## **DIFENOCONAZOLE (224)**

The first draft was prepared by Mr. Denis J. Hamilton Department of Primary Industries and Fisheries Brisbane, Australia

#### **EXPLANATION**

Difenoconazole, a broad-spectrum fungicide, was considered for the first time by the present meeting. It is a broad-spectrum fungicide used for disease control in many fruits, vegetables, cereals and other field crops. It has preventive and curative action. Difenoconazole acts by inhibition of demethylation during ergosterol synthesis.

#### **IDENTITY**

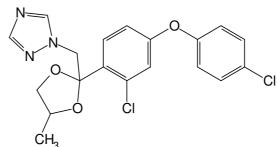
ISO common name difenoconazole Synonyms: CGA 169374

IUPAC name 1-[2-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-4-

methyl[1,3]dioxolan-2-ylmethyl]-1H-1,2,4-triazole

Chemical Abstracts name 1-[[2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-

dioxolan-2-yl]methyl]-1H-1,2,4-triazole


CAS Number 119446-68-3

CIPAC Number 687

 $\label{eq:control_solution} Molecular formula \qquad \qquad C_{19}H_{17}Cl_2N_3O_3$ 

Molecular mass 406.3

Structural formula (note that the 2 chiral carbons in difenoconazole result in a cis-trans pair of diastereoisomers)



## PHYSICAL AND CHEMICAL PROPERTIES

# Pure active ingredient

| Property                                            | Description or result                                                                              | Reference          |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------|
| Physical state                                      | White, odourless, fine crystalline powder                                                          | 70160              |
| Melting point (purity 99.3 %)                       | 82 – 83 °C                                                                                         | 70157              |
| Relative density (purity 99.3 %)                    | 1.39 at 22 °C                                                                                      | PP-<br>98/137P.DES |
| Vapour pressure (purity 99 %)                       | 3.32 × 10 <sup>-8</sup> Pa at 25 °C OECD Guideline 104 (measurements between 78.1 °C and 181.1 °C) | AG 88/11 P         |
| Solubility in water (purity 99 %,)                  | 15 mg/L at 25 °C OECD Guideline 105                                                                | 23321              |
| Octanol/water partition coefficient (purity 99.3 %) | £ 9,1                                                                                              | 76303              |

| Property                   |      |         | Description or result                                                                                                                             | Reference |
|----------------------------|------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Hydrolysis<br>98.8 %       | rate | (purity | Essentially no hydrolysis in 2 mg/L buffered sterile solutions at pH 5, 7 and 9 in the dark for 30 days at 25 °C                                  |           |
| Photolysis 99.3 %)         | rate | (purity | Less than 10% photo-degradation by simulated sunlight of 1.5 mg/L buffered sterile solutions at pH 7 for 15 days continuous irradiation at 25 °C. |           |
| Dissociation water (purity |      |         | $pK_a = 1.1$ at $20  ^{\circ}C$ OECD Guideline 112                                                                                                | 70159     |

# **Technical material**

|                                                         |                                                       |                                                             | Reference |
|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|-----------|
| Description                                             | Off-white, slightly sv                                | veet odour, powder                                          | 8804      |
| Solubility in organic solvents at 25 °C (purity 94.6 %) | Acetone Dichloromethane Ethyl acetate Hexane Methanol | > 500 g/L<br>> 500 g/L<br>> 500 g/L<br>3.0 g/L<br>> 500 g/L | 76994     |
|                                                         | Octanol Toluene                                       | 110 g/L<br>> 500 g/L<br>> 500 g/L                           |           |

# Metabolites

|                                    |                                                                                                                    | Reference                                   |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 1,2,4-triazole                     | N NH                                                                                                               | Reference                                   |
| Vapour pressure                    | 0.34 Pa at 25 °C OECD Guideline 104 (measurements between -14 °C and 46 °C)                                        | 100415                                      |
| Water solubility                   | 730 g/L at 25 °C interpolated value, measurements at 20 °C and 25 °C                                               | MO-01-005554<br>Vlasov and<br>Sukhova, 1988 |
| Octanol/water partitic coefficient | on $\log P_{OW} = -1.0$ at 22 °C, pH 6.2                                                                           | M8274                                       |
| Hydrolysis rate (pur. 98.6 %)      | Essentially no hydrolysis in 10 mg/L buffered sterile solutions at pH 5, 7 and 9 for 30 days at 25 °C in the dark. | 83-E-074                                    |
| CGA 205375                         | N HO CI                                                                                                            |                                             |
| Vapour pressure                    | < 5 × 10 <sup>-6</sup> Pa at 25 °C<br>OECD Guideline 104 (measurements at 25 °C)                                   | 2001WI07                                    |

|                                     |                                                                                                                               |         | Reference |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| Water solubility                    | 12 mg/L at 25<br>OECD Guideline 105                                                                                           | °C      | 107459    |
| Octanol/water partition coefficient | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                          | °C      | 107458    |
| Hydrolysis rate (purity 99 %)       | Essentially no hydrolysis in 0.23 buffered sterile solutions at pH 4, 7 and days at 50 °C in the dark.                        | _       | 798658    |
| Photolysis rate (purity 99 %)       | Less than 10% photo-degradation simulated sunlight of 1.0 mg/L buffered solutions at pH 7 for 15 days continuation at 24.8 °C | sterile | 815657    |

#### **FORMULATIONS**

Difenoconazole is available as EC, SC, WG and WP commercial formulations. Some products are mixtures with other fungicides.

| Code | Description                | Concentration                  | Examples                   |
|------|----------------------------|--------------------------------|----------------------------|
| EC   | emulsifiable concentrate   | 100 g/L + fenpropidin          | Spyrale                    |
| EC   | emulsifiable concentrate   | 150 g/L + propiconazole        | Armure 300 EC, Rias 300 EC |
| EC   | emulsifiable concentrate   | 250 g/L                        | Score, Bogard              |
| EC   | emulsifiable concentrate   | 250 g/L + propiconazole        | Taspa 500 EC, Gem          |
| SC   | suspension concentrate     | 62.5 g/L + carbendazim         | Eria, Tenor                |
| SC   | suspension concentrate     | 125 g/L + azoxystrobin         | Amistar Top                |
| WG   | water dispersible granules | 12.5 g/kg + folpet + cymoxanil | Covax WG                   |
| WG   | water dispersible granules | 62.5 g/kg + cyprodinil         | Play 31.25 WG              |
| WG   | water dispersible granules | 100 g/kg                       | Score, Bogard              |
| WP   | wettable powder            | 100 g/kg                       | Score 10 WP, Purugen       |

## **METABOLISM**

Animal and plant metabolism and environmental fate studies used difenoconazole <sup>14</sup>C labelled in the chlorophenoxy ring, the chlorophenyl ring or the triazole ring.

Structures, names and codes for metabolites are summarised below. Five possibilities for describing each metabolite are:

- 1) A simple name, which could be a common name, a simplified systematic name (e.g. triazole) or a pseudo-common name (e.g. hydroxy-difenoconazole).
- 2) The systematic chemical name it may be too cumbersome for use in discussion and tables.
- 3) The CAS number CAS numbers are not available for many metabolites.
- 4) The company code number, e.g. CGA 205375.
- 5) Serial numbers, e.g. metab 1, metab 2, etc not generally used here.

In this evaluation, metabolites are described by a simple name where available or by a company code number.

| Simple:                  |                                            | triazole                         | ~N                 |
|--------------------------|--------------------------------------------|----------------------------------|--------------------|
| Systematic:              |                                            | 1,2,4-triazole                   | NIL                |
| CAS                      | number:                                    | 288-88-0                         | NH<br>N/           |
| Code: CGA 71019          |                                            |                                  | 💙                  |
|                          |                                            |                                  |                    |
| Simple:                  | triazolyl                                  | alanine                          | NH <sub>2</sub>    |
| Systematic:              | 2-amino-3-(1,2,4]triazol)-1-yl-propionio   |                                  |                    |
| CAS                      | number:                                    | 86362-20-1                       | COOH               |
| Code: CGA 131013         |                                            |                                  |                    |
| C:1                      | 4-11-1                                     | : 1                              |                    |
| Simple:                  | triazolyl acetic                           | acid                             | N                  |
| Systematic:              | 1,2,4-triazol-1-yl-acetic                  | acid                             | N. COOH            |
| Code: CGA 142856         |                                            |                                  | N V                |
| Simple:                  | triazolyl lactic                           | acid                             | OH OH              |
| Systematic:              | 1,2,4-triazol-1-yl-lactic                  | acid                             | N JII              |
| •                        | •                                          |                                  | N Occur            |
| Code: CGA 205369         |                                            |                                  | N COOH             |
|                          |                                            |                                  |                    |
| _                        |                                            |                                  |                    |
| Systematic:              | 2-chloro-4-(4-chlorophenoxy)-benzoic       | acid                             |                    |
|                          |                                            |                                  |                    |
| Code: CGA 189138         |                                            |                                  | CI COOH            |
|                          |                                            |                                  |                    |
| Simple:                  | glyc                                       | ine-CGA-189138                   | O                  |
|                          |                                            |                                  |                    |
|                          |                                            |                                  | CI NH COOH         |
|                          |                                            |                                  | II<br>O            |
|                          |                                            |                                  |                    |
| C                        | 4 (4 -hlh) hi                              | 411                              | O CI               |
| Systematic: 2-chlor      | ro-4-(4-chloro-phenoxy)-benzoic acid       | methyl ester                     |                    |
| Code: CGA 190978         |                                            |                                  | COOCH <sub>3</sub> |
| Code. COA 1909/6         |                                            |                                  | 3                  |
|                          |                                            |                                  | . 0 .              |
| Systematic: 1-(2-        | chloro-4-(4-chloro-phenoxy)-phenyl)-2-(1   | .2.4-triazol)-1-vl-              |                    |
| ethanone                 | 7,1                                        | , , , , , , ,                    |                    |
|                          |                                            |                                  | N CI               |
| Code: CGA 205374         |                                            |                                  | N O CI             |
|                          |                                            |                                  |                    |
| Crystomatics 1 [2        | ablama 4 (4 ablama mbamayyy) mbamyili 2 (1 | 2.4 twiczal) 1 vil               |                    |
| Systematic: 1-[2-ethanol | chloro-4-(4-chloro-phenoxy)-phenyl]-2-(1   | ,2, <del>4</del> -triazoi)-1-yi- |                    |
| etilalioi                |                                            |                                  |                    |
| Code: CGA 205375,        | CGA 211301                                 |                                  | N j                |
| Couc. COA 203373,        | CGA 211391                                 |                                  | ₩ HO CI            |
|                          |                                            |                                  | 0 OI               |
| Systematic: 2-ch         | nloro-4-(4-chlorophenoxy)-phenyl-hydroxy   | yacetic acid                     |                    |
| G 1 VG : (10==:          |                                            |                                  | COOH               |
| Code: NOA 448731         |                                            |                                  | OH                 |
| 0: 1                     |                                            | 1:0                              | Un Un              |
| Simple:                  | hydrox                                     | y-difenoconazole                 | N OH               |
|                          |                                            |                                  |                    |
|                          |                                            |                                  |                    |
|                          |                                            |                                  | \                  |
|                          |                                            |                                  | )—O CI             |
|                          |                                            |                                  |                    |
|                          |                                            |                                  | CH <sub>3</sub>    |
| Simple:                  | hvdro                                      | 0xy-CGA-205375                   | <u> </u>           |
| Simple:                  | hydro                                      | oxy-CGA-205375                   | CH <sub>3</sub>    |
| Simple:                  | hydro                                      | oxy-CGA-205375                   |                    |
| Simple:                  | hydro                                      | oxy-CGA-205375                   | <u> </u>           |
| Simple:                  | hydro                                      | oxy-CGA-205375                   | <u> </u>           |

#### Animal metabolism

The Meeting received animal metabolism studies with difenoconazole in rats, lactating goats and laying hens.

Difenoconazole is rapidly metabolized, initially to CGA 205375 and then with cleavage of the triazole moiety from the chlorophenoxyphenyl moiety. TRR levels are higher in the liver than in other tissues. Most of the TRR is rapidly excreted.

#### Rats

Capps *et al.* 1990, (ABR-90019) identified the metabolites of difenoconazole in rats after oral dosing with [\(^{14}\text{C-triazole}\)]difenoconazole and [\(^{14}\text{C-phenyl}\)]difenoconazole. The following metabolites were identified in excreta: CGA 205375, 1,2,4-triazole, CGA 189138, Metabolites A1 and A2 and Metabolites B (diastereomers). A subsequent report (Capps and Anderson, 1993, ABR-90019) identified NOA 448731, sulphate conjugates of CGA 205375 and sulphate conjugates of Metabolites A in urine. See also the toxicology evaluation.

Figure 1. Proposed pathway for the metabolism of difenoconazole in the rat

## Lactating goats

A lactating goat weighing 31.5 kg was dosed orally once daily for 10 consecutive days by gelatin capsule with 7.5 mg/animal/day of [<sup>14</sup>C-triazole]difenoconazole, equivalent to 5.6 ppm in the feed (Madrid, 1988, ABR-88087) for a 1.35 kg/day feed consumption. A second lactating goat weighing 32 kg was dosed orally once daily for 10 consecutive days by gelatin capsule with 7.5 mg/animal/day of [<sup>14</sup>C-phenyl]difenoconazole, equivalent to 4.7 ppm in the feed for a 1.80 kg/day feed consumption.

Milk and excreta were collected daily. The animals were slaughtered approximately 22 and 23 hours after the final dose for tissue collection. Recoveries of administered <sup>14</sup>C were 107% and 89% for the [<sup>14</sup>C]triazole and [<sup>14</sup>C]phenyl labels respectively.

The majority of the administered <sup>14</sup>C was present in the excreta (31% in urine, 75% in faeces for [<sup>14</sup>C]triazole label; 21% in urine, 67% in faeces for [<sup>14</sup>C]phenyl label). Milk accounted for 0.50% and 0.18% and tissues for 0.90% and 0.44% of the administered <sup>14</sup>C. The distribution of the radiolabel and identified metabolites in tissues and milk are summarised in Table 1. Residues of <sup>14</sup>C were higher in liver (0.28 and 0.26 mg/kg) than in other tissues.

Residues in milk reached a plateau by day 2 (0.007 mg/kg) for the [<sup>14</sup>C]phenyl label and by days 4-7 (0.032-0.043 mg/kg) for the [<sup>14</sup>C]triazole label. The concentration of <sup>14</sup>C appearing in milk and milk fat was higher for the [<sup>14</sup>C]triazole label. Of the <sup>14</sup>C in milk, 19% and 32% were distributed into the fat portion for the [<sup>14</sup>C]triazole and [<sup>14</sup>C]phenyl labels respectively.

Table 1. Distribution of <sup>14</sup>C residue and metabolites in tissues and milk of lactating goats dosed orally for 10 days with 7.5 mg/animal/day of [<sup>14</sup>C-triazole] difenoconazole, equivalent to 5.6 ppm in the feed or [<sup>14</sup>C-phenyl]difenoconazole, equivalent to 4.7 ppm in the feed

|                                     | Concent | ration, mg | g/kg, expre | ssed as parei | nt      |           |        |       |
|-------------------------------------|---------|------------|-------------|---------------|---------|-----------|--------|-------|
| Residue component                   | Loin    | Leg        | Liver       | Kidney        | Omental | Perirenal | Milk,  | Milk  |
| _                                   | muscle  | muscle     |             | ·             | fat     | fat       | day 7  | day 8 |
| [ <sup>14</sup> C-triazole] label   |         |            |             |               |         |           |        |       |
| Total <sup>14</sup> C residue (TRR) | 0.026   | 0.028      | 0.28        | 0.094         | 0.064   | 0.035     | 0.043  |       |
| Extracted residue                   |         |            | 0.25        | 0.075         |         |           |        |       |
| Unextractable                       |         |            | 0.042       | 0.018         |         |           |        |       |
| Difenoconazole                      |         |            | 0.002       |               |         |           |        |       |
| CGA 205375                          |         |            | 0.16        |               |         |           | 0.0014 |       |
| 1,2,4-triazole                      |         |            | 0.009       |               |         |           | 0.020  |       |
| Metab B                             |         |            | 0.005       |               |         |           |        |       |
| Metab C                             |         |            | 0.003       |               |         |           |        |       |
| Metab D                             |         |            | 0.002       |               |         |           | 0.001  |       |
| Metab G                             |         |            | 0.031       |               |         |           |        |       |
| [14C-phenyl] label                  |         |            |             |               |         |           |        |       |
| Total <sup>14</sup> C residue (TRR) | 0.008   | 0.007      | 0.26        | 0.064         | 0.025   | 0.022     |        | 0.008 |
| Extracted residue                   |         |            | 0.21        |               |         |           |        |       |
| Unextractable                       |         |            | 0.079       |               |         |           |        |       |
| Difenoconazole                      |         |            | 0.003       |               |         |           |        |       |
| CGA 205375                          |         |            | 0.15        |               |         |           |        |       |
| CGA 205374                          |         |            | 0.002       |               |         |           |        |       |
| CGA 189138                          |         |            | 0.004       |               |         |           |        |       |
| Metab B                             |         |            | 0.004       |               |         |           |        |       |
| Metab C                             |         |            | 0.005       |               |         |           |        |       |
| Metab D                             |         |            | 0.002       |               |         |           |        |       |
| Metab G                             |         |            | 0.013       |               |         |           |        |       |

Four lactating goats were dosed orally once daily for 3 consecutive days by gelatin capsule with 150 mg/animal/day of [\frac{14}{C}\text{-triazole}]difenoconazole (2 goats) and [\frac{14}{C}\text{-phenyl}]difenoconazole (2 goats), equivalent to 100 ppm in the feed (Maynard, 1990. ABR-89100).

Milk was collected twice daily and excreta were collected daily. The animals were slaughtered approximately 4-6 h after the final dose for tissue collection. Recoveries of administered  $^{14}$ C were 64 and 52% for the [ $^{14}$ C]phenyl label and 40 and 63% for the [ $^{14}$ C]triazole label.

Tissues were extracted with organic and aqueous solvents. Milk was extracted with organic solvents and separated into aqueous, organic and solid phases. Components of the TRR were separated by LC and TLC and were identified by comparison with standard compounds (Table 2).

Table 2. Distribution of <sup>14</sup>C residue and metabolites in tissues and milk of lactating goats dosed orally for 3 days with 150 mg/animal/day of [<sup>14</sup>C]difenoconazole, equivalent to 100 ppm in the feed

|                                     | Concentrat | Concentration, mg/kg, expressed as parent (mean of samples from 2 animals) |        |             |                |            |  |
|-------------------------------------|------------|----------------------------------------------------------------------------|--------|-------------|----------------|------------|--|
| Residue component                   | Muscle     | Liver                                                                      | Kidney | Omental fat | Milk,<br>day 1 | Milk day 2 |  |
| [ <sup>14</sup> C-triazole] label   |            |                                                                            |        |             |                |            |  |
| Total <sup>14</sup> C residue (TRR) | 0.57       | 7.5                                                                        | 1.8    | 1.14        | 0.18           | 0.38       |  |
| Extracted residue %                 | 92%        | 105%                                                                       | 107%   | 94%         |                | 83%        |  |
| Unextractable %                     | 14%        | 4%                                                                         | 8%     | 6%          |                | 6%         |  |
| Difenoconazole                      | 0.021      | 0.62                                                                       | 0.095  | 0.074       |                | 0.023      |  |
| CGA 205375                          | 0.24       | 3.7                                                                        | 0.93   | 0.86        |                | 0.13       |  |
| CGA 205374                          | 0.008      |                                                                            |        |             |                |            |  |
| 1,2,4-triazole                      | 0.010      |                                                                            |        |             |                | 0.022      |  |
| Hydroxy-difenoconazole              |            |                                                                            |        | 0.021       |                |            |  |
| Hydroxy- CGA-205375                 | 0.013      |                                                                            |        | 0.014       |                | 0.011      |  |
| % of TRR identified                 | 52%        | 58%                                                                        | 56%    | 85%         |                | 49%        |  |
| [ <sup>14</sup> C-phenyl] label     |            |                                                                            |        |             |                |            |  |
| Total <sup>14</sup> C residue (TRR) | 0.20       | 6.0                                                                        | 1.55   | 0.56        | 0.105          | 0.14       |  |
| Extracted residue %                 | 86%        | 95%                                                                        | 110%   | 96%         |                | 100%       |  |
| Unextractable %                     | 14%        | 3%                                                                         | 12%    | 4%          |                | 18%        |  |
| Difenoconazole                      | 0.007      | 0.40                                                                       | 0.023  | 0.018       |                | 0.012      |  |
| CGA 205375                          | 0.14       | 3.2                                                                        | 0.48   | 0.41        |                | 0.029      |  |
| CGA 205374                          |            | 0.14                                                                       |        |             |                |            |  |
| CGA 189138                          |            |                                                                            |        |             |                | 0.009      |  |
| Hydroxy-difenoconazole              |            |                                                                            |        | 0.033       |                | 0.021      |  |
| Hydroxy- CGA-205375                 |            | 0.37                                                                       | 0.031  | 0.019       |                | 0.006      |  |
| % of TRR identified                 | 72%        | 75%                                                                        | 34%    | 86%         |                | 56%        |  |

Two lactating goats weighing 46 and 51 kg were dosed orally once daily for 4 consecutive days by gelatin capsule with 150 mg/animal/day of [<sup>14</sup>C-phenyl ]difenoconazole, equivalent to 100 ppm in the feed (Ray, 1996, ABR-95099) for a 1.5 kg/day feed consumption.

Milk and excreta were collected daily. The animals were slaughtered approximately 6 hours after the final dose for tissue collection. Subsamples of hind leg and tenderloin muscle were combined to produce the muscle sample. Subsamples of omental fat and perirenal fat were combined for the fat sample. Recoveries of administered <sup>14</sup>C were approximately 71% (37% in faeces, 29% in urine, 0.18% in bile, 0.42% in blood, 3.3% in tissues and 0.28% in milk).

Tissues were extracted with acetonitrile and water. Milk was extracted with acetonitrile, water and acetone. Components of the TRR were separated by LC and TLC and were identified by comparison with standard compounds (Table 3).

CGA 205375 was the major component of the residue in all tissues and milk. Parent difenoconazole was present in all tissues and milk, but never exceeding 10% of the TRR. A number of metabolites resulted from hydroxylation and conjugation with glucuronic acid, sulphate and glycine. The concentration of the main component, CGA 205375, in fat was 2.3 times its concentration in muscle, but much below its concentration in liver and similar to that in kidney, suggesting borderline fat solubility.

