Global Soil Organic Carbon Sequestration Potential Map

GSOCseq

Guillermo Peralta Luciano Di Paolo Isabel Luotto Marcos Angelini Yusuf Yigini

Technical Workshops. 2022

Soil Organic Carbon is the largest terrestial carbon pool

GLOBAL SOIL ORGANIC CARBON MAP (GSOCmap V 1.5.0) GLOBAL STOCKS Gt C **Global Stock** 840 FORESTS ~680 Gt (0-30 cm) SOC stocks Very low (0-20) /EGETATION 450-Low (20-40) 650 Moderate (40-70) High (70-90) Very high (>90) 694 (1Pg =1Gt = 1000 millon tons) GLOBAL SOIL 1500 OIL

promoting sustainable soil management for all

2344

GLOBAL SOI

GRASSLANDS

30 cm

1 m

Due to the magnitude of SOC pool, small increases in SOC stocks can transform soils into potential carbon sinks (Paustian et al., 2016)

• CO₂ sequestration as SOC through sustainable managment practices has been outlined as one of the most cost-effective practices to mitigate GHG emissions (Smith et al, 2008; Lal et al., 2018; IPCC, 2019; Smith et al., 2020).

Besides other benefits linked to SOC increase: soil structure, water infiltration and retention, nutrient cycling, etc

SOC sequestration

Crop residues Root biomass Rhizodepositions

Manure

C inputs

Residue Removal Decomposition/ Mineralization Erosion

Leaching (DOC)

C losses

Adapted from Lal, 2020

Management practices	Country	Depth observed	Carbon sequestration rates ^b t C ha ⁻¹ yr ⁻¹	Average C stock ² t Cha ⁻¹	Period of observation	References															
Arable land Organic amendment	China	Plough layer, 0–20 cm for dry cropland and 0–15 cm for paddy soil		24,4	*6 to 25 years, 14.4 years on	Wang e		1		2	2		\mathbf{C}		_1			1			
Organic amendment	China	Plough layer	0.54	24.4	average *3 to 25 years	Ineta			ΓΟ					na			P 2	r^{-1}			
Organic amendment combined with inorganic fertilizer	China	Plough layer, 0–20 cm for dry cropland and 0–15 cm for paddy soil	0.62	24,4	*3 to 25 years	Zhu et a															
Compost addition	S. Korea	0-30 cm paddy soils	0.24	40.5	42 years		nla	זב דוב	nd Da	n^2	01	5 · K -	mnf	ot al	20	16.	Min	asny e	st al	2017	7.
Compost addition with inorganic fertilize	r S. Korea	0-30 cm paddy soils	0.39	40.5	42 years	Lee et a	pice	au ai		ב , וו	UT.	υ, κα	inpi	Et al.	, ZU	тυ,		asiry c	-t al.,	2017	',
Compost addition	Taiwan	0-15 cm	0.45-1.00	36	*13-20 years		ant	ot al	201	7. D	2110	tion	ot al	201	16.1	Dau	ction	ot al	201	0)	
Compost with inorganic fertilizer	Talwan	0-15 cm	0.40-0.80	37,4	*20 years	Wei et:	anic	elai	., 201	./, ٢	aus	Slidi	ela	., 20.	10, 1	Pau	Slidii	et al.	, 201	9).	
Farm yard manute	Belgium	0-25 cm	0.45 ± 0.14	50	*20 years	Buysse										·					
(#0.16 Mg C/ha/yr) Farm yard manure/crop residue	Ngeria	Topsoil	0.10-0.30	33.4	*50 years																
Inorganic fertilizer with straw return	Indonesia	0-15 cm paddy soils	0.52 ± 0.16	17.9	40 years													•			
Straw return with Inorganic fertilizer	Infonesia	0-15 cm paddy soils	0.47	17.9	*3 years											/5	i stuc	lles			
Inorganic fertilizer	S. Korea	0-15 cm paddy soils	0.32 ± 0.29 0.57 - 0.60	27,3	8 years																
Straw return	Chiha	Plough layer	0.57-0.60	27.6	*3 to 25 years		20														
Rice-Rice with NFK	India	0-20 cm	0.23	31,3	36 years		30 т														
Rice-Rice with NPK + compost	India	0-20 cm	0.41	31,3	36 years	-	I														
Rice-Wheat with NPK Rice-Wheat with NPK + Farm	India India	0-60 cm 0-60 cm	0.66	34,4	19 years	$\overline{\mathbf{O}}$	I														
vard manure (FYM)	Inga	0-60 cm	0,589	34,4	19 years	~	25 -				_										
Rice-Wheat with NPK + Paddy straw	India	0-60 cm	0.89	34.4	19 years		4v 1														
Rice-Wheat with NPK + Green manufing	; India	0-60 cm	0.82	34.4	19 years	>															
Inorganic fertilizer	India	0–15 cm	0,16	13,3	6-32 years	Ú															
Inorganic feitilizer + FYM Residue incorporation	India Nigeria	0-15 cm 0-15 cm	0.33	13,3 20	6-32 years *18 years	2	20 -														
Stubble retention	Australia	0-15 cm	0.19 ± 0.08	21.2	in years	ā															
Stubble retention	Australia	0-10 cm	0.147 ± 0.059	18.3	*4 to 40 y	Ť	I														
No till	China	Plough layer	0.16-0.51		3 to 25 years	dı	15 -														
No till	France	0-30 cm. Wheat-com	0.2 ± 0.13	51.6	20 years	frequency (%	I														
		rotation			·	4	10-						_								
No till	UK	Topsoil	0.31 ± 0.2	80	5–23 years	d)	101														
No till No till plus cover crops	USA	0-20 or 0-30 cm 0-20 cm	$0.4 \pm 0.61^{\circ}$ 0.45 ± 0.04	53±25,2 25.5±0.9	12-34 years 11 ± 1 years	5	I														
No ampias cover clops	(southeast)	0-20 Cm	0.40 ± 0.04	203 ± 03	TT ± Typears																
Conventional till to no-til	Canada	0-30 cm	0.05-0.16	75	20 years	Ĕ	5-								_						
Reduced use of summer fallow	Canada	0-30 cm	0.30	75	20 years	0	· ·														
Reduced tillage	Australia	0-15 cm	0.34 ± 0.06	21,2	*Various, 4 to 42 years	elative	I														
Reduced tillage	Belgium	0-60 cm	0		42 years 20 years	Ř	01										_				
Conservation tillage	Australia	0-10 cm	0.15 ± 0.028	18,3	4 to 40 years		0-						-			1					
Conservation tillage	France	0-25 cm	0.10	51.6	28 years			0	200	400	0	600	800	1000	0 12	200	1400	1600	1800	2000	2200
Croprotation	Australia	0-15 cm	0.20 ± 0.04	21,2	Various, 4 to			-			-										
0			a 15 1 a aa		42 years																
Crop rotation Crop rotation with peremial grasses	France Russia	0–30 cm Plough layer	0.16 ± 0.08 0.08 - 0.08	51,6 32,3	20 years *5 years																
Conversion to ley farming	England	0-23 cm	0.20	80	30 years																
Conversion of annual cropping to	USA	0-30 cm	0.5	78	30 years	LARK CT					SC		auoc	tratio	n ra	sto.					
crop + ley rotation	USA .	0-30 cm	0.5	/0	30 years	Dister					30		ques	แลแบ	ЛГа	ne					
Grassland												/1	~ 1		4 ۸						
Cropping to pasture	Australia	0-15 cm	0.30-0.60	27.5	4 to 42 years							(kg	C. ha	-1 . yı	r-1)						
Cropping to pasture	Australia	Pasture rotation, 0–30 cm from 33% to 67% pasture	0.22-0.76	43	10 years	Chan et						10		,	-/						
Cropping to pasture	Australia	Pasture to improved	0.76	43	10 years	Chan el															
and have a barrier of	Charles Mills	pasture																			
Cropping to pasture	Australia	0-30 cm	0.78	31	4.7 years	Badger															
Cropping to pasture	France	0-30 cm	0.49 ± 0.26	51.6	20 years	Ariouayset al. (2002a,b	/ 📰	A CO	2010		A	1.0	-	10 10				Se.		3	-
Cropping to pasture	England	0-23 cm	0.51	80	35 years	Coulding and Poulton (2005)			Sec. 1		-	S.S	10 mil							2	~ ? ·
Pagure	Australia	0-10 cm	0.132 ± 0.054	18.3	4 to 40 years	(2003) Lam et al. (2013)		2. A.C.	2		1 34		S1 3	# 60	-	*					-
		0-30 cm, perennial	0.759 ± 0.049	35	7 years	Chan et al. (2011)		a state	2. 2	ST T	10	-			1.				100		
Pagure	Australia	or an end, per comme	AN INFOR	-84																	

