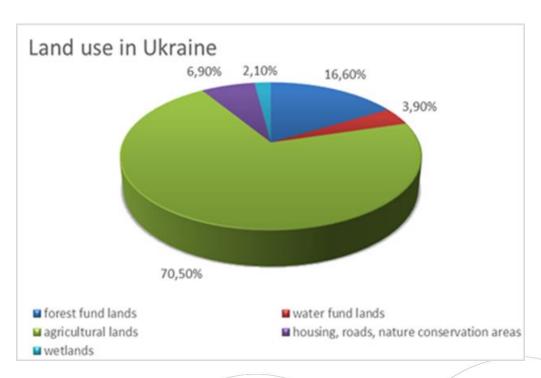


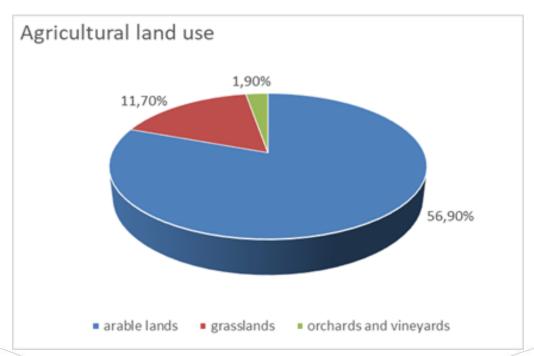
Salt-affected soils: threats and potentials

Considering spatial heterogeneity of drip irrigated salinity in soil monitoring

Joint meeting of INSAS and SUSTAIN

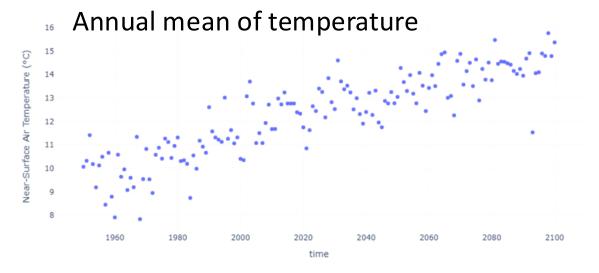
Valencia, Spain **May 27-31**, 2024

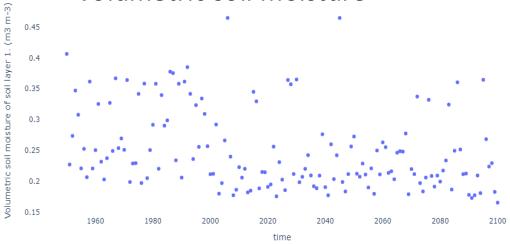

Land use in Ukraine

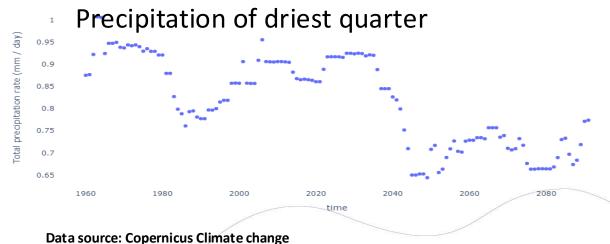

Total area
Agricultural land
Cropland

603,6 thousand km²

402,3 thousand km² (70,5%)


352,4 thousand ha





Climate projections (1960-2100) RCP 4.5

Irrigated areas by regions of Ukraine

The main reasons for the decline in the use of sprinkler irrigation

- ✓ Limited available water resources suitable for irrigation when expanding irrigated areas/introducing new irrigated areas;
- ✓ Unstable farmer demand for sprinkler irrigation;
- ✓ Expense;
- Unsatisfactory technical condition of irrigation systems placed in use before 2000;
- Lack of technical support, etc.

Object of study

The object of study – Southern chernozem (Chernozems Calcic) on private farms and land holdings of individual business entities in the steppe zone of the Ukraine.

The problem is – influence of drip irrigation on soil properties and consider spatial pattern of soil parameters in soil monitoring.

The main objective of the study is — to investigate changes in salinity parameters in different zones of the soil moisture contour under drip irrigation.

