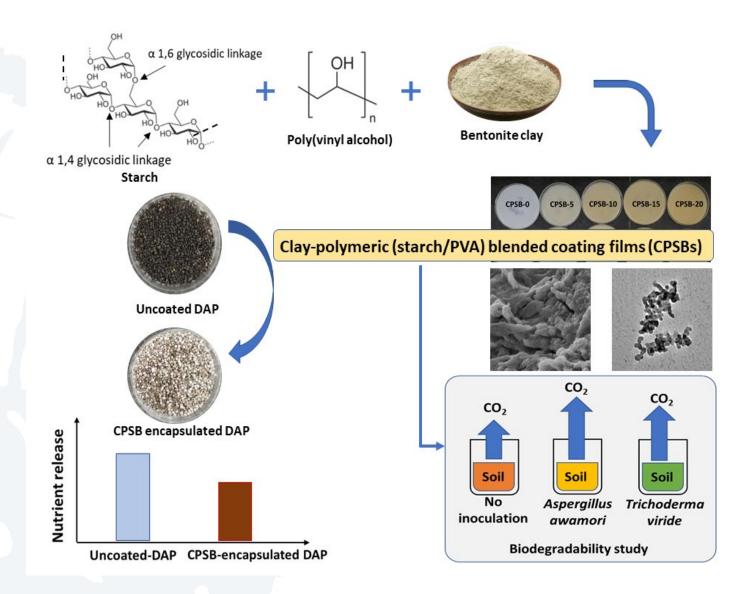


Background

- Fertilizers ensure food security as evidenced from the phenomenal many-fold increase in food grains production and fertilizer consumption.
- Nitrogen (N) and phosphatic (P) fertilizers account maximum sharing in global fertilizer market (FAI, 2019).
- Achievable recovery efficiency is hardly 35–40 % for N and 15–20 % for applied P fertilizers.
- Flashed release of nutrient caused economic losses, nutrient loss and subsequent environmental pollution.
- The slow release fertilizer is defined as the fertilizer which releases the nutrient at slower rate for a longer duration aiming to synchronize plant demand (Shaviv, 2005).
- Most common and effective practice to manufacture SRF is encapsulation of granular fertilizers. However, degradability of encapsulating materials is major cause of concern.
 Global Symposium on Soils for Nutrition | 26-29 July 2022

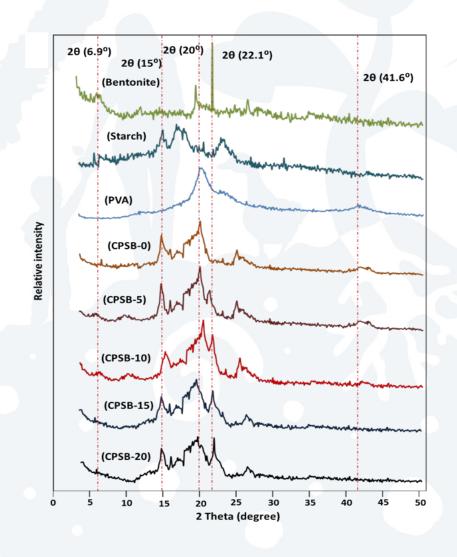
Why PVA/starch/bentonite polymeric blend?