Food and Agriculture Organization of the United Nations

GLOSIS - GSOCmap (v1.5.0) Global Soil Organic Carbon Map. Contributing Countries.

We have a better understanding of current SOC stocks...

SOC Stodes 2-5 5-16 20-2 25-40 40-50

SOC sequestration/mitigation potential? Soil types?Climates? Regions? **Productive systems?**

SOIL TYPES itornes per hectare Anenosols, Solonchaks and Calcisols Activals Cambisols and Phaeozen Chernozems, Gleysols and Podzoli

LAND COVER (petagrama) Forests

Second and shrublands Coolands and crasslands

Mosaic of natural vegetation croplands and grasslands

I Barren or sparsely vegetated land

Permanent wetlands

10 COUNTRIES HOLD MORE THAN 60% OF THE TOTAL SOC STOCK

Petagrams = 1 Billion Tonnes

With the financial support of

GSOCmap reflects the status of the world soil information Re-hermonil intern source ESRI USGS NOAA Recommended citation EAO and ITPS 2017. Global Soil Organi Carleen Mag : GSOCenar Version LB, Roser, FAO Contact GSP-Sev

Why GSOC_{seq} map?

Objective

 Identify which regions and productive systems show higher potential to increase SOC stocks, following harmonized and standardized procedures among countries

establish priorities for research and public and private policies

Support countries to develop Climate change adaptation and mitigation strategies, and sustainable development

¿Why GSOC_{seq} map?

Country-Driven GSOCseq product. Strengths:

 Local expertise, based on best available local data ("bottom-up")

 Inclusive process, involving specialists from different fields and institutions

•Continuous improvement process ; "living product"

How is the GSOCseq Country-driven process?

Country Driven GSOCseq. Workshops

- Trainings/exchange workshops
- Harmonization of procedures and methodologies among countries
- Integration of experts among countries and within each country

<u>Agenda</u>

DAY 1 (3h) - Opening and Introduction

- High-Level opening (Dr. Park Joungyoon, AFACI Senior Deputy Secretary General, AFACI Secretariat)- 10'
- Introduction: The GSOCseq Initiative (importance, the process, benefits, timeline), General framework (BAU, SSM1-SSM2-SSM3, Meta-Analysis), Product specifications, discussion and feedback on national capacities

DAY 2 (3h) - Introduction to sequestration modelling

- Introduction to sequestration modelling (RothC Basics), Input data requirements; uncertainties, software and tools (R, QGIS and Google Earth Engine to be used during the training)
- 2. Introduction to the R language and RStudio
- 3. Input data preparation: running Scripts 0 to 9

DAY 3 (3h) - Input data preparation

- 1. Input data preparation (continuation of Day 2): running Scripts 0 to 9
- 2. Harmonization of spatial layers

DAY 4 (3h) - Modeling and Mapping SOC sequestration Potential

- 1. Modeling and Mapping stage: running Scripts 9-16
- 2. Hands-on break out room session: applying the methodology to national data

DAY 5 (3h) - Review and Implementation

- 1. Review and interpretation of the results and QA
- 2. Hands-on break out room session

Technical Specifications

https://www.fao.org/documents/card/es/c/cb0353en/

Technical Manual https://fao-gsp.github.io/GSOCseq/

Contributors and reviewers

P4WG - Pillar 4 Working Group

2

INSII - International Network of Soil Information Institutions

ITPS - Intergovernmental Technical Panel on Soils

4per1000 SCT - 4 per 1000 Scientific and Technical Committee

CIRCASA - (Coordination of International Research Cooperation on Soil Carbon Sequestration in Agriculture)

UNCCD-SPI - The UNCCD Science-Policy Interface

CLOBAL SOL

("Croplands, grasslands" IPCC) How? Framework

...In a first stage...