Table 3. Distribution of <sup>14</sup>C residue and metabolites in tissues and milk of a lactating goat dosed orally for 4 consecutive days with 150 mg/animal/day of [<sup>14</sup>C-phenyl]difenoconazole, equivalent to 100 ppm in the feed

|                                     | Concentra | tion, mg/kg, | expressed as | parent |       |
|-------------------------------------|-----------|--------------|--------------|--------|-------|
| Residue component                   | Muscle    | Liver        | Kidney       | Fat    | Milk, |
| -                                   |           |              | ·            |        | day 3 |
| Total <sup>14</sup> C residue (TRR) | 0.45      | 9.8          | 2.5          | 1.1    | 0.32  |
| Extracted residue %                 | 101%      | 95%          | 96%          | 106%   | 108%  |
| Unextractable %                     | 0.75%     | 4.9%         | 2.0%         | 2.4%   | 4.9%  |
| Difenoconazole                      | 0.020     | 0.89         | 0.014        | 0.095  | 0.028 |
| Glucuronide-hydroxy-difenoconazole  | nd        | 0.16         | 0.019        | nd     | nd    |
| Sulphate-hydroxy-difenoconazole     | nd        | nd           | nd           | nd     | 0.009 |
| CGA 205375                          | 0.42      | 7.1          | 1.2          | 0.95   | 0.12  |
| Hydroxy-CGA-205375                  | 0.009     | 0.098        | 0.016        | 0.020  | 0.001 |
| Glucuronide-CGA-205375              | 0.006     | 0.73         | 0.46         | nd     | 0.002 |
| Sulphate-CGA-205375                 | 0.002     | 0.068        | 0.27         | nd     | 0.034 |
| Sulphate-hydroxy-CGA-205375         | nd        | 0.18         | 0.082        | nd     | 0.013 |
| Glucuronide-hydroxy-CGA-205375      | nd        | nd           | 0.027        | nd     | nd    |
| CGA 205374                          | nd        | nd           | nd           | 0.033  | nd    |
| CGA-189138                          | 0.002     | 0.020        | 0.057        | nd     | 0.003 |
| Glycine-CGA-189138                  | 0.004     | 0.039        | 0.30         | nd     | 0.11  |
| Glucuronide-hydroxide-CGA-189138    | nd        | nd           | 0.087        | nd     | nd    |
| % of TRR identified                 | 101%      | 95%          | 96%          | 106%   | 108%  |

nd: not detected

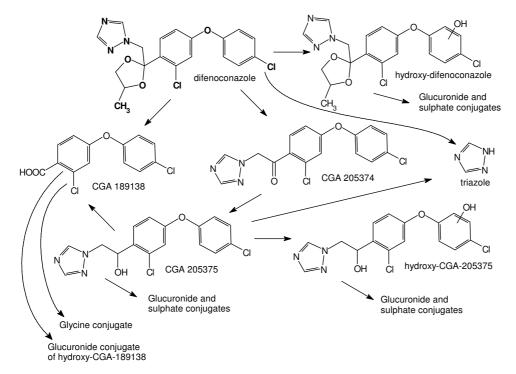



Figure 2. Proposed pathway for metabolism of difenoconazole in goats.

# Laying hens

A group of laying white leghorn hens (4 birds), mean body weight 1.5 kg at study initiation, were dosed orally once daily via gelatin capsule for 14 consecutive days with 0.55 mg/bird/day of

[<sup>14</sup>C]difenoconazole (2 birds with [<sup>14</sup>C]phenyl label and 2 birds with [<sup>14</sup>C]triazole label), equivalent to 5 ppm in the feed for a 108 g/day mean feed consumption (Madrid, 1989, ABR-89051).

Eggs were collected daily. The birds were slaughtered approximately 22 hours after the final dose for tissue collection (lean meat, liver, kidney, skin and attached fat and peritoneal fat). Recovery of administered <sup>14</sup>C ranged from 91.5% to 97.5%. Most of the <sup>14</sup>C (over 89% of administered dose) was eliminated via the excreta.

Tissues, egg whites and egg yolks were subjected to biphasic extraction, producing organic, aqueous and nonextractable fractions.

Apparent plateaus for TRR in egg whites and yolks were reached after approximately 4 and 7 days of dosing respectively. The plateau TRR values in egg whites were quite different for the two labels: 0.14 mg/kg for [\frac{14}{C}]triazole label and 0.011 mg/kg for [\frac{14}{C}]phenyl label, whereas the plateau levels in the yolks were essentially the same: 0.28 and 0.29 mg/kg for the [\frac{14}{C}]triazole and [\frac{14}{C}]phenyl labels respectively (Figure 3). Levels of \frac{14}{C} in tissues are summarised in Table 4.

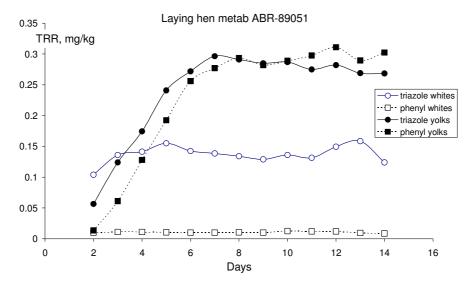



Figure 3. TRR in egg whites and yolks from a laying hen metabolism study.

Table 4. Distribution of <sup>14</sup>C residue in tissues and eggs of laying hens dosed orally daily for 14 consecutive days with 0.55 mg/bird/day of [<sup>14</sup>C]difenoconazole, equivalent to 5 ppm in the feed

|                                     | Concentration, mg/kg, expressed as parent (mean of samples from 2 birds |                |       |        |  |  |  |  |
|-------------------------------------|-------------------------------------------------------------------------|----------------|-------|--------|--|--|--|--|
| Residue component                   | Skin + fat Lean meat                                                    | Peritoneal fat | Liver | Kidney |  |  |  |  |
| [ <sup>14</sup> C-triazole] label   |                                                                         |                |       |        |  |  |  |  |
| Total <sup>14</sup> C residue (TRR) | 0.031 0.083                                                             | 0.019          | 0.13  | 0.43   |  |  |  |  |
| Extracted residue %                 | 93%                                                                     |                | 85%   | 85%    |  |  |  |  |
| Unextractable %                     | 8%                                                                      |                | 12%   | 11%    |  |  |  |  |
| [ <sup>14</sup> C-phenyl] label     |                                                                         |                |       |        |  |  |  |  |
| Total <sup>14</sup> C residue (TRR) | 0.016 0.008                                                             | 0.040          | 0.13  | 0.49   |  |  |  |  |
| Extracted residue %                 |                                                                         |                | 63%   | 76%    |  |  |  |  |
| Unextractable %                     |                                                                         |                | 27%   | 29%    |  |  |  |  |

Two groups of laying hens were dosed orally once daily via gelatin capsule for 3 consecutive days with 7.5 mg/bird/day of [<sup>14</sup>C]difenoconazole (10 birds with [<sup>14</sup>C]phenyl label and 10 birds with [<sup>14</sup>C]triazole label), equivalent to 68 ppm in the feed (Maynard, 1990, ABR-89101).

Eggs were collected daily. The birds were slaughtered approximately 4 – 6 hours after the final dose for tissue collection (liver, kidney, muscle and fat). Recoveries of administered <sup>14</sup>C were 78% and 80% for the [<sup>14</sup>C]phenyl and [<sup>14</sup>C]triazole labels respectively. Most of the <sup>14</sup>C (76% of the administered dose for both labels) was eliminated via the excreta.

Egg whites and egg yolks were extracted with acetonitrile. Tissues were extracted with aqueous and solvent phases. After cleanup steps, metabolites were identified by TLC and LC. Metabolite distributions are summarised in Table 5.

Table 5. Distribution of 14C residue and metabolites in tissues and eggs of laying hens dosed orally daily for 3 consecutive days with 7.5 mg/bird/day of [14C]difenoconazole, equivalent to 68 ppm in the feed

| Concentration, mg/kg, expressed as parent |       |        |        |       |                 |             |  |
|-------------------------------------------|-------|--------|--------|-------|-----------------|-------------|--|
| Residue component                         | Liver | Kidney | Muscle | Fat   | Egg white, da 2 | ay Egg yolk |  |
| [ <sup>14</sup> C-triazole] label         |       |        |        |       |                 |             |  |
| Total <sup>14</sup> C residue (TRR)       | 4.3   | 1.9    | 0.51   | 0.46  | 0.27            | 0.13        |  |
| Extracted residue %                       | 90%   | 86%    | 108%   | 63%   |                 |             |  |
| Unextractable %                           | 31%   | 9%     | 25%    | 37%   |                 |             |  |
| Difenoconazole                            |       | 0.032  | 0.005  | 0.007 | 0.013           | 0.001       |  |
| Hydroxy-difenoconazole                    |       | 0.061  |        |       | 0.003           | 0.006       |  |
| 1,2,4-triazole                            | 0.23  | 0.13   | 0.025  | 0.004 | 0.18            | 0.043       |  |
| CGA-205375                                | 1.3   | 0.37   | 0.045  | 0.212 | 0.021           | 0.047       |  |
| Hydroxy-CGA-205375                        | 0.35  | 0.092  | 0.007  | 0.026 | 0.002           | 0.003       |  |
| CGA-205374                                | 0.060 | 0.040  |        | 0.004 |                 |             |  |
| % of TRR identified                       | 45%   | 39%    | 16%    | 55%   | 82%             | 75%         |  |
| [ <sup>14</sup> C-phenyl] label           | •     |        |        |       |                 |             |  |
| Total <sup>14</sup> C residue (TRR)       | 4.7   | 2.2    | 0.10   | 0.45  | 0.023           | 0.037       |  |
| Extracted residue %                       | 86%   | 74%    |        | 85%   |                 |             |  |
| Unextractable %                           | 35%   | 30%    |        | 15%   |                 |             |  |
| Difenoconazole                            | 0.20  |        |        | 0.007 | 0.001           | < 0.001     |  |
| Hydroxy-difenoconazole                    | 0.14  | 0.11   |        |       | 0.003           | 0.005       |  |
| CGA-205375                                | 1.6   | 0.49   | 0.035  | 0.29  | 0.019           | 0.027       |  |
| Hydroxy-CGA-205375                        | 0.46  | 0.072  | 0.004  | 0.037 | 0.001           | < 0.001     |  |
| CGA-189138                                | 0.13  |        |        |       |                 |             |  |
| CGA-205374                                | 0.084 | 0.12   |        | 0.008 |                 | -           |  |
| % of TRR identified                       | 57%   | 35%    | 39%    | 75%   | 103%            | 87%         |  |

Five laying white leghorn hens, mean body weight 1.54 - 1.68 kg at study initiation, were dosed orally once daily via gelatin capsule for 4 consecutive days with 12.5 mg/bird/day of [ $^{14}$ C-triazole]difenoconazole, equivalent to a nominal 100 ppm (87 – 215 ppm, mean 121 ppm) in the feed for a 64 – 144 g/day feed consumption (Ray, 2004, 786-02).

Eggs were collected daily. The birds were slaughtered approximately 6 hours after the final dose for tissue collection (liver, muscle and peritoneal fat). The recovery of administered  $^{14}$ C was 92% with most of the  $^{14}$ C (66% of the administered dose) in the excreta. Eggs contained 1.2% and tissues 6.5% of the administered  $^{14}$ C.

The tissue and egg samples from each bird were combined to produce composite samples for analysis. Samples were extracted with acetonitrile + water. After cleanup steps, metabolites were identified by TLC and LC. Metabolite distributions are summarised in Table 6.

Table 6. Distribution of <sup>14</sup>C residue and metabolites in tissues and eggs of laying white leghorn hens dosed orally daily for 4 consecutive days with 12.5 mg/bird/day of [<sup>14</sup>C-triazole]difenoconazole, equivalent to a nominal 100 ppm in the feed.

|                                     | Concentration, mg/kg, expressed as parent |        |                |                  |                 |  |  |  |  |
|-------------------------------------|-------------------------------------------|--------|----------------|------------------|-----------------|--|--|--|--|
| Residue component                   | Liver                                     | Muscle | Peritoneal fat | Egg white, day 4 | Egg yolk, day 3 |  |  |  |  |
| Total <sup>14</sup> C residue (TRR) | 13                                        | 4.9    | 10.4           | 4.0              | 4.5             |  |  |  |  |
| Extracted residue %                 | 97%                                       | 92%    | 101%           | 99.9%            | 99.9%           |  |  |  |  |
| Unextractable %                     | 2.7%                                      | 4.8%   | 0.74%          | 0.38%            | 1.7%            |  |  |  |  |
| Difenoconazole                      | 0.78                                      | 0.11   | 1.9            | nd               | 0.24            |  |  |  |  |
| 1,2,4-triazole                      | 2.4                                       | 2.7    | 0.48           | 3.0              | 1.4             |  |  |  |  |
| CGA-205375                          | 7.3                                       | 1.2    | 6.3            | 0.10             | 2.4             |  |  |  |  |
| CGA-205374                          | 0.24                                      | nd     | nd             | nd               | nd              |  |  |  |  |
| % of TRR identified                 | 79%                                       | 82%    | 83%            | 78%              | 91%             |  |  |  |  |

nd: not detectable

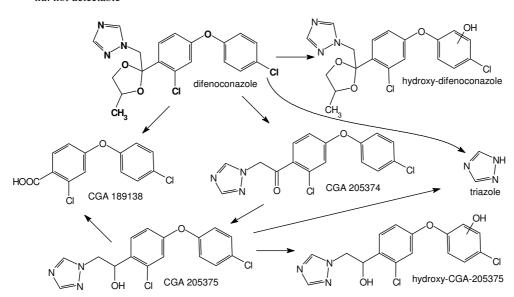



Figure 4. Proposed pathway for the metabolism of difenoconazole in the laying hen

## Plant metabolism

The Meeting received plant metabolism studies with difenoconazole in tomatoes, wheat, potatoes, grapes and oilseed rape.

Difenoconazole is generally slowly absorbed and metabolized. In most cases, particularly for parts of the plant directly exposed to the treatment, the parent difenoconazole is the dominant part of the residue. The residue in parts of the plant not directly exposed are more likely to contain a residue dominated by a mobile water-soluble metabolite such as triazolylalanine.

The following plant metabolites apparently do not occur as animal metabolites of difenoconazole: triazolylalanine (2-amino-3-(1,2,4]triazol)-1-yl-propionic acid), triazolyl acetic acid (1,2,4-triazol-1-yl-acetic acid) and triazolyl-lactic acid (1,2,4-triazol-1-yl-lactic acid).

#### **Tomatoes**

In a tomato metabolism study in USA, (Madrid and Huber, 1987, ABR-87025) foliar sprayed tomato plants (variety Sunny) in pots in a greenhouse 6 times at 7-day intervals with [\frac{14}{C}]phenyl and [\frac{14}{C}]triazole labelled difenoconazole at the equivalent of 0.12 kg ai/ha. Samples of tomato plants were taken at various stages of treatment and mature fruit were sampled 7 days after the final treatment. TLC was used to identify components of the residue (Table 7). The results were consistent between

the label positions, with parent difenoconazole constituting a major or substantial component of the residue on the foliage.

Table 7. Distribution of <sup>14</sup>C residue and metabolites in cuttings, foliage and fruit of greenhouse tomato plants sprayed 6 times with [<sup>14</sup>C]phenyl and [<sup>14</sup>C]triazole labelled difenoconazole at the equivalent of 0.12 kg ai/ha

| TOMATO METABOLISM                   | Concentr | ation, mg/l | g, express | sed as parent or | % TRR   |         |              |
|-------------------------------------|----------|-------------|------------|------------------|---------|---------|--------------|
| Residue component                   | Cuttings | Cuttings    | Foliage    | Fruit before     | Mature  | Mature  | Mature       |
|                                     | after    | before      | before     | spray 5          | foliage | fruit   | fruit (ripe) |
|                                     | spray 1  | spray 3     | spray 5    |                  |         | (green) |              |
| [ <sup>14</sup> C-phenyl] label     |          |             |            |                  |         |         |              |
| Total <sup>14</sup> C residue (TRR) | 4.0      | 4.0         | 3.3        | 0.079            | 2.8     | 0.016   | 0.037        |
| Extracted residue % TRR             | 87%      | 91%         | 96%        | 87%              | 82%     | 84%     | 86%          |
| Unextractable % TRR                 | 1.4%     | 9.3%        | 12%        | 5.0%             | 13%     | 12 %    | 10%          |
| Difenoconazole % TRR                |          | 58%         | 55%        |                  | 37%     |         |              |
| CGA 205375 + CGA 205374 %TRR        |          | 1.2%        | 1.3%       |                  | 0.8%    |         |              |
| CGA 189138 %TRR                     |          | 2.4 %       | 3.6%       |                  | 5.6%    |         |              |
| [ <sup>14</sup> C-triazole] label   |          |             |            |                  |         |         |              |
| Total <sup>14</sup> C residue (TRR) | 2.6      | 2.0         | 2.4        | 0.23             | 2.8     | 0.13    | 0.12         |
| Extracted residue %TRR              | 94%      | 100%        | 90%        | 96%              | 79%     | 93%     | 89%          |
| Unextractable %TRR                  | 2.6%     | 9.6%        | 8.2%       | 6.9%             | 12%     | 0.6%    | 1.3%         |
| Difenoconazole %TRR                 |          | 58%         | 51%        |                  | 36%     |         |              |
| CGA 205375 + CGA 205374 %TRR        |          | 1.9%        | 1.1%       |                  | 0.9%    |         |              |

In a field-grown tomato metabolism study in California, USA, (Madrid and Huber, 1987, ABR-87033) foliar sprayed tomato plants (variety UC-82) in field plots 3 times at 14-day intervals with [\frac{14}{C}]phenyl and [\frac{14}{C}]triazole labelled difenoconazole at the equivalent of 0.25 kg ai/ha. Samples of tomato plants were taken at various stages of treatment and mature fruit were sampled 40 days after the final treatment. Components of the residue were identified by TLC (Table 8). The results were consistent between the two label positions, with parent difenoconazole constituting a major or substantial component of the residue on the foliage. The results were also consistent with those of the previous greenhouse tomato metabolism study.

Table 8. Distribution of <sup>14</sup>C residue and metabolites in cuttings, foliage and fruit of field-grown tomato plants sprayed with [<sup>14</sup>C]phenyl and [<sup>14</sup>C]triazole labelled difenoconazole at the equivalent of 0.25 kg ai/ha

| TOMATO METABOLISM                   | Concentr | ation, mg/l | kg, express | sed as parent or | % TRR    |         |              |
|-------------------------------------|----------|-------------|-------------|------------------|----------|---------|--------------|
| Residue component                   | Cuttings | Cuttings    | Foliage     | Fruit before     | e Mature | Mature  | Mature       |
|                                     | after    | before      | before      | spray 3          | foliage  | fruit   | fruit (ripe) |
|                                     | spray 1  | spray 2     | spray 3     |                  |          | (green) |              |
| [ <sup>14</sup> C-phenyl] label     |          |             |             |                  |          |         |              |
| Total <sup>14</sup> C residue (TRR) | 9.4      | 1.0         | 2.1         | 0.012            | 3.5      | 0.029   | 0.026        |
| Extracted residue% TRR              | 93%      | 90%         | 91%         |                  | 77%      |         |              |
| Unextractable % TRR                 | 3.2%     | 9.0 %       | 13%         |                  | 16%      |         |              |
| Difenoconazole% TRR                 |          |             | 59%         |                  | 31%      |         |              |
| CGA 205375 + CGA 205374 %TRR        |          |             | 3.8%        |                  | 3.4%     |         |              |
| CGA 189138 %TRR                     |          |             | 4.3%        |                  | 5.2%     |         |              |
| [ <sup>14</sup> C-triazole] label   |          |             |             |                  |          |         |              |
| Total <sup>14</sup> C residue (TRR) | 6.7      | 0.98        | 2.9         | 0.11             | 7.4      | 0.24    | 0.27         |
| Extracted residue %TRR              | 102%     | 89%         | 75%         | 107%             | 87%      | 100%    | 89%          |
| Unextractable %TRR                  | 4.4%     | 8.9%        | 8.0%        | 1.3%             | 21%      | 0.6%    | 1.0%         |
| Difenoconazole %TRR                 |          |             | 52%         |                  | 28%      |         |              |
| CGA 205375 + CGA 205374 %TRR        |          |             | 3.5%        |                  | 4.3%     |         |              |

In a tomato metabolism study in USA, (Velagaleti, 1990, N-0964-0600) foliar sprayed tomato plants (variety Sunny) in pots in a greenhouse 6 times at 7 day intervals with [\frac{14}{C}-triazole]difenoconazole at the equivalent of 0.12 kg ai/ha. Samples of tomato plants were taken at various stages of treatment and mature fruit were sampled 33 days after the final treatment. Components of the residue were identified by TLC (Table 9).

A high percentage of the residue was extractable from cuttings, foliage and fruit. In fruit, parent difenoconazole and metabolite triazolylalanine were major components of the residue. Metabolites CGA 205374 and CGA 203575 were identified as very minor parts (< 2%) of the residue in fruits and foliage. Hydroxy-difenoconazole, hydroxy-CGA 205374 and hydroxy-CGA 205375 were also identified as very minor components of the residue in foliage after cellulase digestion.