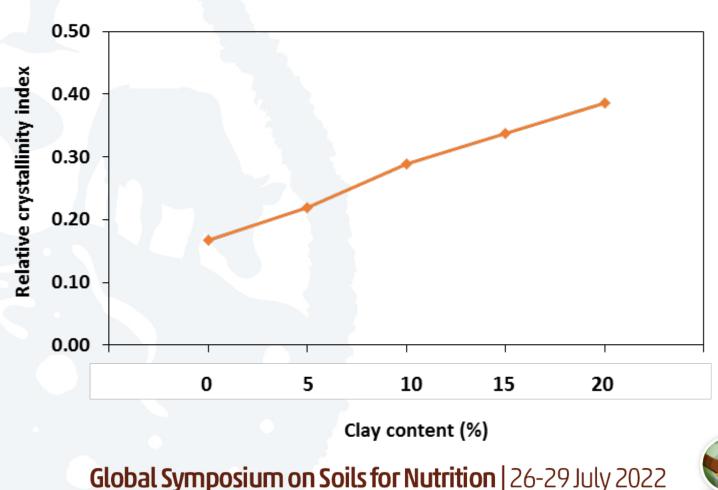
- Starch is a natural biodegradable macromolecule that composed of linear amylose and branched amylopectin.
- Indeed, poor structural qualities (brittle nature of starch films and high water-vapor permeability) of starch-based crosslinked polymers hinder its widespread uses (Ali et al., 2011; Ray et al., 2009).
- The combination of starch and biodegradable polymer like poly(vinyl alcohol) (PVA) increase film forming properties of starch after polymerization (Han et al., 2009; Priya et al., 2014).
- However, multiple numbers of surface-hydroxyl groups (–OH), excess hydrophilicity, high surface activity and inferior mechanical properties of starch/PVA films demands fillers for better mechanical strength (Tian et al., 2017).
- Notably, natural availability of bentonite in the lithosphere and cost-effective processing for clay-fractioned bentonite made it economically feasible than the other used filler materials (Hosseini et al., 2018).

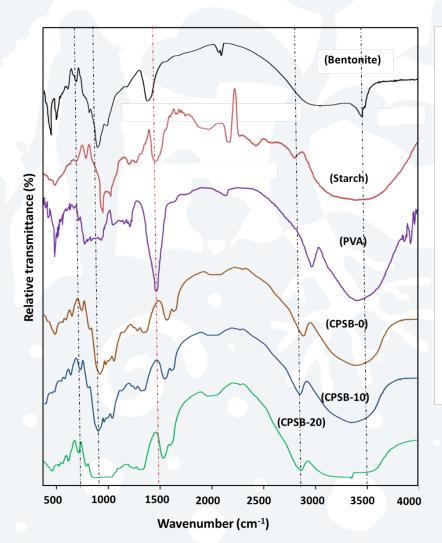

Methods

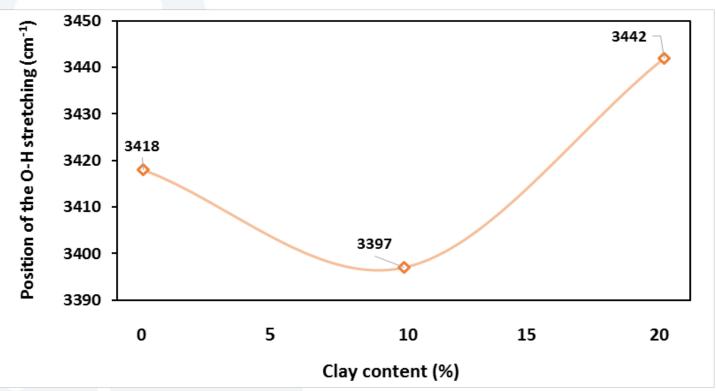
PVA: wheat starch (3:7)

Added bentonite: 0, 5, 10, 15 and 20% (w/w)

