

FASSISTICT AND INNOVATION **FORUM**

Innovations in Soil and Plant Nutrient Management

Technological alternatives for increasing nutrient use efficiency in plants and soils Ivan Ortiz-Monasterio

Yaqui Valley 230,000 has 160,000 wheat Safflower, maize, garbanzo, alfalfa, vegetable crops y citrus trees

Agro ecologically representative of environments where 40% of the wheat in developing countries is produced

Nitrous oxide N_2O

Work in Yaqui, emissions could be reduced by 50% with improved N management practices

> Matson et al., 1998 Science

The Golf of California is vulnerable nitrogen (N) coming from agricultural runoff

N from the Yaqui Valley causes large algae blooms which are visible from satellites

Beman, et al. 2005 Nature

Sensor Technology

Diagnostic tool that allows us to establish N fertilization needs for each individual field

Collaboration since 1998 with Oklahoma State University

Bill Raun

Use of Optical Sensors for Nitrogen Management

2. Collect NDVI data at key growth stage

3. Use Algorithm

Algoritmo de la Fertilización del Trigo Ajust					
Trigo de Primavera	N.Salimor 23ha N				
PROPORCIONAR datos					
Rend. Max: kg/ha	10000				
Fecha de siembra:	22-nov-20				
Fecha, medidas:	03-ene-21				
	mes/dia/aħo				
NDVI (FRN)	0.887				
NDVI (PDA)	0.829				
NUE anticipado	0.35				
RESULTADOS					
Rend. Potencial sin N, kg/ha	10000.00				
Rend. Potencial, con N, kg/ha	11082.39				
Dias desde la siembra:	42				
Fert de N kg/ha	75.77				
Fert.de N, kg UREA/ha	168				

FASS SCIENCE AND INNOVATION

FORUM

Increased profits and reduced GHG emissions with the GreenSeeker in the Yaqui Valley

Year	Additional profits (USD/ha)	Avoided emissions (tC0 ₂ e/ha)	Total area (ha)	Total profits (USD)	Total avoided emissions (tC0 ₂ e)
2006-2007	\$6.69	0.19	2,445	\$16,352	464
2007-2008	\$(5.66)	0.20	4,232	\$(23,952)	861
2008-2009	\$99.39	0.23	6,662	\$662,182	1,557
2009-2010	\$60.42	0.23	7,724	\$466,669	1,752
2010-2011	\$37.85	0.14	8,877	\$336,010	1,211
2011-2012	\$30.36	0.24	5,671	\$172,174	1,373
2012-2013	\$18.66	0.22	5,665	\$105,713	1,264
2013-2014	\$10.56	0.16	7,149	\$75,476	1,163
Total	\$37.39	0.20	48,425	\$1,810,623	9,646

ha = hectare; tCO2e = tonnes of carbon dioxide emissions.

Lapidus et al. 2017

Note: Based on 971 observations. Values are in US 2014 dollars. Emissions were calculated using a N₂0 Global Warming Potential of 310. Results are from an initial analysis of CIMMYT data conducted by RTI International. More complete manuscript is under development.

- Average N savings over 8 years (2006-2014) 37 USD/ha. ~ 50 kgN/ha
- 9600 t CO₂e = removing 2000 automobiles from circulations for a y ear
- 48,425 ha in 8 years

Leyenda

Menuir a Zir 221 - 28

12 - 27 12 - 30

日本 14·38 日本 14·38

12 - 39 40 - 42

40-45 四46-48

■49-31
■2-58
■38-57

158.60

68 - 30

E 64 - 86

E87-00

m 10 - 12

TT - 75

16.75

19 - 81

at 12 at

- 林 - 村

RE - 90

bing

Mayne a 50

툴 0.400 0.300

0.200

0.100

0.000

0.000

0.200

0.400

0.600

Greensat

NOVI

C gismap.ciat.cgiar.org/egiron/MasAgroTTF/GreenSat/v1/

y = 0.8551x + 0.1248

 $R^2 = 0.7186$

0.800

1.000

W

s

MasAgro

2 00

8

GreenSat

GreenSat

Innovations in Soil and Plant Nutrient Management | 20 October 2022

GLOBAL SOI

Manned Airplane Piper PA-16

Cameras:

- Multispectral
- Hyperspectral
- Thermal

Cámara Multispectral y Térmica

Hyperspectral scanner

UAV Drone: eBee

Cameras:

- Multispectral
- Canon S110 NIR
- Canon Power shot
- Sequoia

A & 20

Team Collecting:

- NDVI readings with GreenSeeker and RTK
- NDVI readings with eBee Drone using a Sequoia Camera

Wheat NDVI GreenSeeker vs Drone

NDVI Greenseeker

0.6

0.8

0.4

0.2

n

Maiz NDVI GreenSeeker vs Drone

Maiz, Greenseeker vs Dron, 2016-2019

Innovations in Soil and Plant Nutrient Management | 20 October 2022

Wheat N Rich Strip NDVI vs 5% highest NDVI outside N Rich Strip

"NDVI FR vs 5% mayor - imagen"

Currently Working with Roto Pixels Drone Company :

- Good relationship between NDVI from GS vs Sequoia
- Using the GreenSeeker Algorithm for Commercial N recommendations
- Approximately 1000 hectares being diagnosed
- Approximate cost 4 USD per flight per hectare.

Thank you!