

OUTLINE

- Background
- Methodology
- Results and Discussion
- Conclusions

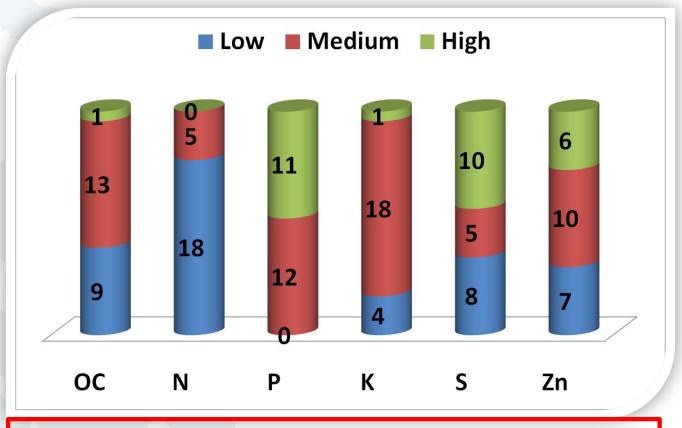
Background

- More than 1/3rd of the world's cultivable soils are calcareous and occupy 70 per cent of the total geographic area of the country.
- Excess lime and high pH causes low solubility and high degree of nutrient fixation. Therefore, farmers tend to add extra amount of fertilizers which may result in an imbalanced nutrition.
- Thus, the aim of the present study was to evaluate the indigenous nutrient supplying capacity of calcareous soil using a nutrient omission plot technique under rice-maize cropping system.
- "Omission Plots" techniques: a particular essential nutrient is omitted from the fertilization schedule keeping the supply of other limiting nutrients in ample quantity.

Methodology: Location and treatment details

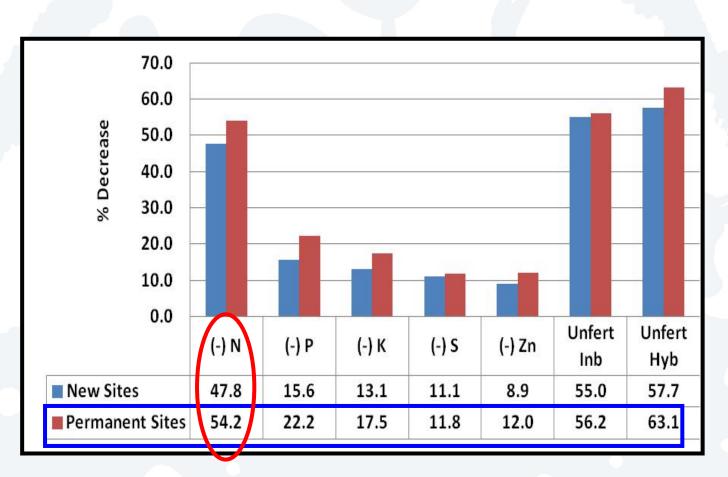
Total No. districts: 2
Total no. of villages: 6

Total no. of sites: 23 (22 at farmers field and 1 at University farm)



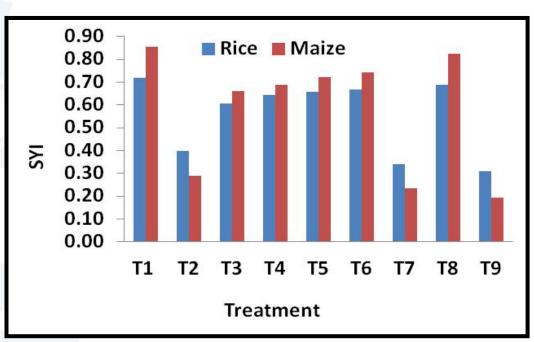
Treatments	Crop & Var.
*T ₁ : N+P+K+S+Zn	Rice:
*T ₂ : P+K+S+Zn (-N)	*Hybrid : Arize6444
*T ₃ : N+K+S+Zn (-P)	
*T ₄ : N+P+S+Zn (-K)	# Inbred:
*T ₅ : N+P+K+Zn (-S)	Rajshree
*T ₆ : N+P+K+S (-Zn)	Maize:
#T ₇ : Unfertilized	*Hybrid:
#T ₈ : N+P+K+S+Zn	DKC9081
*T ₉ : Unfertilized	# Inbred:
	Laxmi

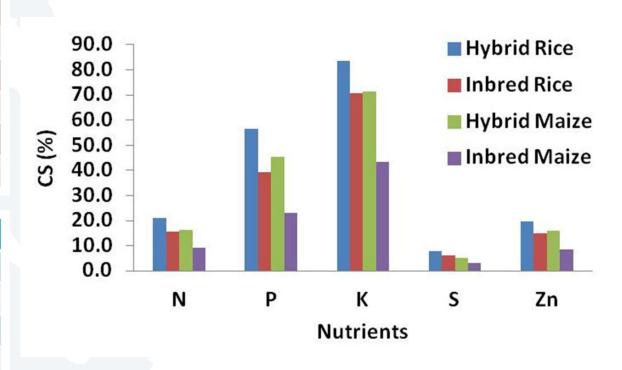
Status of initial soil (0-15 cm) of the selected 23 experimental sites


