
Timeline

Conceptual Approach for GSHI - May 2023 - 1st Draft

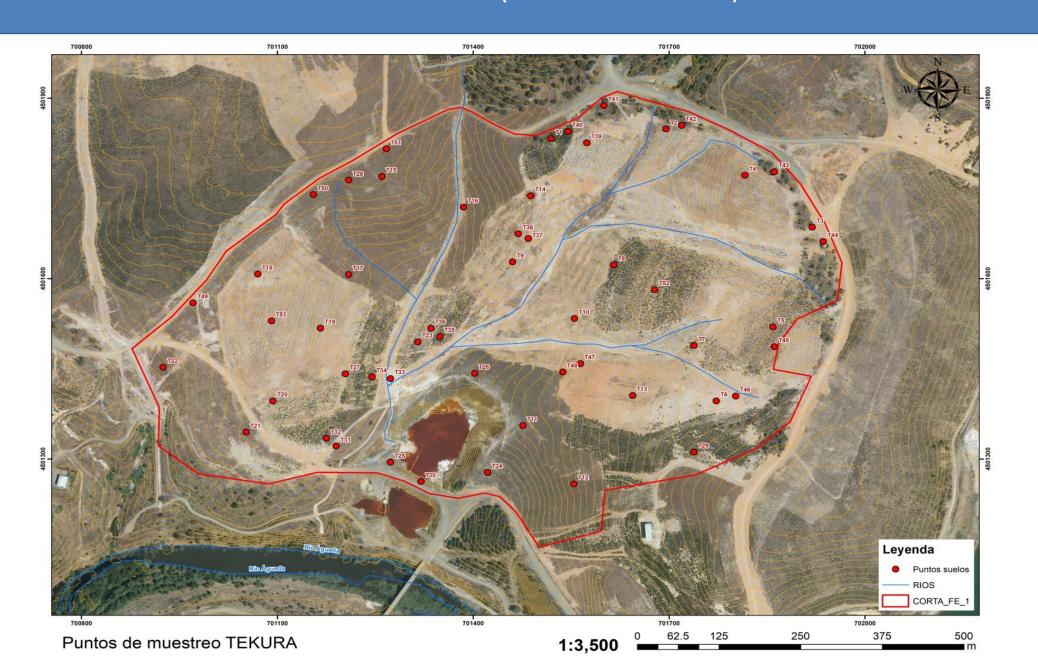
where:

• SHI: SI1, SI2, ..., SIn: Scores for each of the n soil indicators, classified into poor, fair, good, or excellent categories based on predetermined ranges or cutoff values. Scores are assigned values of 1 to 4, with 4 being the highest score for an excellent category, and 1 being the lowest score for a poor category.

W1, W2, ..., Wn: Weights assigned to each soil indicator in the SHI equation, expressed as percentages of the overall SHI. The weights can be adjusted based on the specific needs and objectives of a given study or management practice

Conceptual Approach for GSHI - May 2023 - 1st Draft Candidate Indicators for GSHI

Indicator (SI)	Readiness*	Poor	Fair	Good	Excellent	SHI Weight (%)
Predicted SOC Stocks (tonnes/ha)	GSOCmap	<10	10-30	30-80	>80	20%
Predicted SOCseq Potential (tonnes/ha/yr)	GSOCseq	<0.2	0.2-0.5	0.5-1.0	>1.0	10%
Measured or Predicted Electrical Conductivity (EC) (dS/m)	GSASmap	>4	2-4	1-2	<1	5%
Predicted Annual Soil Erosion (water) (tonnes/ha/yr)	ESDAC	>5	2-5	1-2	<1	10%
Available K Concentration (kg/ha)	GSNmap	<50	50-100	100-200	>200	10%
Available P Concentration (kg/ha)	GSNmap	<5	5-10	10-20	>20	10%
Available N Concentration (kg/ha)	GSNmap	<50	50-100	100-200	>200	10%
Bulk Density (g/cm³)	GSNmap	>1.6	1.4-1.6	1.2-1.4	<1.2	5%
Soil Microbial Biomass Carbon (MBC) (mg C/kg)	TBD	<50	50-200	200-500	>500	15%
Soil pH	GSASmap	1 (pH < 5.0) or 2 (pH > 8.5)	ļ. ·	3 (pH 6.0-6.5 or pH 7.0-7.5)	4 (pH 6.5-7.0)	5%