Table 9. Distribution of <sup>14</sup>C residue and metabolites in cuttings, foliage and fruit of greenhouse tomato plants sprayed 6 times with [<sup>14</sup>C]triazole labelled difenoconazole at the equivalent of 0.12 kg ai/ha

| Residue component                   | Concentration,            | mg/kg, express            | ed as parent or                       | % TRR                     |                        |                             |
|-------------------------------------|---------------------------|---------------------------|---------------------------------------|---------------------------|------------------------|-----------------------------|
| Cuttings and foliage                | Cuttings after            | Cuttings<br>before dose 3 | Cuttings                              | Cuttings<br>before dose 6 | Foliage, final harvest |                             |
| Total <sup>14</sup> C residue (TRR) | 3.8 mg/kg                 | 3.5 mg/kg                 | 6.4 mg/kg                             | 9.7 mg/kg                 | 7.7 mg/kg              |                             |
| Extracted residue % TRR             | 91%                       | 110%                      | 93%                                   | 86%                       | 101%                   |                             |
| Unextractable % TRR                 | 2%                        | 3%                        | 4%                                    | 14%                       | 7%                     |                             |
| Difenoconazole % TRR                |                           |                           |                                       |                           | 68%                    |                             |
| conc                                |                           |                           |                                       |                           | 5.2 mg/kg              |                             |
| CGA 205374 %TRR                     |                           |                           |                                       |                           | 1.6%                   |                             |
| conc                                |                           |                           |                                       |                           | 0.13 mg/kg             |                             |
| CGA 205375 %TRR                     |                           |                           |                                       |                           | 1.2%                   |                             |
| conc                                |                           |                           |                                       |                           | 0.096 mg/kg            |                             |
| Fruit                               | Fruit green before dose 5 |                           | Fruit green 7<br>days after dose<br>6 |                           |                        | Fruit ripe final<br>harvest |
| Total <sup>14</sup> C residue (TRR) | 0.17 mg/kg                | 0.15 mg/kg                | 0.16 mg/kg                            | 0.14 mg/kg                | 0.13 mg/kg             | 0.20 mg/kg                  |
| Extracted residue %TRR              | 95%                       | 93%                       | 93%                                   | 92%                       | 88%                    | 93%                         |
| Unextractable %TRR                  | 3.0%                      | 1.7%                      | 1.9%                                  | 2.4%                      | 1.6%                   | 3%                          |
| Difenoconazole %TRR                 |                           |                           | 47%                                   | 12%                       | 13%                    | 51%                         |
| conc                                |                           |                           | 0.074 mg/kg                           | 0.017 mg/kg               | 0.016 mg/kg            | 0.10 mg/kg                  |
| CGA 205374 %TRR                     |                           |                           | 0.73%                                 | 0.35%                     | 0.21%                  | 0.52%                       |
| conc                                |                           |                           | 0.001 mg/kg                           | 0.0005 mg/kg              | 0.0003 mg/kg           | 0.001 mg/kg                 |
| CGA 205375 %TRR                     |                           |                           | 0.63%                                 | 0.33%                     | 0.46%                  | 0.74%                       |
| conc                                |                           |                           | 0.001 mg/kg                           | 0.0005 mg/kg              | 0.0006 mg/kg           | 0.0015 mg/kg                |
| Triazolylalanine %TRR               |                           |                           | 22%                                   | 42%                       | 39%                    | 19%                         |
| conc                                |                           |                           | 0.034 mg/kg                           | 0.059 mg/kg               | 0.050 mg/kg            | 0.039 mg/kg                 |

In a tomato metabolism study in USA, (Schweitzer, 1990, N-0964-0700) foliar sprayed tomato plants (variety Sunny) in pots in a greenhouse 6 times at 7 day intervals with [\frac{14}{C}]chlorophenoxy\frac{1}{2} labelled difference at the equivalent of 0.12 kg ai/ha. Samples of tomato plants were taken at various stages of treatment and mature fruit were sampled 33 days after the final treatment. TLC was used to identify components of the residue (Table 10).

A high percentage of the residue was extractable. Parent difenoconazole was the major component of the residue in both foliage and fruit. Metabolites CGA 205374, CGA 205375 were identified as minor residue components in the fruit (< 2% of TRR). Cellulase treatment of tomato foliage released small amounts of hydroxy-difenoconazole and hydroxy-CGA 205375, demonstrating glycoside conjugation of some metabolites. Low concentrations of glycosides were also observed in the fruit.

<sup>1</sup> Although the report title uses the words "phenyl-14C-" the 14C label was in the chlorophenoxy ring.

Table 10. Distribution of <sup>14</sup>C residue and metabolites in foliage and fruit of greenhouse tomato plants sprayed with [<sup>14</sup>C]chlorophenoxy labelled difenoconazole at the equivalent of 0.12 kg ai/ha.

| Residue component                   | Concentration, mg/kg, expressed as parent or %TRR |                                  |                                        |                        |                           |  |  |  |
|-------------------------------------|---------------------------------------------------|----------------------------------|----------------------------------------|------------------------|---------------------------|--|--|--|
| Cuttings and foliage                | Foliage aft spray 1                               | er Foliage before spray 3        | Foliage before spray 5                 | Foliage before spray 6 | Foliage, final<br>harvest |  |  |  |
| Total <sup>14</sup> C residue (TRR) | 2.6 mg/kg                                         | 4.0 mg/kg                        | 5.3 mg/kg                              | 6.8 mg/kg              | 8.3 mg/kg                 |  |  |  |
| Extracted residue %TRR              | 100%                                              | 91%                              | 84%                                    | 84%                    | 89%                       |  |  |  |
| Unextractable %TRR                  | 1.1%                                              | 4.1%                             | 10%                                    | 12%                    | 5%                        |  |  |  |
| Difenoconazole %TRR conc            |                                                   |                                  |                                        |                        | 65%<br>5.4 mg/kg          |  |  |  |
| CGA 205374 %TRR<br>conc             |                                                   |                                  |                                        |                        | 3.9%<br>0.32 mg/kg        |  |  |  |
| CGA 205375 %TRR<br>conc             |                                                   |                                  |                                        |                        | 1.3%<br>0.11 mg/kg        |  |  |  |
| CGA 189138 %TRR<br>conc             |                                                   |                                  |                                        |                        | 0.9%<br>0.08 mg/kg        |  |  |  |
| Fruit                               | Fruit gree<br>before spray 5                      | en Fruit greer<br>before spray 6 | Fruit green 7<br>days after spray<br>6 |                        | Fruit ripe final harvest  |  |  |  |
| Total <sup>14</sup> C residue (TRR) | 0.20 mg/kg                                        | 0.19 mg/kg                       | 0.22 mg/kg                             | 0.04 mg/kg             | 0.17 mg/kg                |  |  |  |
| Extracted residue %TRR              | 85%                                               | 102%                             | 82%                                    | 94%                    | 98%                       |  |  |  |
| Unextractable %TRR                  | 12%                                               | 5%                               | 14%                                    | 12%                    | 5%                        |  |  |  |
| Difenoconazole %TRR conc            |                                                   |                                  |                                        |                        | 66%<br>0.11 mg/kg         |  |  |  |
| CGA 205374 %TRR<br>conc             |                                                   |                                  |                                        |                        | 1.4%<br>0.002 mg/kg       |  |  |  |
| CGA 205375 %TRR<br>conc             |                                                   |                                  |                                        |                        | 1.7%<br>0.003 mg/kg       |  |  |  |

#### Wheat

In a wheat metabolism study in USA, (Hubbard 1991, ABR-90009) treated spring wheat seeds (variety Marshall FL-890836) with [ $^{14}$ C]phenyl and [ $^{14}$ C]triazole labelled difenoconazole formulated as an FS (flowable concentrate for seed treatment) at a target rate of 0.24 g ai/kg seed (measured 0.32 and 0.23 g ai/kg for phenyl and triazole labels respectively) and sowed them in experimental field plots of 1-2 m $^2$  at locations in New York and Illinois. The sowing rate was 79 kg seed per hectare. The [ $^{14}$ C]phenyl-difenoconazole treated seed failed to germinate at the New York site possibly because of solvent contamination. Plant samples were taken at 25% maturity (31 – 34 days post sowing), 50% maturity (48 – 62 days post sowing) and stalks, hull and grain samples were taken 59 – 83 days post sowing. The distribution of  $^{14}$ C in the crops is summarised in Table 11.

When TRR exceeded 0.05 mg/kg, extractability of the residue with methanol+water (8+2) was measured and the extracts were examined by TLC. Generally, the TRR was higher for the [\frac{14}{C}]triazole label than for the [\frac{14}{C}]phenyl label, suggesting metabolic changes of the residue (Table 11). A high percentage of [\frac{14}{C}]triazole-labelled residues was extractable (mostly partition to aqueous phase), also suggesting that the triazole moiety was readily translocated throughout the plant.

TLC analysis of extracts of mature wheat stalks and wheat grain from the [\frac{14}{C}]triazole label difenoconazole treated seed demonstrated the presence of 1,2,4-triazole and 1,2,4-triazolylacetic acid. Metabolite CGA 205375 was present in cellulase-treated extracts of immature wheat tops from the [\frac{14}{C}]phenyl label treatment, as shown by TLC.

Table 11. Distribution of <sup>14</sup>C residue in field-plot wheat plants and grain produced from seed treated with [<sup>14</sup>C]phenyl and [<sup>14</sup>C]triazole labelled difenoconazole at 0.32 and 0.23 g ai/kg seed respectively

| WHEAT METABOLISM                    | Concentration | on, mg/kg exp | pressed | as parent, or %T | RR          |             |
|-------------------------------------|---------------|---------------|---------|------------------|-------------|-------------|
| Residue component                   | Tops,         | 25% Tops      | 50%     | Stalks,          | Hulls,      | Grain,      |
|                                     | mature        | mature        |         | mature           | mature      | mature      |
| [14C]triazole label (NY)            |               |               |         |                  |             |             |
| Total <sup>14</sup> C residue (TRR) | 0.049 m       | g/kg 0.053    | mg/kg   | 0.059 mg/kg      | 0.075 mg/kg | 0.14 mg/kg  |
| Extracted residue % TRR             |               | 89%           |         | 97%              |             | 90%         |
| Unextractable % TRR                 |               | 6.4           | %       | 16%              |             | 10%         |
| 1,2,4-triazole                      |               |               |         | identified       |             | identified  |
| triazolylacetic acid                |               |               |         | identified       |             | identified  |
| [14C-triazole] label (IL)           |               |               |         |                  |             |             |
| Total <sup>14</sup> C residue (TRR) | 0.007 m       | g/kg 0.010    | ) mg/kg | 0.011 mg/kg      | 0.016 mg/kg | 0.024 mg/kg |
| [14C]phenyl label (IL)              |               |               |         |                  |             |             |
| Total <sup>14</sup> C residue (TRR) | 0.095 m       | g/kg 0.008    | mg/kg   | 0.013 mg/kg      | 0.004 mg/kg | 0.004 mg/kg |
| Extracted residue %TRR              | 42%           |               |         |                  |             |             |
| Unextractable %TRR                  | 23%           |               |         |                  |             |             |
| CGA 205375                          | identified    | ·             |         |                  |             |             |

In a greenhouse wheat metabolism study in USA, (Hubbard, 1991, ABR-90010) treated spring wheat seeds (variety Hill 81) with [\$^{14}\$C]phenyl and [\$^{14}\$C]triazole labelled difenoconazole formulated as an FS (flowable concentrate for seed treatment) at a target rate of 0.24 g ai/kg seed (measured 0.25 and 0.30 g ai/kg for phenyl and triazole labels respectively) and sowed them in pails of loamy sand. Plant samples were taken at 25% maturity (40 days post sowing), 50% maturity (72 days post sowing) and stalks, hull and grain samples were taken at maturity (236 days post sowing) for measurement of \$^{14}\$C content (Table 12). When TRR exceeded 0.05 mg/kg, extractability of the residue with methanol+water (8+2) was measured and the extracts were examined by TLC.

The TRR content in the mature crop was much higher for the triazole label than for the phenyl label, suggesting cleavage of the difenoconazole and translocation mobility of the triazole containing moiety. Extracts were cleaned up and examined by TLC. Parent difenoconazole and metabolite CGA 205375 were detected in the 25% maturity sampling. The presence of triazolylalanine and triazolylacetic acid was suggested but not confirmed for extracts of the mature grain (triazole label).

Table 12. Distribution of <sup>14</sup>C residue in greenhouse wheat plants and grain produced from seed treated with [<sup>14</sup>C]phenyl and [<sup>14</sup>C]triazole labelled difenoconazole at 0.25 and 0.30 g ai/kg seed respectively

| WHEAT METABOLISM                    | Concent     | ration, 1 | mg/kg e         | expre | essed as pare | nt, or %TRR |             |
|-------------------------------------|-------------|-----------|-----------------|-------|---------------|-------------|-------------|
| Residue component                   | Tops, 25% T |           | ops 50% Stalks, |       | Stalks,       | Hulls,      | Grain,      |
|                                     | mature      | ma        | ture            | 1     | mature        | mature      | mature      |
| [ <sup>14</sup> C]triazole label    |             |           |                 |       |               |             |             |
| Total <sup>14</sup> C residue (TRR) | 0.15 r      | ng/kg     | 0.010 m         | g/kg  | 0.069 mg/kg   | 0.14 mg/kg  | 0.18 mg/kg  |
| Extracted residue %TRR              | 77%         |           |                 |       | 88%           | 96%         | 80%         |
| Unextractable %TRR                  | 15%         |           |                 |       | 18%           | 10%         | 25%         |
| Difenoconazole %TRR                 | 7%          |           |                 |       |               |             |             |
| [ <sup>14</sup> C]phenyl label      |             |           |                 |       |               |             |             |
| Total <sup>14</sup> C residue (TRR) | 0.075 r     | mg/kg     | 0.016 m         | g/kg  | 0.016 mg/kg   | 0.005 mg/kg | 0.003 mg/kg |
| Extracted residue %TRR              | 91%         |           |                 |       |               |             |             |
| Unextractable %TRR                  | 15%         |           |                 |       |               |             |             |
| Difenoconazole %TRR                 | 8%          |           |                 |       |               |             |             |
| CGA 205375 %TRR                     | 23%         |           |                 |       |               |             |             |

In a greenhouse wheat metabolism study in USA, (Hubbard 1991, ABR-90011) foliar sprayed spring wheat (variety James) 4 times with [14C]phenyl and [14C]triazole labelled difenoconazole

formulated as an EC at a rate equivalent to 0.25 kg ai/ha. Wheat was grown in pails of loamy sand, at 15-20 plants per pail. The first difenoconazole application was 43 days post sowing at the early boot stage. Three further applications followed at 7 or 8 day intervals. Mature samples were harvested 29 days after the final application. The distribution of  $^{14}$ C in wheat plants and grain is summarised in Table 13.

When TRR exceeded 0.05 mg/kg, extractability of the residue with methanol+water (8+2) was measured and the extracts were cleaned up, subjected to enzyme hydrolysis for release of conjugates, and the constituents identified and characterized by TLC.

Exposed parts of the plant, i.e. tops and stalks, produced quite similar TRR levels for the two different labels. In this situation difenoconazole was the major part of the residue. In the unexposed part, i.e., the grain, the TRR levels are quite different (more than 20×) because only the triazole moiety metabolites are mobile within the plant and can translocate to any part. Parent difenoconazole was not identified in the grain.

Table 13. Distribution of <sup>14</sup>C residue in greenhouse wheat plants and grain subjected to 4 foliar applications of [<sup>14</sup>C]phenyl and [<sup>14</sup>C]triazole labelled difenoconazole formulated as an EC at a rate equivalent to 0.25 kg ai/ha

| WHEAT METABOLISM                    | Concentration  | n, mg/kg expre     | ssed as pare   | nt, or %TRR          |                |      |  |  |  |
|-------------------------------------|----------------|--------------------|----------------|----------------------|----------------|------|--|--|--|
| Residue component                   |                |                    | Stalks,        | Hulls,               | Grain,         |      |  |  |  |
|                                     |                |                    |                | days mature, 29 days | mature, 29     | days |  |  |  |
|                                     | after applic 1 | after applic 2     | after applic 4 | after applic 4       | after applic 4 |      |  |  |  |
| [ <sup>14</sup> C]triazole label    |                |                    |                |                      |                |      |  |  |  |
| Total <sup>14</sup> C residue (TRR) | 6.3 mg/kg      | 8.7 mg/kg          | 54 mg/kg       | 4.1 mg/kg            | 1.4 mg/        | kg   |  |  |  |
| Extracted residue %TRR              | 86%            | 88%                | 78%            | 58%                  | 70%            |      |  |  |  |
| Unextractable % TRR                 | 7.0%           | 10%                | 13%            | 31 %                 | 23%            |      |  |  |  |
| Difenoconazole %TRR                 | 90%            | 90% 50%            |                |                      |                |      |  |  |  |
| conc                                | 5.6 mg/kg      | 5.6 mg/kg 27 mg/kg |                |                      |                |      |  |  |  |
| Hydroxy-difenoconazole %TRR         | 1%             |                    |                |                      |                |      |  |  |  |
| conc                                | 0.54 mg/kg     |                    |                |                      |                |      |  |  |  |
| CGA 205375 %TRR                     | 5%             |                    |                |                      |                |      |  |  |  |
| conc                                |                |                    | 2.7 mg/kg      |                      |                |      |  |  |  |
| Hydroxy-CGA 205375 %TRR             |                |                    | 1%             |                      |                |      |  |  |  |
| conc                                |                |                    | 0.54 mg/kg     |                      |                |      |  |  |  |
| Triazolylacetic acid %TRR           |                |                    |                |                      | 20%            |      |  |  |  |
| conc                                |                |                    |                |                      | 0.28 mg/kg     |      |  |  |  |
| 1,2,4-triazole %TRR                 |                |                    |                |                      | 10%            |      |  |  |  |
| conc                                |                |                    |                |                      | 0.14 mg/kg     |      |  |  |  |
| [ <sup>14</sup> C]phenyl label      |                |                    |                |                      |                |      |  |  |  |
| Total <sup>14</sup> C residue (TRR) | 6.9            | 8.3                | 47             | 5.2                  | 0.064          |      |  |  |  |
| Extracted residue %TRR              | 92%            | 91%                | 82%            | 53%                  | 0.0%           |      |  |  |  |
| Unextractable %TRR                  | 5.8%           | 10%                | 14%            | 41%                  | 82%            |      |  |  |  |
| Difenoconazole %TRR                 | 85%            |                    | 50%            |                      |                |      |  |  |  |
| conc                                | 5.8 mg/kg      |                    | 23 mg/kg       |                      |                |      |  |  |  |

#### **Potatoes**

In a greenhouse potato metabolism study in USA, (Schweitzer, 1990, N-0964-0400) foliar sprayed potato plants (variety Red Pontiac) in pots of a sandy loam 6 times at 7 day intervals with [\frac{14}{C}]chlorophenoxy labelled difenoconazole2 at the equivalent of 0.12 kg ai/ha per application. Samples of potato plants were taken at various stages of treatment and the mature crop was harvested 7 days after the final application. The distribution of the \frac{14}{C} and the identification of components of the residue are summarised in Table 14.

<sup>&</sup>lt;sup>2</sup> Although the report title uses the words "phenyl-<sup>14</sup>C-" the <sup>14</sup>C label was in the chlorophenoxy ring.

Very little of the <sup>14</sup>C translocated to the tubers, but parent difenoconazole was identified, together with two primary metabolites, as a component of the residue at a low level (0.001 mg/kg). Parent difenoconazole was the major component of the foliage residue.

Table 14. Distribution of <sup>14</sup>C residue and metabolites in foliage and tubers of greenhouse potato plants sprayed with [<sup>14</sup>C]chlorophenoxy labelled difenoconazole at the equivalent of 0.12 kg ai/ha per application

| Residue component                   | Concentration   | Concentration, mg/kg, expressed as parent or %TRR |               |               |                     |           |       |  |
|-------------------------------------|-----------------|---------------------------------------------------|---------------|---------------|---------------------|-----------|-------|--|
|                                     | Foliage after I | Foliage                                           | Foliage       | Foliage,      | final Tubers before | Tubers,   | final |  |
|                                     | spray 1 b       | before sp                                         | oray before s | spray harvest | spray 5             | harvest   |       |  |
|                                     | 3               | 3                                                 | 5             |               |                     |           |       |  |
| Total <sup>14</sup> C residue (TRR) | 3.5 mg/kg       | 6.0 mg                                            | g/kg 9.9 m    | ng/kg 12 mg/k | g 0.006 mg/kg       | 0.012 m   | ıg/kg |  |
| Extracted residue % TRR             | 96%             | 100%                                              | 91%           | 94%           | 51%                 | 50%       |       |  |
| Unextractable % TRR                 | 2%              | 6%                                                | 6%            | 10%           | 58%                 | 51%       |       |  |
| Difenoconazole % TRR                |                 |                                                   |               | 76%           |                     | 8.7%      |       |  |
| conc                                |                 |                                                   |               | 9.5 mg/kg     |                     | 0.0010 mg | g/kg  |  |
| CGA 205374 %TRR                     |                 |                                                   |               | 1.1%          |                     | 3.1%      |       |  |
| conc                                |                 |                                                   |               | 0.14 mg/kg    |                     | 0.0004 mg | g/kg  |  |
| CGA 205375 %TRR                     |                 |                                                   |               | 2.2%          |                     | 3.0%      |       |  |
| conc                                |                 |                                                   |               | 0.27 mg/kg    |                     | 0.0004 mg | kg/kg |  |
| CGA 189138 %TRR                     |                 |                                                   | •             | 0.5%          |                     |           |       |  |
| conc                                |                 |                                                   |               | 0.07 mg/kg    |                     |           |       |  |

In a greenhouse potato metabolism study in USA, Velagaleti (1990, N-0964-0500) foliar sprayed potato plants (variety Red Pontiac) in pots of a sandy loam 6 times at 7 day intervals with [<sup>14</sup>C]triazole labelled difenoconazole at the equivalent of 0.12 kg ai/ha per application. Samples of potato plants were taken at various stages of treatment and the mature crop was harvested 11 days after the final application. The distribution of the <sup>14</sup>C and the identification of components of the residue are summarised in Table 15.

A small part of the <sup>14</sup>C translocated to the tubers, and parent difenoconazole was identified, together with two primary metabolites, as a component of the residue at a low level (0.0016 mg/kg). Triazolylalanine was the major part (79%) of the residue in tubers (0.069 mg/kg). Parent difenoconazole was the major component of the foliage residue.

Table 15. Distribution of <sup>14</sup>C residue and metabolites in foliage and tubers of greenhouse potato plants sprayed with [<sup>14</sup>C]triazole labelled difenoconazole at the equivalent of 0.12 kg ai/ha per application

| Residue component                   | Concentration   | ı, mg/kg, expre | ssed as parent | or % TRR      |                 |               |
|-------------------------------------|-----------------|-----------------|----------------|---------------|-----------------|---------------|
|                                     | Foliage after l | Foliage I       | Foliage        | Foliage, fina | l Tubers before | Tubers, final |
|                                     | spray 1         | pefore spray b  | pefore spray   | harvest       | spray 5         | harvest       |
|                                     |                 | 3 5             | 5              |               |                 |               |
| Total <sup>14</sup> C residue (TRR) | 2.2 mg/kg       | 3.1 mg/kg       | 5.5 mg/kg      | 9.1 mg/kg     | 0.052 mg/kg     | 0.087 mg/kg   |
| Extracted residue % TRR             | 103%            | 100%            | 100%           | 102%          | 93%             | 92%           |
| Unextractable %TRR                  | 1.5%            | 4.0%            | 4.5%           | 4.6%          | 1.8%            | 1.9%          |
| Difenoconazole % TRR                |                 |                 |                | 71%           |                 | 1.8%          |
| conc                                |                 |                 |                | 6.7 mg/kg     |                 | 0.0016 mg/kg  |
| CGA 205374 %TRR                     |                 |                 |                | 0.78%         |                 | 0.14%         |
| conc                                |                 |                 |                | 0.073 mg/kg   |                 | 0.0001 mg/kg  |
| CGA 205375 %TRR                     |                 |                 |                | 1.9%          |                 |               |
| conc                                |                 |                 |                | 0.17 mg/kg    |                 |               |
| Triazolylalanine %TRR               |                 |                 |                |               |                 | 79%           |
| conc                                |                 |                 |                |               |                 | 0.069 mg/kg   |

## Grapes

In a field plot grape metabolism study in USA, (Capps, 1992, ABR-92003) foliar sprayed grape vines (variety Chenin Blanc) with  $[^{14}C]$ phenyl and  $[^{14}C]$ triazole labelled difenoconazole in an EC formulation. One vine  $(\nabla)$  was treated 5 times with 4.5-14.2 mg, total 45 mg  $[^{14}C]$ triazole labelled

difenoconazole at 14 to 28 day intervals. A second vine ( $\Phi$ 1) was treated twice with 4.5 and 4.9 mg [ $^{14}$ C]phenyl labelled difenoconazole with a 14-day interval. A third vine ( $\Phi$ 2) was treated 3 times with 8.7 – 15.6 mg [ $^{14}$ C]phenyl labelled difenoconazole with 14 to 15 day intervals. Samples of grape foliage and grapes were taken at various stages. The distribution of the  $^{14}$ C and the identification of components of the residue are summarised in Table 16.