Scope: Agricultural lands

Annual crops Perennial Crops Integrated crop livestock systems Perennial sown pastures

Grasslands, shrublands and savannas (grazing lands) Agro forestry; silvo pastoril

Magnitude of global agricultural area, Annual management; Higher probability to implement SSM practices Linked to programmes like RECSOIL (encourage SSM by farmers)

How? Framework - SOC sequestration

Absolute and relative SOC sequestration

SOC sequestration (Difference) = Δ SOC in 20 years

Annual Sequestration rate $= \Delta$ SOC / 20 years

Absolute sequestration rate = (Final SOC SSM 2040– Initial SOC 2020)/ 20 years

Relative Sequestration rate= (Final SOC SSM 2040– Final SOC BAU 2040)/ 20 years

How? Framework -Summary

- 20-year projection
- After the adoption of SSM that increase C inputs
- 0-30 cm Depth (GSOC, IPCC, Activity data to validate the model)
- Absolute and relative SOC sequestration rates, average 20 years
- In current agricultural lands (Each country can model preferred land uses, restoration, etc.)

Why RothC as standard model?

- Standard method among countries (DayCent, Century, ICBM, YASSO, DAISY, AMG, CLM5, etc)
- Fewer data requirements; data relative simple to obtain;
- It has been applied across several ecosystems, climate conditions, soils and land use classes;
- Successfully applied at national, regional and global scales; e.g. Smith et al. (2005), Smith et al. (2007), Gottschalk et al. (2012), Wiesmeier et al. (2014), Farina et al. (2017), Mondini et al. (2018), Morais et al.(2019);
 - It (or its modified/derived version) has been used to estimate carbon dioxide emissions and removals in different **national GHG inventories as a Tier 3 approach**; Smith et al. (2020): Australia (as part of the FullCam model, Japan (modified RothC), Switzerland, and UK (CARBINE, RothC).

RothC Data requirements

Climate	Soil	Management						
Climate Data	Soil Data	Land Use- Management Data						
1. Monthly rainfall(mm)	1. Total initial 0-30cm SOC stocks (t C ha-1)	1. Monthly Soil cover (binary: bare vs. vegetated)						
2. Average monthly mean air	2. Initial C stocks of the different pools (t C ha-1):	2. Irrigation (to be added to rainfall amounts)						
temperature (°C)	DPM, RPM, BIO, HUM, IOM	3. Monthly Carbon inputs from plant residues						
3. Monthly open pan evaporation	3. Clay content (%) at simulation depth.	(aboveground + belowground), (t C ha ⁻¹)						
(mm)/evapotranspiration (mm)		4. Monthly Carbon inputs from organic fertilizers and grazing animals' excretion (t C ha ⁻¹)						
		5. DPM/RPM ratio, an estimate of the decomposability of the incoming plant material						

2. Country driven Approach RothC

SOC dynamics in RothC

The amount of SOC of each pool (Y) decomposes following an **exponential decay function**:

Y.e^{-kt} k = annual decomposition constant t = time, months 1/12 (0,083)

Stock

Decomposition rates

Constants (k), in years⁻¹, different for each pool:

- DPM (decomposable plant mat): **10.0** 0.1 years (turnover time)
- RPM (resistant plant material): 0.33.3 years
- BIO (microbial biomass): 0.66 1.5 years
- HUM (Humified organic C) : 0.02 50 years
- IOM (Inert)0.000000α

SOC dynamics in RothC

... These k are affected by different factors:

a= temperature factor b= soil moisture factor c= soil cover factor

Temperature factor (a)

Soil moisture factor (b)

Soil/vegetation cover factor (c)

If soil is vegetatedc=0.6If soil is barec=1.0

Example RothC Japan – Paddy Rice - watterlogged soils

Modifying factor for paddy rice

0.6 x k months no flooded rice 0.2 x k with flooded Rice

Paddy rice modifying factor GSOCseq= 0.4 x k

(Shirato & Yokozawa, 2005)

ting sustainable soil management for all

The model underestimated SOC, as expected (slower decomposition because of anaerobic condition)

From:Yirato y Yagasaki. NIAES

CLORAL SOL

Soil texture

Clay% ... affects the proportion of C from each pool that is released as CO₂ or to Soil organic carbon pools

From that... 46 % goes to BIO; 54% goes to HUM

DPM/RPM... "Decomposability of C inputs" C inputs split between DPM and RPM

Default values...

Crops and improved pastures...
 DPM/RPM = 1.44 (59% is DPM, 41% is RPM)

Grasslands, shrublands/savannas
 DPM/RPM = 0.67 (41% is DPM; 59% is RPM)

Tree crops variable...DPM/RPM = 1.44; 0.67; 0.35

(Morais et al 2019;Farina et al 2017)

- Forests (deciduous, tropical)...
 DPM/RPM =0.25 (20% is DPM y 80% is RPM)
- Manure...

DPM/RPM =1 (49% is DPM; 49% is RPM; 2%HUM)

promoting sustainable soil management for all

Depends on Land Use

• Can be modified

RothC – Soil R

Sierra et al., 2012; 2014

Geosci. Model Dev., 5, 1045–1060, 2012 www.geosci-model-dev.net/5/1045/2012/ doi:10.5194/gmd-5-1045-2012 © Author(s) 2012. CC Attribution 3.0 License.