Soil Health Concept

- **Definition by ITPS**: Soil health is the soil's ability to sustain productivity, diversity, and ecosystem services.
- Soil Health Index Concept: A conceptual value adjusted for different ecosystem services and management systems.
- Thresholds for soil properties will be assigned considering the ecosystem services
 that soils provide. The scores for indicators will be assigned for each ecosystem
 service that soils provide and these scores will be regionalized based on agroecological zones
- Benefits: Provides a comprehensive assessment of soil health in context.
 10th Meeting of the International Network of Soil Information Institutions (INSII) | 15-16-17 January 2025

SOIL SAMPLING (TEKURA PROJECT)

Reactive wetland with an initial spread of hyperreductive and eutrophic basal Technosols

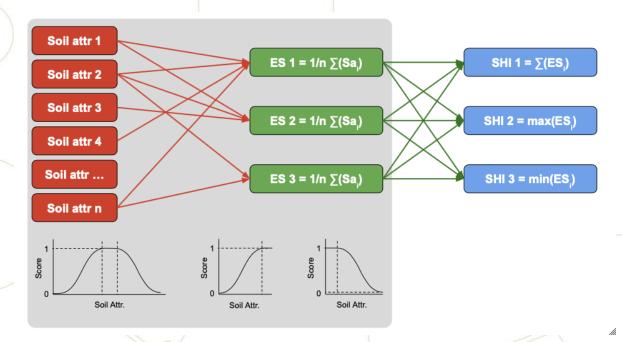
Reactive wetland
June 2019. Neutral to alkaline waters. Normal biodiversity in natural waters.

Five weeks after the start of the rain: vegetative growth begins, surface waters become neutral, and the caldera becomes acidic and oxidizing. Biodiversity.

The stormwater pond exhibits Schwermannite stability rather than Jarosite.

End of March 2020

Soil Health Concept


- **Definition by ITPS**: Soil health is the soil's ability to sustain productivity, diversity, and ecosystem services.
- Soil Health Index Concept: A conceptual value adjusted for different ecosystem services and management systems.
- Thresholds for soil properties will be assigned considering the ecosystem services
 that soils provide. The scores for indicators will be assigned for each ecosystem
 service that soils provide and these scores will be regionalized based on agroecological zones
- Benefits: Provides a comprehensive assessment of soil health in context.
 10th Meeting of the International Network of Soil Information Institutions (INSII) | 15-16-17 January 2025

Conceptual Approach for GSH - July 2023 - 2nd Draft

- Assessment Tool: Uses a set of Soil Ecosystem Services for evaluating soil health.
- **Soil Functions**: Determined by physical, chemical, and biological soil indicators by Agro-Ecological Zones.
- Scoring System: GSHI based on scores of Soil Functions.

$$SHI = \sum_{i=1}^{n} \left(\frac{1}{m} \sum_{j=1}^{m} SI_{j} \right)_{i}$$

Where.

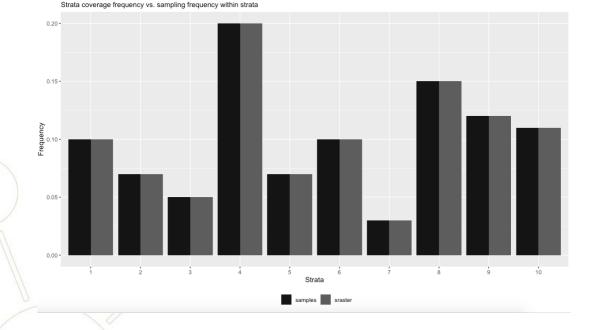
- SHI: Soil Health Index,
- Sl_j : Soil indicator for the ecosystem service i, (Sl_j ranges from 0 to 1 using a fuzzy logic membership function, and the SHI ranges from 0 to n.)
- m: number of soil indicators for each ecosystem service,
- *n* : number of ecosystem services.

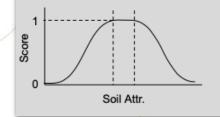
Soil Health Indicators and related Soil Properties

