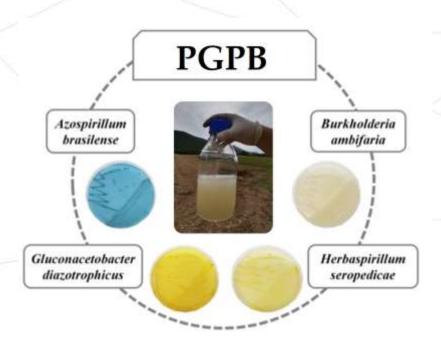
Marika Pellegrini

Polo Agire Scarl University of L'Aquila


Application of bacterial biostimulants in productive landscapes of *Allium* cepa L.

Programma Operativo Regionale (POR-FESR) - Azione 1.1.1 Progetti di Ricerca Industriale e Sviluppo Sperimentale delle Imprese afferenti ai Domini individuati nella RIS3 della Regione Abruzzo - INNOPAQ CUP C43D18000130007

Bacterial biostimulants

Also known as plant growth promoting bacteria (PGPB) represent a sustainable technique to improve crops productivity.

PLANT GROWTH-PROMOTING MECHANISMS

DIRECT

production of auxin, cytokinin, gibberellin, nitrogen fixation, phosphorous solubilization, and sequestration of iron by bacterial siderophores.

INDIRECT

Inhibition of pathogenic fungi and bacteria (i.e. antibiotics, cell wall degrading enzymes, competition, hydrogen cyanide, induced systemic resistance, quorum quenching, siderophore ACC deaminase).

Material and Methods

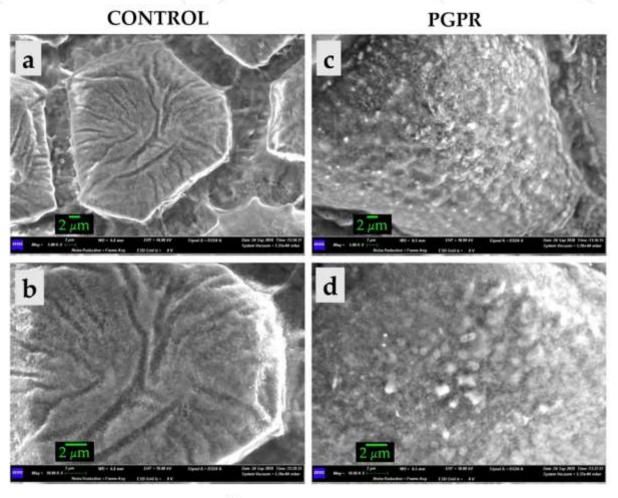
In vitro study

Seed adhesion and persistence by Scanning Electron Microscopy

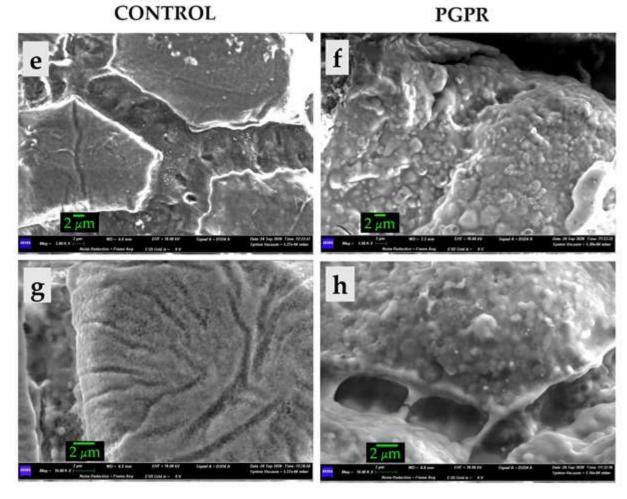
Open field experiment

Crops monitoring (height, dry matter, and chlorophylls dynamics and yields)

Bulbs quality (dry matter, total phenolic contents, antioxidant activity)


Soil fertility status (16S rRNA analysis, Physico-chemical properties)

Results – seed inoculation

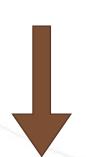


Scanning electron microscope (SEM) micrographs obtained for Control (a,b) and PGPR (c,d) Allium cepa seeds the same day of the inoculation.

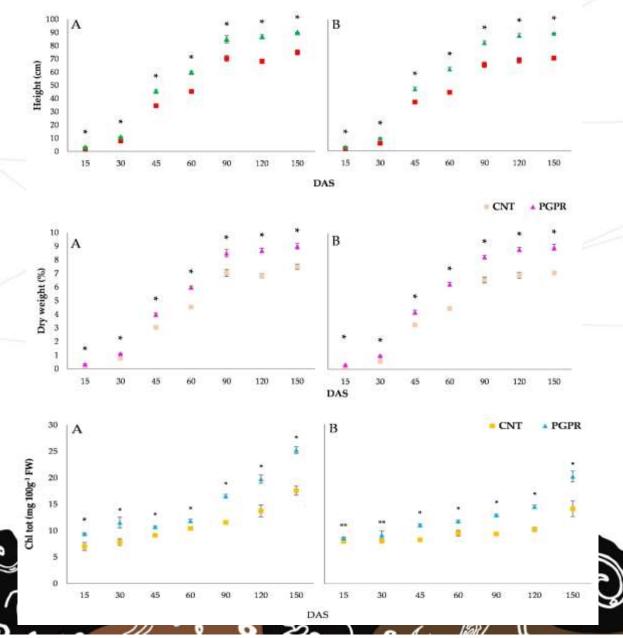
Magnitudes: 5000 (a,c) and 10,000 (b,d,)

