

STCR - IPNS based Fertilizer Prescriptions for Cotton in coastal Karaikal region

¹Pandit Jawaharlal Nehru College of Agriculture and Research Institute, Karaikal, Puducherry UT, India; ²Indian Institute of Soil Science, Bhopal, India.

Introduction

Cotton 'the king of apparel fibers' is an important fiber and cash crop. It supplies a major share of raw material for the textile industry and plays a key role in the economic and social affairs of the world (Vora *et al.*, 2015). The current fertilization practices do not put back in equal measure the nutrient to the soil as have been removed by crops, resulting in continuous depletion of soil fertility.

This can be offset only by adopting soil testing and applying integrated plant nutrient supply (IPNS) as has been enunciated as "The Law of Optimum", which has been demonstrated and validated in numerous farmer's field for obtaining targeted yield of crops under the All India Co-ordinated Research Project on Soil Test Crop Response (AICRP-STCR) project annual reports (Ramamoorthy and Velayutham, 2011, Tandon 2014 and Velayutham *et al.*, 2016).

Figure 1: Field view of test cotton crop

Methodology

The experiments were conducted at farmer's field of Varichikudy village of Karaikal district, Puducherry UT during 2020. The area comes under Thirunallar soil series which occupies 26.14 % of soils of the district.

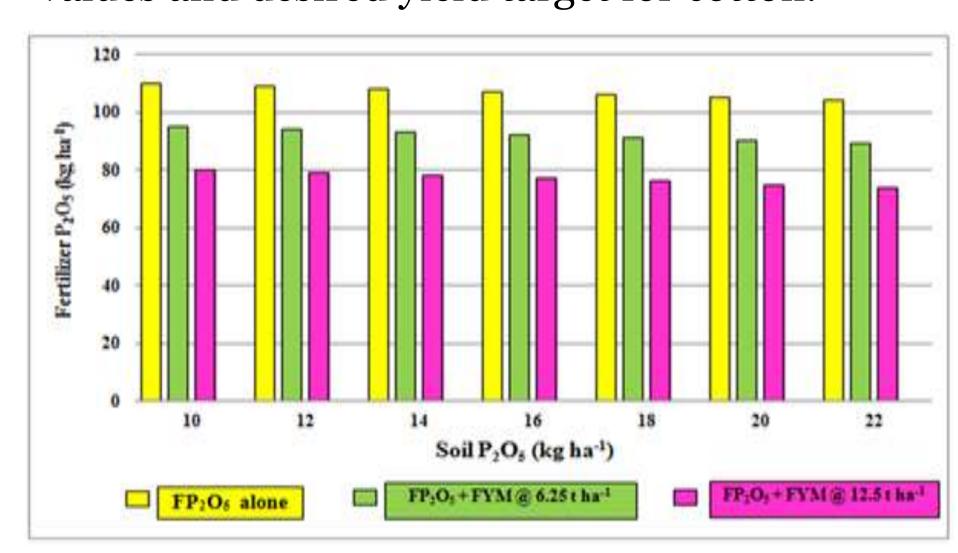
Following the inductive methodology of Ramamoorthy et al. (1967), the experiment was conducted in 2 phases. In the 1st phase, fertility gradient experiment was conducted by raising Rice (ADT 45) as an exhaust crop during 2019. For this, the field was divided into three equal which were fertilized with N_oP_oK_o (strip-I), $N_1P_1K_1$ (strip-II) and $N_2P_2K_2$ (strip-III) levels to create fertility gradient. Subsequently, in the second phase, after the harvest of the exhaust crop, Cotton hybrid (RCH 659) was raised as test crop. Each of the fertility strips was subdivided into 24 sub-plots resulting in 72 plots. There were 24 treatments consists of four levels of N (0, 60, 120 and 180 kg ha⁻¹), P_2O_5 (0, 30,60 and 90 kg ha⁻¹), K₂O (0, 30, 60 and 90 kg ha⁻¹) and FYM (0.6.25 and 12.5 t ha⁻¹).

The moisture and N, P₂O₅ and K₂O contents of FYM were 26, 0.56, 0.32 and 0.51 %, respectively.

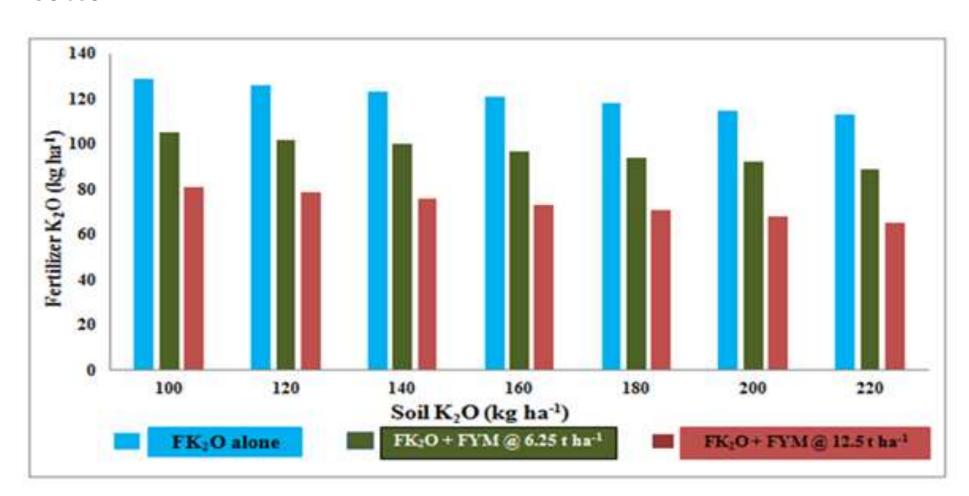
Using the data on crop yield, nutrient uptake, pre-sowing soil available nutrient status and fertilizer doses applied, the basic parameters used in developing STCR based fertilizer prescription equation viz. nutrient (NR), contribution of nutrients from soil (CS), fertilizer (CF) and FYM (CFYM) were calculated as per procedure described by Ramamoorthy *et al.*(1967) and Santhi *et al.*(2002).

