

Theme 1 Status and trends of global soil nutrient budget

Microbial source shapes the community of endophytic bacteria in rice roots

Solomon Oloruntoba SAMUEL¹, Kazuki SUZUKI², Rasit ASILOGLU³, Naoki HARADA³

¹Graduate School of Science and Technology, Niigata University, Japan, ²Centre for Transdisciplinary Research, Institute for Research Promotion, Niigata University, Japan, ³Institute of Science and Technology, Niigata University, Japan

Introduction

Plants interact with their immediate environment, thus cohabiting with the diverse soil microbiome.

The soil is regarded as the major environmental source of endophytic bacteria – a subgroup of soil bacteria that colonize the internal tissues of plants and form endosymbiotic relationships.

Fig. 1: Illustration of the interaction between a rice plant and the underground community of microorganisms

However, little is known about the effect of the microbial source as an individual factor on endophytic assemblage

Hypothesis: Distinct endophytic bacterial communities will be assembled from different microbial sources

Methodology

Transplantation of 21-day-old sterile rice seedlings into different experimental setups, inoculated with 5 different soil types obtained from across Japan and preincubated (*n*=3).

The different soil types were named as microbial Source_A to E

Table 1. Characteristics of the five soil types used in this study as the different microbial sources A to F

M. Source	Prefecture	Land Use	Classification	K+	Ca ²⁺	Mg ²⁺	Na⁺	pН
			_	(mg/100gds)				
Source_A	Aichi	Paddy	Gray upland	5.92	105.26	48.73	6.49	5.17
Source_B	Nagano	Paddy	Andosol	8.88	82.06	12.83	5.10	5.66
Source_C	NU, Niigata	Forest	Sand dune	13.50	39.30	16.50	3.62	5.87
Source_D	Shibata, Niigata	Paddy	Gray lowland	19.05	64.34	17.76	5.57	5.44
Source_E	Shindori, Niigata	Paddy	Gley lowland	21.40	84.40	37.70	9.28	5.05

Results

Fig. 3: Relative abundance of endophytic bacteria at phylum level

Table 2: Summary of the diversity and richness of bacterial endophytes after 3 and 6 weeks, respectively

		Microbial source	Time	Microbial source X Time
α - diversity	Shannon	$F_{(4,20)} = 42.34***$	$F_{(1,20)} = 17.04***$	$F_{(4,20)} = 12.26***$
	Faith	$F_{(4,20)} = 59.61***$	$F_{(1,20)} = 31.61***$	$F_{(4,20)} = 24.81***$
	Evenness	$F_{(4,20)} = 22.76***$	$F_{(1,20)} = 16.41***$	$F_{(4,20)} = 12.84***$
β - diversity	Weighted UniFrac	$F_{(4,20)} = 12.75***$	$F_{(1,20)} = 24.13***$	$F_{(4,20)} = 9.85***$
Significance lev	vel: *p<0.05, **p<0.01	, ***p<0.001		

Fig. 4: Beta diversity - Principal Coordinate Analysis(PCoA) based on weighted UniFrac distances

Fig. 5: Venn diagram of shared and unique bacterial taxa – genus level

Conclusion

Overall, the findings of this study show sufficiently that the microbial source is a key determinant factor of the formation of endophytic bacterial communities, thereby confirming our hypothesis.

References

Afzal, I., Shinwari, Z.K., Sikandar, S., Shahzad, S.. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research 221, 36-49 (2019).

Samuel, S.O., Suzuki, K., Asiloglu, R. et al. Soil-root interface influences the assembly of the endophytic bacterial community in rice plants. Biol Fertil Soils 58, 35-48 (2022).