Foliage and grapes were extracted with methanol+water (8+2) and the extracts were cleaned up, subjected to enzyme hydrolysis for release of conjugates, and the constituents identified and characterized by TLC.

Parent difenoconazole was the major component of the residue. None of the identified metabolites exceeded 10% of the TRR in grapes.

Table 16. Distribution of  $^{14}$ C residue and metabolites in foliage and fruit of 3 field-plot grape vines  $(\Phi 1, \Phi 2 \text{ and } \nabla)$  sprayed with  $[^{14}\text{C}]$ phenyl and  $[^{14}\text{C}]$ triazole labelled difenoconazole

| Residue component                   | Concentration      | ı, mg/kg, expre    | ssed as parent    | or% TRR      |             |               |
|-------------------------------------|--------------------|--------------------|-------------------|--------------|-------------|---------------|
| [ <sup>14</sup> C-phenyl] label     | Foliage Φ1,        | Foliage Φ1,        | Grapes Φ1,        | Foliage Φ2,  | Foliage Φ2, | Grapes Φ2,    |
|                                     | 35 days after      | · ·                | 77 days after     | 7 days after |             |               |
|                                     | 1 2                | •                  | spray 2           | spray 1      | days after  | after spray 3 |
|                                     |                    | spray 2            |                   |              | spray 3     |               |
| Total <sup>14</sup> C residue (TRR) | 6.6 mg/kg          | 1.6 mg/kg          | 0.047 mg/kg       | 8.6 mg/kg    | 9.2 mg/kg   | 0.13 mg/kg    |
| Extracted residue %TRR              | 62%                | 67%                | 64%               | 88%          | 87%         | 81%           |
| Unextractable % TRR                 | 38%                | 33%                | 36%               | 12%          | 13%         | 19%           |
| Difenoconazole %TRR                 | 20%                | 16%                | 17%               | 36%          | 46%         | 51%           |
| CGA 205374 %TRR                     | 5.2%               | 3.7%               | 2.5%              | 4.2%         | 8.3%        | 4.1%          |
| CGA 205375 %TRR                     | 2.3%               | 7.8%               | 4.6%              | 2.6%         | 4.3%        | 6.6%          |
| CGA 189138 %TRR                     | 6.3%               | 2.0%               | 2.1%              | 3.8%         | 5.3%        | 4.0%          |
| [ <sup>14</sup> C-triazole] label   | Foliage $\nabla$ , | Foliage $\nabla$ , | Grapes $\nabla$ , |              |             |               |
|                                     | 7 days after       | mature, 20         | 20 days after     |              |             |               |
|                                     | spray 3            | days after         | spray 5           |              |             |               |
|                                     |                    | spray 5            |                   |              |             |               |
| Total <sup>14</sup> C residue (TRR) | 8.7                | 5.8                | 0.12              |              |             |               |
| Extracted residue %TRR              | 77%                | 73%                | 83%               |              |             |               |
| Unextractable %TRR                  | 24%                | 27%                | 17%               |              |             |               |
| Difenoconazole %TRR                 | 31%                | 27%                | 45%               |              |             |               |
| CGA 205374 %TRR                     | 11%                | 3.0%               | 1.7%              |              |             |               |
| CGA 205375 %TRR                     | 5.7%               | 3.9%               | 3.5%              |              |             |               |
| 1,2,4-triazole                      | 2.8%               | 3.2%               | 7.3%              |              |             |               |

#### Oilseed rape

In a field plot oilseed rape metabolism study in Switzerland, (Neumann, 1993, 11/93) foliar sprayed spring rape (variety Golda) twice, 14 day interval, with [\frac{14}{C}]chlorophenoxy labelled difenoconazole<sup>3</sup> in an EC formulation at the equivalent of 0.13 kg ai/ha. Plant samples were taken at various intervals through the treatment and stalks, pods and seeds were taken at mature harvest 39 days after the final application. The distribution of the \frac{14}{C} and the identification of components of the residue are summarised in Table 17.

Foliage, stalks and pods were homogenized and extracted with methanol+water (8+2), then hot methanol and the extracts were cleaned up, subjected to enzyme hydrolysis for release of conjugates, and the constituents identified and characterized by TLC. Homogenized seeds were extracted with hexane to provide the oil and then the meal was extracted with methanol+water (8+2) and then hot methanol. A <sup>14</sup>C concentration of 0.15 mg/kg in the seeds produced 0.10 mg/kg in the oil and 0.17 mg/kg in the meal.

Parent difenoconazole was the major identified component of the residue. Metabolite CGA 205375 exceeded 10% of TRR in the stalks (14%) and pods (11%).

<sup>&</sup>lt;sup>3</sup> Although the report title uses the words "phenyl-<sup>14</sup>C-" the <sup>14</sup>C label was in the chlorophenoxy ring.

Table 17. Distribution of <sup>14</sup>C residue and metabolites in foliage, pods, seeds and oil of field-plot grown spring rape sprayed twice with [<sup>14</sup>C]chlorophenoxy labelled difenoconazole at the equivalent of 0.13 kg ai/ha

| OILSEED RAPE                        | Concentration | n, mg/kg, expr | essed as parer | nt or % TRR   |               |               |               |
|-------------------------------------|---------------|----------------|----------------|---------------|---------------|---------------|---------------|
| METABOLISM                          |               |                |                |               |               |               |               |
| Residue component                   | Foliage       | Foliage        | Foliage        | Stalks        | Seeds         | Pods          | Oil           |
|                                     | 0 days        | 15 days after  | 0 days         | 39 days after | 39 days       | 39 days       | 39 days after |
|                                     | after spray 1 | spray 1        | after spray 2  | spray 2       | after spray 2 | after spray 2 | spray 2       |
| Total <sup>14</sup> C residue (TRR) | 7.0 mg/kg     | 1.5 mg/kg      | 5.0 mg/kg      | 4.3 mg/kg     | 0.15 mg/kg    | 3.1 mg/kg     | 0.10 mg/kg    |
| Difenoconazole % TRR                | 93%           | 31%            | 78%            | 17%           | 15%           | 17%           | 26%           |
| conc                                | 6.5 mg/kg     | 0.46 mg/kg     | 3.9 mg/kg      | 0.75 mg/kg    | 0.022 mg/kg   | 0.52 mg/kg    | 0.026 mg/kg   |
| CGA 205375 %TRR                     |               |                |                | 14%           | 7.9%          | 11%           |               |
| CGA 205374 %TRR                     |               | •              |                |               | •             | 0.3%          |               |
| CGA 189138 %TRR                     |               | •              |                | 1.6%          | 0.3%          | 1.7%          |               |

In a second metabolism study on oilseed rape in Switzerland, (Neumann, 1993, 12/93) foliar sprayed spring rape (variety Golda) in field plots twice, 14 day interval, with [\frac{14}{C}]triazole labelled difenoconazole in an EC formulation at the equivalent of 0.13 kg ai/ha. Plant samples were taken at various intervals through the treatment and stalks, pods and seeds were taken at mature harvest 39 days after the final application. The distribution of the \frac{14}{C} and the identification of components of the residue are summarised in Table 18.

Samples of foliage, stalks, pods and seeds were extracted and cleaned up by the same processes as previously described (Neumann, 1993, 11/93). A <sup>14</sup>C concentration of 2.3 mg/kg in the seeds produced 0.17 mg/kg in the oil and 2.5 mg/kg in the meal.

Parent difenoconazole was a major identified component of the residue except in the seed. Metabolite CGA 205375 exceeded 10% of TRR in the stalks (17%) and pods (13%). Triazolylalanine the major residue component in the seed (56% TRR) also exceeded 10% in pods (12%). Triazolylalanine was also the major residue component in the meal (56% TRR). Other identified components of the residue in the meal were triazolylacetic acid (2.8% TRR), CGA 205375 (0.6% TRR) and difenoconazole (2.3% TRR).

Table 18. Distribution of <sup>14</sup>C residue and metabolites in foliage, pods, seeds and oil of field-plot grown spring rape sprayed twice with [<sup>14</sup>C]triazole labelled difenoconazole at the equivalent of 0.13 kg ai/ha

| OILSEED RAPE<br>METABOLISM          | Concentration | Concentration, mg/kg, expressed as parent or % TRR |               |               |             |               |               |  |
|-------------------------------------|---------------|----------------------------------------------------|---------------|---------------|-------------|---------------|---------------|--|
| Residue component                   | Foliage       | Foliage                                            | Foliage       | Stalks        | Seeds       | Pods          | Oil           |  |
| -                                   | 0 days        | 15 days                                            | 0 days        | 39 days       | 39 days     | 39 days after | 39 days after |  |
|                                     | after spray 1 | after spray 1                                      | after spray 2 | after spray 2 | after spray | spray 2       | spray 2       |  |
|                                     |               |                                                    |               |               | 2           |               |               |  |
| Total <sup>14</sup> C residue (TRR) | 5.2 mg/kg     | 1.2 mg/kg                                          | 4.8 mg/kg     | 4.8 mg/kg     | 2.3 mg/kg   | 4.7 mg/kg     | 0.17 mg/kg    |  |
| Difenoconazole% TRR                 | 90%           | 36%                                                | 82%           | 17%           | 4.1%        | 14%           | 84%           |  |
| conc                                | 4.7 mg/kg     | 0.43 mg/kg                                         | 3.9 mg/kg     | 0.83 mg/kg    | 0.093 mg/kg | 0.65 mg/kg    | 0.14 mg/kg    |  |
| CGA 205375 %TRR                     |               |                                                    |               | 17%           | 0.6%        | 13%           |               |  |
| CGA 205374 %TRR                     |               |                                                    |               | 1.3%          |             | 0.8%          |               |  |
| Triazolylalanine %TRR               |               |                                                    |               | 4.1%          | 56%         | 12%           |               |  |
| Triazolylacetic acid %TRR           |               |                                                    |               | 3.3%          | 2.8%        | 6.7%          |               |  |
| 1,2,4-triazole                      |               |                                                    |               | 1.6%          |             |               |               |  |

Figure 5. Proposed pathway for the metabolism of difenoconazole in plants

## Environmental fate in soil

The 2003 JMPR (JMPR, 2003) explained the data requirements for studies of environmental fate. The focus should be on those aspects that are most relevant to MRL setting. For difenoconazole, supervised residue trials data are available for root and tuber vegetables, which means that aerobic degradation in soil is relevant, as well as the normal requirements for hydrolysis and rotational crop studies. The 2003 report does not mention soil photolysis studies; however, such studies should be relevant for the same reasons as for aerobic soil degradation – nature and magnitude of residues in soil.

The Meeting received information on soil aerobic metabolism and soil photolysis properties of difenoconazole as well as studies on the behaviour of difenoconazole residues in crop rotations.

Difenoconazole residues are reasonably persistent in soils and are expected to be present in the soil at harvest time for treated root and tuber crops. Difenoconazole residues are also expected to persist in the soil until the sowing of rotational crops. The confined rotational crops studies demonstrate that difenoconazole itself does not appear as a residue in the rotational crop. The water-soluble and mobile metabolites triazolylalanine, triazolylacetic acid and triazolyl-lactic acid have been identified in the rotational crops.

## Soil metabolism

Aerobic soil metabolism studies are summarized below, showing the test conditions, the nature of the soils, estimated half-lives and the nature of identified soil metabolites. These are laboratory soil incubation studies with <sup>14</sup>C labelled compounds. Metabolism or degradation rates are influenced by the nature of the soil, temperature, moisture status of the soil and dose. Estimated aerobic soil metabolism half-lives for difenoconazole at 20 °C ranged from 63 to 700 days (n=12) with a median of 181 days. When difenoconazole is used on root and tuber crops its residues in soil are likely to persist until harvest.

After 220 - 300 days, mineralization and unextractable residues (20 - 54% of dose) were major sinks for the  $^{14}$ C label. The degree of mineralization was different for the phenyl and triazole label positions, 0.8 - 4.6% of the dose for the triazole label and 3.4 - 33% for the phenyl label.

CGA 250375 and 1,2,4-triazole were identified as soil metabolites. Metabolite CGA 205375 consistently reached a maximum (as parent) of 5-10% of the dose and had begun to decline by the end of the observation period. Metabolite 1,2,4-triazole typically reached a maximum (expressed as parent) around 20% of the dose during the observation period. Further information was provided on the persistence of these two metabolites in soil.

| Aerobic soil metabolism                                                                                                                                                                        |                        | Ref: Mamouni, 2000, 738606                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test material: [14C-triazole]difenoco                                                                                                                                                          |                        | Dose rate: 0.19 mg ai/kg                                                                                                                                                                                                                                                 |
| Duration: 293 days                                                                                                                                                                             | Temp: 20 °C            | Moisture: 40% max water-holding capacity                                                                                                                                                                                                                                 |
| Soil: loam                                                                                                                                                                                     | pH: 7.2                | Organic carbon: 2.1 %                                                                                                                                                                                                                                                    |
| Half-life (parent): 105 days                                                                                                                                                                   |                        | <sup>14</sup> C accountability 88-101 %                                                                                                                                                                                                                                  |
| % difenoconazole remaining, day 29                                                                                                                                                             | 93 = 14% of dose       | % mineralization, day 293 = 4.5% of dose                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                |                        | % unextractable, day 293 = 49% of dose                                                                                                                                                                                                                                   |
| Metabolites                                                                                                                                                                                    | Max (% of dose)        | Day                                                                                                                                                                                                                                                                      |
| CGA 205375                                                                                                                                                                                     | 4.6 %                  | 56                                                                                                                                                                                                                                                                       |
| 1,2,4-triazole                                                                                                                                                                                 | 21 %                   | 190                                                                                                                                                                                                                                                                      |
| Aerobic soil metabolism                                                                                                                                                                        |                        | Ref: Mamouni, 2000, 738617                                                                                                                                                                                                                                               |
| Test material: [14C-phenyl]difenoco                                                                                                                                                            | nazole                 | Dose rate: 0.19 mg ai/kg                                                                                                                                                                                                                                                 |
| Duration: 293 days                                                                                                                                                                             | Temp: 20 °C            | Moisture: 40% max water-holding capacity                                                                                                                                                                                                                                 |
| Soil: loam                                                                                                                                                                                     | pH: 7.2                | Organic carbon: 2.1 %                                                                                                                                                                                                                                                    |
| Half-life (parent): 120 days                                                                                                                                                                   | 1                      | <sup>14</sup> C accountability 88-104 %                                                                                                                                                                                                                                  |
| % difenoconazole remaining, day 29                                                                                                                                                             | 93 = 18%  of dose      | % mineralization, day $293 = 23\%$ of dose                                                                                                                                                                                                                               |
|                                                                                                                                                                                                |                        | % unextractable, day 293 = 38% of dose                                                                                                                                                                                                                                   |
| Metabolites                                                                                                                                                                                    | Max (% of dose)        | Day                                                                                                                                                                                                                                                                      |
| CGA 205375                                                                                                                                                                                     | 5.1 %                  | 84                                                                                                                                                                                                                                                                       |
| Aerobic soil metabolism  Test material: [14C-phenyl]difenoco Duration: 106 days Soil: sand Half-life (parent): approx 140 days % difenoconazole remaining, day 16 Metabolites not identifiable | Temp: 20 °C<br>pH: 5.0 | Ref: Gonzalez-Valero, 1992, 91GJ05<br>Dose rate: 0.0.097 mg ai/kg<br>Moisture: 40% max water-holding capacity<br>Organic carbon: 1.8 %<br><sup>14</sup> C accountability 101-112 %<br>% mineralization, day 106 = 3.7% of dose<br>% unextractable, day 106 = 21% of dose |
| Aerobic soil metabolism                                                                                                                                                                        |                        | Ref: Gonzalez-Valero, 1992, 91GJ01                                                                                                                                                                                                                                       |
| Test material: [14C-triazole]difenoco                                                                                                                                                          | onazole                | Dose rate: 1 mg ai/kg                                                                                                                                                                                                                                                    |
| Duration: 273 days                                                                                                                                                                             | Temp: 20 °C            | Moisture: 60% field capacity                                                                                                                                                                                                                                             |
| Soil: silt loam                                                                                                                                                                                | pH: 7.2                | Organic carbon: 2.0 %                                                                                                                                                                                                                                                    |
| Half-life (parent): approx 500 days                                                                                                                                                            |                        | <sup>14</sup> C accountability 96-106 %                                                                                                                                                                                                                                  |
| % difenoconazole remaining, day 2                                                                                                                                                              | 73 = 61% of dose       | % mineralization, day $273 = 0.8\%$ of dose                                                                                                                                                                                                                              |
| Metabolites not identifiable                                                                                                                                                                   |                        | % unextractable, day 273 = 34% of dose                                                                                                                                                                                                                                   |
| Aerobic soil metabolism  Test material: [14C-triazole]difenced Duration: 178 days  Soil: silt loam  Half-life (parent): 180 days  % difenoconazole remaining, day 17                           | Temp: 30 °C<br>pH: 7.2 | Ref: Gonzalez-Valero, 1992, 91GJ01<br>Dose rate: 1 mg ai/kg<br>Moisture: 60% field capacity<br>Organic carbon: 2.0 %<br><sup>14</sup> C accountability 88-100 %<br>% mineralization, day 178 = 1.2% of dose<br>% unextractable, day 178 = 36% of dose                    |
| 3.6 . 1 12                                                                                                                                                                                     |                        |                                                                                                                                                                                                                                                                          |

Metabolites not identifiable

| Aerobic soil metabolism  Test material: [14°C-phenyl]difenoconazo Duration: 281 days Soil: silt loam Half-life (parent): approx 700 days % difenoconazole remaining, day 281 =  Metabolites not identifiable            | Temp: 20 °C<br>pH: 7.2 | Ref: Gonzalez-Valero, 1992, 91GJ01<br>Dose rate: 1 mg ai/kg<br>Moisture: 30% field capacity<br>Organic carbon: 2.0 %<br><sup>14</sup> C accountability 97-101 %<br>% mineralization, day 281 = 3.4% of dose<br>% unextractable, day 281 = 21% of dose     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aerobic soil metabolism  Test material: [14C-phenyl]difenoconazo Duration: 281 days Soil: silt loam Half-life (parent): approx 600 days % difenoconazole remaining, day 281 =  Metabolites not identifiable             | Temp: 10 °C<br>pH: 7.2 | Ref: Gonzalez-Valero, 1992, 91GJ01<br>Dose rate: 1 mg ai/kg<br>Moisture: 60% field capacity<br>Organic carbon: 2.0 %<br><sup>14</sup> C accountability 98-105 %<br>% mineralization, day 281 = 5.8% of dose<br>% unextractable, day 281 = 15% of dose     |
| Aerobic soil metabolism  Test material: [14C-phenyl]difenoconazo Duration: 281 days Soil: silt loam Half-life (parent): approx 350 days % difenoconazole remaining, day 281 = Metabolites not identifiable              | Temp: 20 °C<br>pH: 7.2 | Ref: Gonzalez-Valero, 1992, 91GJ01<br>Dose rate: 1 mg ai/kg<br>Moisture: 60% field capacity<br>Organic carbon: 2.0 %<br><sup>14</sup> C accountability 98-104 %<br>% mineralization, day 281 = 17% of dose<br>% unextractable, day 281 = 28% of dose      |
| Aerobic soil metabolism  Test material: [14C-phenyl]difenoconazo Duration: 281 days Soil: silt loam Half-life (parent): 114 days % difenoconazole remaining, day 281 =  Metabolites not identifiable                    | Temp: 20 °C<br>pH: 7.2 | Ref: Gonzalez-Valero, 1992, 91GJ01<br>Dose rate: 0.1 mg ai/kg<br>Moisture: 60% field capacity<br>Organic carbon: 2.0 %<br><sup>14</sup> C accountability 95-126 %<br>% mineralization, day 281 = 33% of dose<br>% unextractable, day 281 = 35% of dose    |
| Aerobic soil metabolism  Test material: [14C-chlorophenoxy]difend Duration: 228 days  Soil 1: sandy loam  Half-life (parent): 169 days  % difenoconazole remaining, day 228 =  Metabolites  CGA 205375                  | Temp: 20 °C<br>pH: 7.4 | Ref: Mamouni, 2002, 775438  Dose rate: 0.26 mg ai/kg dw  Moisture: 40% max water-holding capacity  Organic carbon: 1.2 % <sup>14</sup> C accountability 96-101 %  % mineralization, day 228 = 19% of dose % unextractable, day 228 = 23% of dose  Day  84 |
| Aerobic soil metabolism  Test material: [14C-chlorophenoxy]difend Duration: 228 days  Soil 2: sandy loam/loamy sand Half-life (parent): approx 200 days  % difenoconazole remaining, day 228 =  Metabolites  CGA 205375 | Temp: 20 °C<br>pH: 7.5 | Ref: Mamouni, 2002, 775438  Dose rate: 0.26 mg ai/kg dw  Moisture: 40% max water-holding capacity Organic carbon: 1.2 % <sup>14</sup> C accountability 96-100 % % mineralization, day 228 = 19% of dose % unextractable, day 228 = 20% of dose  Day  120  |

<sup>&</sup>lt;sup>4</sup> Although the report title uses the words " <sup>14</sup>C-chlorophenyl" the <sup>14</sup>C label was in the chlorophenoxy ring.

