

Pathways to precision in soil analysis:advancing soil laboratories in Latin America and the Caribbean

Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

Calibration

Daniel Vidal Pérez

WORKSHOP SANTIAGO - CHILLÁN | CHILE 8-11 APRIL 2024

• Lab Glassware (volumetric);

 Equipments (Weigh balance, UV/Vis, Flame Photometer, etc);

• Signal x Results – Calibration curve

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

- Some examples are pipets, volumetric flasks and burets;
- The value marked on a piece of glassware is called the nominal value;
- The true value is usually slightly different from the nominal value;
- The key measuring device in the laboratory is the analytical balance.

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

- To Contain vs. To Deliver;
- A. The volume of a pipet is determined by weighing the water delivered into a clean dry container.
 From the weight and the density of water one can calculate the true volume delivered;
- B. To calibrate a volumetric flask, it is first weighed empty, clean and dry.
 It is then filled to the mark with water and again weighed.
 As before, the volume is calculated from the weight of water and its density

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

• An example: Calibration of a Burette

Using the burette, deliver 10.00 mL of the distilled water into the pre-weighed 100-mL volumetric flask.

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

• An example: Calibration of a 50 mL Burette

Figure 5. Final Volume: 10.00-mL Reading

Record the mass of the filled volumetric flask.

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

• An example: Calibration of a Burette

Density of Water at 25.0 °C (from Table 5):	<u>0.997044</u> g/mL	
		Temperatu
$\mathbf{M}_{1} = \mathbf{M}_{1} \mathbf{M}_{2} \mathbf{M}_{1} \mathbf{M}_{2} \mathbf{M}_{2} \mathbf{M}_{3} \mathbf{M}_{4} \mathbf{M}_{4}$	79 439 4 -	(°C)
Mass of Water and Volumetric Flask (g):	<u>78.4294</u> g	19.0
	-	19.2
Mass of Empty 100-mL Volumetric Flask (g):	— <u>68.3996</u> g	19.4
		19.6
Mass of Water (g):	= <u>10.0298</u> g	19.8
		20.0
		20.2
Density = $\frac{\text{Mass}}{\text{Mass}}$ Volume = $\frac{\text{Mass}}{\text{Mass}}$	V_{0} Mass	
Volume Volume Densit	У	20.6

Table 5. Density of Water at Various Temperatures

Temperature	Density	Temperature	Density	Temperature	Density
(°C)	(g/mL)	(°C)	(g/mL)	(°C)	(g/mL)
19.0	0.998405	21.6	0.997860	24.2	0.997246
19.2	0.998365	21.8	0.997815	24.4	0.997196
19.4	0.998325	22.0	0.997770	24.6	0.997146
19.6	0.998285	22.2	0.997724	24.8	0.997095
19.8	0.998265	22.4	0.997678	25.0	0.997044
20.0	0.998203	22.6	0.997632	25.2	0.996992
20.2	0.998162	22.8	0.997585	25.4	0.996941
20.4	0.998120	23.0	0.997538	25.6	0.996888
20.6	0.998078	23.2	0.997490	25.8	0.996836
20.8	0.998035	23.4	0.997442	26.0	0.996783
21.0	0.997922	23.6	0.997394	26.2	0.996729
21.2	0.997948	23.8	0.997345	26.4	0.996703
21.4	0.997904	24.0	0.997296		

 $Volume = \frac{10.0298g}{0.997044g/mL} = 10.0595 \text{ mL}$

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

EQUIPMENTS (WEIGH BALANCE)

- Factors that affect the performance of analytical balances:
- 1. acceleration of gravity;
- 2. ambient temperature;
- 3. humidity;
- 4. barometric pressure;
- 5. altitude, etc

Conclusion: Calibration can only be given at the place of installation

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

EQUIPMENTS (WEIGH ANALYTICAL BALANCE)

- External calibration is a manual process that requires the user to place an approved set of weighing scale weights on the balance and set their weight as the standard;
- Performance Check: 1 mg, 2 mg, 5 mg, 10 mg and 20 mg calibration standard weights should be placed separately on the top pan balance after the auto calibration process, and the measurements noted in the performance check log.
- To meet the traceable standard, these measurements need to remain within the 0.1% of the actual mass value of each weight.

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

Signal x Results – CALIBRATION CURVES

• UV-Vis spectrophotometer example (Absorbance reading)

Abs	Abs Corr	Conc
0,03591	0	0
0,168	0,13209	10
0,3068	0,27089	25
0,5009	0,46499	50
0,7341	0,69819	70

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean

Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

Signal x Results – CALIBRATION CURVES

• Calibration curve MUST include ZERO?

RESUMO	DOS RESU	LTADOS					
statística d	e regressão	2					
R múltiplo	0,996815						
R-Quadrad	0,99364						
R-quadrado	0,991519						
Erro padrã	2,653078						
Observaçõ	5						
ANOVA							Conc = 104.18 Abs – 1.63
	gl	SQ	MQ	F	F de significação		Can I force to pass 0.00?
Regressão	1	3298,883532	3298,884	468,6698	0,000215697		
Resíduo	3	21,11646806	7,038823				
Total	4	3320					
C	coeficiente	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores	
Interseç ão	-1,63276	1,918315169	-0,85114	0,457236	-7,737696562	4,472184937	
Abs Corr	104,1808	4,812316125	21,64878	0,000216	88,86583349	119,4957376	

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean

Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

Signal x Results – CALIBRATION CURVES

• Calibration curve could include ZERO

RESUMO	DOS RESU	JLTADOS					
statística de regressão							
R múltiplo	0,996044						
R-Quadrad	0,992104						
R-quadrado	0,742104						
Erro padrã	2,560062						
Observaçõ	5						
ANOVA							
	gl	SQ	MQ	F	F de significação		
Regressão	1	3293,784326	3293,784	502,5672	0,000194347		
Resíduo	4	26,21567433	6,553919				
Total	5	3320					
0	Coeficiente	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores	
Interseção	0	#N/D	#N/D	#N/D	#N/D	#N/D	
Abs Corr	100,9623	2,872100989	35,15276	3,91E-06	92,9880218	108,9365163	

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean

Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

Figures and Illustrations References

- <u>https://web.pdx.edu/~atkinsdb/teach/321/CALVOL.pdf</u>
- <u>https://www.kbcc.cuny.edu/academicdepartments/physci/document</u> s/chemistry/Chem11_Lab2_CalibrationGlassware_V4_03-04-2022.pdf
- <u>https://www.depts.ttu.edu/meatscience/docs/WhyCalibrateAnalytica</u> <u>IBalancesandScales-6-30-20.pdf</u>

Pathways to precision in soil analysis: advancing soil laboratories in Latin America and the Caribbean Caminos hacia la Precisión en el Análisis de Suelos: avance de los Laboratorios de Suelos en América Latina y el Caribe