Parameter	Range	Mean & SD
pH (1:2)	7.43 – 8.28	7.88 ± 0.21
EC (1:2) dS/m	0.21 - 0.72	0.35 ± 0.12
OC (%)	0.33 - 0.80	0.56 ± 0.12
N (Kg/ha)	190.4 – 375.2	233.6 ± 40.70
P (Kg/ha)	12.4 – 56.6	25.3 ± 13.05
K (Kg/ha)	86.2 – 253.1	182.8 ± 50.57
S (mg/kg)	8.4 – 52.8	19.8 ± 11.22
Zn (mg/kg)	0.21 – 2.16	1.0 ± 0.59

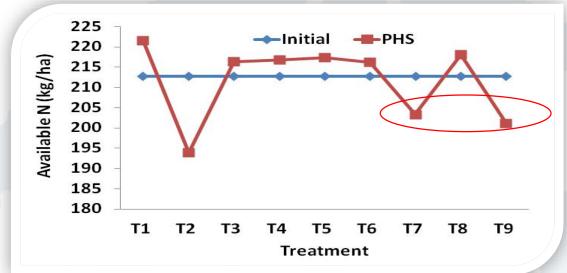
Rating of the experimental sites in low, medium and high categories

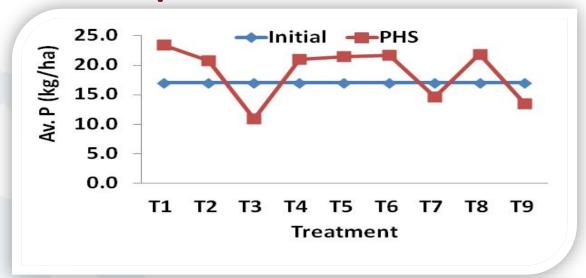
Percent decrease in rice equivalent yield (Fig 1) and sustainable yield index (SYI) (Fig 2)

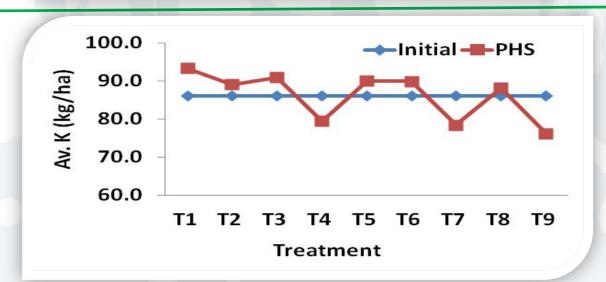


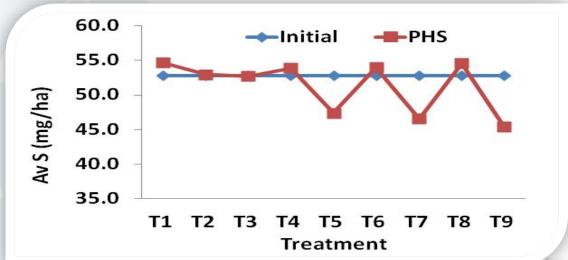

Fig 2

Nutrient Requirement (NR), Contribution from Soil (CS) and Contribution from Fertilizer (CF) under rice and maize


Nutrients	Hybrid Rice			Hybrid Maize		
	NR (kg/q)	CS (%)	CF (%)	NR (kg/q)	CS (%)	CF (%)
N	1.86	21.16	48.16	1.59	16.40	58.81
P	0.31	56.65	44.21	0.32	45.29	41.68
K	2.04	83.66	94.05	2.18	71.43	95.92
S	0.23	7.71	29.29	0.23	5.15	58.23
Zn	7.28	19.7	9.38	9.60	15.98	25.65


Nutrients	Inbred Rice			Inbred Maize		
	NR (kg/q)	CS (%)	CF (%)	NR (kg/q)	CS (%)	CF (%)
N	1.83	15.57	42.84	1.34	9.20	37.07
Р	0.31	39.32	39.70	0.26	23.01	36.01
K	2.32	70.86	87.16	2.05	43.18	79.77
S	0.27	6.17	22.54	0.23	3.16	32.29
Zn	8.59	15.06	7.35	8.46	8.35	12.34





Status of available nutrients in post harvest soil

Conclusions

- ➤ Omission of the nutrients reduced the rice equivalent yield (REY) over ample fertilization, and in general, N (52.5%) was most limiting nutrient followed by P (19.8%), K (16.2%), S (11.4%) and Zn (10.9%).
- Improved nutrient management through synchronization of indigenous nutrient supplying capacity with targeted crop yield could improve productivity, soil fertility, nutrient use efficiency and farm income.
- ➤ However, further research is needed at different locations to determine and optimize the nutrient demands by the hybrid crops for getting sustainable yield and maintaining soil fertility.

Acknowledgements

The financial support of International Plant Nutrition Institute (IPNI)-South Asia Program and the technical and administrative support of Dr. Rajendra Prasad Central Agricultural University, India for conducting the project is thankfully acknowledged.