| Aerobic soil metabolism                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ref: Mamouni, 2002, 775438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test material: [14C-chlorophenoxy]difeno                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dose rate: 0.26 mg ai/kg dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Duration: 228 days                                                                                                                                                                                                                                                                                                                                | Temp: 20 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Moisture: 40% max water-holding capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Soil 3: silty clay loam                                                                                                                                                                                                                                                                                                                           | pH: 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Organic carbon: < 0.3 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Half-life (parent): 209 days                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>14</sup> C accountability 95-102 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| % difenoconazole remaining, day 228 = 4                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | % mineralization, day 228 = 20% of dose<br>% unextractable, day 228 = 23% of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Metabolites                                                                                                                                                                                                                                                                                                                                       | Max (% of dose)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CGA 205375                                                                                                                                                                                                                                                                                                                                        | 4.4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aerobic soil metabolism                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ref: Völkel, 2000, 738628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test material: [14C-triazole]difenoconazol                                                                                                                                                                                                                                                                                                        | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dose rate: 0.17 mg ai/kg dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Duration: 271 days                                                                                                                                                                                                                                                                                                                                | Temp: 20 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Moisture: 30% field capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Soil: loam                                                                                                                                                                                                                                                                                                                                        | pH: 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Organic carbon: 2.2 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Half-life (parent): 110 days                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>14</sup> C accountability 86-102 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| % difenoconazole remaining, day $271 = 1$                                                                                                                                                                                                                                                                                                         | 6% of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | % mineralization, day $271 = 2.2\%$ of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | % unextractable, day $271 = 43\%$ of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Metabolites                                                                                                                                                                                                                                                                                                                                       | Max (% of dose)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CGA 205375                                                                                                                                                                                                                                                                                                                                        | 6.2 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1,2,4-triazole                                                                                                                                                                                                                                                                                                                                    | 18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aerobic soil metabolism                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ref: Völkel, 2000, 738628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test material: [ <sup>14</sup> C-triazole]difenoconazol                                                                                                                                                                                                                                                                                           | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dose rate: 0.17 mg ai/kg dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Duration: 271 days                                                                                                                                                                                                                                                                                                                                | Temp: 10 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Moisture: 60% field capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Soil: loam                                                                                                                                                                                                                                                                                                                                        | pH: 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Organic carbon: 2.2 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Half-life (parent): approx 340 days                                                                                                                                                                                                                                                                                                               | p11. 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>14</sup> C accountability 98-101 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| % difenoconazole remaining, day 271 = 5                                                                                                                                                                                                                                                                                                           | 6% of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | % mineralization, day 271 = 3.2% of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| % difference finaliting, day 271 = 3                                                                                                                                                                                                                                                                                                              | o / or dosc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | % unextractable, day $271 = 3.2\%$ of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Metabolites                                                                                                                                                                                                                                                                                                                                       | Max (% of dose)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ·                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CGA 205375                                                                                                                                                                                                                                                                                                                                        | 8.9 %<br>8.6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1,2,4-triazole                                                                                                                                                                                                                                                                                                                                    | 8.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aerobic soil metabolism                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ref: Völkel, 2000, 738628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                   | le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ref: Völkel, 2000, 738628<br>Dose rate: 0.017 mg ai/kg dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Aerobic soil metabolism  Test material: [14C-triazole]difenoconazol Duration: 271 days                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dose rate: 0.017 mg ai/kg dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test material: [14C-triazole]difenoconazol                                                                                                                                                                                                                                                                                                        | Temp: 20 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test material: [ <sup>14</sup> C-triazole]difenoconazol<br>Duration: 271 days<br>Soil: loam                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dose rate: 0.017 mg ai/kg dw<br>Moisture: 60% field capacity<br>Organic carbon: 2.2 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test material: [ <sup>14</sup> C-triazole]difenoconazol<br>Duration: 271 days<br>Soil: loam<br>Half-life (parent): 63 days                                                                                                                                                                                                                        | Temp: 20 °C<br>pH: 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dose rate: 0.017 mg ai/kg dw<br>Moisture: 60% field capacity<br>Organic carbon: 2.2 %<br><sup>14</sup> C accountability 98-102 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test material: [ <sup>14</sup> C-triazole]difenoconazol<br>Duration: 271 days<br>Soil: loam                                                                                                                                                                                                                                                       | Temp: 20 °C<br>pH: 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dose rate: 0.017 mg ai/kg dw<br>Moisture: 60% field capacity<br>Organic carbon: 2.2 %<br><sup>14</sup> C accountability 98-102 %<br>% mineralization, day 271 = 4.6% of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test material: [ <sup>14</sup> C-triazole]difenoconazol<br>Duration: 271 days<br>Soil: loam<br>Half-life (parent): 63 days                                                                                                                                                                                                                        | Temp: 20 °C<br>pH: 7.2<br>.6% of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dose rate: 0.017 mg ai/kg dw<br>Moisture: 60% field capacity<br>Organic carbon: 2.2 %<br><sup>14</sup> C accountability 98-102 %<br>% mineralization, day 271 = 4.6% of dose<br>% unextractable, day 271 = 54% of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4 Metabolites                                                                                                                                                                                          | Temp: 20 °C<br>pH: 7.2<br>.6% of dose<br>Max (% of dose)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites CGA 205375                                                                                                                                                                              | Temp: 20 °C<br>pH: 7.2<br>.6% of dose<br>Max (% of dose)<br>7.4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  Day  56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4 Metabolites                                                                                                                                                                                          | Temp: 20 °C<br>pH: 7.2<br>.6% of dose<br>Max (% of dose)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites CGA 205375 1,2,4-triazole                                                                                                                                                               | Temp: 20 °C<br>pH: 7.2<br>.6% of dose<br>Max (% of dose)<br>7.4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271 = 54% of dose Day  56 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites CGA 205375 1,2,4-triazole  Aerobic soil degradation (sterile system)                                                                                                                    | Temp: 20 °C pH: 7.2 .6% of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271 = 54% of dose  Day  56  271  Ref: Völkel, 2000, 738628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites CGA 205375 1,2,4-triazole  Aerobic soil degradation (sterile system) Test material: [14C-triazole]difenoconazol                                                                         | Temp: 20 °C pH: 7.2 .6% of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271 = 54% of dose Day  56  271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites CGA 205375 1,2,4-triazole  Aerobic soil degradation (sterile system) Test material: [14C-triazole]difenoconazol Duration: 271 days                                                      | Temp: 20 °C pH: 7.2  .6% of dose  Max (% of dose) 7.4 % 23 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271 = 54% of dose Day  56 271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites CGA 205375 1,2,4-triazole  Aerobic soil degradation (sterile system) Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam                                           | Temp: 20 °C pH: 7.2  c.6% of dose  Max (% of dose)  7.4 %  23 %  Temp: 20 °C pH: 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271 = 54% of dose Day  56 271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites CGA 205375 1,2,4-triazole  Aerobic soil degradation (sterile system) Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam Half-life (parent): approx 1000-1500 days | Temp: 20 °C pH: 7.2 c.6% of dose<br>Max (% of dose) 7.4 % 23 %   Temp: 20 °C pH: 7.2 c.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271 = 54% of dose  Day  56  271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 %                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites CGA 205375 1,2,4-triazole  Aerobic soil degradation (sterile system) Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam                                           | Temp: 20 °C pH: 7.2 c.6% of dose<br>Max (% of dose) 7.4 % 23 %   Temp: 20 °C pH: 7.2 c.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271 = 54% of dose  Day  56  271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 0.2% of dose                                                                                                                                                                                                                                                                                                                                                                        |
| Test material: [14C-triazole]difenoconazol Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                         | Temp: 20 °C pH: 7.2  c.6% of dose  Max (% of dose)  7.4 %  23 %  Temp: 20 °C pH: 7.2  c.5% of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  Bef: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271 = 6.5% of dose                                                                                                                                                                                                                                                                                                                                                            |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  c.6% of dose  Max (% of dose) 7.4 % 23 %  Temp: 20 °C pH: 7.2 s.5% of dose  Max (% of dose)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14 C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  See Sec. 271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14 C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271 = 6.5% of dose Day                                                                                                                                                                                                                                                                                                                                          |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  c.6% of dose  Max (% of dose) 7.4 % 23 %  Representation of the control of | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14 C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  Bef: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14 C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271  Day  271                                                                                                                                                                                                                                                                                                                                                                 |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  c.6% of dose  Max (% of dose) 7.4 % 23 %  Temp: 20 °C pH: 7.2 s.5% of dose  Max (% of dose)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14 C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  See Sec. 271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14 C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271 = 6.5% of dose Day                                                                                                                                                                                                                                                                                                                                          |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  c.6% of dose  Max (% of dose) 7.4 % 23 %  Representation of the control of | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14 C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  Bef: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14 C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271 = 6.5% of dose Day  271  271                                                                                                                                                                                                                                                                                                                                              |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  c.6% of dose  Max (% of dose) 7.4 % 23 %  Representation of the control of | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14 C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  Bef: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14 C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271  Day  271  Ref: Völkel, 2002, 775451                                                                                                                                                                                                                                                                                                                                      |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  c.6% of dose  Max (% of dose) 7.4 % 23 %  le Temp: 20 °C pH: 7.2 s. 55% of dose  Max (% of dose) 3.4 % 1.5 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  Bef: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271  Bef: Völkel, 2002, 775451 Dose rate: 0.11 mg ai/kg dw                                                                                                                                                                                                                                                                                                                    |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  c.6% of dose  Max (% of dose) 7.4 % 23 %  le Temp: 20 °C pH: 7.2 s.5% of dose  Max (% of dose) 3.4 % 1.5 %  Temp: 20 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14 C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  Bef: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14 C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271  Bef: Völkel, 2002, 775451 Dose rate: 0.11 mg ai/kg dw Moisture: 40% max water-holding capacity                                                                                                                                                                                                                                                                           |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  c.6% of dose  Max (% of dose) 7.4 % 23 %  le Temp: 20 °C pH: 7.2 s. 55% of dose  Max (% of dose) 3.4 % 1.5 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271 = 54% of dose Day  56  271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271 = 6.5% of dose Day  271  271  Ref: Völkel, 2002, 775451 Dose rate: 0.11 mg ai/kg dw Moisture: 40% max water-holding capacity Organic carbon: 0.95 %                                                                                                                                                                                            |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  c.6% of dose  Max (% of dose) 7.4 % 23 %  le Temp: 20 °C pH: 7.2 s. 55% of dose  Max (% of dose) 3.4 %  1.5 %  Temp: 20 °C pH: 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271 = 54% of dose Day  56  271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271 = 6.5% of dose Day  271  271  Ref: Völkel, 2002, 775451 Dose rate: 0.11 mg ai/kg dw Moisture: 40% max water-holding capacity Organic carbon: 0.95 %  14°C accountability 93-101 %                                                                                                                                                              |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  c.6% of dose  Max (% of dose) 7.4 % 23 %  le Temp: 20 °C pH: 7.2 s. 55% of dose  Max (% of dose) 3.4 %  1.5 %  Temp: 20 °C pH: 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271 = 6.5% of dose Day  271  Ref: Völkel, 2002, 775451 Dose rate: 0.11 mg ai/kg dw Moisture: 40% max water-holding capacity Organic carbon: 0.95 %  14°C accountability 93-101 % % mineralization, day 228 = 32% of dose                                                                                                                                                      |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  .6% of dose  Max (% of dose) 7.4 % 23 %  le Temp: 20 °C pH: 7.2 .5% of dose  Max (% of dose) 3.4 % 1.5 %  Temp: 20 °C pH: 7.4  % of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271 = 6.5% of dose Day  271  Ref: Völkel, 2002, 775451 Dose rate: 0.11 mg ai/kg dw Moisture: 40% max water-holding capacity Organic carbon: 0.95 %  14°C accountability 93-101 % % mineralization, day 228 = 32% of dose % unextractable, day 228 = 26% of dose                                                                                                               |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  .6% of dose  Max (% of dose) 7.4 % 23 %  le Temp: 20 °C pH: 7.2 .5% of dose  Max (% of dose) 3.4 % 1.5 %  Temp: 20 °C pH: 7.4  % of dose  Max (% of dose)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271 = 54% of dose Day  56  271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271 = 6.5% of dose Day  271  271  Ref: Völkel, 2002, 775451 Dose rate: 0.11 mg ai/kg dw Moisture: 40% max water-holding capacity Organic carbon: 0.95 %  14°C accountability 93-101 % % mineralization, day 228 = 32% of dose % unextractable, day 228 = 26% of dose % unextractable, day 228 = 26% of dose % unextractable, day 228 = 26% of dose |
| Test material: [14C-triazole]difenoconazole Duration: 271 days Soil: loam Half-life (parent): 63 days % difenoconazole remaining, day 271 = 4  Metabolites                                                                                                                                                                                        | Temp: 20 °C pH: 7.2  .6% of dose  Max (% of dose) 7.4 % 23 %  le Temp: 20 °C pH: 7.2 .5% of dose  Max (% of dose) 3.4 % 1.5 %  Temp: 20 °C pH: 7.4  % of dose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dose rate: 0.017 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 4.6% of dose % unextractable, day 271  Ref: Völkel, 2000, 738628 Dose rate: 0.17 mg ai/kg dw Moisture: 60% field capacity Organic carbon: 2.2 %  14°C accountability 98-102 % % mineralization, day 271 = 0.2% of dose % unextractable, day 271 = 6.5% of dose Day  271  Ref: Völkel, 2002, 775451 Dose rate: 0.11 mg ai/kg dw Moisture: 40% max water-holding capacity Organic carbon: 0.95 %  14°C accountability 93-101 % % mineralization, day 228 = 32% of dose % unextractable, day 228 = 26% of dose                                                                                                               |

| Aerobic soil metabolism  Test material: [14C-triazole]CGA 205375  Duration: 210 days  Soil: sandy loam /loamy sand  Half-life (parent): 104 days  % CGA 205375 remaining, day 210 = 220 | Temp: 20 °C<br>pH: 7.5<br>% of dose | Ref: Völkel, 2002, 775451 Dose rate: 0.11 mg ai/kg dw Moisture: 40% max water-holding capacity Organic carbon: 1.0%  14C accountability 94-102% % mineralization, day 210 = 14% of dose % unextractable, day 210 = 33% of dose |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metabolites                                                                                                                                                                             | Max (% of dose)                     | Day                                                                                                                                                                                                                            |
| CGA 205374                                                                                                                                                                              | 2.7 %                               | 14                                                                                                                                                                                                                             |
| 1,2,4-triazole                                                                                                                                                                          | 32 %                                | 150                                                                                                                                                                                                                            |
| Aerobic soil metabolism Test material: [14C-triazole]CGA 205375 Duration: 228 days                                                                                                      | Temp: 20 °C                         | Ref: Völkel, 2002, 775451<br>Dose rate: 0.11 mg ai/kg dw<br>Moisture: 40% max water-holding capacity                                                                                                                           |
| Soil: silt loam                                                                                                                                                                         | pH: 5.8                             | Organic carbon: 0.99 %                                                                                                                                                                                                         |
| Half-life (parent): approx 190 days                                                                                                                                                     |                                     | <sup>14</sup> C accountability 94-100 %                                                                                                                                                                                        |
| % CGA 205375 remaining, day $228 = 43^{\circ}$                                                                                                                                          | % of dose                           | % mineralization, day $228 = 0.8\%$ of dose                                                                                                                                                                                    |
| _                                                                                                                                                                                       |                                     | % unextractable, day $228 = 34%$ of dose                                                                                                                                                                                       |
| Metabolites                                                                                                                                                                             | Max (% of dose)                     | Day                                                                                                                                                                                                                            |
| CGA 205374                                                                                                                                                                              | 0.7 %                               | 30                                                                                                                                                                                                                             |
| 1,2,4-triazole                                                                                                                                                                          | 24 %                                | 150                                                                                                                                                                                                                            |
|                                                                                                                                                                                         |                                     |                                                                                                                                                                                                                                |

Slangen (2000, 278336) incubated [ $^{14}$ C]1,2,4-triazole dosed at 0.06 mg ai/kg dw in three soils (sandy loam, loamy sand and silt loam) under aerobic conditions for 120 days and measured evolved  $CO_2$  and residue levels at 9 sampling times. By day 120, mineralization to  $CO_2$  had occurred for 11%, 1.6% and 32% of the dose for the three soils respectively and the unextractable residue formed 66%, 65% and 42% of the applied dose. The initial disappearance half-life for 1,2,4-triazole was only a few days, but the rate declined substantially as the residue aged. By day 120, remaining 1,2,4-triazole constituted 12%, 30% and 2.4% of the dose for the three soils respectively. Triazolylacetic acid was detected as a minor metabolite.

In a soil surface photolysis study, Atkins (1994, 791) applied [ $^{14}$ Cphenyl]difenoconazole to a film of moist sandy loam in petri dishes for a concentration of 10 mg/kg. Irradiated samples were maintained at 25 °C during a light-dark cycle of 12 hours each per day. Irradiation was provided by two xenon arc lamps, each of 1500 W, filtered through borosilicate glass to cut off wavelengths shorter than 290 nm. The light intensity was measured as  $4022-4023 \,\mu\text{W/cm}^2$ . Sufficient petri dishes were prepared to allow duplicate sampling at days 0, 1, 3, 5, 7, 11, 21 and 30 days. Extracts of the soil were examined by TLC and HPLC.

After 30 days, parent difenoconazole accounted for 91.4% of the dose (dark controls, 92.5% of dose), which demonstrated that difenoconazole is stable to photolysis on the soil surface. A degradation product, CGA 205374, was detected at 0.2% of the dose on day 30.

Figure 6. Proposed pathway for the aerobic metabolism of difenoconazole in soil

## Crop rotation studies

Information on the fate of radiolabelled difenoconazole in confined and non-confined crop rotational studies were made available to the meeting.

With the <sup>14</sup>C label in the phenyl moiety, the level of carry-over residues in rotational crops was too low for characterization or identification. With the <sup>14</sup>C label in the triazole moiety, metabolites triazolylalanine, triazolylacetic acid and triazolyl-lactic acid were identified in rotational crops.

In an outdoor confined rotational crop study in Switzerland (Walser, 1994, 8/94) bare ground (sandy loam, 2.3% organic carbon, 25% sand, 47% silt, 27% clay, pH 7.3) was treated directly with [ $^{14}$ C-phenyl]difenoconazole, formulated as an EC, at a rate equivalent to 0.13 kg ai/ha. The bare ground plot of  $2 \text{ m} \times 2 \text{ m}$  was divided into 4 sections for the 4 rotational crops, which were sown at intervals after treatment: lettuce 98 days, winter wheat 126 days, maize 342 days and sugar beet 369 days.

Samples were taken at immature and mature stages for analysis. Data are summarised in Table 19. Levels of TRR expressed as parent difference in the plant material were too low, mostly in the range of 0.001 to 0.009 mg/kg, for further characterization or identification.

In an outdoor confined rotational crop study in Switzerland (Walser, 1994, 4/94) bare ground (sandy loam, 2.3% organic carbon, 25% sand, 47% silt, 27% clay, pH 7.3) was treated directly with [ $^{14}$ C-triazole]difenoconazole, formulated as an EC, at a rate equivalent to 0.13 kg ai/ha. The bare ground plot of  $2 \text{ m} \times 2 \text{ m}$  was divided into 4 sections for the 4 rotational crops, which were sown at intervals after treatment: lettuce 98 days, winter wheat 126 days, maize 342 days and sugar beet 369 days.

Three metabolites were identified in tissues from rotational crops grown on bare ground treated with [<sup>14</sup>C-triazole]difenoconazole. The metabolites were triazolylalanine, triazolylacetic acid and triazolyl-lactic acid (Table20).

In an outdoor confined rotational crop study in USA (Close, 1995, ABR-95057) bare ground (sandy loam, 0.5% organic matter, 62% sand, 30% silt, 8% clay, pH 5.5-7.2) was treated directly with [ $^{14}$ C-chlorophenoxy]difenoconazole, at a rate equivalent to 0.031 kg ai/ha. This application rate simulates the rate resulting from a seed treatment use. The bare ground plot was approximately  $2.4 \text{ m}^2$ . Spring wheat, mustard and turnips were chosen as representative rotational crops. Residues arising from a 33 day TSI (treatment to sowing interval) were very low (Table 19), so samples from a 90 days TSI were not analysed.

Seed treatment uses of difenoconazole at 0.031 kg ai/ha are unlikely to produce residues in rotational crops sown 33 days after the sowing of difenoconazole-treated seed.

In an outdoor non-confined rotational crop study in Germany (Heyer, 1995, 488002), bare ground (loam, pH 6.9) was treated directly with difenoconazole formulated as an EC, at a rate equivalent to 0.75 kg ai/ha and the upper 10 cm soil layer was turned over to mix in the applied material. Carrots (variety Rote Riesen) were sown 30 days after the difenoconazole application and harvested for analysis 97, 114 and 136 days after the application. Residues of difenoconazole (LOQ 0.02 mg/kg) and triazolylalanine (LOQ 0.05 mg/kg) in the carrots did not exceed the LOQs. Difenoconazole residue levels in the soil were 0.19, 0.20 and 0.18 mg/kg for samples taken on days 97, 114 and 136 after treatment respectively.

In a parallel study to the one above on carrots, Heyer (1995, 488001) used spinach (variety Adele) as the rotational crop. Bare ground was treated directly with difenoconazole formulated as an EC, at a rate equivalent to 0.75 kg ai/ha and the upper 10 cm soil layer was turned over to mix in the applied material. Spinach was sown 31 days after the difenoconazole application and harvested for analysis 62, 70 and 77 days after the application. Residues of difenoconazole (LOQ 0.02 mg/kg) and triazolylalanine (LOQ 0.05 mg/kg) in the spinach did not exceed the LOQs. Difenoconazole residue levels in the soil were 0.16, 0.23 and 0.15 mg/kg for samples taken on days 62, 70 and 77 after treatment respectively.

