

Nitrogen diagnosis in maize-forage grasses intercropping receiving nitrogen as side-dressing for production sustainability

Karina Batista¹*, A. A. Giacomini¹, L. Gerdes¹, M. B. Sarti², S. S.Fraga³ ¹Instituto de Zootecnia, Nova Odessa, São Paulo, Brazil, ²FAPESP scholarship, Nova Odessa, São Paulo, Brazil, ³Pibic/CNPQ scholarship, Nova Odessa, São Paulo, Brazil

INTRODUCTION

The maize- grasses intercropping has been used in Brazil for the recovery of degraded soil and has been identified as part of the new Brazilian agricultural revolution. This practice, when used in autumn-winter season, possibility soil coverage and animal feed in the dry season. Grasses and maize need nitrogen adequate supply to ensure adequate production, but in this system only maize is fertilized. Thus, the purpose of this study was to evaluate N in the diagnostic leaves of the maize and grasses intercropped receiving N rates as side-dressing in the dry season (autumn-winter crop) for sustainability of this system.

METHODOLOGY

- Site experimental: Red-Yellow Argisol Ultisol located in southeastern Brazil (22°42'S, 47°18'W, and 570-m altitude).
- Experimental design: Randomized blocks with four replications in a split-plot scheme.
- Main plots: Maize in a monoculture system (Fig.1a); Maize intercropped with Congo grass (Urochloa ruziziensis cv. Comum) (Fig.1b); and Maize intercropped with Aruana Guinea grass (Megathyrsus maximus cv. Aruana) (Fig.1c).
- ♣ Subplots: 0; 50; 100 and 150 kg ha⁻¹ of N applied manually as side-dressing along maize and grasses rows grown when maize plants had 5–6 fully expanded leaves.
- Evaluation: N in the leaves diagnostic of the maize and grass at the maize flowering at 2021 autumnwinter crop.

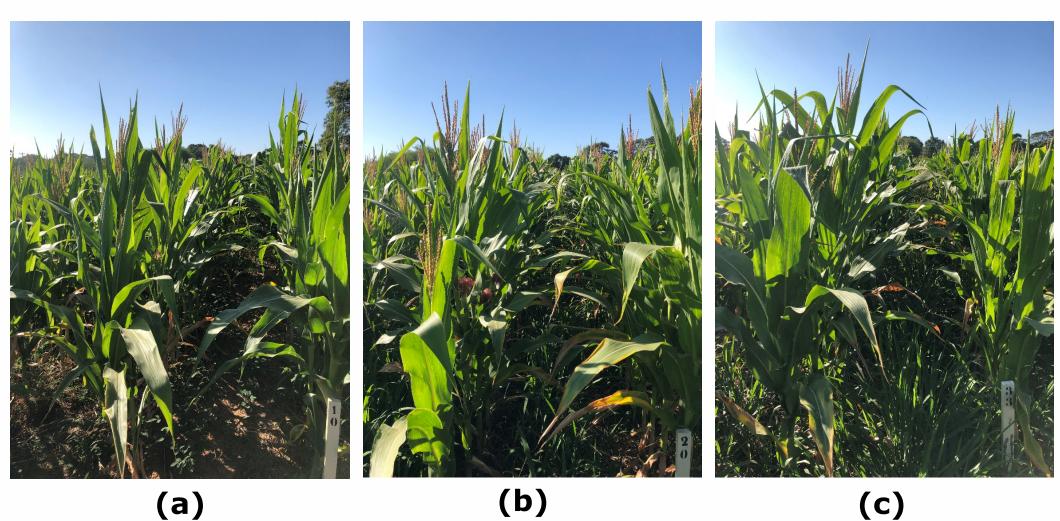


Fig.1: Maize in a monoculture system (a); Maize intercropped with Congo grass (b); and Maize intercropped with Aruana Guinea grass (c).

RESULTS AND DISCUSSION

N concentration in the diagnostic leaves of the maize and of the grasses showed significance for the interaction between maize-Congo grass intercropping and nitrogen rates applied as sidedressing (Table 1).

Table 1. Nitrogen diagnosis in maize intercropping receiving nitrogen as side-dressing in the autumn-winter of 2021 crop.

Consórcios	N rates (kg ha ⁻¹)					F test for regression	
	0	50	100	150	Means	Linear	Quadratic
	Nitrogen in	the diagno	stic leaves	of the mai	ze		
Maize in monoculture system	17.10 a	17.46 a	16.92 a	18.18 a	17.42 a	ns	ns
Maize-Aruana grass intercropping	15.48 a	17.82 a	18.00 a	18.72 a	17.50 a	ns	ns
Maize-Congo grass intercropping	15.30 a	16.38 a	16.74 a	19.26 a	16.92 a	0.0090	0.0279
Means	15.96	17.22	17.22	18.72		ns	ns
CV%	9.84						
	Nitrogen in	n diagnosti	c leaves of	the grasse	S		
Maize-Aruana grass intercropping	24.30 a	25.74 a	30.24 a	31.14 a	25.72 a	ns	ns
Maize-Congo grass intercropping	24.12 a	25.20 a	26.28 a	27.00 a	25.79 a	0.0015	ns
Means	24.21	25.47	28.26	29.07		ns	ns
CV%	10.64						

[®] N rate of 10.36 kg ha⁻¹ showed the lowest [§] The results highlighted that when maize is concentration of N in the diagnostic leaves of the maize (15,49 g kg⁻¹) (Fig. 2). N concentrations in diagnostic leaves of maize intercropped with Congo grass are below the level considered adequate (27.5 to 32.5 g kg⁻¹) by Malavolta et al. (1997), even at rates higher than the one responsible for the lowest concentration.