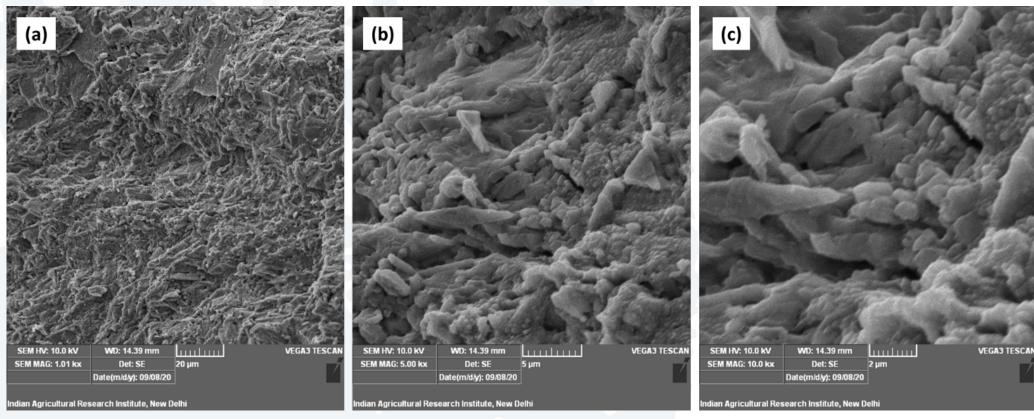

0.25M APS: 6.25 mL


Butanol: 0.5 mL



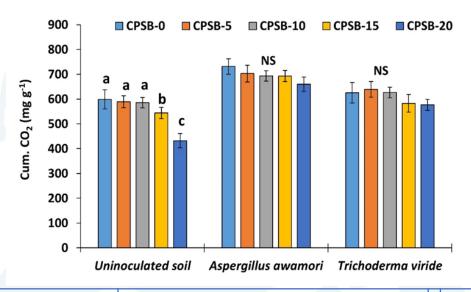

X-ray diffraction (XRD) pattern and crystallinity index of PVA/starch/bentonite polymeric blend

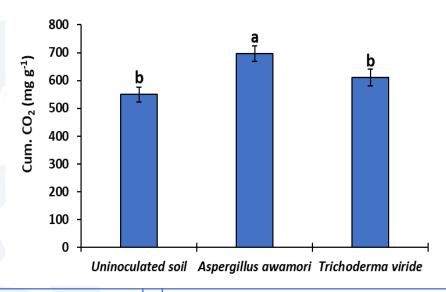
FTIR spectra and peak position for the O-H stretching of PVA/starch/bentonite polymeric blend

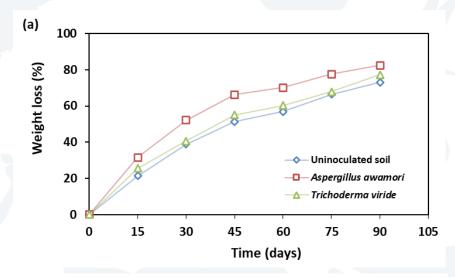


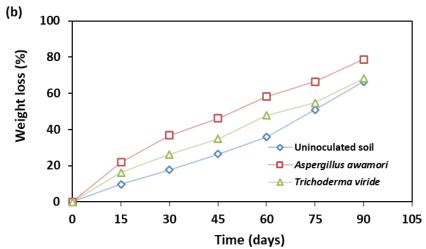
Structural parameters of different PVA/starch/bentonite polymeric blend

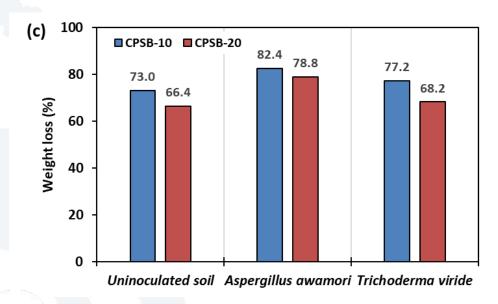
CPSBs	Density (Mg m ⁻³)	Porosity (%)	Absorbency (%)		
			Deionized water	0.9% NaCl	
CPSB-0	1.049 ± 0.002a	90.3 ± 2.37a	297.4 ± 7.05a	191.5 ± 2.73a	
CPSB-5	1.058 ± 0.003d	88.0 ± 1.79ab	252.2 ± 4.22b	183.2 ± 3.44b	
CPSB-10	1.073 ± 0.004c	86.4 ± 1.95bc	233.9 ± 8.62c	173.8 ± 5.56c	
CPSB-15	1.084 ± 0.008b	85.2 ± 1.16c	209.3 ± 2.78d	140.4 ± 1.64d	
CPSB-20	1.090 ± 0.008a	82.5 ± 1.28d	196.1 ± 3.27e	116.1 ± 5.98e	