Table 19. Confined rotational crop studies with  $[^{14}C]$  difenoconazole

| Application country, year, ref. | Rotational crop<br>(variety)   | <u>a</u> / | THI<br><u>b</u> /         | Sample      |       | difeno con a zole | residues % | Difenoconazole<br>mg/kg |
|---------------------------------|--------------------------------|------------|---------------------------|-------------|-------|-------------------|------------|-------------------------|
|                                 |                                | days       | days                      |             |       | mg/kg             | <u>c</u> / |                         |
| Bare soil, Switzerla            | and, 1992-93, (Walser, 19      | 94, 8/9    | 4). [ <sup>14</sup> C-pł  | enyl]difer  | ocon  | azole             |            |                         |
|                                 | lettuce (Soraya)               | 98         | 126                       | heads       |       | 0.003             | na         | na                      |
|                                 |                                |            | 151                       | heads       |       | 0.002             | na         | na                      |
|                                 | winter wheat (Sardona)         | 126        | 167                       | whole       | tops  | 0.003             | na         | na                      |
|                                 | William (Burdona)              | 120        | 342                       | whole       | tops  | 0.002             | na         | na                      |
|                                 |                                |            | 369                       | whole       | tops  | 0.002             | na         | na                      |
|                                 |                                |            | 418                       | stalks      | •     | 0.009             | na         | na                      |
|                                 |                                |            | 418                       | husks       |       | 0.002             | na         | na                      |
|                                 |                                |            | 418                       | grains      |       | 0.003             | na         | na                      |
|                                 | maize (DK 250)                 | 342        | 398                       | whole       | tops  | 0.001             | na         | na                      |
|                                 |                                |            | 427                       | whole       | tops  | 0.001             | na         | na                      |
|                                 |                                |            | 488                       | stalks      |       | 0.001             | na         | na                      |
|                                 |                                |            | 488                       | cobs        |       | 0.001             | na         | na                      |
|                                 |                                |            | 488                       | grains      |       | 0.001             | na         | na                      |
|                                 | sugar beet (Regina)            | 369        | 427                       | tops        |       | < 0.001           | na         | na                      |
|                                 |                                |            | 427                       | roots       |       | 0.001             | na         | na                      |
|                                 |                                |            | 473                       | tops        |       | < 0.001           | na         | na                      |
|                                 |                                |            | 473                       | roots       |       | 0.001             | na         | na                      |
|                                 |                                |            | 488                       | tops        |       | 0.001             | na         | na                      |
|                                 |                                |            | 488                       | roots       |       | 0.001             | na         | na                      |
| Bare soil, Switzerla            | and, 1992-93, (Walser, 19      | 994, 4/9   | 94). [ <sup>14</sup> C-tr | iazole]dife | enoco | nazole            |            |                         |
|                                 | lettuce (Soraya)               | 98         | 126                       | heads       |       | 0.021             | 96 %       | < 0.006                 |
|                                 | (                              |            | 151                       | heads       |       | 0.017             | 94 %       | < 0.006                 |
|                                 | winter wheat (Sardona)         | 126        | 167                       | whole       | tops  | 0.028             | na         | < 0.006                 |
|                                 | William (Bardona)              | 120        | 342                       | whole       | tops  | 0.045             |            | < 0.006                 |
|                                 |                                |            | 369                       | whole       | tops  | 0.072             |            | < 0.006                 |
|                                 |                                |            | 418                       | stalks      | 1     | 0.11              |            | < 0.006                 |
|                                 |                                |            | 418                       | husks       |       | 0.15              | 88 %       | < 0.006                 |
|                                 |                                |            | 418                       | grains      |       | 0.34              | 88 %       | < 0.006                 |
|                                 | maize (DK 250)                 | 342        | 398                       | whole       | tops  | 0.071             | 100 %      | < 0.006                 |
|                                 |                                |            | 427                       | whole       | tops  | 0.057             | 89 %       | < 0.006                 |
|                                 |                                |            | 488                       | stalks      | •     | 0.027             | 77 %       | < 0.006                 |
|                                 |                                |            | 488                       | cobs        |       | 0.040             |            | < 0.006                 |
|                                 |                                |            | 488                       | grains      |       | 0.21              | 86 %       | < 0.006                 |
| <u> </u>                        | sugar beet (Regina)            | 369        | 427                       | tops        |       | 0.019             | 90 %       | < 0.006                 |
|                                 |                                |            | 427                       | roots       |       | 0.011             | 83 %       | < 0.006                 |
|                                 |                                |            | 473                       | tops        |       | 0.034             | 95 %       | < 0.006                 |
|                                 |                                |            | 473                       | roots       |       | 0.007             | na         | < 0.006                 |
|                                 |                                |            | 488                       | tops        |       | 0.029             | 96%        | < 0.006                 |
|                                 |                                |            | 488                       | roots       |       | 0.005             | na         | < 0.006                 |
| Bare soil, USA (CA              | A), 1994-95, (Close, 1995      | , ABR      | -95057). [                | C-chloro    | pheno | oxy]difenoconaze  | ole        |                         |
|                                 | mustard (Florida<br>Broadleaf) | 33         | 129                       | mature      | plant | < 0.0001          |            |                         |
|                                 | spring wheat (Aldura)          | 33         | 109                       | forage      |       | 0.002             |            |                         |
|                                 |                                |            |                           | straw       |       | 0.004             |            |                         |
|                                 | 1 6 ,                          |            | 175                       | suaw        |       |                   |            |                         |
|                                 |                                |            | 175                       | grain       |       | 0.001             |            |                         |
|                                 | turnips (Purple Top            | 33         |                           |             |       |                   |            |                         |

a - TSI: interval between treatment on soil and sowing of rotation crop, days.

b - THI: interval between treatment on soil and harvest of rotation crop (or sampling of soil), days.

c - na: not analysed.

| Plant tissue    | TRR, mg/kg as difenoconazole | % of TRR<br>triazolylalanine | triazolylacetic acid | triazolyl-lactic acid |
|-----------------|------------------------------|------------------------------|----------------------|-----------------------|
| Maize grain     | 0.21                         | 66%                          | 0%                   | 9.7%                  |
| Wheat grain     | 0.34                         | 44%                          | 26%                  | 0%                    |
| Wheat stalks    | 0.11                         | 10%                          | 36%                  | 21%                   |
| Wheat husks     | 0.15                         | 19%                          | 39%                  | 12%                   |
| Lettuce heads   | 0.017                        | 31%                          | 3.3%                 | 43%                   |
| Sugar beet tops | 0.029                        | 25%                          | 2.7%                 | 54%                   |

Table 20. Identity of residue in plant tissues from confined rotational crop study

## **METHODS OF RESIDUE ANALYSIS**

## Analytical methods

The Meeting received descriptions and validation data for analytical methods for residues of difenoconazole in raw agricultural commodities, processed commodities, feed commodities, animal tissues, milk and eggs. Methods were provided also for metabolite CGA 205375 in animal tissues, milk and eggs. Recovery data are summarised in Table 22.

Method AG-575A was tested for selectivity in the analysis of difenoconazole residues in cereal grains in the presence of other pesticides that may be present (Yokley, 1993, ABR-92084). The pesticides tested were those with US tolerances at the time in wheat, barley and rye and the fortification levels were equivalent to the tolerances. None of the compounds interfered with the analysis of difenoconazole at 0.01 mg/kg.

Method AG-575 was tested by an independent laboratory unfamiliar with the analysis (Yarko, 1990, 900201). No background interferences were observed and recoveries between 70 and 120% were achieved for wheat grain and straw at spiking levels of 0.01 - 0.25 mg/kg.

Method AG-544 for difenoconazole residues in animal commodities was tested by an independent laboratory unfamiliar with the analysis (Wurz, 1993, ABR-93022). No background interferences were observed and recoveries between 52 and 124% were achieved for beef liver, eggs and milk at spiking levels of 0.01 - 0.25 mg/kg.

Detector linearity, storage stability of sample extracts, matrix effects on detector sensitivity and interferences from control samples were investigated in the validation of method REM 147.07 (Ryan, 2004, RJ3478B). The detector was linear through zero over the dynamic range tested ( $\times$ 80). Residues were stable in liver and milk extracts held at < 7 °C for 7 – 8 days. Suppression or enhancement of response by sample matrix was not significant. Interferences from control samples were below 30% of the LOQ. The LOQs for difenoconazole and CGA 205375 were 0.01 mg/kg in liver, kidney, muscle, fat and eggs and 0.005 mg/kg for milk.

Detector linearity, storage stability of sample extracts, matrix effects on detector sensitivity and interferences from control samples were investigated in the validation of method REM 147.08 (Ely and Ryan, 2004, RJ3560B). The detector was linear through zero over the range tested, from below the LOQ (0.01 mg/kg) to above the highest validated recovery level (1 mg/kg). Residues were stable in sample extracts held at < 7 °C for 7 - 8 days. Suppression or enhancement of response by crop matrix was less than 10%. Interferences from control samples were below 30% of the LOQ.

Steinhauer (2002, SYN-0211V Az.G02-0092) showed that DFG Method S19, with a number of modifications, could be used for the satisfactory analysis of difenoconazole residues in asparagus with an LOQ of 0.02 mg/kg. Steinhauer (2004, SYN-0301V Az. G03-0012) showed that DFG Method S19 is also suitable for residues of difenoconazole in apple, lettuce, wheat grain and oilseed rape with LOQs of 0.02 mg/kg in apples and lettuce and 0.05 mg/kg for wheat grain and oilseed rape.

DFG Method S19 (revision) was subject to an independent laboratory validation for the analysis of difenoconazole residues in apples, oilseed rape, wheat grain and lettuce (Schulz, 2004, IF-04/00160619). No significant background interferences were observed and recoveries between 70 and 120% were generally achieved.

Method REM 147.07 was subject to an independent laboratory validation for the analysis of difenoconazole and CGA 205375 residues in eggs, milk and bovine muscle (Benazeraf, 2004, SYN/DIF/04031). Interferences from control samples were below 30% of the LOO and recoveries between 70 and 110% were generally achieved.

Brown (2005, T008949-04) extracted poultry tissues and egg yolk from a [14C-triazole]difenoconazole labelled metabolism study (Ray, 2004, 786-02) with acetonitrile-water as described in Method REM 147.07. The extracted difenoconazole, CGA 205375 and 1,2,4-triazole concentrations were compared with the levels found by exhaustive extraction (Table 21). The acetonitrile-water procedure extracted a high percentage of each of the residues from the tissues and egg yolk.

Table 21. Extractability of residues by acetonitrile-water from poultry tissues and eggs, where residues were <sup>14</sup>C labelled from a metabolism study

| Substrate | 1,2,4-triazole conc, mg/kg |        |           | CGA 20537<br>conc, mg/kg |        |           | difenoconazole conc, mg/kg |        |           |
|-----------|----------------------------|--------|-----------|--------------------------|--------|-----------|----------------------------|--------|-----------|
|           | exhaustive                 | single | %         | exhaustive               | single | %         | exhaustive                 | single | %         |
|           | a                          | ext b  | extracted |                          | ext    | extracted |                            | ext    | extracted |
| Liver     | 2.9                        | 2.4    | 84.4%     | 8.0                      | 8.0    | 100%      | 0.30                       | 0.23   | 76%       |
| Fat       | 0.086                      | 0.094  | 109%      | 7.7                      | 7.6    | 99%       | 2.3                        | 2.0    | 88%       |
| Egg yolk  | 1.5                        | 1.5    | 102%      | 2.5                      | 2.3    | 94%       | 0.20                       | 0.18   | 88%       |
| Muscle    | 2.1                        | 2.1    | 99%       | 1.5                      | 1.5    | 103%      | 0.097                      | 0.11   | 111%      |

- a Exhaustive extraction: samples were extracted 3 times for approximately 10 minutes with acetonitrile:water (8:2) as in the metabolism study.
- b Single extraction: samples were extracted once for approximately 5 minutes with acetonitrile:water (8:2) adjusted for water content of sample.

Plant material (Kühne H, 1986, REM 7/86)

GC-ECD Method REM 7/86 Analyte: difenoconazole

LOQ: 0.04 mg/kg.

Description Homogenized sample is extracted with acetonitrile. An aliquot of the filtrate is evaporated and the

residue is taken up in acetonitrile and washed with hexane. The acetonitrile solution is evaporated and the residue is dissolved in hexane for cleanup with a phenyl-solid phase extraction tube using hexaneether and then methanol to recover the difenoconazole residue. The residue was partitioned into hexaneether after the addition of water and saturated sodium chloride. After evaporation, the residue was

dissolved in hexane-ethanol for GLC analysis.

Potato and tomato (Williams and Shoffner, 1987, AG-514)

GLC-NPD Analyte: difenoconazole Method AG-514

LOO: 0.05 mg/kg.

Description Residues are extracted by refluxing the sample with methanol-ammonia for 2 hours and then filtering.

An aliquot of the filtrate is diluted with water and saturated salt and extracted with hexane, which is then extracted with acetonitrile. The acetonitrile is evaporated and the residue is taken up in toluene for solid phase column cleanup. The eluate is evaporated and the residue dissolved in toluene for GLC analysis.

Extractability of total <sup>14</sup>C from tomatoes and potatoes from plants treated with [<sup>14</sup>C-Extractability

phenoxyphenyl]difenoconazole and grown in a greenhouse ranged from 86% to 113%. Concentrations

were too low for analysis of difenoconazole.

Wheat commodities (Williams, 1988, AG-537)

Analyte: difenoconazole **GLC-NPD** Method AG-537

LOQ: 0.05 mg/kg.

Description See method AG-514. A cleanup step with charcoal, magnesium oxide and Celite is added. The method is

suitable for wheat forage, hay, straw and grain.

Extractability of total <sup>14</sup>C from wheat treated with [<sup>14</sup>C-phenoxyphenyl]difenoconazole and grown in a Extractability

test plot was measured for forage (83 %, 105% and 86 ), stalks (80 %, 80% and 81 %) and grain (67 %,

74% and 74%).

Dairy and poultry tissues, eggs and milk (Ward, 1988, AG-544)

Analyte: difenoconazole GLC-NPD Method AG-544

LOQ: 0.05 mg/kg. Milk 0.01 mg/kg.

Description Animal tissues are chopped and mixed thoroughly before sampling. Eggs and milk are homogenized for

a few seconds before the analytical sample is taken. Sample is homogenized with acetonitrile + concentrated ammonium hydroxide for 1 minute. An aliquot of the filtered extract is diluted with water and saturated sodium chloride and subjected to a partition cleanup with hexane and acetonitrile followed by a silica solid phase cleanup. The resulting toluene-acetone solution is evaporated and the residues

dissolved in toluene for GLC analysis.

Version Method AG-544A is a slightly modified version of AG-544 (Wurz, 1994, AG-544A).

Wheat commodities (Darnow and Sayers, 1990, AG-575)

Analyte: difenoconazole GLC-NPD Method AG-575

LOQ: 0.05 mg/kg, wheat grain. 0.05 mg/kg, wheat forage.

Description See method AG-537. A larger aliquot is taken and a phenyl Bond-elut step is added to achieve a lower

LOO for wheat grain.

Version Methods AG-575A and AG-575B are later versions of Method AG-575 with amendments. Note that

instead of GLC-NPD, sometimes GLC-ECD (Ryan, 2005, TMJ5014B) or GLC-MSD (Ryan, 2005,

TMJ5031B) may be used.

Brassica vegetables (Brown, 1992, CGA 03291)

Analyte: difenoconazole GLC-ECD Method CGA 169374 - Brassicas/EK/91/2

LOQ: 0.05 mg/kg

Description Residues are extracted by macerating sample with methanol. An aliquot of centrifuged and filtered

extract is diluted with water and saturated sodium chloride and extracted with dichloromethane. The dichloromethane extract is evaporated and the residue is taken up in hexane for a phenyl solid-phase cartridge cleanup. The residues are eluted with a methanol-water mixture which, after dilution with water and saturated sodium chloride is extracted with hexane + diethyl ether. The solvent is evaporated

and the residue is dissolved in hexane-ethanol for GLC analysis.

Vegetable matter, grapes and wine (Bussy and Maffezzoni, 1993, RES 10/93)

Analyte: difenoconazole GC-ECD Method RES 10/93

LOQ: 0.02 mg/kg. Wine 0.01 mg/kg.

Description Residues are extracted from the sample with methanol and the filtrate is concentrated to approximately

15 ml. The residue is mixed with water, saturated sodium chloride and dichloromethane and extracted in a liquid-liquid extractor for 2 hours with dichloromethane. The dichloromethane is evaporated and the residue is taken up in hexane which is also then evaporated. The residue is taken up in benzene for column chromatography cleanup with basic alumina. The eluate is evaporated and the residue is taken up

in hexane for GLC analysis.

 $\textit{Milk, liver, kidney, muscle, fat} \; (\text{Tribolet, } 2000, 202/99)$ 

Analytes: difenoconazole, CGA 205375 LC-MS-MS Method AG-544A

LOQ: 0.01 mg/kg tissues. 0.005 mg/L milk.

Description Procedure AG-544A with modifications.

Fat was melted and shaken with solvent in place of cold maceration.

Tert butyl ether replaced hexane in the partition cleanup steps to extract both analytes.

LC-MS-MS replaced GLC in the final determination step.

 $Celeriac \; (Pigeon, 2002, RE\; 20245 \; / \; 2001)$ 

Analyte: difenoconazole GLC-NPD Method MR-046-02-01

LOQ: 0.02 mg/kg.

Description Residues are extracted from the sample with a mixture of acetonitrile and water. Difenoconazole

residues are extracted into hexane from the aqueous phase and then into acetonitrile. Cleanup is effected by silica gel column chromatography. The eluate is evaporated and the residue is taken up in isooctane-

acetone for GLC analysis.

Validation Method validation testing included: linearity of response, repeatability of injections, selectivity and

repeatability.

Animal commodities (Crook, 2004, REM 147.07)

Analyte: difenoconazole, CGA 205375 LC-MS-MS Method REM 147.07

LOQ: 0.01 mg/kg for liver, kidney, muscle, fat, eggs. 0.005 mg/kg for milk.

Description Residues are extracted by homogenizing with acetonitrile-water. After centrifugation, an aliquot of the

supernatant layer (e.g. 1 ml) is diluted with water and cleaned up on a solid-phase extraction cartridge. The cartridge is washed with hexane and then the residue is eluted with a dichloromethane - ethyl acetate mixture. After solvent evaporation, the residue is taken up in acetonitrile and diluted with water ready for LC-MS-MS analysis. Suppression or enhancement of response by substrate matrix was less than

10%, so non-matrix matched standards were suitable.

Crops and crop fractions (Crook, 2004, REM 147.08)

Analyte: difenoconazole LC-MS-MS Method REM 147.08

LOQ: 0.01 mg/kg.

Description Residues are extracted by refluxing the sample with methanol-ammonia for 2 hours. An aliquot of the

supernatant layer (e.g. 1 ml) is diluted with water (e.g. 10 ml) and cleaned up on a solid-phase extraction cartridge. The cartridge is washed with hexane and then the residue is eluted with a dichloromethane ethyl acetate mixture. After solvent evaporation, the residue is taken up in acetonitrile and diluted with water ready for LC-MS-MS analysis. Suppression or enhancement of response by crop matrix was less

than 10%, so non-matrix matched standards were suitable.

Recovery data from the internal and independent laboratory validation (ILV) testing are summarised in Table 22.

Table 22. Analytical recoveries for spiked difenoconazole in various substrates

| Commodity     | Spiked analyte | Spike     | n  | Mean   | Range   | Method           | Ref             |
|---------------|----------------|-----------|----|--------|---------|------------------|-----------------|
|               |                | conc,     |    | recov% | recov%  |                  |                 |
|               | 11.0           | mg/kg     | 10 | 000    | 01.05%  | DEG 610 : 1      | TE 04/001/00/10 |
| apple         | difenoconazole | 0.01-0.1  | 10 | 88%    | 81-97%  | DFG S19, revised | IF-04/00160619  |
| apple         | difenoconazole | 0.01-0.3  | 10 | 88%    | 78-101% | REM 147.08       | REM 147.08      |
| asparagus     | difenoconazole | 0.02-0.2  | 10 | 104%   | 78-123% | DFG S19, revised | SYN-0211V       |
|               |                |           |    |        |         |                  | Az.G02-0092     |
| barley, wheat | difenoconazole | 0.04-0.4  | 10 | 93     | 85-101% | RES 7/86         | RES 7/86        |
| beef liver    | difenoconazole | 0.05-0.25 |    | 96%    | 52-122% | AG-544 GC-NPD    | ABR-93022       |
| bovine fat    | CGA 205375     | 0.01-0.1  | 10 | 95%    | 92-99%  | REM 147.07       | RJ3478B         |
| bovine fat    | difenoconazole | 0.01-0.1  | 10 | 95%    | 89-99%  | REM 147.07       | RJ3478B         |
| bovine kidney | CGA 205375     | 0.01-0.1  | 10 | 98%    | 91-106% | REM 147.07       | RJ3478B         |
| bovine kidney | difenoconazole | 0.01-0.1  | 10 | 95%    | 90-107% | REM 147.07       | RJ3478B         |
| bovine liver  | CGA 205375     | 0.01-0.1  | 10 | 98%    | 92-100% | REM 147.07       | RJ3478B         |
| bovine liver  | difenoconazole | 0.01-0.1  | 10 | 96%    | 93-100% | REM 147.07       | RJ3478B         |
| bovine milk   | CGA 205375     | 0.005-    | 10 | 93%    | 88-107% | REM 147.07       | RJ3478B         |
|               |                | 0.05      |    |        |         |                  |                 |
| bovine milk   | difenoconazole | 0.005-    | 10 | 92%    | 85-101% | REM 147.07       | RJ3478B         |
|               |                | 0.05      |    |        |         |                  |                 |
| bovine muscle | CGA 205375     | 0.01-0.1  | 10 | 95%    | 89-100% | REM 147.07       | RJ3478B         |
| bovine muscle | CGA 205375     | 0.01-0.1  | 10 | 100%   | 96-110% | REM 147.07       | SYN/DIF/04031   |
| bovine muscle | difenoconazole | 0.01-0.1  | 10 | 94%    | 92-96%  | REM 147.07       | RJ3478B         |
| bovine muscle | difenoconazole | 0.01-0.1  | 10 | 94%    | 72-101% | REM 147.07       | SYN/DIF/04031   |
| broccoli      | difenoconazole | 0.01-4    | 10 | 86%    | 74-99%  | AG-575A GC-ECD   | TMJ5014B        |
| broccoli      | difenoconazole | 0.01-0.1  | 10 | 98%    | 80-119% | REM 147.08       | REM 147.08      |
| cabbage, head | difenoconazole | 0.02-0.2  | 11 | 94%    | 76-108% | AG-575A GC-ECD   | TMJ5014B        |
| carrot        | difenoconazole | 0.04-0.2  | 6  | 110%   | 85-129% | RES 10/93        | TMJ4940B        |
| cauliflower   | difenoconazole | 0.04-0.2  | 4  | 97%    | 68-118% | RES 10/93        | TMJ4940B        |
| celeriac      | difenoconazole | 0.02-0.2  | 20 | 91%    | 75-110% | MR-046-02-01     | RE 20245 / 2001 |
| celery        | difenoconazole | 0.04-1    | 10 | 99%    | 88-131% | AG-575A GC-ECD   | TMJ5014B        |
| cherry        | difenoconazole | 0.01-0.5  | 11 | 87%    | 72-103% | AG-575A GC-MSD   | TMJ5031B        |
| cherry        | difenoconazole | 0.01-0.2  | 10 | 88%    | 81-95%  | REM 147.08       | REM 147.08      |
| eggs          | CGA 205375     | 0.01-0.1  | 10 | 87%    | 82-92%  | REM 147.07       | RJ3478B         |
| eggs          | CGA 205375     | 0.01-0.1  | 10 | 100%   | 94-109% | REM 147.07       | SYN/DIF/04031   |
| eggs          | difenoconazole | 0.05-0.5  | 4  | 80%    | 74-83%  | AG-544 GC-NPD    | AG-544          |
| eggs          | difenoconazole | 0.05-0.25 |    | 103%   | 92-113% | AG-544 GC-NPD    | ABR-93022       |
| eggs          | difenoconazole | 0.01-0.1  | 10 | 84%    | 78-92%  | REM 147.07       | RJ3478B         |
| eggs          | difenoconazole | 0.01-0.1  | 10 | 96%    | 84-110% | REM 147.07       | SYN/DIF/04031   |
| fat, cow      | difenoconazole | 0.05-0.5  | 8  | 95%    | 81-108% | AG-544 GC-NPD    | AG-544          |
| fennel        | difenoconazole | 0.01-0.1  | 10 | 84%    | 74-97%  | AG-575A GC-MSD   | TMJ5031B        |
| grapes        | difenoconazole | 0.01-0.1  | 10 | 92%    | 80-102% | AG-575A GC-MSD   | TMJ5031B        |
| grapes        | difenoconazole | 0.01-0.1  | 10 | 104%   | 92-120% | REM 147.08       | REM 147.08      |
| kale          | difenoconazole | 0.02-10   | 5  | 81%    | 67-90%  | AG-575A GC-ECD   | TMJ5014B        |
| kale          | difenoconazole | 0.01-0.5  | 10 | 104%   | 90-124% | AG-575A GC-MSD   | TMJ5031B        |
| kidney, cow   | difenoconazole | 0.01-0.5  | 4  | 94%    | 89-102% | AG-544 GC-NPD    | AG-544          |
| leeks         | difenoconazole | 0.03-0.3  | 10 | 87%    | 78-93%  | REM 147.08       | REM 147.08      |
| lettuce       | difenoconazole | 0.01-0.2  | 12 | 96%    | 81-133% | AG-575A GC-ECD   | TMJ5014B        |
| iettuce       | difenoconazole | 0.04-0.2  | 10 | 98%    | 70-110% | AG-575A GC-ECD   | TMJ5031B        |

