

Working Group Meetings the INSOILFE Working Group 3.

Fertilizer safety and quality

assessment

Dr Wesley Feldmann – INFA Chair

Introduction

- "Investing in harmonized fertilizer quality assessments for sustainable soil and fertilizer management"
- Launched in December 2020
 - Similar to GLOSOLAN in objectives
 - Three meetings from 2020, 2021 and 2022
- Objectives defined as:
 - Harmonisation
 - Capacity development
 - Regulatory affairs

Harmonisation

- Focus on harmonisation of fertilizer methodologies for nutrient analysis:
 - Nitrogen (N)
 - Phosphorus (P)
 - Potassium (K)
 - Collaboration for heavy metal determination with INSOP
 - Future expansion of scope
- Methodology of harmonisation is clear, functional and extensive
 - Nitrogen via Kjeldahl complete for publication
 - Methods for P and K are underway
- Harmonisation leads to more reliable results leads to effective decision making

Capacity development

- Development of laboratory skills and infrastructure is critical for effective function
- Focus on development of guidelines for:
 - Laboratory sample preparation
 - Quality control procedures
 - Collaboration with other networks to produce targeted guidelines
- SOPs are planned to be converted to video format in future

Regulatory affairs

- Idea to have a database detailing all fertilizer quality standards for import and export per country or region
- Collaboration with:
 - Member laboratories
 - FAO focal points
 - Fertilizer organisations
- Important to keep information current and updated
- Similar venture to GLOSOLAN
 - SOILEX platform as a base

Summary

- The network has grown in laboratory number per region
 - Please be encouraged to join as we near 200 members

- The harmonisation process is under way for NPK + heavy metals
 - We plan to have these methods completed for 2024

- We are open to future collaboration, ideas and assistance
 - The members of the network are critical to the success of the network

SOP Harmonisation Process and Summary

SOP Harmonisation

- SOPs currently being harmonised:
 - Nitrogen Kjeldahl method
 - Nitrogen Combustion (Dumas) method
 - Phosphorus Water soluble
 - Phosphorus Acid soluble
 - Potassium Water soluble
 - Heavy metals Acid digestion
- Harmonisation uses data gained from the network to form the final SOP

Harmonization into final data set

Publication and adoption by labs

Methods selected for harmonization

NPK

Templates for method specifics

Define per method step

Step	Breakdown	No. of Labs	Lab Code	Prevailing Practice	Remarks	
	Organic + compost	8	1, 2, 3, 4, 5, 13, 18, 23			
Fertilizer type	Inorganic (mineral-based)	19	3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22	Inorganic	Gives relevant information on what types of fertilizers labs are testing	
	Total	27				
	Liquid	15	1, 2, 5, 6, 7, 11, 12, 13, 14, 15, 19, 20, 21, 22, 23			
Fertilizer form	Granular + powder	23	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23	Granular + Powder		
	Composted	8	1, 2, 3, 4, 5, 13, 18, 23			
	Total	46				
Sample preparation procedure						
	≤0.5 mm	14	4, 5, 6, 7, 10, 11, 12, 13, 14, 16, 20, 21, 22, 23	≤0.5 mm		
Particle size	≤2 mm	8	2, 3, 8, 9, 15, 17, 18, 19			
	>2 mm	1	1			

Summarize into method steps

Fertilizer type	Fertilizer form	Sample preparation procedure	Particle size	Sample weight	Equipment	Ammoniacal/ Total	Reagents	Catalyst added	Catalyst weight	Volume of sulphuric acid	Concentration of sulphuric acid	Mixing time	Digestion temperature	Digestion time	Distillation procedure	Titration procedure	
Inorganic	Granular + powder	Listed	≤0.5 mm	≤1	Listed	Both	Listed	Copper Sulphate and Potassium Sulphate (1:10) or Devarda	5.0	50.0	>95%	1 hr	380	2 hrs	Listed	Listed	

SOP draft development and review (internal and external)

Harmonization into final data set

Harmonization into final data set

Publication and adoption by labs

SOP Template

- The objective and final product of the work will be FAO published SOPs
- A working draft has been developed for review
 - Major sections and supporting points
 - Currently under review
- Harmonized data to be included in draft
- Sent to the network for review
- Identify technical experts for additional review
- Submitted for publication via FAO

TOTAL NITROGEN - KJELDAHL METHOD

Introduction

- Background on the importance of Nitrogen in crop growth and health, with a focus on fertilizers and their application.
- Can mention the importance of accurate determinations to promote sustainable and appropriate application for Nitrogen-based fertilizers to prevent nutrient runoff and eutrophication.
- Introduce the various species of nitrogen, e.g. NH3 and NO3.
- Brief overview of specifics relating to the results, <u>e.g.</u> different versions of <u>Kieldihal</u> for NH3 and NO3.

Scope

• The scope = all types of fertilizers. E.g. Organic, inorganic, etc.

Principle

- Basic steps involved in the process for Total Nitrogen determination to give an overview/idea of the process and laboratory workflow.
- To be provided from excel sheets filled by members, with reference to literature methods as a backing.

SOP Status Summary

- SOPs currently being harmonised:
 - Nitrogen: Kjeldahl method Complete
 - Nitrogen: Combustion (Dumas) method Final draft
 - Phosphorus: Water soluble Preliminary draft
 - Phosphorus: Acid soluble Preliminary draft
 - Potassium: Water soluble Preliminary draft
 - Heavy metals: Acid digestion Final review (INSOP collaboration)
- Harmonised SOPs is the first step in leading to quality results, which can be used for effective decision making

