					
Terrain	DEM, TWI, TPI					
Soil properties	BD, CEC, pH, TN, TP, EMg, AS, PLD, Clay, Sand, Silt					
Biota	NDVI, RS					
Lithology	SC, PM					
Soil management	NF, KF, SRA, SED					

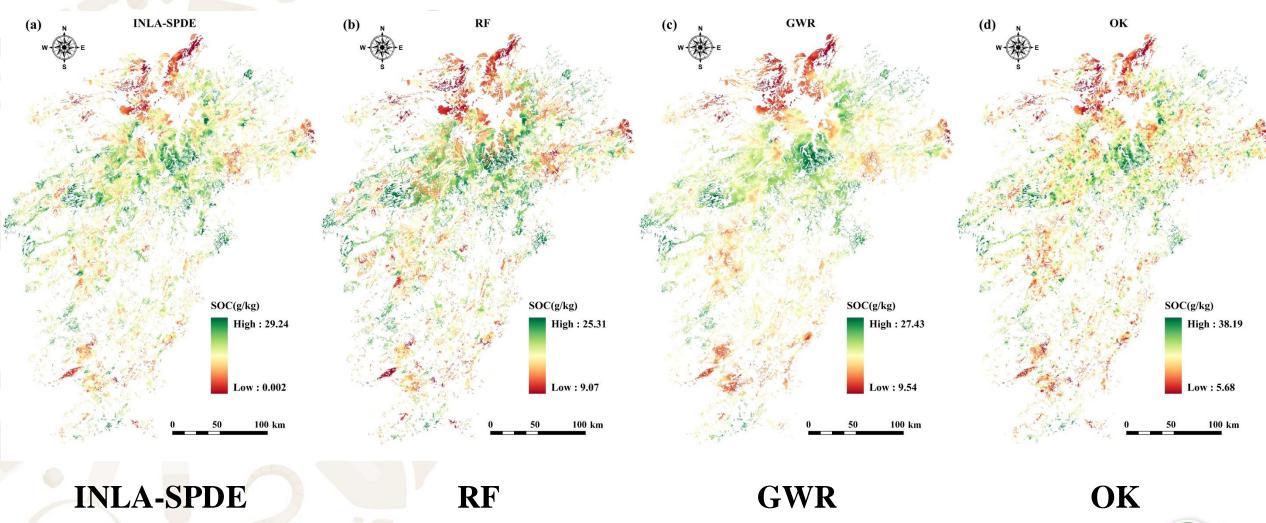
Mesh construction



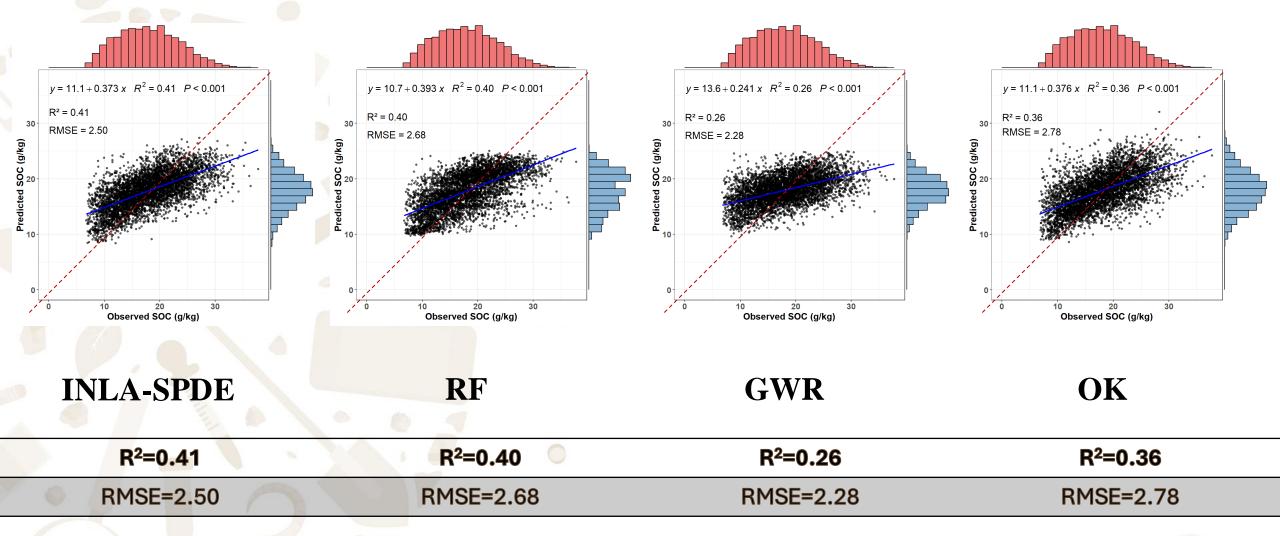
GLOBAL SYMPOSIUM ON SOIL INFORMATION AND DATA | MEASURE MONITOR MANAGE | September 25-28, 2024 Nanjing, China

