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Random Forest

● Random forest is a type of machine learning algorithm
● Machine learning algorithms build a model based on  training data in 

order to make predictions without being explicitly programmed to 
perform the task

● Machine learning methods represent a branch of statistics that can be 
used to automatically extract information from available data, 
including the non-linear and hidden relationships

● It belongs to the decision-tree class of models
● This method is suitable for digital soil mapping under limited and 

sparse scenarios of data availability

2



International Training on Digital Soil Property Mapping and Information Delivery, 15-19 November 2021, Yi Peng & Isabel Luotto

True

Diabetes:
29           56
Yes         No

Decision trees
● Random forests are composed of decision trees
● Figuratively speaking the trees are upside down, with the root node 

(the first variable) at the top and the leaves (the predictions) at the 
bottom
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Random Forest

● Random forests are composed of hundreds of these decision trees 
consisting of randomly selected predicting variables and randomly 
selected subsamples

● Each single tree makes a prediction and the final average is obtained 
by taking the average of each tree
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Random Forest - Bootstrapping
● Each tree (generated using a different subset of available data 

and random combinations of the prediction factors) is internally 
evaluated by an out-of-bag cross validation 
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The trees in a Random Forest

● Random forests are used both for predicting 
categorical outcomes (e.g. to diagnose 
medical conditions) and for predicting 
continuous data like Soil Organic Carbon

● Classification trees are used to predict 
categorical data

● Regression trees are used for continuous data 
by recursively splitting the data 

This Photo by Unknown Author is licensed under CC BY
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Random Forest for continuous data

● In linear regression a model is fitted to 
the entire dataset 🡪it cannot detect 
complex relationships

● In a regression tree the data is split into 
specific groups that correspond to 
certain thresholds of predictors 
(covariates) of each tree 

● The prediction of the single tree is made 
based on the mean of the observed 
samples in the leaf

● The prediction of the random forest is 
made by taking the average of the 
predictions of the single trees
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( ) → number of observations in each final split
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Random Forest workflow:

1. Get the previously prepared covariates and data to create a 
regression matrix

2. Create a random forest model and explore parameters
3. Explore which variables are more relevant in the model
4. Predict SOC with our random forest model
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# Set working directory

setwd("C:/Users/hp/Documents/FAO/EduSoils/AFACI_training/Training_material")

# Load the covariates stack. It was was prepared in the 

#'data_preparation_covariates' script

load(file = "02-Outputs/covariates.RData")

names(covs)

# Load the processed data for digital soil mapping. This table was #prepared in the 

'data_preparation_profiles' script

dat <- read.csv("02-Outputs/dat_train.csv")

names(dat)

Random Forest -Data prep
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# extract values from covariates to the soil points

coordinates(dat) <- ~ X + Y

dat <- extract(x = covs, y = dat, sp = TRUE)

summary(dat)

# Remove NA values

dat<-as.data.frame(dat)

dat <- dat[complete.cases(dat),]

str(dat)

# LandCover and soilmap are categorical variables, they need to be #'factor' type

dat$LandCover <- as.factor(dat$LandCover)

dat$soilmap <- as.factor(dat$soilmap)

str(dat) 

Random Forest - Data prep
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Random Forest 

# Save the final table and all the covariates

write.csv(dat, "02-Outputs/SOC_RegMatrix.csv", row.names = FALSE)

● Due to the randomness component of Random Forest we’re 
going to use the set.seed() function

# Define the random numbers table (to get reproducible result)

set.seed(12042019)
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Random Forest

● Now we’re going to transform our data frame into a 

SpatialPointsDataFrame and set the coordinate system to WGS84

● To use the randomForest() function we first need to define a formula 

of the data and covariates with the function fm()
library(sp)

# Promote to spatialPointsDataFrame and set the coordinate system

coordinates(dat) <- ~ X + Y

proj4string(dat) = CRS("+init=epsg:4326") # WGS84 ;names(data)

# We need to define a formula for the model

fm = as.formula(paste("OCSlog ~", paste0(names(covs),

                                              collapse = "+")))

fm #check the model
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Random Forest - model

● Now we’re going to create the random forest model with the 
randomForest() function

# Run the Random Forest model and explore the results

library(randomForest)

rfmodel <- randomForest(fm, data=dat, ntree=500, importance=TRUE) 

rfmodel
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Explore the model

● Now we will explore what happens when we change the number of 
decision trees within out random forest

● The default of 500 trees produces a better model than a random 
forest with only 5, please change it back to 500 

● If we were using another package (caret) we could change mtry 
(number of variables per tree)

rfmodel <- randomForest(fm, data=dat, ntree=5, importance=TRUE) 

rfmodel
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ntree parameter
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Explore the model

● The default of 500 trees produces a better model than a random 

forest with only 5, please change it back to 500 

rfmodel <- randomForest(fm, data=dat, ntree=500, importance=TRUE) 

rfmodel
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Covariate Importance
● Now we will explore which covariate is more relevant within the model 

with the varImpPlot() function
● The first graph shows how the mean squared error increases within 

the entire model if a covariate is excluded
● The second graph shows which covariate is more decisive for splitting 

the data into 
homogenous data groups
(measured with residual sum
 of squares (RSS)

# Explore the importance of 

#covariates in the model

varImpPlot(rfmodel)
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Predict SOC with RF model

● Finally we will run our  model to predict SOC
● A uncertainty map can be created by using quantile regression forest 

(for more info refer to the SOC mapping cookbook)
# Make a prediction across all Macedonia

pred <- predict(covs, rfmodel)

# Back transform predictions log transformed

pred <- exp(pred)

# Explore and save the result as a tiff file

plot(pred)

writeRaster(pred, filename = "02-Outputs/Final Maps/MKD_OCS_RF.tif", overwrite=TRUE)
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