

Innovations in Soil and Plant Nutrient Management

Technological alternatives for increasing nutrient use efficiency in plants and soils Ivan Ortiz-Monasterio

Yaqui Valley 230,000 has 160,000 wheat Safflower, maize, garbanzo, alfalfa, vegetable crops y citrus trees Agro ecologically representative of environments where 40% of the wheat in developing countries is produced

FORUM

 N_2O

Work in Yaqui, emissions could be reduced by 50% with improved N management practices

Matson et al., 1998 Science

The Golf of California is vulnerable nitrogen (N) coming from agricultural runoff

N from the Yaqui Valley causes large algae blooms which are visible from satellites

Beman, et al. 2005

Nature

Sensor Technology

Diagnostic tool that allows us to establish N fertilization needs for each individual field

Collaboration since 1998 with Oklahoma State University
Bill Raun

Use of Optical Sensors for Nitrogen Management

1. Establish a N Rich Strip

2. Collect NDVI data at key growth stage

3. Use Algorithm

Algoritmo de la Fertilizació	ón del Trigo Ajust		
Trigo de Primavera	N.Salimor 23ha N		
PROPORCIONAR datos			
Rend. Max: kg/ha	10000		
Fecha de siembra:	22-nov-20		
Fecha, medidas:	03-ene-21		
	mes/dia/aħo		
NDVI (FRN)	0.887		
NDVI (PDA)	0.829		
NUE anticipado	0.35		
RESULTADOS			
Rend. Potencial sin N, kg/ha	10000.00		
Rend. Potencial, con N, kg/ha	11082.39		
Dias desde la siembra:	42		
Fert de N kg/ha	75.77		
Fert.de N, kg UREA/ha	168		

Increased profits and reduced GHG emissions with the GreenSeeker in the Yaqui Valley

Table 1. GreenSeeker handheld initial results: additional profits and avoided greenhouse gas emissions, by year

Year	Additional profits (USD/ha)	Avoided emissions (tCO ₂ e/ha)	Total area (ha)	Total profits (USD)	Total avoided emissions (tCO ₂ e)
2006-2007	\$6.69	0.19	2,445	\$16,352	464
2007-2008	\$(5.66)	0.20	4,232	\$(23,952)	861
2008-2009	\$99.39	0.23	6,662	\$662,182	1,557
2009-2010	\$60.42	0.23	7,724	\$466,669	1,752
2010-2011	\$37.85	0.14	8,877	\$336,010	1,211
2011-2012	\$30.36	0.24	5,671	\$172,174	1,373
2012-2013	\$18.66	0.22	5,665	\$105,713	1,264
2013-2014	\$10.56	0.16	7,149	\$75,476	1,163
Total	\$37.39	0.20	48,425	\$1,810,623	9,646

ha = hectare; tCO₂e = tonnes of carbon dioxide emissions.

Note: Based on 971 observations. Values are in US 2014 dollars. Emissions were calculated using a N₂0 Global Warming Potential of 310. Results are from an initial analysis of CIMMYT data conducted by RTI International. More complete manuscript is under development.

 Average N savings over 8 years (2006-2014) 37 USD/ha. ~ 50 kgN/ha

• 9600 t CO_2e = removing 2000 automobiles from circulations for a y ear

• 48,425 ha in 8 years

Lapidus et al. 2017

FORUM

Satellite

Sensor technology for nutrient management different costs and scales

Manned Airplane

13/72/7013

GreenSat

GreenSat

FORUM

Manned Airplane Piper PA-16

Cameras:

- Multispectral
- Hyperspectral
- Thermal

Cámara Multispectral y Térmica

UAV Drone: eBee

Cameras:

- Multispectral
- Canon S110 NIR
- Canon Power shot
- Sequoia

Team Collecting:

- NDVI readings with GreenSeeker and RTK
- NDVI readings with eBee Drone using a Sequoia Camera

Wheat NDVI GreenSeeker vs Drone

Wheat Greenseeker vs Dron, 2016-2019

Maiz NDVI GreenSeeker vs Drone

Maiz, Greenseeker vs Dron, 2016-2019

Wheat N Rich Strip NDVI vs 5% highest NDVI outside N Rich Strip

Currently Working with Roto Pixels Drone Company:

- Good relationship between NDVI from GS vs Sequoia
- Using the GreenSeeker
 Algorithm for Commercial N
 recommendations
- Approximately 1000 hectares being diagnosed
- Approximate cost 4 USD per flight per hectare.