Models of soil organic matter decomposition: the SOILR package, version 1.0

C. A. Sierra, M. Müller, and S. E. Trumbore Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany

Correspondence to: C. A. Sierra (csierra@bgc-jena.mpg.de)

Received: 29 March 2012 – Published in Geosci. Model Dev. Discuss.: 2 May 2012 Revised: 2 August 2012 – Accepted: 4 August 2012 – Published: 24 August 2012

> https://www.geosci-modeldev.net/5/1045/2012/gmd-5-1045-2012.pdf

Soil R site:

https://www.bgc-jena.mpg.de/TEE/software/soilr/

- SoilR- simplified version of RothC Higher speed, adapted to simulate multiple objects (e.g. 1 km x 1 km)
- Transparent, R language, can be modified
- Open Software (R)
- SoilR, already integrates othes SOC models (e.g. ICBM, Century)...to perform model ensemble approach

Spatial Version RothC Soil-R

- GSP: We provide a tool based in R language using Soil R RothC functions
- Each country can improve and modify the tool, develop their own tool (using Roth C to generate the standard products in a first stage)
- <u>Countries are encouraged to provide additional ('non-standard') sequestration maps, using</u> modifications/adaptations, alternative approaches, other models

How to harmonize and model thousands of different practices, often combined? ... Specially with limited data

Land use systems of the world SSM? Land use systems ainfaid Aprication 24 Bare steen - do use 7 not man Water - Coastal or use fixed managed Reason, Departed and Astronomy, Restarted ware Appointment Mod. Internation Ethert of protected areas 10 Yorke - Manuf Fisherier hacmost - Ethersit-s partonals Vationals - Protected areas Forestry - Pastorals

go-pastralum mod. intentio ghe with Large scale impation

Application - Protected scene

23 Medlands - Agro-pertoration

7 Barn many - Mind, Interior

stimulants in high-

Hatlanesso - Mird Manual

Description - Information Associations

... First stage...

Practices that increase C inputs

3 scenarios: +5% increase Ci +10% increase Ci +20% increase Ci

Conservative ranges...may be high for other systems

based on Smith, 2004; Wiesmeier et al., 2016

SSM practices

"Technical manual of recommended management practices for SOC maintenance and Sequestration"

..and many other practices around the world...

Best soil man

SOIL ORGANIC CARBO

and SEQUESTRATION

Rotational grazing/pasture management

Local adjustment of scenarios and % increase in C inputs

Ad hoc Metaanalysis from local studies

E.g.

Croplands

Local adjustment of scenarions and % increase in C inputs

E.g. Ad hoc Meta-analysis from local studies

Croplands

Local adjustment of scenarions and % increase in C inputs

Standard Products

Non-Standard Products Using modified coefficients

To simulate SOC changes for each 1km x 1km pixel:

20*0/0*E

For each 1km x 1km pixel:

Approach based on Smith et al 2006; 2008; Gottschalk et al. 2012

Phase 1. Spin up

Initialization phase

Required to:

- obtain C stocks of different pools (BIO, HUM, DPM, RPM, etc)
- Estimate baseline C-inputs (C inputs required to reach GSOC stocks) (referred as Ceq)
 Ceq = C inputs under business as usual/baseline

Procedure:

Model is run for a long time span (e.g. 500 years) using historic climate (1980-2000)... first using a fixed C input (1 t)... C inputs are adjusted until SOC stock = GSOC map:

• $C_{eq} = C_i \times [(C_{meas} - IOM)/(C_{sim} - IOM)]$

Phase 2. Warm up – Short Spin up (18-20 years)

Required to:

- Adjust climate variation between 2000-2020
- Harmonize major time differences in GSOC map FAO (generated soil profiles 1960-2000s)... current
- Adjust Land use changes 2000-2020
- Adjust over or under estimation in C stocks of a specific pool (E.g. High DPM)
- Not necessary if current SOC stocks = GSOC

Procedure

- The model is run for 18-20 years using monthly climate data, year to year (2001-2020)
- Annual C inputs are corrected according to annual changes in NPP

Phase 2. Warm up – Short Spin up (Cont.)

- Annual NPP to adjust year to year C inputs
- NPP by MIAMI Model (Lieth, 1972; Gottschalk et al., 2012)
- Other preferred NPP sources/models can be used

NPP can be adjusted for Land Use changes (Schulze et al 2010)

NPPt _{forests} = NPP_{MIAMI} x 0.88

NPPt _{grasslands} = NPP_{MIAMI} x 0.72

NPPt _{croplands} = NPP_{MIAMI} x 0.53

Phase 3 . Forward run (2020 – 2040)

- Required to:
 - Obtain SOC stocks in different SSM scenarios after 20 years
 - Estimate SOC sequestration rates

Procedure:

- Model is run for 20 years using average climate 2000-2020
- (Future versions include climate change... decide scenarios)
- The 4 scenarios are run:
 - BAU
 - SSM1 ('Low increase') (+ 5% in C)
 - SSM 2 ('Medium increase') : (+10%)
 - SSM 3 ('High increase'): (+20%)

promoting sustainable soil management for all

SSM practices

High +

Medium

Phase 3

'Forward'

Validation and uncertainties

Difficulties

- Validate changes that did not happen yet?
- Complex methods (e.g. Montecarlo) require multiple simulations (computational time)
- Data availability, uncertainty in input layers
- We require to estimate uncertainties with limited computational and data resources

1st Step

Model evaluation with pre-existent data

> Meta-anlaysis local studies

2nd Step

General Uncertainties

U (%) =100* (UL CI – LL CI) / (2 *SOCav)

UL = upper limit of the 95% confidence interval of the estimated SOC at the end of the simulation (in t C.ha⁻¹), LL = lower limit of the 95% confidence interval of the estimated SOC at the end of the simulation (in t C.ha⁻¹); a

SOCav = the average of the estimated SOC at the end of the simulation (t $C.ha^{-1}$)

VCS 2012

SOC max/UL = Model (SOC FAO max, Ci max, Temp min, Pp max, Clay max) SOC min/LL = Model (SOC FAO min, Ci min, Temp max, Pp min, Clay min)

General Uncertainties

Uncertainties

If information on uncertainty of layer for each pixel 1 km x 1km (SOC FAO, PP, Clay, Temp, etc):

 $P \min = Xp - 1.96 \times SEp$ $P \max = Xp + 1.96 \times SEp$

And run model changing Input Layers (using Pmin, y PmAx) If NO information on the uncertainties of each layer , use general variation (> % uncertainties...)