Fig. 1: Southern chernozem

Causes of soil degradation under drip irrigation

- ✓ Exceeding technological irrigation limits
- ✓ Poorer quality of irrigation water
- ✓ Use of drip irrigation on previously irrigated soils with varying levels of irrigation degradation
- ✓ Mineralized unconfined groundwater
- ✓ Salt content of bedrock

Fig. 2: Strip salinisation under drip irrigation (after irrigation)

Chemical composition (average) and irrigation assessment of irrigation water quality of the Ingulets irrigation system

Water source	рН	Amount of salts, g/dm³	Ion content, meq/dm³							Irrigation assessment of soil degradation risk (NSS 2730)		
			HCO ₃ -	Cl ⁻	SO ₄ ²⁻	Ca ²⁺	Mg ²⁺	Na⁺	K ⁺	salinity	solonetzization	alkalinisation
Main channel	6,9-7,1	1,96-2,11	2,9	18,2	10,8	6,5	8,5	16,5	0,4	2	2	1

Southern Chernozem (non-irrigated)

Indicator	Parameters		
CaCO _{3,} %	1,7-2,8		
Ca/Na (water extract 1:5)	3,5-6,4		
Exchangeable Na ⁺ (0-50 sm), mg/100 g	0,2-0,4		
Humus (0-25 sm), %	2,0-3,1		
Silt (0-50 sm),%	25,4-34,9		
Clay (0-50 sm),%	39,4-52,4		

Soil-salinity survey on irrigated land in Ukraine

NSS 7850:2015 Soil quality. Procedure for soil-salt survey

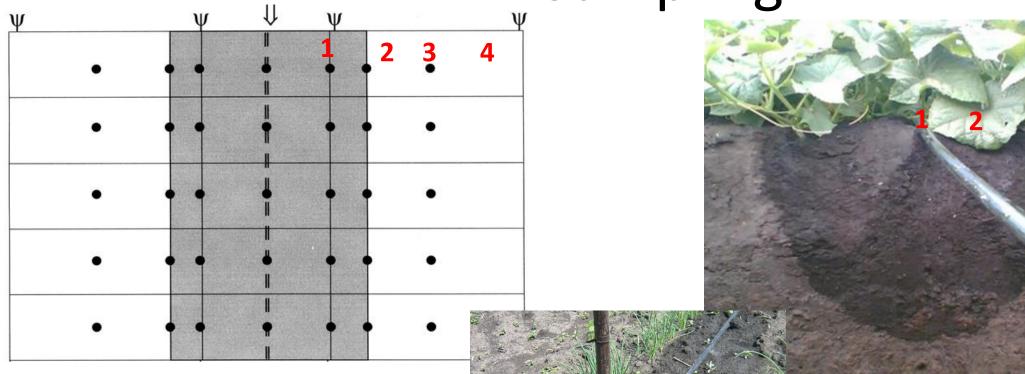

- At the local monitoring level, the basic scale of the soil salinity survey is 1:10000.
- Soil contours are the subject of the survey, with borehole points placed in such a way as to cover all soil subdivisions or contours of salinity of soils.
- Average number of points per 1 km² (100 ha) 6-10.

Photo source: UkrAgro

Sampling

 Ψ A row of vegetable crops

Location of the irrigation pipeline

↓ Pipeline

Soil sampling points

Moisture zone

Fig. 3: Soil sampling scheme

Joint meeting of the International network of salt-affected soils (INSAS) and the COST Action on the sustainable use of salt-affected lands (SUSTAIN)