Scanning electron micrograph of CPSB-10 at (a) 1000 X, (b) 5000 X and (c) 10000 X magnification

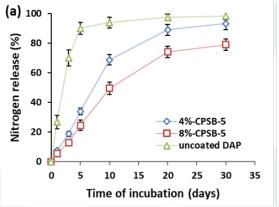

Biodegradation and half-life of different PVA/starch/bentonite polymeric blend

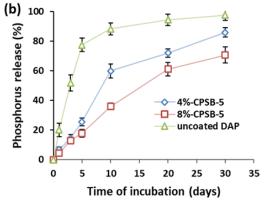


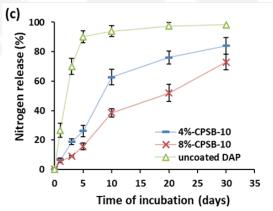


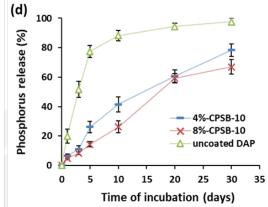
Coating Uninocul		culated soil		Aspergillus awamori inoculation			Trichoderma viride inoculation		
	k (day ⁻¹)	t _{0.5} (day)	R ²	k (day ⁻¹)	t _{0.5} (day)	R ²	k (day ⁻¹)	t _{0.5} (day)	R ²
CPSB-0	0.0257	27.0e	0.921	0.0339	20.4e	0.913	0.0281	24.7 e	0.926
CPSB-5	0.0182	38.0d	0.964	0.0258	26.9d	0.935	0.0198	35.0d	0.946
CPSB-10	0.0134	51.9c	0.996	0.0185	37.4c	0.945	0.0173	40.1c	0.989
CPSB-15	0.0105	65.9b	0.998	o.Glqbal Syl	ngpgsium o	n Soils tor	NAttition 5	6 1.56 July 2	0.988 GLOBALS
CPSB-20	0.0094	74.1 a	0.974	0.0136	51.1 a	0.966	0.0097	71.5 a	0.991

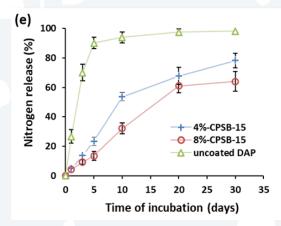
Weight loss pattern of CPSB-10 and CPSB-20 PVA/starch/bentonite polymeric blend

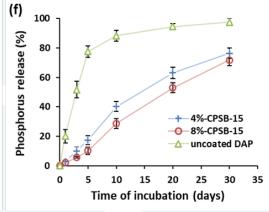





Uninoculated soil Aspergillus awamori Trichoderma viride
Before degradation CPSB-10 after degradation


Global Symposium on Soils for Nutrition | 26-29 July 2022





Nutrient release in water

Uncoated DAP

8%-CPSB-10 encapsulated DAP

Full grain

Fractured grain

Images of 8%-CPSB-10 encapsulated DAP under compound microscope

obal Symposium on Soils for Nutrition | 26-29 July 2022

Modeled parameters

Different coated NP	N release			P release					
sources	n	K _m	R ²	Mechanism involved	n	K _m	R ²	Mechanism involved	
4%-CPSB-5-DAP	0.76	0.77	0.985	Non-Fickian diffusion	0.72	0.73	0.950	Non-Fickian diffusion	
8%-CPSB-5-DAP	0.84	0.39	0.972	Non-Fickian diffusion	0.78	0.41	0.986	Non-Fickian diffusion	
4%-CPSB-10-DAP	0.76	0.68	0.972	Non-Fickian diffusion	0.73	0.62	0.945	Non-Fickian diffusion	
8%-CPSB-10-DAP	0.78	0.41	0.946	Non-Fickian diffusion	0.78	0.36	0.956	Non-Fickian diffusion	
4%-CPSB-15-DAP	0.79	0.42	0.973	Non-Fickian diffusion	0.93	0.16	0.979	Non-Fickian diffusion	
8%-CPSB-15-DAP	0.82	0.35	0.963	Non-Fickian diffusion	0.97	0.10	0.955	Non-Fickian diffusion	
Uncoated DAP	0.23	24.2	0.955	Quasi-Fickian diffusion	0.30	14.8	0.908	Quasi-Fickian diffusion	