| Commodity         | Spiked analyte   | Spike conc, | n  | Mean recov% | Range recov% | Method           | Ref            |
|-------------------|------------------|-------------|----|-------------|--------------|------------------|----------------|
|                   |                  | mg/kg       |    | 1000 1 70   | 1000176      |                  |                |
| lettuce           | difenoconazole   | 0.01-0.1    | 10 | 84%         | 71-96%       | DFG S19, revised | IF-04/00160619 |
| liver, cow        | difenoconazole   | 0.05-0.5    | 4  | 115%        | 109-121%     | AG-544 GC-NPD    | AG-544         |
| milk              | CGA 205375       | 0.05-       | 10 | 94%         | 88-110%      | REM 147.07       | SYN/DIF/04031  |
|                   |                  | 0.005       |    | , .,.       |              |                  |                |
| milk              | difenoconazole   | 0.01-0.5    | 4  | 116%        | 102-134%     | AG-544 GC-NPD    | AG-544         |
| milk              | difenoconazole   | 0.01-0.05   | 6  | 118%        | 113-124%     | AG-544 GC-NPD    | ABR-93022      |
| milk              | difenoconazole   | 0.05-       | 10 | 83%         | 62-92%       | REM 147.07       | SYN/DIF/04031  |
|                   |                  | 0.005       |    |             |              |                  |                |
| muscle, cow       | difenoconazole   | 0.05-0.5    | 8  | 104%        | 96-110%      | AG-544 GC-NPD    | AG-544         |
| olive fruit       | difenoconazole   | 0.04-1      | 15 | 95%         | 75-104%      | AG-575A GC-ECD   | TMJ5014B       |
| olive fruit       | difenoconazole   | 0.01-1      | 10 | 104%        | 93-115%      | REM 147.08       | REM 147.08     |
| olive oil         | difenoconazole   | 0.01-1      | 10 | 93%         | 81-103%      | REM 147.08       | REM 147.08     |
| olives            | difenoconazole   | 0.01-5      | 10 | 85%         | 74-97%       | AG-575A GC-MSD   | TMJ5031B       |
| peach             | difenoconazole   | 0.01-0.2    | 10 | 93%         | 69-110%      | AG-575A GC-ECD   | TMJ5014B       |
| peach             | difenoconazole   | 0.01-0.5    | 10 | 93%         | 80-107%      | AG-575A GC-MSD   | TMJ5031B       |
| peach, apricot    | difenoconazole   | 0.04-0.2    | 12 | 102%        | 86-113%      | RES 10/93        | TMJ4940B       |
| plum              | difenoconazole   | 0.01-0.1    | 11 | 83%         | 70-109%      | AG-575A GC-MSD   | TMJ5031B       |
| plum              | difenoconazole   | 0.04-0.2    | 6  | 97%         | 76-110%      | RES 10/93        | TMJ4940B       |
| pome fruit        | difenoconazole   | 0.01-0.5    | 35 | 87%         | 72-131%      | AG-575A GC-ECD   | TMJ5014B       |
| poultry fat       | difenoconazole   | 0.05-0.5    | 4  | 103%        | 98-110%      | AG-544 GC-NPD    | AG-544         |
| poultry liver     | difenoconazole   | 0.05-0.5    | 4  | 94%         | 91-97%       | AG-544 GC-NPD    | AG-544         |
| poultry meat      | difenoconazole   | 0.05-0.5    | 4  | 89%         | 76-91%       | AG-544 GC-NPD    | AG-544         |
| poultry skin      | difenoconazole   | 0.05-0.5    | 4  | 96%         | 92-100%      | AG-544 GC-NPD    | AG-544         |
| rape seed         | difenoconazole   | 0.02-0.1    | 6  | 86%         | 69-95%       | AG-575A GC-ECD   | TMJ5014B       |
| rape seed         | difenoconazole   | 0.01-0.1    | 10 | 105%        | 95-124%      | AG-575A GC-MSD   | TMJ5031B       |
| rape seed         | difenoconazole   | 0.01-0.1    | 10 | 96%         | 79-108%      | DFG S19, revised | IF-04/00160619 |
| rape seed         | difenoconazole   | 0.01-0.1    | 10 | 89%         | 81-94%       | REM 147.08       | REM 147.08     |
| strawberry        | difenoconazole   | 0.04-0.2    | 6  | 94%         | 90-99%       | AG-575A GC-ECD   | TMJ5014B       |
| sugar beet leaves | difenoconazole   | 0.02-1      | 7  | 93%         | 65-109%      | AG-575A GC-ECD   | TMJ5014B       |
| sugar beet leaves | difenoconazole   | 0.01-1      | 10 | 90%         | 75-102%      | REM 147.08       | REM 147.08     |
| sugar beet root   | difenoconazole   | 0.02-0.2    | 19 | 90%         | 72-110%      | AG-575A GC-ECD   | TMJ5014B       |
| sugar beet root   | difenoconazole   | 0.01-0.2    | 10 | 88%         | 83-93%       | REM 147.08       | REM 147.08     |
| tomato            | difenoconazole   | 0.05-0.5    | 6  | 103%        | 84-125%      | AG-514           | AG-514         |
| tomato            | difenoconazole   | 0.01-0.5    | 17 | 90%         | 70-107%      | AG-575A GC-ECD   | TMJ5014B       |
| tomato            | difenoconazole   | 0.01-0.4    | 11 | 95%         | 74-109%      | AG-575A GC-MSD   | TMJ5031B       |
| tomato            | difenoconazole   | 0.01-0.5    | 10 | 84%         | 76-89%       | REM 147.08       | REM 147.08     |
| tomato puree      | difenoconazole   | 0.01-1      | 10 | 92%         | 80-101%      | REM 147.08       | REM 147.08     |
| wheat             | difenoconazole   | 0.01-0.1    | 10 | 79%         | 68-88%       | DFG S19, revised | IF-04/00160619 |
| wheat grain       | difenoconazole   | 0.01        | 4  | 86%         | 79-97%       | AG-575           | AG-575         |
| wheat grain       | difenoconazole   | 0.01-0.25   |    | 114%        | 106-120%     | AG-575           | 900201         |
| wheat grain       | difenoconazole   | 0.01-1.0    | 16 | 88%         | 70-109%      | AG-575A          | AG-575A        |
| wheat grain       | difenoconazole   | 0.05-0.25   |    | 77%         | 73-80%       | EMS9003.1        | AG-537         |
| wheat grain       | difenoconazole   | 0.01-0.1    | 10 | 93%         | 77-107%      | REM 147.08       | REM 147.08     |
|                   | , difenoconazole | 0.05-20     | 19 | 89%         | 70-109%      | AG-537           | AG-537         |
| forage, straw     |                  |             |    |             |              |                  |                |
| wheat straw       | difenoconazole   | 0.01-0.25   |    | 106%        | 84-119%      | AG-575           | 900201         |
| wheat straw       | difenoconazole   | 0.05-0.25   | 4  | 101%        | 90-112%      | EMS9003.1        | AG-537         |

# Stability of residues in stored analytical samples

Information was received on the freezer storage stability of difenoconazole residues in plant and animal commodities, and of residues of CGA 205375 in animal commodities.

The Meeting received information on the stability of residues of difenoconazole in the following plant-based feed and food commodities: banana, cotton seed, cotton seed meal, cotton seed oil, lettuce, potatoes, soya beans, tomatoes, wheat forage, wheat grain and wheat straw. Residues were apparently stable in each case, with some commodities tested for 1 year, but most for 2 years. A summary of data is presented in Table 23.

Table 23. Freezer storage stability data for difenoconazole spiked into matrices of banana, cotton seed, cotton seed meal, cotton seed oil, lettuce, potatoes, soya beans, tomatoes, wheat forage, wheat grain and wheat straw.

| Storage<br>interval | Procedural recov<br>%                                               | Difenoconazole,<br>mg/kg                                          | Storage<br>interval                                                                                                                              | Procedural recov %                                                       | Difenoconazole,<br>mg/kg |  |
|---------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------|--|
|                     |                                                                     | atrix, fortified with<br>ler, 1991, ABR-90069),                   |                                                                                                                                                  | homogenized matrix<br>e at 0.5 mg/kg (Beidler<br>rature approx -20 °C.   |                          |  |
| 0                   |                                                                     | 0.45 0.46                                                         | 0                                                                                                                                                |                                                                          | 0.50 0.54                |  |
| 28 days             | 118%                                                                | 0.59 0.59                                                         | 28 days                                                                                                                                          | 106%                                                                     | 0.56 0.54                |  |
| 88 days             | 116%                                                                | 0.56 0.57                                                         | 91 days                                                                                                                                          | 116%                                                                     | 0.72 0.56                |  |
| 182 days            | 104%                                                                | 0.54 0.55                                                         | 182 days                                                                                                                                         | 104%                                                                     | 0.54 0.57                |  |
| 419 days            | 120%                                                                | 0.57 0.55                                                         | 419 days                                                                                                                                         | 128%                                                                     | 0.57 0.55                |  |
| 530 days            | 108%                                                                | 0.52 0.51                                                         | 530 days                                                                                                                                         | 112%                                                                     | 0.50 0.52                |  |
| 735 days            | 120%                                                                | 0.55 0.51                                                         | 735 days                                                                                                                                         | 106%                                                                     | 0.50 0.51                |  |
| residues appare     | ently stable                                                        |                                                                   | residues appare                                                                                                                                  | ntly stable                                                              |                          |  |
|                     | homogenized mat<br>ble at 0.2 mg/kg (Beid<br>erature approx -20 °C. | ler, 1992, ABR-91024),                                            | difenoconazo                                                                                                                                     | S, homogenized mat<br>e at 0.2 mg/kg (Beidler<br>rature approx -20 °C.   |                          |  |
| 0                   |                                                                     | 0.15 0.15                                                         | 0                                                                                                                                                |                                                                          | 0.19 0.16                |  |
| 35 days             | 100%                                                                | 0.20 0.20                                                         | 35 days                                                                                                                                          | 130%                                                                     | 0.23 0.25                |  |
| 91 days             | 115%                                                                | 0.22 0.22                                                         | 91 days                                                                                                                                          | 125%                                                                     | 0.21 0.23                |  |
| 199 days            | 95%                                                                 | 0.17 0.20                                                         | 199 days                                                                                                                                         | 125%                                                                     | 0.18 0.19                |  |
| 371 days            | 105%                                                                | 0.24 0.23                                                         | 371 days                                                                                                                                         | 105%                                                                     | 0.21 0.29                |  |
| residues appare     | ently stable                                                        |                                                                   | residues apparer                                                                                                                                 | ntly stable                                                              |                          |  |
| difenoconazo        |                                                                     | matrix, fortified with ler, 1992, ABR-91024),                     | BANANA WHOLE FRUIT, homogenized matrix, fortified with difenoconazole at 0.2 mg/kg (Kühne-Thu, 1994, 125/93), storage temperature approx -20 °C. |                                                                          |                          |  |
| 0                   |                                                                     | 0.46 0.47                                                         | 0                                                                                                                                                |                                                                          | 0.16 0.19 0.16           |  |
| 35 days             | 98%                                                                 | 0.56 0.64                                                         | 28 days                                                                                                                                          | 88% 91%                                                                  | 0.18 0.18 0.18           |  |
| 91 days             | 112%                                                                | 0.54 0.56                                                         | 84 days                                                                                                                                          | 95% 100%                                                                 | 0.16 0.17 0.17           |  |
| 199 days            | 102%                                                                | 0.44 0.44                                                         | 168 days                                                                                                                                         | 98% 100%                                                                 | 0.17 0.19 0.19           |  |
| 371 days            | 118%                                                                | 0.47 0.46                                                         | 364 days                                                                                                                                         | 93% 94%                                                                  | 0.17 0.19 0.18           |  |
| residues appare     | ently stable                                                        |                                                                   | residues apparer                                                                                                                                 | ntly stable                                                              |                          |  |
| with difenoc        |                                                                     | n" matrix ( <u>a/</u> ), fortified (Hayworth, 1998, ABR-x -20 °C. |                                                                                                                                                  | D OIL, fortified with d<br>Hayworth, 1998, AI<br>pprox -20 °C.           |                          |  |
|                     | 106% 102% 97% 999<br>90% 104% 113%                                  | <i>%</i>                                                          | 0                                                                                                                                                | 79% 78% 80% 79%                                                          |                          |  |
| 2.9 months          | 101% 115%                                                           | 0.42 0.46                                                         | 2.3 months                                                                                                                                       | 82% 81%                                                                  | 0.31 0.33                |  |
| 7.0 months          | 103% 104%                                                           | 0.46 0.41                                                         | 6.9 months                                                                                                                                       | 80% 77%                                                                  | 0.30 0.31                |  |
| 16.0 months         | 117% 107%                                                           | 0.42 0.46                                                         | 14.8 months                                                                                                                                      | 98% 85%                                                                  | 0.36 0.33                |  |
| 24.2 months         | 116% 122%                                                           | 0.64 0.67                                                         | 23.5 months                                                                                                                                      | 84% 87%                                                                  | 0.36 0.35                |  |
| residues appare     | ently stable                                                        |                                                                   | residues appare                                                                                                                                  | ntly stable                                                              |                          |  |
| 0.5 mg/kg           |                                                                     | with difenoconazole at ABR-98061), storage                        | with difenoco                                                                                                                                    | W, sample preparation<br>nazole at 1.0 mg/kg (Hage temperature approx -2 | yworth, 1998, ABR-       |  |
|                     | 86% 98% 73% 1009<br>68% 75% 96% 101%                                | %                                                                 | 0                                                                                                                                                | 108% 109% 97%<br>92%                                                     |                          |  |
| 3.0 months          | 101% 104%                                                           | 0.47 0.47                                                         | 4.9 months                                                                                                                                       | 101% 107%                                                                | 1.03 1.00                |  |
| 7.1 months          | 104% 98%                                                            | 0.52 0.51                                                         | 9.5 months                                                                                                                                       | 102% 102%                                                                | 1.00 0.97                |  |
| 15.3 months         | 115% 115%                                                           | 0.58 0.63                                                         | 17.2 months                                                                                                                                      | 94% 101%                                                                 | 1.16 1.13                |  |
| 24.0 months         | 125% 119%                                                           | 0.62 0.59                                                         | 26.6 months                                                                                                                                      | 114% 124%                                                                | 1.15 1.18                |  |
|                     | ently stable                                                        |                                                                   | residues apparer                                                                                                                                 | atly, atalala                                                            |                          |  |

| Storage        | Procedural recov      | Difenoconazole,                                                      | Storage         | Procedural recov %                                                      | Difenoconazole,     |
|----------------|-----------------------|----------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------|---------------------|
| interval       | %                     | mg/kg                                                                | interval        |                                                                         | mg/kg               |
| with difenoc   | , , ,                 | ration matrix (a) fortified<br>g (Hayworth, 1998, ABR-<br>ox -20 °C. | with difenoco   | IN, sample preparation on azole at 0.2 mg/kg (H ge temperature approx - | ayworth, 1998, ABR- |
| 0              | 104% 104% 109<br>105% | %                                                                    | 0               | 105% 107% 98% 101%                                                      |                     |
| 4.6 months     | 96% 104%              | 1.01 1.09                                                            | 4.6 months      | 109% 111%                                                               | 0.22 0.22           |
| 8.7 months     | 81% 81%               | 0.68 0.74                                                            | 8.5 months      | 91% 86%                                                                 | 0.16 0.17           |
| 17.0 months    | 108% 115%             | 1.13 1.06                                                            | 18.0 months     | 113% 103%                                                               | 0.23                |
| 25.5 months    | 130% 118%             | 1.22 1.09                                                            | 25.6 months     | 114% 119%                                                               | 0.24                |
| residues appar | ently stable          |                                                                      | residues appare | ntly stable                                                             |                     |

a - Sample preparation guidelines were based on FDA Pesticide Analytical Manual, Vol 1, Section 141 and 40CFR180.1 (j).

The Meeting received information on the stability of residues of difenoconazole and metabolite CGA 205375 in animal tissues, milk and eggs when stored at freezer temperatures for 1 year. Residues were generally stable.

Tribolet (2000, 202/99) tested the freezer storage stability of difenoconazole and metabolite CGA 205375 spiked into animal tissues and milk (Table 24). Milk (10 mL portions) and tissues (10 g portions) were spiked and thoroughly mixed in 25 mL or 100 mL jars prior to storage in a freezer at or below -18 °C. At the end of the storage period, freshly spiked samples were analysed as the procedural recoveries at the same time that the stored samples were analysed using procedure AG-544A. The storage testing for CGA 205375 in liver was examined in a second series because only 59% remained in the first. The analytical variability made interpretation of small losses difficult. Generally, difenoconazole and metabolite CGA 205375 appeared reasonably stable during storage.

Table 24. Freezer storage stability of difenoconazole and metabolite CGA 205375 spiked into animal tissues and milk and stored at or below -18 °C for approximately 10 months

| Substrate | Analyte        | 1              |              | Storage interval, days | Residues remaining,      | average% remaining, |
|-----------|----------------|----------------|--------------|------------------------|--------------------------|---------------------|
|           |                | conc,<br>mg/kg | recoveries % | intervar, days         | mg/kg                    | remaining,          |
| Muscle    | difenoconazole | 0.2            | 120 86       | 312                    | 0.17 0.17 0.19 0.17 0.17 | 87%                 |
| Muscle    | CGA 205375     | 0.2            | 97 82        | 312                    | 0.16 0.17 0.18 0.18 0.15 | 84%                 |
| Liver     | difenoconazole | 0.2            | 78 80        | 296                    | 0.14 0.15 0.10 0.13 0.13 | 65%                 |
| Liver     | CGA 205375     | 0.2            | 117 85       | 296                    | 0.11 0.12 0.08 0.12 0.16 | 59%                 |
| Liver     | CGA 205375     | 0.2            | 89           | 389                    | 0.18 0.18 0.18 0.19 0.17 | 90%                 |
| Kidney    | difenoconazole | 0.2            | 76 81        | 301                    | 0.15 0.15 0.09 0.11 0.13 | 63%                 |
| Kidney    | CGA 205375     | 0.2            | 73 83        | 301                    | 0.14 0.17 0.16 0.13 0.14 | 74%                 |
| Fat       | difenoconazole | 0.2            | 77 78        | 303                    | 0.16 0.15 0.14 0.16 0.17 | 78%                 |
| Fat       | CGA 205375     | 0.2            | 73 79        | 303                    | 0.17 0.16 0.16 0.17 0.16 | 82%                 |
| Milk      | difenoconazole | 0.05           | 87           | 305                    | 0.040 0.039 0.040 0.041  | 80%                 |
|           |                |                |              |                        | 0.039                    |                     |
| Milk      | CGA 205375     | 0.05           | 80           | 305                    | 0.039 0.037 0.036 0.037  | 75%                 |
|           |                |                |              |                        | 0.039                    |                     |

Wurz and McCaskill (1993, ABR-93012) reported on the freezer storage stability testing of difenoconazole residues spiked into eggs, milk, poultry muscle and beef liver when stored for 12 months at -20 °C. Analysis relied on procedure AG-544. Residues were apparently stable, but no procedural recovery data were available to confirm the performance of the test method on each occasion.

#### **USE PATTERN**

Difenoconazole is a broad-spectrum fungicide used for disease control in many fruits, vegetables, cereals and other field crops. It has preventive and curative action. Difenoconazole acts by inhibition of demethylation during ergosterol synthesis; it is a DMI fungicide. Labels or translations of labels for the following uses (Table 25) were available to the Meeting.