0 - 25 cm

25 - 50 cm

50 - 75 cm

75 - 100 cm

Unconfined groundwater table up to 2 m

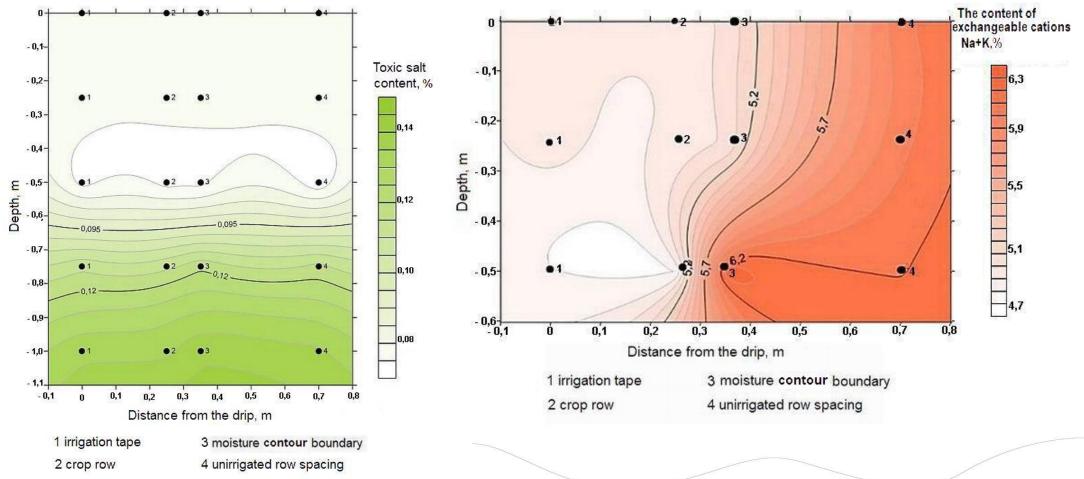


Fig. 4: Toxic salt content,%

Fig. 5: Exchangeable Na+K content,%

Unconfined groundwater table 3-5 m

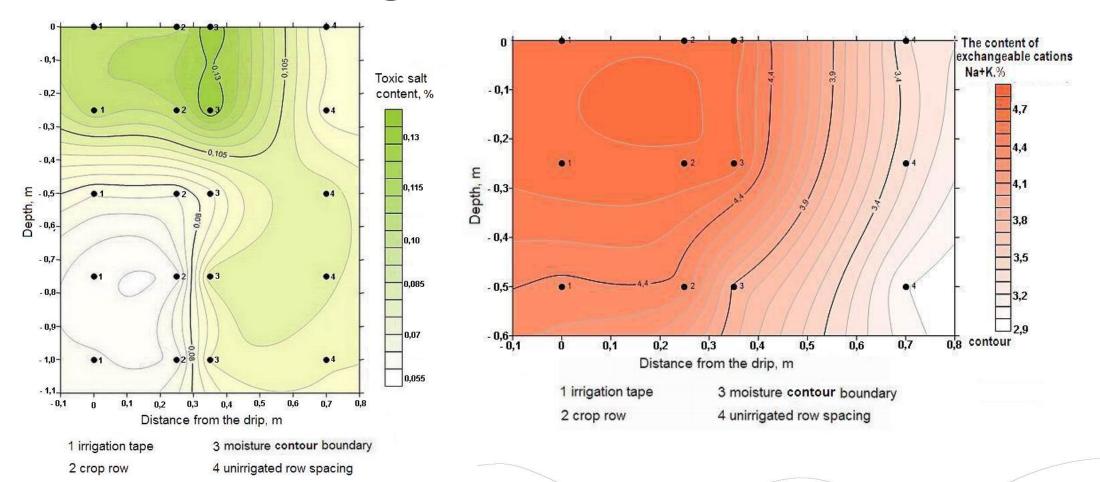


Fig. 6: Toxic salt content,%

Fig. 5: Exchangeable Na+K content,%

Conclusion

- Under drip irrigation, accumulation of toxic salts was observed within the irrigation zone with maximum concentration at the boundary of the irrigation contour. The content of exchangeable Na+K was high in the layers 0-25 cm and 25-50 cm layers. When growing different vegetable crops, the moisture zone does not correspond to the same one every year.
- The mechanical mixing of the soil in the wetting zone and the row spacing during post-irrigation tillage
 cause a levelling of linear halogenation manifestations only in the upper 0-25 cm soil layer. In the lower
 horizons, degradation changes remain stable over a long period of soil use and tend to spread further.
- The proposed soil sampling scheme for monitoring and mapping soil salinity under drip irrigation provides a detailed description of the extent of the spatial impact of drip irrigation on the soil.
- The high variability of the soil parameters in the chain irrigation tape crop row moisture counter boundary - row spacing' has been demonstrated. This variability cannot be detected using other sampling schemes.

Water and the Environment

Department of Agriculture,

Funded by the European Union

VNIVERSITAT

E VALÈNCIA

International Union of Soil Sciences

Ministry of Agriculture, Nature and Food Quality of the Netherlands