Incubation in soil

- Medium: Soil (Inceptisol and Vertisol)
- Products under evaluation: 7
- CPSB coated DAP (4%-CPSB-10-DAP, 8%-CPSB-10-DAP) and Uncoated DAP (reference)
- Temperature: 20 and 30 °C
- Targeted nutrients: Mineral nitrogen ($NH_4^+ + NO_3^-$) and Phosphorus
- Replication: 3
- Dose of P: 100 mg P kg⁻¹ soil

- ❖ Compared to Vertisol, N and P release from coated-DAP and uncoated DAP was higher in Inceptisol.
- ❖ At 30 °C, N release from coated-DAP and uncoated DAP was ~1.19 and 1.25 times higher than 20 °C.
- ❖ Whereas, P release was increased by ~1.04 times with increasing temperature (20 to 30 °C) during incubation.

Details of pot-culture experiment

Source of nutrients: 3 (4%-CPSB-10-DAP, 8%-CPSB-10-DAP and Uncoated DAP)

Types of soil: 2 (Inceptisol, New Delhi; Vertisol, Bhopal)

Weight of soil: 4 kg soil pot-1

Fertilizer dose: 120:__:60 (N: P₂O₅: K₂O) kg ha⁻¹ (excess nutrient supplied through

Urea for N and MOP for K)

Set up: 1

Without Aspergillus awamori

Dose of P: 3

(i) 0 mg P kg⁻¹

(ii) 25 mg P kg⁻¹

(iii) 50 mg P kg⁻¹

Set up 2:

With Aspergillus awamori

Dose of P: 1

(i) 25 mg P kg⁻¹

Absolute control: One (without any nutrient supply)

Crop: Wheat (Triticum aestivum L.) var. HD-3086

Replication: 3; Design of experiment: CRD

Salient findings in pot-culture experiment

- ❖ The 8%-CPSB-10-DAP recorded comparatively higher grain yield (11.1 and 10.6 g pot⁻¹ under Inceptisol and Vertisol, respectively);
- ❖ Compared to uncoated DAP it showed higher straw yield (~32 and 37%) and total biomass yield (~33 and 30%) in Inceptisol and Vertisol, respectively.
- ❖ Soils inoculated with Aspergillus awamori helped to produce ~7% higher grain yield than the uninoculated soils in both the soils (Inceptisol and Vertisol).
- ❖ Increased P doses resulted in significantly increased yield attributes and nutrient uptakes.
- ❖ Application of PVA/starch/bentonite polymeric blend coated-DAP increased the nutrient (mineral N and available P) supplying capacity even at 60 days after sowing than the uncoated DAP.
- ❖ With the application of PVA/starch/bentonite polymeric blend coated-DAP, the N recovery efficiency could be achieved up to 88% (44.9% for uncoated DAP); whereas, P recovery efficiency could achieved as high as 32.5% (15.2% for uncoated DAP).

Conclusions

- Bentonite incorporation is a good filler material to be used to prepare polymeric films to coat fertilizers.
- Aspergillus awamori could be a better option for decontamination of residual polymeric substances.
- Application of PVA/starch/bentonite polymeric blend coated-DAP increased the nutrient (mineral N and available P) supplying capacity even at 60 days after sowing than the uncoated DAP.
- Increased rate of coating will prolong nutrient release at slower rate.
- Aspergillus awamori inoculation during pot-culture experiment increased nutrient (P) availability for a longer period of time.