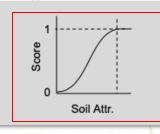
Soil Ecosystem Service	Relevant Soil Characteristics
Carbon Sequestration (1)	- Soil Organic Carbon stock (t/ha 30 cm) GSOCmap v1.6 and https://soilgrids.org/
Nutrient Cycling (6)	 Soil Organic Carbon stock (t/ha 30 cm) GSOCmap v1.6 and https://soilgrids.org/ Cation Exchange Capacity (CEC) GSASmap and https://soilgrids.org/ Base Saturation http://globalchange.bnu.edu.cn/research/soilw *10km pH https://soilgrids.org/ Total Nitrogen https://soilgrids.org/ Total Phosphorus https://world-olsen.agr.nz/ 1km Total Potassium http://globalchange.bnu.edu.cn/research/soilw *10km
Water Regulation & Storage (4)	 Soil Organic Carbon stock (t/ha 30 cm) GSOCmap v1.6 and https://soilgrids.org/ Volumetric Water Content http://globalchange.bnu.edu.cn/research/soilw Soil Texture (Sand, Silt, Clay content) https://soilgrids.org/ Bulk Density https://soilgrids.org/ Electrical Conductivity http://globalchange.bnu.edu.cn/research/soilw *10km
Supporting Biodiversity (5)	 Organic Carbon Content https://soilgrids.org/ Soil Texture https://soilgrids.org/ Bulk Density https://soilgrids.org/ Electrical Conductivity http://globalchange.bnu.edu.cn/research/soilw *10km

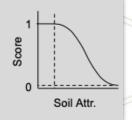
Soil Health Indicators and related Soil Properties

Soil Ecosystem Service	Relevant Soil Characteristics
Erosion Control (3 +2)	- Soil Texture https://soilgrids.org/
	- Bulk Density https://soilgrids.org/
	- Organic Carbon Content https://soilgrids.org/
	- Vegetation cover, slope
Filtration and Buffering (4)	- Cation Exchange Capacity https://soilgrids.org/
	- pH https://soilgrids.org/
	- Soil Texture https://soilgrids.org/
	- Organic Carbon Content https://soilgrids.org/
Climate Regulation (2 + 1)	- Organic Carbon Content https://soilgrids.org/
	- Soil Albedo (related to texture and moisture content)
	- Vegetation cover
Cultural & Recreational (2)	- General Soil Fertility (influences vegetation and landscape diversity)
	- Soil Texture https://soilgrids.org/


Implementation Procedure

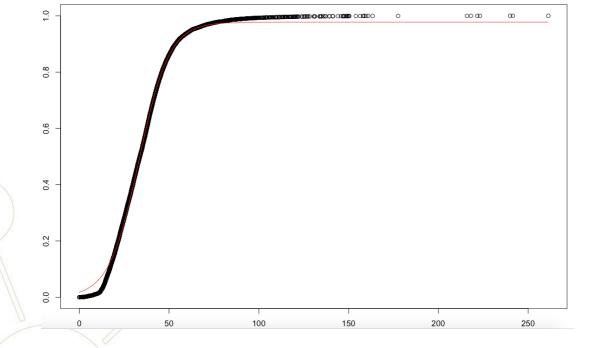

Soil Ecosystem Service - Carbon Sequestration

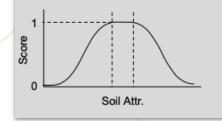

Sample representation by strata

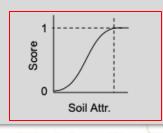

Score calculation:

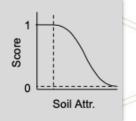
- Stratified random sampling on AEZ strata (20,000 samples/AEZ)
- Extract SOC values on points
- Determine the expected shape of the distribution function
 - Calculate ECDF and fit a function (nls)
 Predict pixel scores upon the ECDF
 probability

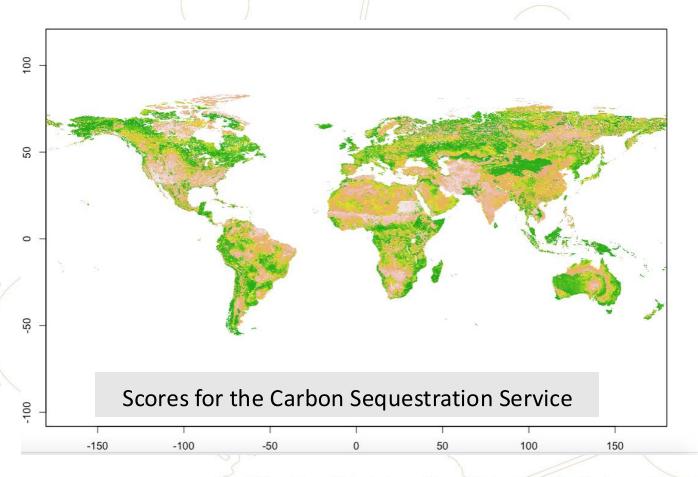
Samples distribution by AEZ


Implementation Procedure


Soil Ecosystem Service - Carbon Sequestration


Score calculation:


- Stratified random sampling on AEZ strata (200,000 samples)
- Extract SOC values on points
- Determine the expected shape of the distribution function
 - Calculate ECDF and fit a function (nls)
 Predict pixel scores upon the ECDF
 - redict pixer scores upon the ECD