General uncertainties of main parameters affecting SOC dynamics. Derived from Gottschalk et al. (2007) and Hastings et al. (2010).

Parameter	Uncertainty in the input	Minimum value	Maximum value
Temperature	± 2 %	Monthly Temp * 0.98	Monthly Temp * 1.02
Precipitation	± 5 %	Monthly PP * 0.95	Monthly PP * 1.05
Clay content	± 10 %	Clay * 0.90	Clay * 1.10
FAO SOC	± 20 %	SOC FAO *0.8	SOC FAO * 1.2
C input increase in SSM scenario	± 15 %	C eq * (SSM1 % increase - 15%)	C eq * (SSM % increase + 15%)

... But we need an initial step...

Limitations

- Models= simplifications of reality
- No universal models
- Erosion, Clay type? soil nutrients effects?
- pH? Bases?
- aridic soils? Sodic soils? Salt affected?
- red-ox potential; waterlogging, anaerobiosis; organic soils?
- micro and meso fauna effects?
- Soil structure ? Soil compaction?
- Among others!!!!

GSOCseq

http://54.229.242.119/GloSIS/

Relative sequestration rates SSM1 >> SSM3 tonnes.ha-1.y-1

GSOCseq v1.1

- SOC sequestration (tC/ha/yr) SSM 1-3
- Agricultural lands (croplands + grazing lands)
- 20-year period
- Depth: 0-30 cm
- 1 x 1 km resolution

GSOCseq v1.0.0 Uncertainties (%)

First results - Global SOC stocks*

*Excluding blank countries (GSOCseq v1.1)

First results - Annual SOC sequestration *

*Excluding blank countries

Previous estimates

Source	Seq.rate Pg C.year ⁻¹
Paustian et al (2004)	0.44 - 0.88
Sm ith et al (2008)	0.44 - 1.15
Sommer and Bossio (2014) (croplands+grasslands)	0.37 - 0.74
Batjes et al (2019)	0.32 - 1.01
Lal et al (2018) (croplands+grasslands/shrublands)	0.48 – 1.93
Fuss et al (2018)	0.54 – 1.36

Potential uses - statistics

Which climates, land uses, regions, countries have greater SOC sequestration potential?

Potential uses - Mitigation Potential*

*Excluding blank countries

Agricultural soils play an important role in mitigating GHG emissions: emissions could be cut by 31 % yearly agricultural global

*Total Agricultural Emissions from FAOSTAT (2019)

GSOCseq v1.1 Technical Report

- Under review
- To be periodically updated as more national maps are delivered

Useful documentation - Folders

- Technical Specifications and Guidelines (pdf)
- Technical Manual (pdf) (Step by Step)
- Template report (.doc)
- Training Material : SCRIPTS Folders 0 -9 -INPUTS OUTPUTS
- Workshop presentations (.ppt)
- Useful documentation (RothC Win Manual, Soil R Manual; related publications) (.pdf)

Software requirements

- R software R Studio
- Qgis 3.x
- Google Earth Engine account

R packages

Protocol application area	R package	Reference
Import and Export Raster data	raster	Hijmans et col. (2020)
	ncdf4	David Pierce (2019)
Import and Export Vector data	rgdal	Bivand et col. (2019)
Harmonization	raster	Hijmans et col. (2020)
	rgdal	Bivand et col. (2019)
Roth C Model	SoilR	Sierra and Mueller (2014)
Data Manipulation	abind	Plate (2016)
RothC Model, NPP MIAMI model	soilassessment	Omuto (2020)

Data requirements (spatial SoilR GSP)

Vector

Country Limits (shapefile polygon)

SRC: EPSG: 4326. WGS84.

Geometry: Multipolygon

Objects: 1

Global Administrative Units Layer (GAUL) 2015

SOIL ORGANIC CARBON (GSOC, latest version)

promoting sustainable soil management for all

SRC: EPSG: 4326. WGS84 Resolution: 1x1km Depth: 0-30 cm Format: raster, geotiff Units: t C/ha

Climate Data

• Monthly 1981-2000:

Spin UP

- Precipitation (mm/month) 12 layers (one per month)
- Air Temperature (°C) 12 layers (one per month)
- Potential Evapotranspiration (mm/month) 12 layers (one per month)
- MIAMI model
 - Precipitation (mm/year) 20 layers (one per year) or 240 layers (one permonth per year) (CRU layer arrengement)
 - Temperature (°C) 20 layers (one per year) or 240 layers (one per month per year) (CRU layer arrengement)

Climate Data

- Monthly From 2001-2018/20
- Warm Up
 - Precipitation (mm/month) 216-240 layers (one per month per year) (CRU layer arrangement)
 - Temperature (°C) 216-240 layers (one per month per year) (CRU layer arrangement)
 - Potential Evapotranspiration (mm/month) 216-240 layers (one per month per year) (CRU layer arrangement)
- Forward
 - Precipitation (mm/month) 12 layers (one per month)
 - Temperature (°C) 12 layers (one per month)
 - Potential Evapotranspiration (mm/month) 12 layers (one per month)

http://www.cru.uea.ac.uk/

PLUII

Additional global climate data set GEE and R scripts

- TerraClimate is a dataset of monthly climate for global terrestrial surfaces from 1958-2019
- monthly temporal resolution and a ~4-km
- GEE and R scripts to download and prepare the data for you AOI will be provided soon

Climate Data

Temperature

cru_ts4.03.1981.1990.tmp.dat.nc cru_ts4.03.1991.2000.tmp.dat.nc cru_ts4.03.2001.2010.tmp.dat.nc cru_ts4.03.2011.2018.tmp.dat.nc

Precipitation cru_ts4.03.1981.1990.pre.dat.nc cru_ts4.03.1991.2000.pre.dat.nc cru_ts4.03.2001.2010.pre.dat.nc cru_ts4.03.2011.2018.pre.dat.nc