4.Results

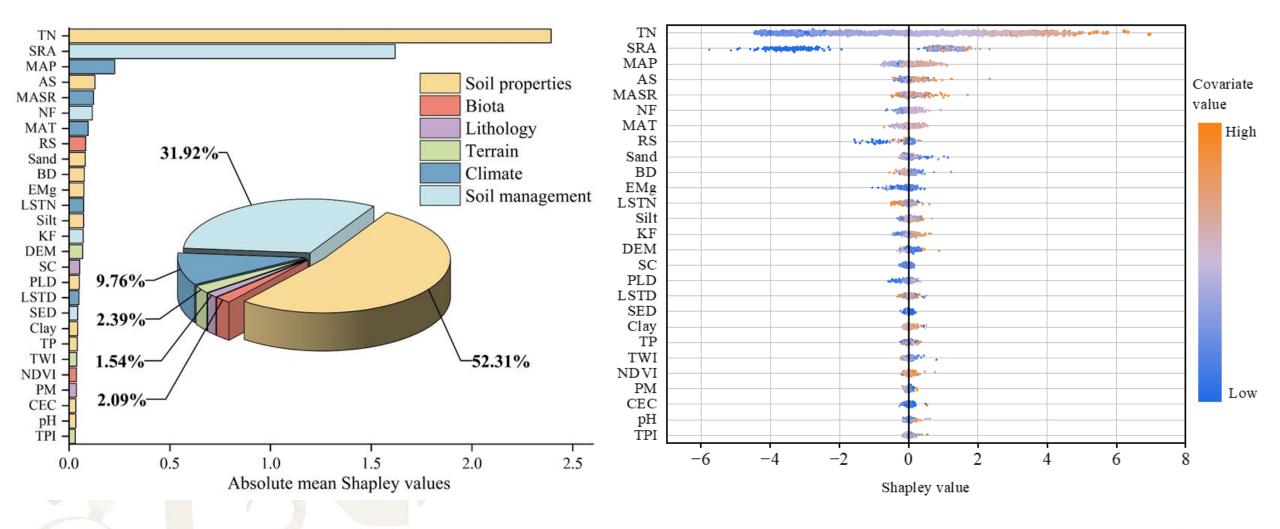
The predicted SOC maps

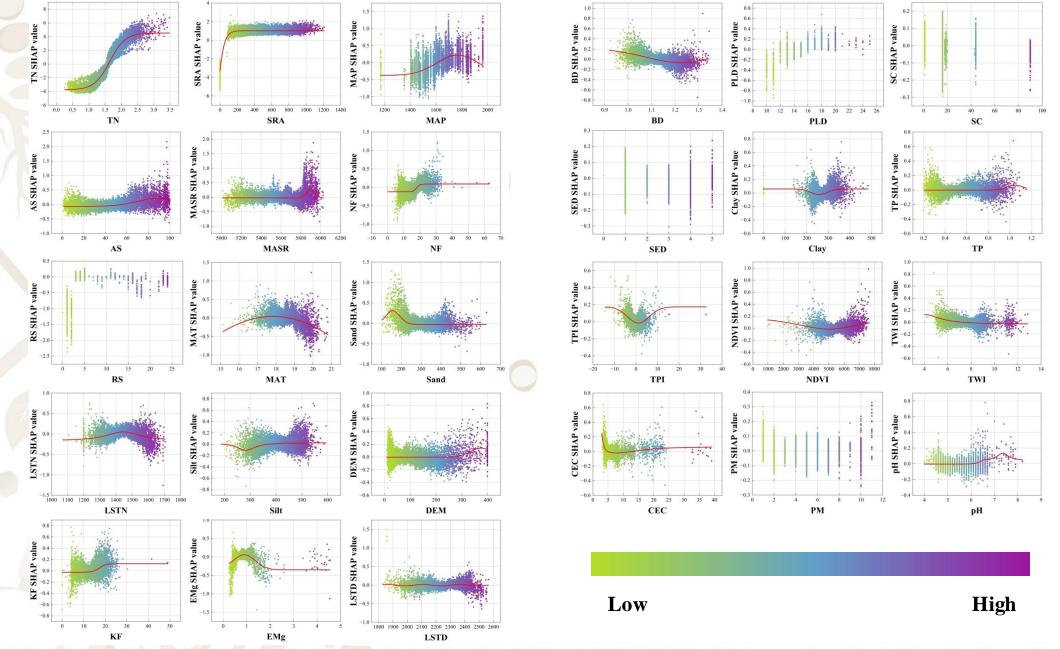


Prediction accuracy

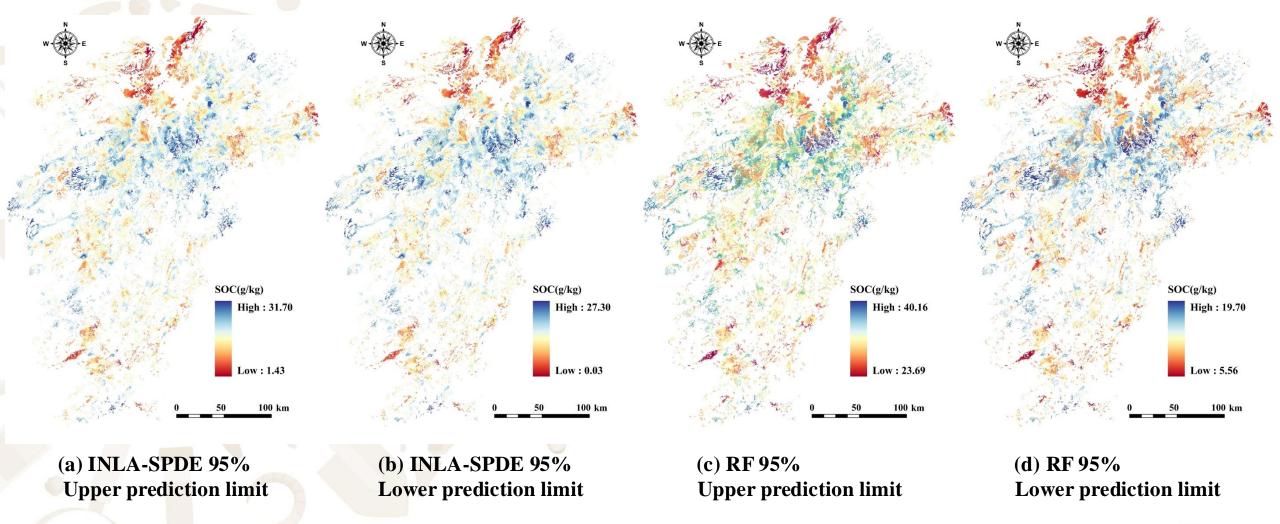


Relative importance of covariates





Uncertainty analysis



5. Discussion & Conclusion

Limitations and implications

- Computation Time: While INLA-SPDE reduces modeling time compared to MCMC, it still takes significantly more time than RF due to fitting more hyperparameters, with only slight accuracy improvements.
- > Scalability: The study focused on regional scale mapping, but further research is needed to explore INLA-SPDE's applicability for high-resolution national or continental scale mapping.
- Future Directions: Future studies should optimize mesh grid settings, explore parallel computing or GPU acceleration, and consider hybrid models like Regression Kriging to enhance performance.

5. Discussion & Conclusion

Conclusion

- ➤ INLA-SPDE model shows clearly better performance than classical geostatistical methods (OK and GWR) and slightly outperformed RF.
- > INLA-SPDE has advantage on reporting posterior distribution of the model hyperparameters.
- This study demonstrated that INLA-SPDE is able to deal with large data size (16,050 samples), and could including large and various kinds of covariates (27 covariates) in the modelling process.
- ➤ By integrating INLA-SPDE and interpretable machine learning model, we can both quantify the overall importance of different variables for mapping soil properties and mapping the spatially varying primary variables for mapping soil properties across the study area at pixel level.

THANKOU

