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Regression Kriging
Kriging residuals 



International Training on Digital Soil Property Mapping and Information Delivery, 15-19 November 2021, Yi Peng & Isabel Luotto

Interpolation 
● In digital soil mapping we mostly work with data in table format 

and then rasterize this data so that we can make a continuous 
map

● Interpolation predicts values 
for cells in a raster from a 
limited number of sample data 
points

Modelling/Mapping
?

?
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Spatial data is special

● Geographer Waldo R. Tobler’s stated in the first law of geography:

“Everything is related to everything else, but near things are more 
related than distant things.”

● This is at the bases of spatial autocorrelation
● Housing prices are a good example of this: 

houses in fancy neighborhoods tend 
to have similar prices 
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Spatial data is special

● The Variogram describes the spatial dependance throughout a region
● Taking into consideration spatial autocorrelation

there’s a good chance that the variance 
between point A and Point C is greater 

● Basic assumption: Variance increases with the increasing distance 
between points until it becomes constant

A

B

C
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Ordinary Kriging 

● In ordinary kriging predictions at unsampled locations are made based on 
a weighted average

● It’s an interpolation technique that relies only on point observations of the 
target variable 

● Weights  depend on the spatial autocorrelation structure of the variable
● The weights are chosen such that the prediction error variance is 

minimized
● To make a prediction with the kriging interpolation method, two tasks are 

necessary:
○ Uncover the dependency rules by creating a variogram and covariance functions 

to estimate the statistical dependence (called spatial autocorrelation) values that 
depend on the model of autocorrelation (fitting a model).

○ Make the predictions 
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Kriging

● A variogram has three components:
1. Sill → describes the total variance of the process
2. Range → distance beyond which there’s not spatial 

autocorrelation
3. Nugget → variance at distance = 0
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Kriging 
● To make predictions at unknown locations a curve needs to be fitted 

to the variogram 
● Abstractly, this is similar to regression analysis, in which a continuous 

line or curve is fitted to the data points
● There are different variogram-models that can be selected to better fit 

the data
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Regression Kriging 
● Regression kriging is a hybrid interpolation technique which combines two 

conceptually different approaches to modelling and mapping spatial 
variability: 

○ interpolation based on regression of the target variable based on spatially 
auxiliary information (a.k.a covariates)

○ interpolation relying only on point observations of the target variable
● It combines a regression of the dependent variable (target variable) on 

predictors (the environmental covariates) with kriging of the prediction 
residuals

Residual
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Regression Kriging

● Instead of assuming the errors ε(s) are independent, you model them to 
be autocorrelated

● The residuals show spatial autocorrelation → Semivariogram

● Regression kriging is advantageous compared to ordinary kriging when:
○ We don’t have that many data points to predict the target variable in our study area
○ We know that there is a strong relationship between the target variable and the 

independent ones 

Kriging
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Regression Kriging 
● Kriging residuals of a linear model can be interpreted as creating a 

correction map that can be combined to the map created with the 
linear regression in order to take in account the autocorrelation of 
errors

● The autocorrelation of errors can be interpreted as the way our model 
tends to overpredict or underpredict our target variable depending on 
the location  

Linear Model Prediction:Observed values:
Interpolation of residuals 
through kriging:
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Regression Kriging 

● The final map is created by correcting the predictions of the linear 
model based on the kriged residuals

Regression Kriging 
map:Linear Model 

Prediction:

Interpolation of 
residuals through 
kriging:
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Regression Kriging Workflow

● Extract the values of 
the covariates and 
target variables into 
the single table

● Fit a multiple 
regression model 
using the previously 
created table

● Kriging: Model the 
residuals taking into 
account spatial 
correlation

Done

Done

Done

PendingDone
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Regression Kriging 

During this part of the workshop we will:

1. Promote covariates to SpatialGridDataframe 
2. Compute and explore a variogram
3. Create and tweak the variogram model to create the 

best interpolation of the residuals 
4. Run the regression kriging model
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SpatialGridDataframe

● Unlike the SpatialPointDataframe class object, this one has a defined 
raster resolution 

● Since kriging is based on measured distances, all data should be 

converted to a projected coordinate systems (to meters)
# Project point data

coordinates(dat) <- ~ X + Y

proj4string(dat) = CRS("+init=epsg:4326") # WGS84

dat <- spTransform(dat, CRS("+init=epsg:6204")) # Macedonian state #coordinate 

system

covs <- projectRaster(covs, crs = CRS("+init=epsg:6204"),

                      method='ngb')
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SpatialGridDataframe

● Unlike the SpatialPointDataframe class object, this one has a defined 
raster resolution 

# Promote covariates to spatial grid dataframe (it can take a lot #of memory)

covs.sp <- as(covs, "SpatialGridDataFrame")

covs.sp@grid

# LandCover and soilmap are categorical variables, they need to be #'factor' type

covs.sp$LandCover <-as.factor(covs.sp$LandCover) 

covs.sp$soilmap <-as.factor(covs.sp$soilmap)
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Semivariogram