Table 1: Nutrient requirement, per cent contribution of nutrients from soil, fertilizer and FYM for cotton.

Darameters	В	asic Da	Response		
Parameters	N	P ₂ O ₅	K ₂ O	yard stick (kg kg ⁻¹)	
Nutrient requirement (kg q ⁻¹)	3.49	2.37	4.22		
Contribution (%) from soil (Cs)	10.82	14.03	10.88	6.61	
Contribution (%) from fertilizers (Cf)	47.90	68.35	98.20	6.64	
Contribution (%) from FYM (Cfym)	38.45	21.25	26.04		


Table 2: Soil test based fertilizer N and reduction in N fertilizer requirement for different yield targets of cotton under IPNS

—	NPK alone (kg/h a)	NPK + FYM 6.25 t ha ⁻¹	Fertil izer savin	% reduc	NPK + FYM	Fertil	%				
		(kg/ ha)	g (kg ha ⁻¹)	tion over NPK	12.5 t ha ⁻¹ (kg ha ⁻¹)	izer savin g (kg ha ⁻¹)	reduc tion over NPK				
	31 q ha ⁻¹										
280	163	137	26	15.9	111	52	31.9				
300	158	132	26	16.4	106	52	32.9				
320	154	128	26	16.8	102	52	33.7				
340	149	123	26	17.4	97	52	34.8				
360	145	119	26	17.9	93	52	35.8				
380	140	114	26	18.6	88	52	37.0				
400	136	110	26	19.1	84	52	38.2				
33 q ha ⁻¹											
280	177	151	26	14.7	125	52	29.3				
300	173	147	26	15.0	121	52	30.0				
320	168	142	26	15.5	116	52	30.9				
340	164	138	26	15.9	112	52	31.7				
360	159	133	26	16.4	107	52	32.7				
380	155	129	26	16.8	103	52	33.5				
400	150	124	26	17.3	98	52	34.7				
35 q ha ⁻¹											
280	192	166	26	13.5	140	52	27.1				
300	187	161	26	13.9	136	52	27.8				
320	183	157	26	14.2	131	52	28.4				
340	178	152	26	14.6	127	52	29.2				
360	174	148	26	14.9	122	52	29.8				
380	169	143	26	15.4	117	52	30.8				
400	164	139	26	15.9	113 c fino	52	31.7				


This soil is classified as fine, smectitic isohyperthermic, *Typic Haplusterts*. The soils of experimental field was slightly alkaline (pH - 8.5), non-saline in reaction and sandy clay loam in texture. The P and K fixing capacities of the soil were 150 and 100 kg ha⁻¹, respectively. The fertility status of the soil is low in KMnO₄-N (268.4 kg ha⁻¹) and medium in organic carbon (0.69 %) and high in Olsen-P (48.5 kg ha⁻¹) and NH₄OAc-K (351 kg ha⁻¹). The experiment was carried out after the application of gypsum.

The percent nutrient contribution of nutrients from soil (CS), fertilizer (CF) and FYM (CFYM) were found to be 10.82, 47.90 and 38.45 for N, 14.03, 68.35 and 21.25 for P₂O₅ and 10.88, 98.20 and 26.04 for K₂O respectively.

Based on fertilizer prescription equations and nomograms formulated for a range of soil test values and desired yield target for cotton.

Figure 2: Soil test-based fertilizer P doses for 33 q ha⁻¹ of cotton

Figure 3: Soil test-based fertilizer K doses for 33 q ha⁻¹ of cotton

Conclusion

It was revealed that under the treatment NPK + FYM @ 12.5 t ha⁻¹ with 26 per cent moisture and 0.56,0.30 and 0.42 percent N,P and K, respectively, there was a saving of 52, 30 and 48 kg of fertilizer N, P₂O₅ and K₂O, respectively.

References

- [1] Ramamoorthy, B., Narasimham, R.K. and Dinesh. R.S (1967). Fertilizer application for specific yield taregts on Sonora 64 (wheat). *Indian Farming*, **17**: 43-45.
- [2] Ramamoorthy, B and Velayutham, M. (2011). The Law of Optimum and soil test base fertilizer use for targeted yield of crops and soil fertility management for sustainable agriculture. *Madras Agricultural Journal*, **98:**295-307.
- [3] Santhi, R., Natesan. R. and Selvakumari.G. (2002). Soil test based fertilizer recommendation under IPNS for aggregatum onion in Inceptisol of Tamil Nadu. *Agropedology*, **12.**
- [4] Tandon, HLS. (2014). Soil testing for balanced fertilization. FDCO, New Delhi: 170.
- [5] Velayutham, M., Santhi, R., Subba Rao, A., Muralidharudu, Y. and Dey.P.(2016). The Law of Optimum and its application for realizing targeted yields in India- A mini- review (Thaninayagam Adigal),:12-20.

Acknowledgement

The authors wish to acknowledge the financial support by ICAR – AICRP on STCR, Indian Institute of Soil Science, Bhopal, India.