Potential Evapotranspiration cru_ts4.03.1981.1990.pet.dat.nc cru_ts4.03.1991.2000.pet.dat.nc cru_ts4.03.2001.2010.pet.dat.nc cru_ts4.03.2011.2018.pet.dat.nc

Resolution: 50 km or less (country data) Format: .nc to geotiff Units: mm, °C

Soil Data

- CLAY LAYERS (Soilgrids)
- CLYPPT_M_sl1_250m_ll.tif
- CLYPPT_M_sl2_250m_ll.tif
- CLYPPT_M_sl3_250m_ll.tif
- CLYPPT_M_sl4_250m_ll.tif
- SRC: EPSG: 4326. WGS84 Resolution: 1x1km Depth: 0-30 cm Format: raster, geotiff
- Units: %

Land Use (from Land Cover)

- Global Source: From ESA
- ESA_Land_Cover_11clases_FAO.tif
- (RECLASSIFIED ESA LAND COVER TO 12 classes)
- This file will be provided.
- Spatial Resolution: 300m x 300m

Other preferred National Source SRC: EPSG: 4326. WGS84 Final Resolution: 1x1km Format: raster, geotiff Units: Classes Match FAO classes

promoting sustainable son

CCI-LC_Maps_Legend.pdf - Adobe Acrobat Reader DC Archivo Edición Ver Ventana Ayuda
Inicio Herramientas CCI-LC Maps Lege × Acrobat Reader DC
Children to the second
Duscar 🗄 🗖 🦻 🖉 🖉 nagement for all

Soil/Vegetation cover

- Minimum: 12 layers (one per month) from MODIS NDVI.
- GEE (script)
- Other methods

SRC: EPSG: 4326. WGS84 Resolution: 1x1km Format: raster, geotiff Units: 0.6 (covered) to 1.0 (bares soil)

Summary. Inputs for the 3 Phases

Input data requirements						
Data	Variables	Time series		Туре		
	Monthly air temperature	1980-2000; 2001-2020 (or until last year available)	°C	Raster		
limatic data	Monthly evapotranspiration (Penman-Monteith)	1980-2000; 2001-2020 (or until last year available)	mm	Raster		
	Monthly precipitation + irrigation	Monthly precipitation + irrigation Monthly precipitation + irrigation (or until last year available)		Raster		
0-11-1-1-	Topsoil clay content (0-30 cm)	-	%	Raster		
Soil data	Current Soil organic carbon stocks (0-30 cm)	Latest version of national FAO-GSOC map	tC ha-1	Raster		
Land use/cover	Predominant land use/cover, re-classified into: Minimum: 4 default classes required by model: agricultural crops, grassland/shrubland/savannas ; forests; others Optimum: 11 classes defined in the FAO Global Land Cover - SHARE (GLC-SHARE)	Minimum: representative 2000-2020 (or last year available) Optimum: annual land use 2000 to 2020	1-11	Raster		
	Monthly vegetation cover. Obtained from national statistics/local expert knowledge; or derived from NDVI or spectral indexes (see section 3.3.4)	Minimum: average 2015-2020 (or last year available period) Optimum: monthly soil cover 2000 to 2020	0-1	Raster		