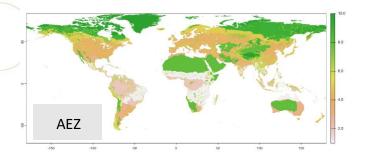


ECDF for SOC in Tropical Savannah and fitted function

10th Meeting of the International Network of Soil Information Institutions (INSII) | 15-16-17 January 2025

Implementation Procedure

Soil Ecosystem Service - Carbon Sequestration

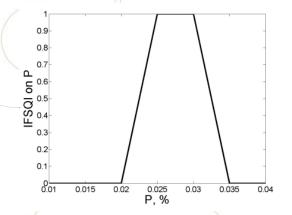


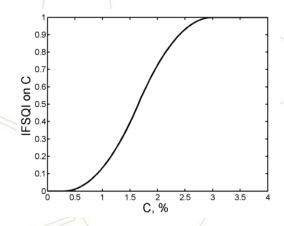
Results:

0.4

0.2

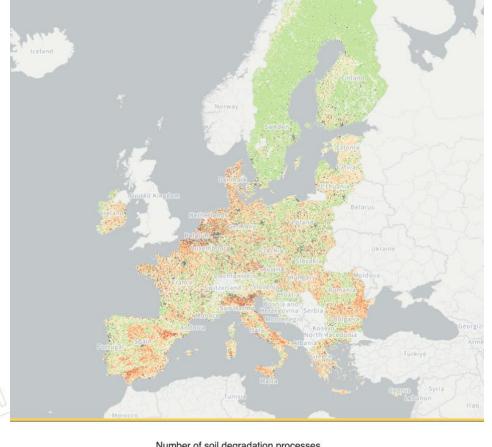
- Scores from 0-1 representing the quantile position between minimum and maximum of SOC in the AEZ .
- The scores are weighted by AEZ
- Values near to 1 indicates that existing SOC values are close to the maximum SOC registered in the AEZ, thus with relative higher carbon sequestration capacity.

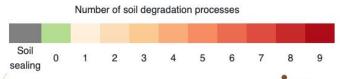




Soil attribute intervals within which values of are more suitable for crop production (Kaiumov, 1977)

Soil	рН	SOM (%)	P ₂ O ₅ (mg/kg)	K ₂ O (mg/kg)
Loam	6.5-7	1.8-2.2	250-280	200-260
Loamy sand	6-6.5	2.0-2.4	200-250	180-200
Sandy	5.5-6	2.2-2.6	180-200	140-160
Turf	5-5.5	-	500-600	600-800





Conceptual Approach for GSHI - March 2024 - 3rd Draft

Last Approach to GSHI. It is calculated as the sum of Degradation Processes occurring at each location.

This approach is in alignment with the reported outcomes from the Status of the World's Soil Resources Report and the EU Soil Observatory Soil Dashboard.

Soil threats from the Report of the World Soil Resources

- 1) SOC decline
- 2) Salinization and sodification
- 3) Erosion
- 4) Soil Sealing
- 5) Nutrient imbalance

- 6) Biodiversity loss
- 7) Compaction
- 8) Acidification
- 9) Contamination
- 10) Waterlogging

Soil Threats and Indicators

Domain	Indicator	Metric	Unit	Tier 1 Data		Essential/Supple mentary1 (E/S)
SOC decline	Soil Organic Carbon Stock	Variation on SOC Stocks	Mg/ha	GSOCmap	1 km x 1 km	E
SOC decline	Soil Organic Carbon Sequestration Potential	Predicted SOCseq Potential	Mg/ha/yr	GSOCseq	1 km x 1 km	S
SOC decline	Soil Organic Carbon Content	Soil Organic Carbon content	% or g/kg	SOILGRIDS	1 km x 1 km	S
Salinization/ sodification	Electrical Conductivity	Measured or estimated EC	dS/m at 25°C	GSASmap	1 km x 1 km	Е
Salinization/ Sodification	Exchangeable Sodium percentage or Sodium Adsorption Ratio	Estimated/Measured ESP or SAR	% or mmol(+)^1/2	GSASmap	1 km x 1 km	S