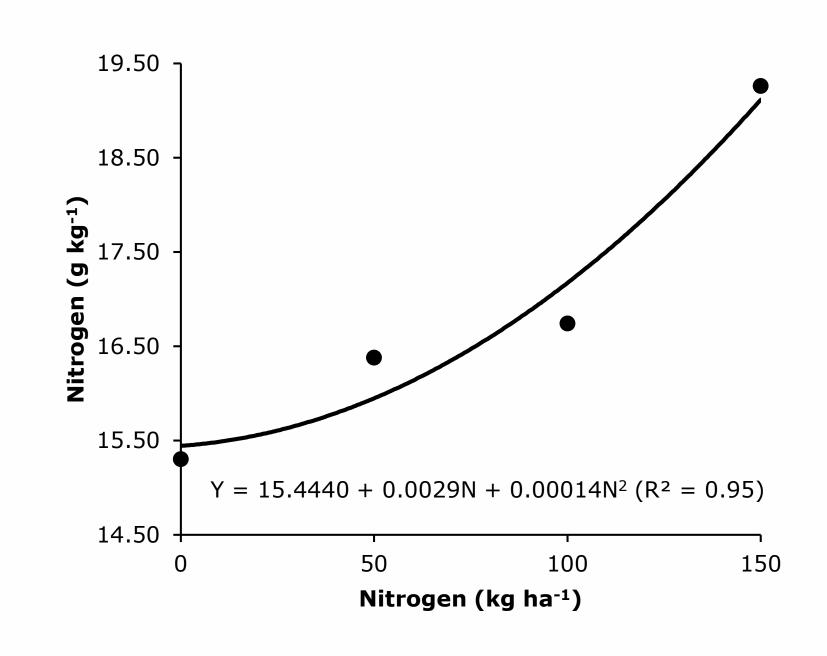


Fig. 2: N concentration in the diagnostic leaves of the maize.

The increase in the N rates applied as sidedressing promoted a linear increase in the N concentration in the diagnostic leaves of the Congo grass (Fig. 3). Thus, Congo grass when intercropped with maize can induce N deficiency if it is not adequately replenished according to plant needs, negatively affecting the overall balance of nitrogen in the cropping system (Rocha et al., 2020).

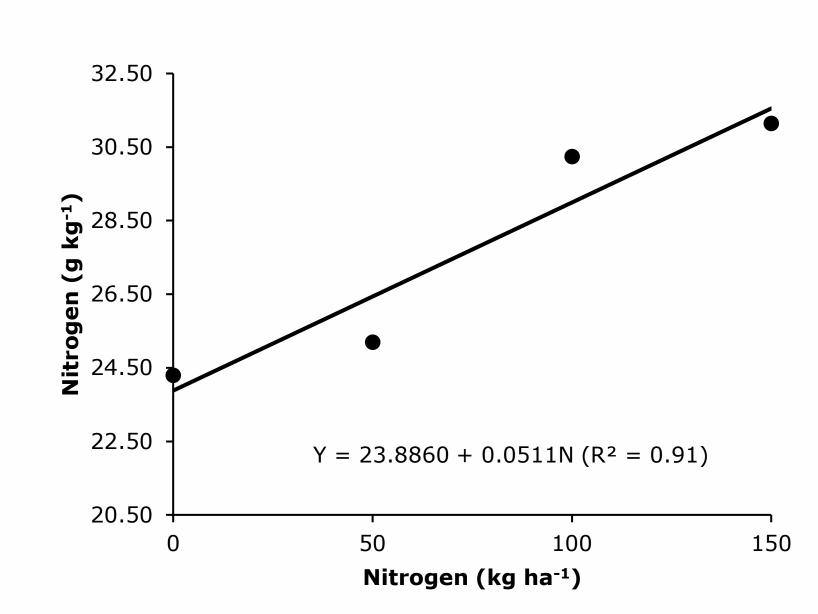


Fig. 3: N concentration in the diagnostic leaves of the Congo grass.

CONCLUSIONS

- intercropped with Congo grass in the autumn-winter, it is necessary to administer nitrogen fertilization to complement the amount of nitrogen supplied by the soil in order to avoid competition between the intercropped plants.
- in maize-Congo diagnosis intercropping can help in the sustainable maize production in autumn-winter season.

ACKNOWLEDGEMENTS

© The authors thank to São Paulo Research Foundation (FAPESP) for financial support 2017/50339-5, (process process 2019/02387-6 and 2020/01494 -0).

REFERENCES

- 1. Malavolta, E., Vitti, G. C., Oliveira, S. A. de., 1997. Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba: POTAFOS, Brazil.
- 2. Rocha, K. F., Souza, M. De, Almeida, D. S., Chadwick, D. R., Jones, D. L., Sacha, J. M., Rosolem, C. A. (2020). Cover crops affect the partial nitrogen balance in a maizeforage cropping system. Geoderma, 360, p. 1-7. DOI: 10.1016/j.geoderma.2019.114000.