Scripts - Sequence

SOC layer0. R- Script number 0 interest polygonCut the soc layer by the area of interest polygonClimate layers1. R- Script number 1 S. R- Script number 2 S. R- Script number 3Rearrangement of climate layers (CRU layers from .ned to.til)NPP layers5. R- Script number 3 (CRU layers from .ned to.til)Creation of NPP layersVegetation Cover (VC) 6. GEE Script number 7 clouge Earth Enginer (Coogle Earth Enginer) from different depths (ISRIC)Data harmonizationClay layers8. R-Script number 8 clouge Earth Enginer or classification into FAO land cover classesData harmonizationSTACK for SPINUP10. R-Script number 10 stack input data layers for the warm up phaseStack input data layers for the warm up phaseSTACK for FORWARD12. R-Script number 12 stack input data layers for the forward phaseStack input data layers for the warm up phaseSTACK for FORWARD13. Ogis model script it R-Script number 13 Run long spin up phaseModel running Maps creationWARM UP15. R-Script number 14 Run warm up phaseRun warm up phase Run of target pointsMaps creationWARM UP15. R-Script number 15 Run forward phaseRun forward phase Run of target pointsMaps creation		Type of Layer	Script	Objective		
Image: Problem in the stript number 3(CRU layers from .ned to .tif)NPP layers5. R- Script number 5Creation of NPP layersVegetation Cover (VC)6. GEE Script number 6Creation of VC layersClay layers8. R-Script number 7Creation of VC layersClay layers8. R-Script number 8Obtaining clay contents 0-30 cm from different depths (ISRIC)Land Use layer9. R-Script number 9Re-classification into FAO land cover classesSTACK for SPIN UP10. R-Script number 10Stack input data layers for the spin up phaseSTACK for FORWARD12. R-Script number 12Stack input data layers for the spin up phaseSTACK for FORWARD13. Qgis model scriptCreation of target pointsSPIN UP14. R-Script number 13Run long spin up phaseWARM UP15. R- Script number 14Rum warm up phaseFORWARD16. R- Script number 15Run forward phaseFORWARD16. R- Script number 15Run forward phase		SOC layer	0. R- Script number 0		of	
Vegetation Cover (VC) 6. GEE Script number 6 (Google Earth Engine) 7. R- Script number 7Creation of VC layers 6 (Google Earth Engine) 7. R- Script number 7Creation of VC layers 9. R-Script number 8Dotaining clay contents 0-30 cm from different depths (ISRIC)Data harmonizationLand Use layer9. R-Script number 9Re-classification into FAO land cover classesData harmonizationSTACK for SPIN UP10. R-Script number 10Stack input data layers for the spin up phaseStack input data layers for the warm up phaseSTACK for FORWARD12. R-Script number 12Stack input data layers for the forward phaseModel runningSTIACK for FORWARD13. Ogis model scriptCreation of target pointsModel runningSPIN UP14. R- Script number 13Run long spin up phaseModel runningWARM UP15. R- Script number 14Run warm up phaseModel runningFORWARD16. R- Script number 15Run forward phaseModel running		Climate layers	2. R- Script number 2			
6 (Google Earth Engine) 7. R- Script number 7Data Data harmonizationClay layers8. R-Script number 8Obtaining clay contents 0-30 cm from different depths (USRIC)Data harmonizationLand Use layer9. R-Script number 9Re-classification into FAO land cover classesharmonizationSTACK for SPIN UP10. R-Script number 10Stack input data layers for the spin up phasestack input data layers for the forward phaseharmonizationSTACK for FORWARD12. R-Script number 12Stack input data layers for the forward phasecreation of target pointsModel runningSPIN UP14. R- Script number 13Run long spin up phaseModel runningWARM UP15. R- Script number 14Run warm up phaseModel runningFORWARD16. R- Script number 15Run forward phaseModel running		NPP layers	5. R- Script number 5	Creation of NPP layers		
Clay layers8. R-Script number 8Obtaining clay contents 0-30 cm from different depths (ISRIC)harmonizationLand Use layer9. R-Script number 9Re-classification into FAO land cover classesharmonizationSTACK for SPINUP10. R-Script number 10Stack input data layers for the grin up phaseharmonizationSTACK for WARM UP11. R-Script number 11Stack input data layers for the forward phaseharmonizationSTACK for FORWARD12. R-Script number 12Stack input data layers for the forward phaseModel scriptSPIN UP14. R-Script number 13Run long spin up phaseWARM UP15. R-Script number 14Run warm up phaseFORWARD16. R-Script number 15Run forward phase	1	Vegetation Cover (VC)	6 (Google Earth Engine)	Creation of VC layers	Data	
Land Use layer9. R-Script number 9Re-classification into FAO land cover classesSTACK for SPIN UP10. R-Script number 10Stack input data layers for the spin up phaseSTACK for WARM UP11. R-Script number 11Stack input data layers for the warm up phaseSTACK for FORWARD12. R-Script number 12Stack input data layers for the forward phaseTarget points13. Qgis model scriptCreation of target pointsSPIN UP14. R- Script number 13Run long spin up phaseWARM UP15. R- Script number 14Run warm up phaseFORWARD16. R- Script number 15Run forward phase	3	Clay layers	8. R-Script number 8		\succ	
Image: Note of the section of the s		Land Use layer	9. R-Script number 9			
STACK for FORWARD12. R-Script number 12Stack input data layers for the forward phaseTarget points13. Qgis model scriptCreation of target pointsSPIN UP14. R- Script number 13Run long spin up phaseWARM UP15. R- Script number 14Run warm up phaseFORWARD16. R- Script number 15Run forward phase		STACK for SPIN UP	10. R-Script number 10			
FORWARDforward phaseFORWARDI3. Qgis model scriptCreation of target pointsSPIN UP14. R- Script number 13Run long spin up phaseWARM UP15. R- Script number 14Run warm up phaseFORWARD16. R- Script number 15Run forward phase		STACK for WARM UP	11. R-Script number 11			
SPIN UP 14. R- Script number 13 Run long spin up phase WARM UP 15. R- Script number 14 Run warm up phase FORWARD 16. R- Script number 15 Run forward phase	-		12. R-Script number 12			
WARM UP 15. R- Script number 14 Run warm up phase FORWARD 16. R- Script number 15 Run forward phase		Target points	13. Qgis model script	Creation of target points		
WARM UP 15. R- Script number 14 Run warm up phase FORWARD 16. R- Script number 15 Run forward phase		SPIN UP	14. R- Script number 13	Run long spin up phase	Model running	
		WARM UP	15. R- Script number 14	Run warm up phase		
POINTS TO RASTER 17. R- Script number 16 Rasterize points Maps creation		FORWARD	16. R- Script number 15	Run forward phase		
		POINTS TO RASTER	17. R- Script number 16	Rasterize points	Maps creation Table soil management for all	

Data harmonization

Model running

Folders

Nombre

0_SOC_MAP 1_CRU_variables 2_MIAMI_NPP 3_GEE_Veg_Cover 4_CLAY 5_LAND_USE 6_ROTH_C_STACK 7_TARGET_POINTS_COUNTRY 8_ROTH_C 9_MAPS INPUTS OUTPUTS

SCRIPTS

DIRECTORY : INPUTS

Nombre AOI_POLYGON CLAY COV CRU_LAYERS LAND_USE NPP SOC_MAP STACK TARGET_POINTS

DIRECTORY : OUTPUTS (MODEL)

Nombre 1_SPIN_UP 2_WARM_UP 3_FOWARD 4_MAPS

Step 1 : Data preparation

Soc FAO : master layer

0_SOC_MAP_AOI.R

OBJETIVE: CROP SOC MAP BY USING COUNTRY POLYGON OR REGION OF INTERES

UNIT: [tn/ha]

Harmonization of Climate Layers (CRU)

1_CRU_variables_SPIN_UP.R

2_CRU_variables_WARM_UP.R

3_CRU_variables_for_NPP_MIAMI_MEAN_81-00.R

OBJETIVE: ARRANGE CLIMATE FILES (CRU FORMAT) TO BE USED IN THE MODELING PHASES

Units: [mm/month] [°C]

NPP (Net primary production) Layers

4_MIAMI_MODEL_NPP_MIAMI_MEAN_81-00.R

OBJETIVE : Estimate annual NPP (using MIAMI Model) for the 1981-2000 period. Year to year NPP is estimated and then averaged.

8_Script_CLAY_from_ISRIC.R

OBJECTIVE: Estimate clay % 0-30 cm depth using weighted average (ISRIC Clay layers)

Unit: %

9_Land_Use_ESA_to_FAO_classes.R

OBJECTIVE: RE-CLASSIFY ESA (EUROPEAN SPACE AGENCY) COVER CLASSES TO FAO LAND USE CLASSES.

SOIL/VEGETATION COVER Layers: GEE-R

6_Vegetation_Cover_GEE_copy_to_code_Editor.txt
7_Veg_Cov_stack.R

OBJECTIVE: Generate a stack of 12 layers, one for each month that represents vegetation cover for each pixel.