Results – seed inoculation

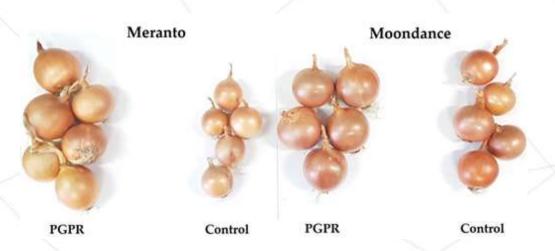
Scanning electron microscope (SEM)
micrographs
obtained for Control
(e,g) and
inoculated (f,h)
Allium cepa seeds
after 30 days from the inoculation.


Magnitudes: 5000 (e, f) and 10,000 (g, h)

Shelf-life → 60 days


Results – Crops growth monitoring

Dynamics of Height, Dry weight, and Chlorophylls in Meranto (A) and Moondance (B) cultivars.


Average increases:

- Height +18%
- Dry weight 23+%
- Chlorophylls +42%

CNT A PGPR

Results – Crops growth monitoring

Average increases:

- Dry weight + 3%
- Antioxidant activity + 25%
- Total phenolic content + 20%

Table 1. Dry weight, total phenolic content, and antioxidant activity of bulbs of Meranto and Moondance cultivars.

Ind	ex	Dry Weight (%)	Total Phenolic Content (mg GAE g-1 DW)	Antioxidant Activity (IC50)
	Control	14.28	4.76	150.92
Moondance	PGPB	14.73	5.96	12.71
	t-test	*	安冰岭	**
Meranto	Control	14.21	3.97	93.32
	PGPB	14.70	4.97	75.10
	t-test	*	***	*

t-test: * = p < 0.001; ** = p < 0.01; *** = p < 0.05.

Yield increase +13 %

Results – Soil fertility status

Table 2. Soil chemical analysis for Meranto and Moondance experimental conditions.

s — Minacopora activa sec	N	Moondance			Meranto	
Parameter	Pre-Sowing	Control	PGPB	Pre-Sowing	Control	PGPB
pН	7.6	7.7	7.6	7.7	7.7	7.5
Total \hat{N} (g Kg ⁻¹)	2.2	2.1	2.2	2.0	1.9	2.0
Total Organic Carbon (g Kg ⁻¹)	16.8	15.6	18.5	16.5	16.3	18.0
Organic Matter (g Kg ⁻¹)	29.0	27.0	32.0	28.4	28.0	31.0
Electric Conductivity (µS cm ⁻¹)	0.45	0.42	0.32	0.40	0.40	0.33
Na+ (mg Kg-1)	33.0	38.0	15.0	31.0	28.0	18.5
Ca^{++} (mg Kg ⁻¹)	3022.0	2895.5	3023.2	3132.5	2998.0	3108.5
$Mg^{++} (mg Kg^{-1})$	148.5	130.5	153.0	145.0	123.2	126.5
K^{+} (mg Kg^{-1})	489.0	383.0	413.5	164.5	138.0	182.2
Available P (mg P2O5 Kg-1)	323.0	172.0	460.5	282.0	144.2	227.0

Table 3. Ecological indexes calculated from Illumina sequencing results.

Index		Individuals	Shannon-Wiener H'	Chao-1
	Control	7431	6.15	628
Moondance	PGPB	9627	6.33	753
THE RESIDENCE OF THE PARTY OF T	Control	4046	5.66	363
Meranto	PGPB	5209	5.79	429

Conclusions

- seed inoculation improved plant growth and development, crop yield and quality, and the soil fertility status.
- suitability of this consortium as a biostimulating agent in sustainable agriculture.
- Our results suggest that seed inoculation with this consortium could be used in productive onion landscapes as a biostimulating agent in place of chemical fertilizers

Future perspectives

- Elucidation of the mechanisms of plant-growth improvement and fertility status and changes in the microbial community.
 - Suitability of this inoculant application on other plant species and the
 - Optimization of large-scale inoculum production procedures as well as the stability of the formulation should be investigated.

Pellegrini, M.; Spera, D.M.; Ercole, C.; Del Gallo, M. *Allium cepa* L. Inoculation with a Consortium of Plant Growth-Promoting Bacteria: Effects on Plants, Soil, and the Autochthonous Microbial Community. *Microorganisms* **2021**, 9, 639.

https://doi.org/10.3390/microorganisms9030639

marika.pellegrini@univaq.it

maddalena.delgallo@univaq.it

danielamspera@gmail.com