Soil Threats and Indicators

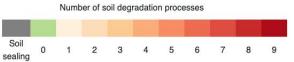
Domain	Indicator	Metric	Unit	Tier 1 Data	Spatial Res.	Essential/Suppl ementary
Erosion	Water Erosion Rate	Predicted Annual Soil Loss by Water	tonnes/ha/y > TH	JRC/ESDAC -Glosem 1.3 -Global Soil Erodibility -EPM	100 m (crops)	E
Erosion	Water Erosion Rate	Area under severe risk of erosion	ha	Borrelli et al. 2017	250 m x 250 m	S
Erosion	Tillage Erosion Rate	Predicted Annual Soil Loss by Tillage	tonnes/ha/y > TH	N/A		S
Erosion	Wind Erosion Rate	Susceptibility to Wind Erosion	tonnes/ha/y > TH	N/A		S
Sealing	Soil Sealing	Sealed area	ha or % of sealed area/pixel	N/A		E
Nutrient imbalance	Soil Nutrient Budget	Predicted/Calculated Nutrient Budgets for NPK	kg/ha/yr	GSNBudget	250 m x 250 m	Е
Nutrient imbalance	Available Nutrient Contents	Nutrient Concentrations (NPK)	kg/ha >th	GSNmap	250 m x 250 m	S ULUBAL SUI

Soil Threats and Indicators

Domain	Indicator	Metric	Unit	Tier 1 Data	Spatial Res.	(E/S)
Biodiversity loss	Microbial Activity	Soil microbial biomass carbon (MBC)	mg C/kg	N/A		E
Biodiversity loss	Soil Respiration	CO ₂ production	(g C/m²/day or year?)	Ni, Huang; Li, Wang (2020). Global annual soil respiration from 2000 to 2014		S
Compaction	Soil Compaction, texture	Bulk Density	g/cm³	GSNmap	250 m x 250 m	E
Acidification	Soil Reaction	Soil pH	N/A	GSNmap	250 m x 250 m	Е
Contamination	Heavy Metal Concentrations	Predicted/Measured Heavy Metal Concentrations	Ppm > TH	N/A		E
Contamination	Contaminated Sites	Number, type of site, type of main pollutant	Integer (#)	N/A		S
Waterlogging	Soil Drainage	Soil Drainage classes	NA	N/A		E

Data Sources: Tier Approach

- **Tier 1:** Use global default datasets as a starting point for GSHI mapping, validated by national experts.
- Tier 2: Incorporate country-specific spatial datasets where available, replacing global datasets to improve accuracy.



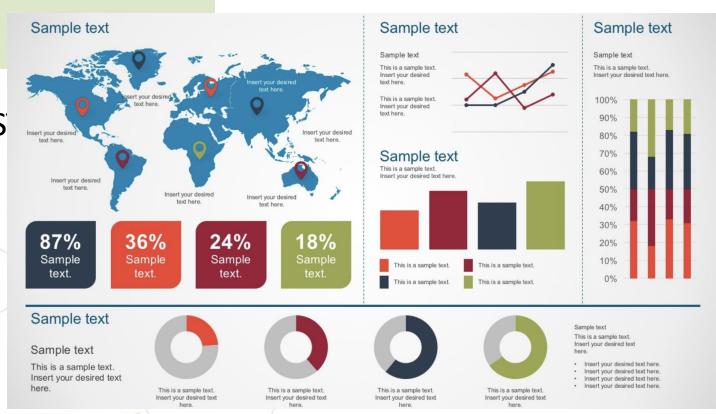
Visualization

Spatial representation of the GSHI using a traffic light color-coding system (green for healthy soils, red for degraded soils) and display specific threats for each location.

Reporting Mechanism

- Countries report aggregated assessments as 1 km × 1 km raster maps including metadata (data sources, methods, limitations).
- Establish an official approval process involving national contributors, the ISAF Working Group and INSII to ensure data accuracy and reliability.
- Timespan TBD (aligned with the WSR Report?)

Quality Assurance/Quality Control


- Implement guidelines for data validation, comparability, and uncertainty assessment.
- Conduct plausibility checks to ensure reported data aligns with expected scientific trends.
- Document and report uncertainties, specifying their sources and impact.

GHSI Dashboard

GSHI Dashboard on the SoilS platform.

Request for INSII

- Evaluate the GSHI methodology and prepare it for endorsement at the next GSP Plenary Assembly.
- Provide expert support to establish thresholds for soil indicators within each soil threat, including potential zonification, particularly for pollution-related threats.
- Encourage countries to contribute national datasets to complement and enhance global datasets.
- Promote partnerships with research institutions to address critical data gaps, particularly in areas such as biodiversity loss, microbial activity, and baseline concentrations for heavy metals.
- Assist in data quality assessment of national contributions to ensure consistency, reliability, and accuracy.
- Facilitate capacity building to support the implementation of the GSHI methodology and the mapping of soil threats.