- We will estimate Google Earth Engine for each pixel, as the number of images with vegetation from total images of a specified time series (assuming NDVI higher > 0.3 threshold)
- We will get a probability from 0 to 1,(being 0 never covered and 1 always covered)
- These values are then re-escalated to the vegetation cover factor (0.6 = covered; 1 = bare soil)

Final Unit: 0.6-1.0 promoting sustainable soil management for all

Vegetation cover from Google Earth Engine

HARMONIZATION OF LAYERS (generating Stacks)

10_SPIN_UP_STACK_V3.R
11_WARM_UP_STACK_V5.R
12_FOWARD_STACK.R

OBJECTIVE: GENERATE STACKS OF INPUT DATA LAYERS (USING GSOC FAO 1KM AS A MASTER LAYER) TO BE USED IN EACH MODELING PHASE : SPIN UP- WARM UP – FORWARD.

FOR THE WARM UP PHASE, CLIMATE LAYERS ARE NOT INCLUDED IN THE STACK DOR FILE SIZE RESTRICTIONS (NEAR 700 LAYERS).

CREATING TARGET POINTS

Qgis_Procedure_number_1.model3

OBJECTIVE : GENERATE TARGET POINTS WHERE THE MODEL IS TO BE RUN

SELECT ONLY LAND USES OF INTERESTS (AVOID WATER BODIES, NATIVE VEGETATION, FORESTS, DESSERT AREAS... WHERE NO MANAGEMENT IS TO BE IMPLEMENTED)

CAN BE MODIFIED DEPENDING ON COUNTRY INTERESTS (Eg. restoration of native vegetation)

Step 2 : Running the model

Running the Roth C - SoilR

13_ROTH_C_SPIN_UP_UNC_v2.R 14_ROTH_C_WARM_UP_UNC_v3.R 15_ROTH_C_FOWARD_UNC_v3.R

SPIN UP: THE OBJECTIVE IS TO ESTIMATE C INPUT LEVELS TO REACH TFAO GSOCmap SOC STOCKS. ADDITIONALLY, TO ESTIMATE INITIAL SOC STOCKS OF EACH POOL

WARM UP: THE OBJECTIVE IS TO C INPUTS AND SOC STOCKS USING MONTHLY DATA FROM THE LAST 20 YEARS (CLIMATE- NPP - LAND USE (OPTIONAL))

FORWARD: THE OBJECTIVE IS TO PROJECT SOC STOCKS PER PIXEL AND ESTIMATE THE UNCERTAINTY OF THAT PREDICTION

Step 3 : From Points to Rasters

FROM POINTS TO RASTERS

From points to rasters

16_Points_To_Raster.R

OBJECTIVE:

MODELING OUTPUT WILL BE A 'POINT' VECTOR FILE (1 POINT PER PIXEL), WITH INFORMATION ABOUT THE THREE SCENARIOS AND THE BASE SCENARIO (BAU).

IT WILL ALSO CONTAIN INFORMATION ON THE UNCERTAINTY OF THE SIMULATED DATA. THESE VALUES ARE SAVED IN A TABLE ATTACHED TO THOSE POINTS (ESRI SHAPEFILE FORMAT).

THIS LAST STEP WILL TRANSFORM THESE POINTS TO RASTER FILES, ONE FOR EACH TARGET MAP.

PRODUCTS

Final SOC Stocks (tC/ha)

& Uncertainties (%)

- Pergamino_GSOCseq_finalSOC_BAU_Map030.tif
 Pergamino_GSOCseq_finalSOC_SSM1_Map030.tif
 Pergamino_GSOCseq_finalSOC_SSM2_Map030.tif
 Pergamino_GSOCseq_finalSOC_SSM3_Map030.tif
 - Pergamino_GSOCseq_SSM_UncertaintyMap030.tif
 - Pergamino_GSOCseq_T0_Map030.tif
 - Pergamino_GSOCseq_T0_UncertaintyMap030.tif

ABSOLUTE DIFFERENCES (SCENARIO – TO) In tC/ha

- Pergamino_GSOCseq_AbsDiff_BAU_Map030.tif
- Pergamino_GSOCseq_AbsDiff_SSM1_Map030.tif
- Pergamino_GSOCseq_AbsDiff_SSM2_Map030.tif
- Pergamino_GSOCseq_AbsDiff_SSM3_Map030.tif

ABSOLUTE RATES : ABS DIF./20 In tC/ha/year

Pergamino_GSOCseq_ASR_BAU_Map030.tif
 Pergamino_GSOCseq_ASR_BAU_UncertaintyMap030.tif
 Pergamino_GSOCseq_ASR_SSM1_Map030.tif
 Pergamino_GSOCseq_ASR_SSM1_UncertaintyMap030.tif
 Pergamino_GSOCseq_ASR_SSM2_Map030.tif
 Pergamino_GSOCseq_ASR_SSM2_UncertaintyMap030.tif
 Pergamino_GSOCseq_ASR_SSM3_Map030.tif
 Pergamino_GSOCseq_ASR_SSM3_Map030.tif

RELATIVE DIFFERENCES: (SCENARIO – BAU) In tC/ha

Pergamino_GSOCseq_RelDiff_SSM1_Map030.tif

Pergamino_GSOCseq_RelDiff_SSM2_Map030.tif

Pergamino_GSOCseq_RelDiff_SSM3_Map030.tif

RELATIVE RATES : REL. DIF./20 In tC/ha/year

- Pergamino_GSOCseq_RSR_SSM1_Map030.tif
- Pergamino_GSOCseq_RSR_SSM1_UncertaintyMap030.tif
- Pergamino_GSOCseq_RSR_SSM2_Map030.tif
- Pergamino_GSOCseq_RSR_SSM2_UncertaintyMap030.tif
- Pergamino_GSOCseq_RSR_SSM3_Map030.tif
- Pergamino_GSOCseq_RSR_SSM3_UncertaintyMap030.tif

Thank You

guillermoeperalta@gmail.com

lucianoeliasdipaolo@gmail.com