● To compute a variogram to check if the residual exhibit spatial 
autocorrelation we’re going to use the gstat package

● The gstat() function creates an object that contains the necessary 
information to perform regression kriging 

● In it we’re going to input our previously created linear model 

library(gstat)

# Define gstat object 

gstat_data <- gstat(formula = as.formula(model.MLR.step$call$formula), data = dat)
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Semivariogram
● Let’s plot the residuals in a semivariogram 

#Compute and explore an experimental 

#semivariogram

vario <- variogram(gstat_data, cutoff=20000, 

width=500)

plot(vario, plot.nu=FALSE)
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Semivariogram 

● In order to predict the distribution of the residuals at locations 

without observed data will will create a first semivariogram model

● We can tweak the nugget, sill and range
1. Sill → describes the total variance 

of the process
2. Range → distance beyond which 

there’s not spatial autocorrelation
3. Nugget → variance at distance = 0
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Semivariogram
● In order to predict the distribution of the residuals at locations without 

observed data will will create a first semivariogram model

● Abstractly, this is similar to regression analysis, in which a continuous 
line or curve is fitted to the data points

# Define initial semivariogram model

vario_mod <- vgm(nugget = 0.1, psill =

 0.20, range = 5000, model = "Ste")

plot(vario, vario_mod)
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Semivariogram
● Now we’re going to use the function fit.variogram() to fit the best 

model to predict the residuals 

● We had to put some initial values, for the algorithm to work
# Define the random numbers table 

#(to get reproducible result)

#set.seed(12042019)

# Fit semivariogram model for kriging

vario_mod <- fit.variogram(vario, 

vario_mod, fit.method=7)

plot(vario, vario_mod)

vario_mod
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Other packages for regression 
kriging

● The package automap fits the semivariogram model automatically to 
the residuals (no need to create a semivariogram graph and to tune 
the model)

● This is the package used in the Soil Organic Carbon Mapping 
Cookbook 2nd Edition - FAO
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Regression Kriging 
● Now we will predict our target variable using the krige() function

● The formula used for the linear mode part of the final regression 
kriging map is the previously created step-wise linear model

● The locations are defined by the XY coordinates in the object dat

● The model used to krig the residual is our previously created 
semivariogram model

# Make a prediction across all Macedonia using Regression Kriging #model

pred_gstat <- krige(formula = as.formula(model.MLR.step$call$formula), 

                    locations = dat, 

                    newdata = covs.sp, 

                    model = vario_mod, 

                    debug.level = -1)
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Plot our predictions

● Our model was made to predict the log of the target variable therefore 

to we need to back transform it 
# Back transform predictions log transformed

RKpred <- exp(raster(pred_gstat))

# Back transform the coordinate system to WGS 84, using MLR #prediction as a template

RKpred <- projectRaster(from = RKpred, to = pred, method = "ngb")

# Explore and save the result as a tiff file

plot(RKpred)

writeRaster(RKpred,'02-Outputs/Final Maps/MKD_OCS_RK.tif', overwrite=TRUE)
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Regression Kriging
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Uncertainty (see lecture 8.Uncertainty and 
Validation)

● We can display the model’s prediction variance with a standard 
deviation map

# Make an uncertainty estimation as a map of standard deviations

# Standard deviation is the square root of kriging variance

RKsd <- sqrt(raster(pred_gstat, layer='var1.var'))

# If data was not log-transformed, than standard deviation map is in same units as 

the data (t/ha) and can be reported as uncertainty map

plot(RKsd, col=  topo.colors(255))

# But in our case it was calculated on log-transformed data and cannot be back 

transformed to t/ha

writeRaster(RKsd_log,'02-Outputs/MKD_OCS_RK_sd.tif', overwrite=TRUE)

25



International Training on Digital Soil Property Mapping and Information Delivery, 15-19 November 2021, Yi Peng & Isabel Luotto

Uncertainty (see lecture 8.Uncertainty and 
Validation)
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Uncertainty (see lecture 8.Uncertainty and 
Validation)

● We can calculate confidence interval from the standard deviations 

# Calculate 95% confidence interval on 

# log-transformed data as pred +-2*sd

RK_ci_high<-raster(pred_gstat)+2*RKsd_log

RK_ci_low<-raster(pred_gstat)-2*RKsd_log

# Confidence interval limits can be back transformed to t/ha

RK_ci_high<-exp(RK_ci_high)

RK_ci_low<-exp(RK_ci_low)

plot(RK_ci_high)

plot(RK_ci_low)

# Export limits of confidence interval as measures of uncertainty

writeRaster(RK_ci_high,'02-Outputs/MKD_OCS_RK_ci95_high.tif', overwrite=TRUE)

writeRaster(RK_ci_low,'02-Outputs/MKD_OCS_RK_ci95_low.tif', overwrite=TRUE)
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Uncertainty (see lecture 8.Uncertainty and 
Validation)

Upper limit:
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Lower 
limit:

95% confidence 
interval


