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Random Forest

e Random forest is a type of machine learning algorithm

e Machine learning algorithms build a model based on training data in
order to make predictions without being explicitly programmed to
perform the task

e Machine learning methods represent a branch of statistics that can be
used to automatically extract information from available data,
including the non-linear and hidden relationships

o It belongs to the decision-tree class of models

e This method is suitable for digital soil mapping under limited and
sparse scenarios of data availability
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Decision trees

e Random forests are composed of decision trees

o Figuratively speaking the trees are upside down, with the root node
(the first variable) at the top and the leaves (the predictions) at the
bottom
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Random Forest

e Random forests are composed of hundreds of these decision trees
consisting of randomly selected predicting variables and randomly
selected subsamples

e Each single tree makes a prediction and the final average is obtained
by taking the average of each tree
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Random Forest - Bootstrapping

e Each tree (generated using a different subset of available data
and random combinations of the prediction factors) is internally

evaluated by an out-of-bag cross validation Training subset
(bootstArapping)
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The trees in a Random Forest

e Random forests are used both for predicting
categorical outcomes (e.g. to diagnose
medical conditions) and for predicting
continuous data like Soil Organic Carbon

o Classification trees are used to predict
categorical data

e Regression trees are used for continuous data
by recursively splitting the data

A9 DD Japun pasuaol| sI Joyiny umouyun Aq Bioyd Syl cioeason
International Training on Digital Soil Property Mapping and Information Delivery, 15-19 November 2021, Yi Peng & Isabel Luotto


http://plants.swtexture.com/2011/05/ficus-altissima.html
https://creativecommons.org/licenses/by/3.0/

Random Forest for continuous data

« In linear regression a model is fitted to Precipitation > Root
the entire dataset it cannot detect 400 mm node
complex relationships

e« In a regression tree the data is split into
specific groups that correspond to
certain thresholds of predictors Elevation >500
(covariates) of each tree

e The prediction of the single tree is made True False
based on the mean of the observed -
samples in the leaf -

e The prediction of the random forest is

made by taking the average of the
predictions of the single trees

True False

Daily Temp.
August <25°C

( ) — number of observations in each final split
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Random Forest workflow:

1. Get the previously prepared covariates and data to create a
regression matrix

Create a random forest model and explore parameters
3. Explore which variables are more relevant in the model
Predict SOC with our random forest model
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Random Forest -Data prep

# Set working directory

setwd("C:/Users/hp/Documents/FAO/EduSoils/AFACI_training/Training_material")

# Load the covariates stack. It was was prepared in the
#'data_preparation_covariates' script
load(file = "@2-Outputs/covariates.RData")

names(covs)

# Load the processed data for digital soil mapping. This table was #prepared in the
'data_preparation_profiles' script
dat <- read.csv("02-Outputs/dat_train.csv")

names(dat) e
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Random Forest - Data prep

# extract values from covariates to the soil points

coordinates(dat) <- ~ X + Y

dat <- extract(x = covs, y = dat, sp = TRUE)

summary(dat)

# Remove NA values

dat<-as.data.frame(dat)

dat <- dat[complete.cases(dat), ]

str(dat)

# LandCover and soilmap are categorical variables, they need to be #'factor' type
datSLandCover <- as.factor(datSLandCover)

datSsoilmap <- as.factor(datSsoilmap)

str(dat) .
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Random Forest

# Save the final table and all the covariates

write.csv(dat, "©2-Outputs/SOC_RegMatrix.csv", row.names = )

e Due to the randomness component of Random Forest we're
going to use the set.seed() function

# Define the random numbers table (to get reproducible result)
set.seed(12042019)
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Random Forest

e Now we're going to transform our data frame into a
SpatialPointsDataFrame and set the coordinate system to WGS84
e To use the randomForest() function we first need to define a formula

of the data and covariates with the function fm()

library(sp)
# Promote to spatialPointsDataFrame and set the coordinate system
coordinates(dat) <- ~ X + Y
projdstring(dat) = CRS("+init=epsg:4326") # WGS84 ;names(data)
# We need to define a formula for the model
fm = as.formula(paste('0CSlog ~", paste@(names(covs),
collapse = "+")))
fm #check the model

GLOBAL SOIL
12

International Training on Digital Soil Property Mapping and Information Delivery, 15-19 November 2021, Yi Peng & Isabel Luotto



Random Forest - model

e Now we're going to create the random forest model with the
randomForest() function

# Run the Random Forest model and explore the results

library(randomForest)

rfmodel <- randomForest(fm, data=dat, ntree=500, importance=TRUE)
rfmodel

> rfmodel

call:

randomForest(formula = fm, data = dat, ntree = 500, importance = TRUE)
Type of random forest: regression
Number of trees: 500
No. of variables tried at each split: 4

Mean of squared residuals: 0.1743306
% Var explained: 31.33
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Explore the model

o Now we will explore what happens when we change the number of
decision trees within out random forest

e The default of 500 trees produces a better model than a random
forest with only 5, please change it back to 500

o If we were using another package (caret) we could change mtry

(number of variables per tree)
rfmodel <- randomForest(fm, data=dat, ntree=5, importance=TRUE)

rfmodel

call:
randomForest(formula = fm, data = dat, ntree = 5, importance = TRUE)
Type of random forest: regression
Number of trees: 5
No. of variables tried at each split: 4

Meanh of squared residuals: 0.2662304
% Var explained: -4.88 —
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ntree parameter

plot(rfmodel)
rfmodel[11][[1]]
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Figure 6.18: Select ntree -
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Explore the model

e The default of 500 trees produces a better model than a random

forest with only 5, please change it back to 500

rfmodel <- randomForest(fm, data=dat, ntree=500, importance=TRUE)
rfmodel
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Covariate Importance

o Now we will explore which covariate is more relevant within the model

with the varImpPlot() function

e The first graph shows how the mean squared error increases within

the entire model if a covariate is excluded

e The second graph shows which covariate is more decisive for splitting

the data into

homogenous data groups
(measured with residual sum
of squares (RSS)
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Predict SOC with RF model

e Finally we will run our model to predict SOC
e A uncertainty map can be created by using quantile regression forest
(for more info refer to the SOC mapping cookbook)

# Make a prediction across all Macedonia

pred <- predict(covs, rfmodel)

# Back transform predictions log transformed

pred <- exp(pred)

# Explore and save the result as a tiff file
plot(pred)
writeRaster(pred, filename = "02-Outputs/Final Maps/MKD_OCS_RF.tif", overwrite=TRUE)
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