Table 25. Registered uses of difenoconazole in Australia, Belgium, Belize, Brazil, Costa Rica, Dominican Republic, El Salvador, France, Germany, Guatemala, Honduras, Indonesia, Italy, Luxembourg, Nicaragua, Panama, Poland, Spain, Switzerland and UK

| Crop                | Country               | Application |                     |                  |                   |                    |               |             |  |
|---------------------|-----------------------|-------------|---------------------|------------------|-------------------|--------------------|---------------|-------------|--|
|                     |                       | Form        | Type                | Rate<br>kg ai/ha | Conc<br>kg ai/hL  | Spray vol,<br>L/ha | Max<br>number | PHI<br>days |  |
| Apple               | Australia             | WG          | foliar              |                  | 0.0025-<br>0.0035 |                    |               | 28          |  |
| Apple               | Belgium               | EC          | foliar              | 0.0375           |                   |                    |               | 14          |  |
| Apple               | Brazil                | EC          | foliar              |                  | 0.0035            | 800-1500           | 8             | 5           |  |
| Apple               | France                | EC          | foliar              |                  | 0.00375           | > 1000             | 3             | 30          |  |
| Apple               | France                | EC          | foliar              | 0.0375           |                   | < 1000             | 3             | 30          |  |
| Apple               | Italy                 | EC          | foliar              |                  | 0.00375           |                    | 4             | 14          |  |
| Apple               | Poland                | EC          | foliar              | 0.05             |                   |                    | 3             | 14          |  |
| Apple               | Spain                 | EC          | foliar              |                  | 0.005             |                    | 5             | 14          |  |
| Apple               | Spain                 | EC          | foliar              | 0.075            |                   | < 1500             | 5             | 14          |  |
| Apricot             | France                | EC          | foliar              |                  | 0.005             | > 1000             | 3             | 14          |  |
| Apricot             | France                | EC          | foliar              | 0.05             |                   | < 1000             | 3             | 14          |  |
| Asparagus           | Belgium               | EC          | foliar <sup>5</sup> | 0.125            |                   |                    |               |             |  |
| Asparagus           | France                | EC          | foliar              | 0.125            |                   |                    | 3             | a           |  |
| Asparagus           | Germany               | EC          | foliar              | 0.1              |                   |                    | 3             |             |  |
| Asparagus           | Italy                 | EC          | foliar              | 0.125            |                   |                    | 4             | 7           |  |
| Asparagus           | Spain                 | EC          | foliar              | 0.125            |                   |                    | 3             |             |  |
| Banana              | Australia             | EC          | foliar              | 0.1              |                   |                    |               | 1           |  |
| Banana              | Belize                | EC          | foliar, aerial      | 0.1              |                   |                    | 8             | 0           |  |
| Banana              | Brazil                | EC          | foliar              | 0.1              |                   | 500-1000           | 5             | 7           |  |
| Banana              | Brazil                | EC          | foliar, aerial      | 0.1              |                   | 15                 | 5             | 7           |  |
| Banana              | Costa Rica            | EC          | foliar, aerial      | 0.1              |                   |                    | 8             | 0           |  |
| Banana              | Dominican<br>Republic | EC          | foliar, aerial      | 0.1              |                   |                    | 8             | 0           |  |
| Banana              | El Salvador           | EC          | foliar, aerial      | 0.1              |                   |                    | 8             | 0           |  |
| Banana              | Guatemala             | EC          | foliar, aerial      | 0.1              |                   |                    | 8             | 0           |  |
| Banana              | Honduras              | EC          | foliar, aerial      | 0.1              |                   |                    | 8             | 0           |  |
| Banana              | Nicaragua             | EC          | foliar, aerial      | 0.1              |                   |                    | 8             | 0           |  |
| Banana              | Panama                | EC          | foliar, aerial      | 0.1              |                   |                    | 8             | 0           |  |
| Broccoli            | Belgium               | EC          | foliar              | 0.125            |                   |                    | 2             | 14          |  |
| Broccoli            | UK                    | EC          | foliar              | 0.075            |                   | 400                | 3             | 21          |  |
| Brussels<br>sprouts | Belgium               | EC          | foliar              | 0.125            |                   |                    | 2             | 21          |  |
| Brussels<br>sprouts | France                | EC          | foliar              | 0.125            |                   |                    | 3             | 21          |  |
| Brussels<br>sprouts | Germany               | EC          | foliar              | 0.1              |                   |                    | 3             | 21          |  |
| Brussels<br>sprouts | UK                    | EC          | foliar              | 0.075            |                   | 400                | 3             | 21          |  |
| Cabbage             | Belgium               | EC          | foliar              | 0.125            |                   |                    | 2             | 21          |  |
| Cabbage             | France                | EC          | foliar              | 0.125            |                   |                    | 3             | 21          |  |
| Cabbage             | Germany               | EC          | foliar              | 0.1              |                   |                    | 3             | 21          |  |
| Cabbage             | UK                    | EC          | foliar              | 0.075            |                   | 400                | 3             | 21          |  |
| Cabbage,<br>Chinese | Belgium               | EC          | foliar              | 0.125            |                   |                    | 2             | 14          |  |

 $<sup>^{\</sup>rm 5}$  As paragus. Field spray after harvest is taken.

| Crop                | Country         | Application |                  |                  |                   |                    |                  |             |
|---------------------|-----------------|-------------|------------------|------------------|-------------------|--------------------|------------------|-------------|
| •                   |                 | Form        | Type             | Rate<br>kg ai/ha | Conc<br>kg ai/hL  | Spray vol,<br>L/ha | Max<br>number    | PHI<br>days |
| Cabbage,<br>Chinese | Germany         | EC          | foliar           | 0.1              |                   |                    | 3                | 21          |
| Carrot              | Australia       | EC          | foliar           | 0.075-<br>0.125  |                   |                    |                  | 7           |
| Carrot              | Belgium         | EC          | foliar           | 0.125            |                   |                    | 3                | 14          |
| Carrot              | Brazil          | EC          | foliar           | 0.15             |                   | 200-400            | 8                | 15          |
| Carrot              | France          | EC          | foliar           | 0.125            |                   |                    | 3                | 14          |
| Carrot              | Germany         | EC          | foliar           | 0.1              |                   |                    | 3                | 21          |
| Carrot              | Italy           | EC          | foliar           | 0.1-0.125        |                   |                    | 4                | 7           |
| Cauliflower         | Belgium         | EC          | foliar           | 0.125            |                   |                    | 2                | 14          |
| Cauliflower         | Brazil          | EC          | foliar           |                  | 0.005             | 200-400            | 5                | 14          |
| Cauliflower         | France          | EC          | foliar           | 0.125            |                   |                    | 3                | 14          |
| Cauliflower         | Germany         | EC          | foliar           | 0.1              |                   |                    | 3                | 21          |
| Cauliflower         | Italy           | EC          | foliar           | 0.1-0.125        |                   |                    | 4                | 14          |
| Cauliflower         | UK              | EC          | foliar           | 0.075            |                   | 400                | 3                | 21          |
| Celeriac            | Belgium         | EC          | foliar           | 0.125            |                   |                    | 4                | 14          |
| Celeriac            | France          | EC          | foliar           | 0.125            |                   |                    | 3                | 21          |
| Celeriac            | Germany         | EC          | foliar           | 0.1              |                   |                    | 3                | 21          |
| Celery              | Belgium         | EC          | foliar           | 0.125            |                   |                    | 3                | 14          |
| Celery              | France          | EC          | foliar           | 0.125            |                   |                    | 3                | 14          |
| Celery              | Germany         | EC          | foliar           | 0.1              |                   |                    | 3                | 21          |
| Celery              | Italy           | EC          | foliar           | 0.1-0.125        |                   |                    | 4                | 21          |
| Celery              | Spain           | EC          | foliar           | 0.075-<br>0.125  |                   |                    | 4                | 14          |
| Cherry              | Poland          | EC          | foliar           | 0.05             |                   | 500-750            | 3                | 14          |
| Citrus fruit        | Brazil          | EC          | foliar           |                  | 0.005             | 500-1000           | 2                | 30          |
| Cucumber            | Italy           | EC          | foliar           | 0.125            |                   |                    | 4                | 7           |
| Garlic              | Brazil          | EC          | foliar           | 0.125            |                   | 200-400            | 6                | 14          |
| Garlic              | Spain           | EC          | foliar           | 0.125            |                   |                    | 4                | 30          |
| Grape               | Brazil          | EC          | foliar           |                  | 0.003             | 200-800            | 6                | 21          |
| Grape               | France          | EC          | foliar           | 0.03             |                   |                    | 3                | -           |
| Grape               | Italy           | EC          | foliar           |                  | 0.005             |                    | 4                | 21          |
| Grapes              | Luxembourg      | EC          | foliar           | 0.03             |                   |                    |                  |             |
| Leek                | Germany         | EC          | foliar           | 0.1              |                   |                    | 3                | 21          |
| Lettuce             | Brazil          | EC          | foliar           |                  | 0.005             | 200-400            | 5                | 14          |
| Lettuce             | Spain           | EC          | foliar           | $0.20^{6}$       |                   |                    | 3                | 14          |
| Macadamia           | Australia       | EC          | foliar           |                  | 0.0125            |                    |                  | -           |
| nuts                | D '1            | EC          | C 1:             |                  | 0.0125            | 500 1000           | 2                |             |
| Mango               | Brazil          | EC          | foliar           |                  | 0.0125            | 500-1000           | 3                | 7           |
| Olive               | Spain           | EC<br>EC    | foliar           |                  | 0.015             |                    | 2                | 30          |
| Papaya<br>Papah     | Brazil          | EC          | foliar           |                  | 0.0075            | > 1000             | 3                | 14<br>14    |
| Peach<br>Peach      | France          |             | foliar           | 0.05             | 0.003             |                    |                  | 14          |
| Peach<br>Peach      | France<br>Italy | EC<br>EC    | foliar<br>foliar | 0.03             | 0.005-            | < 1000             | 3                | 7           |
|                     |                 |             |                  |                  | 0.0075            |                    | 3                | /           |
| Pear                | Australia       | WG          | foliar           |                  | 0.0025-<br>0.0035 | <u> </u>           |                  | 28          |
| Pear                | Belgium         | EC          | foliar           | 0.0375           |                   |                    |                  | 14          |
| Pear                | France          | EC          | foliar           |                  | 0.00375           | > 1000             | 3                | 30          |
| Pear                | France          | EC          | foliar           | 0.0375           |                   | < 1000             | 3                | 30          |
| Pear                | Italy           | EC          | foliar           |                  | 0.00375           |                    | 4                | 14          |
| Pear                | Poland          | EC          | foliar           | 0.05             |                   |                    | 3                | 14          |
| Pear                | Spain           | EC          | foliar           |                  | 0.005             |                    | 5                | 14          |
| Pear                | Spain           | EC          | foliar           | 0.075            |                   | < 1500             | 5                | 14          |
| Pepper, chili       | Indonesia       | EC          | foliar           |                  | 0.0063-<br>0.013  |                    | 7 days intervals | -           |

 $<sup>^6</sup>$  Lettuce in Spain. The registration document states that difenoconazole is registered for use on lettuce at a rate of 0.125-0.20 kg ai/ha with a 14 days PHI. The maximum application rate on the available label was 0.125 g ai/ha.

| Crop          | Country     | Application                | Application    |                  |                    |                    |               |                             |  |
|---------------|-------------|----------------------------|----------------|------------------|--------------------|--------------------|---------------|-----------------------------|--|
|               |             | Form                       | Type           | Rate<br>kg ai/ha | Conc<br>kg ai/hL   | Spray vol,<br>L/ha | Max<br>number | PHI<br>days                 |  |
| Plum          | France      | EC                         | foliar         |                  | 0.005              | > 1000             | 3             | 14                          |  |
| Plum          | France      | EC                         | foliar         | 0.05             |                    | < 1000             | 3             | 14                          |  |
| Potato        | Australia   | EC                         | foliar         | 0.075-<br>0.125  |                    |                    |               | 7                           |  |
| Potato        | Brazil      | EC                         | foliar         | 0.075            |                    | 200-400            | 4             | 7                           |  |
| Potato        | Italy       | EC                         | foliar         | 0.1-0.125        |                    |                    | 4             | 14                          |  |
| Potato        | Spain       | EC                         | foliar         | 0.2              |                    |                    | 4             | 30                          |  |
| Rape          | Switzerland | SC, includes carbendazim   | foliar         | 0.125            |                    |                    | 1             | growth stage                |  |
| Rape          | UK          | EC                         | foliar         | 0.125            |                    | 200                | 2             | BBCH 69 <sup>7</sup>        |  |
| Rape, winter  | Germany     | EC                         | foliar         | 0.25             |                    |                    | 1             |                             |  |
| Rice          | Brazil      | EC                         | foliar         | 0.075            |                    | 100-200            | 1             | 45                          |  |
| Rice          | Indonesia   | EC                         | foliar         | 0.05 - 0.1       |                    |                    | 2             | BBCH 63-<br>67 <sup>8</sup> |  |
| Rye           | Switzerland | EC, includes propiconazole | foliar         | 0.125            |                    |                    | 1             | BBCH 61 <sup>9</sup>        |  |
| Soya          | Brazil      | EC                         | foliar         | 0.075            |                    | 100-200            | 1             | 30                          |  |
| Soya          | Brazil      | EC                         | foliar, aerial | 0.075            |                    | 20-50              | 1             | 30                          |  |
| Sugar beet    | Belgium     | EC                         | foliar         | 0.125            |                    |                    |               | 21                          |  |
| Sugar beet    | Germany     | EC                         | foliar         | 0.1              |                    |                    | 2             | 28                          |  |
| Sugar beet    | Italy       | EC                         | foliar         | 0.05-0.075       |                    |                    | 3             | 21                          |  |
| Sugar beet    | Spain       | EC                         | foliar         | 0.075-<br>0.125  |                    |                    | 3             | 30                          |  |
| Sugar beet    | Switzerland | EC, includes propiconazole | foliar         | 0.125            |                    |                    | 1             |                             |  |
| Sunflower     | Switzerland | SC, includes carbendazim   | foliar         | 0.125            |                    |                    | 1             | BBCH 51 <sup>10</sup>       |  |
| Tomato        | Australia   | EC                         | foliar         | 0.075-<br>0.125  |                    |                    |               | 3                           |  |
| Tomato        | Brazil      | EC                         | foliar         | 0.123            | 0.0125             | 200-800            | 3             | 14                          |  |
| Tomato        | France      | EC                         | foliar         | 0.125            | 0.0123             | 200-000            | 3             | 20                          |  |
| Tomato        | Indonesia   | SC, includes azoxystrobin  |                | 0.123            | 0.00625-<br>0.0125 |                    | 3             | 20                          |  |
| Tomato        | Italy       | EC                         | foliar         | 0.125            | 1                  |                    | 4             | 7                           |  |
| Tomato        | Spain       | EC                         | foliar         |                  | 0.0125-<br>0.016   |                    | 4             | 7                           |  |
| Tomato        | Spain       | EC                         | foliar         | 0.125-0.2        |                    |                    | 4             | 7                           |  |
| Watermelon    | Brazil      |                            | foliar         |                  | 0.0075             |                    | 4             | 3                           |  |
| Wheat         | Germany     | EC, includes propiconazole |                | 0.1              |                    |                    | 1             | 35                          |  |
| Wheat, winter | Switzerland | EC, includes propiconazole | foliar         | 0.125            |                    |                    | 1             | BBCH 61 <sup>11</sup>       |  |
| Wheat, winter | UK          | EC                         | foliar         | 0.075            |                    | 200                | 1             | Up to BBCH 71 <sup>12</sup> |  |

a - Asparagus, difenoconazole use in France. Treatment starts in April/May on young asparagus plants not yet in production and in June on asparagus plants in production. In asparagus crops protected by 6 to 8 applications of fungicide per year, use the difenoconazole product for the first three treatments and finish the season with a product that acts in a different way.

<sup>&</sup>lt;sup>7</sup> Rape seed. Growth stage BBCH 69: end of flowering.

<sup>&</sup>lt;sup>8</sup> Registered use on rice in Indonesia. Timing: 2 applications in season at mid booting stage (45 days after planting) and 75% of flowering (60 days after planting). Interpreted as BBCH 43-45 and BBCH 63-67.

<sup>9</sup> Rye. Growth stage BBCH 61: beginning of flowering, first anthers visible.

<sup>&</sup>lt;sup>10</sup> Sunflower. Growth stage BBCH 51: inflorescence just visible between youngest leaves.

Wheat. Growth stage BBCH 61: beginning of flowering, first anthers visible.

<sup>&</sup>lt;sup>12</sup> Wheat. Growth stage BBCH 71: watery ripe, first grains have reached half their final size.

### RESIDUES RESULTING FROM SUPERVISED TRIALS

The Meeting received information on supervised field trials for difenoconazole uses that produced residues on the following commodities.

| Commodity                                 | Crop                        | Table    |
|-------------------------------------------|-----------------------------|----------|
| Citrus fruits                             | Orange                      | Table 27 |
| Pome fruits                               | Apple                       | Table 28 |
|                                           | Pear                        | Table 29 |
| Stone fruits                              | Cherries                    | Table 30 |
|                                           | Peach                       | Table 31 |
|                                           | Plum                        | Table 32 |
| Berry fruits                              | Grapes                      | Table 33 |
| Tropical fruits, edible peel              | Olive                       | Table 34 |
| Tropical fruits, inedible peel            | Banana                      | Table 35 |
|                                           | Mango                       | Table 36 |
|                                           | Papaya                      | Table 37 |
| Bulb vegetables                           | Garlic                      | Table 38 |
|                                           | Leek                        | Table 39 |
| Brassica vegetables                       | Broccoli                    | Table 40 |
|                                           | Brussels sprouts            | Table 41 |
|                                           | Cabbages                    | Table 42 |
|                                           | Cauliflower                 | Table 43 |
| Fruiting vegetables, cucurbits            | Watermelon                  | Table 44 |
| Fruiting vegetables, other than cucurbits | Chili peppers               | Table 45 |
|                                           | Tomatoes                    | Table 46 |
| Leafy vegetables                          | Lettuce                     | Table 47 |
| Pulses                                    | Soya bean                   | Table 48 |
| Root and tuber vegetables                 | Carrot                      | Table 49 |
|                                           | Potato                      | Table 50 |
|                                           | Sugar beet                  | Table 51 |
| Stalk and stem vegetables                 | Asparagus                   | Table 52 |
|                                           | Celeriac                    | Table 53 |
|                                           | Celery                      | Table 54 |
| Cereal grains                             | Rice                        | Table 55 |
|                                           | Wheat                       | Table 56 |
| Oilseed                                   | Rape seed                   | Table 57 |
|                                           | Sunflower seed              | Table 58 |
| Feeds                                     | Wheat straw and fodder      | Table 59 |
|                                           | Rice straw and fodder       | Table 60 |
|                                           | Sugar beet leaves and tops  | Table 61 |
|                                           | Oilseed rape fodder         | Table 62 |
|                                           | Sunflower plant and stubble | Table 63 |

Trials were generally well documented with laboratory and field reports. Laboratory reports included method validation with procedural recoveries from spiking at residue levels similar to those occurring in samples from the supervised trials. Dates of analyses or duration of residue sample storage were also provided. Although trials included control plots, no control data are recorded in the tables except where residues in control samples exceeded the LOQ. Residue data are recorded unadjusted for recovery.

In trials where duplicate field samples from an unreplicated plot were taken at each sampling time and analysed separately the mean of the two analytical results was taken as the best estimate of the residues in the plot and the means are recorded in the tables.

When residues were not detected they are shown as below the LOQ (e.g., < 0.01 mg/kg). Residues, application rates and spray concentrations have generally been rounded to two significant figures or, for residues near the LOQ, to one significant figure. Residue values from the trials conducted according to maximum GAP have been used for the estimation of maximum residue levels. Those results included in the evaluation are double underlined.

Conditions of the supervised residue trials were generally well reported in detailed field reports. Most trial designs used non-replicated plots. Most field reports provided data on the sprayers used, plot size, field sample size and sampling date.

Table 26. Summary of sprayers, plot sizes and field sample sizes in the supervised trials

| Crop             | Place                  | Year                         | Sprayer                                                                | Plot size                | Sample size           |
|------------------|------------------------|------------------------------|------------------------------------------------------------------------|--------------------------|-----------------------|
| Apples           | Europe                 | 2000-2001                    | mist sprayer, motorised knapsack, tractor                              | $100 \text{ m}^2$        | 2-3 kg                |
| Asparagus        | Europe                 | 1988-91                      | motorised sprayer, knapsack, pneumatic sprayer                         | 10-39 m <sup>2</sup>     | 1-2 kg                |
| Banana           | Colombia               | 1997                         | knapsack (simulated aerial), aerial                                    | 1000-4800 m <sup>2</sup> | 6 bunches             |
| Banana           | Costa Rica             | 1993                         | knapsack                                                               | 5100-6000 m <sup>2</sup> | 18 fruit              |
| Banana           | Ecuador                | 1997                         | knapsack (simulated aerial), aerial                                    | 5000-6250 m <sup>2</sup> | 6 bunches             |
| Banana           | Guatemala              | 1993                         | mist sprayer                                                           | $2800 \text{ m}^2$       | 18 fruit              |
| Banana           | Honduras               | 1997                         | knapsack (simulated aerial), aerial                                    | 180-4800 m <sup>2</sup>  | 6 bunches             |
| Broccoli         | Europe                 | 2002, 2004                   | plot sprayer, knapsack, boom sprayer                                   | 60-120 m <sup>2</sup>    | 0.5-12 kg             |
| Brussels sprouts | Europe                 | 1990, 1995,<br>1999          | CO <sub>2</sub> powered knapsack, knapsack, plot sprayer               | 16-48 m <sup>2</sup>     | 1 kg                  |
| Cabbage          | Europe                 |                              | CO <sub>2</sub> powered knapsack, boom sprayer, plot sprayer, knapsack | 16-120 m <sup>2</sup>    | 5-12 heads            |
| Carrots          | France                 | 1991-96,<br>2000             | knapsack, boom sprayer, plot sprayer                                   | 15-45 m <sup>2</sup>     | 2-3.9 kg              |
| Carrots          | Switzerland            | 1987                         | ?                                                                      | ?                        | ?                     |
| Cauliflower      | Europe                 | 1999-2000,<br>2005           | plot sprayer, knapsack                                                 | 18-180 m <sup>2</sup>    | 0.5-15 kg             |
| Celeriac         | Belgium                | 2001                         | CO <sub>2</sub> powered sprayer                                        | 15-20 m <sup>2</sup>     | 2 kg (12 units)       |
| Celery           | Europe                 | 1988, 1990,<br>2003-04       | plot sprayer, knapsack, motorised sprayer, foliar hand sprayer         | 5-60 m <sup>2</sup>      | 0.5-5 kg              |
| Cherries         | Europe                 | 2003-2004                    | air blast sprayer, tractor powered blower                              | 72-90 m <sup>2</sup>     | 0.5-2 kg              |
| Chili peppers    | Indonesia,<br>Malaysia | 1990, 1991                   | CO <sub>2</sub> powered knapsack, motorised knapsack                   | 11-12 m <sup>2</sup>     |                       |
| Garlic           | Brazil                 | 1995                         | CO <sub>2</sub> powered knapsack                                       | 10 m <sup>2</sup>        | 1 kg                  |
| Grapes           | Europe                 | 2003-2005                    | air blast sprayer, mist sprayer,<br>knapsack                           | 15-144 m <sup>2</sup>    | 1-20 kg               |
| Leeks            | Europe                 | 1990, 1992,<br>1998, 2004    | plot sprayer, knapsack, foliar hand<br>sprayer                         | 18-120 m <sup>2</sup>    | 1-5 kg                |
| Lettuce          | Spain                  | 1991, 2003                   | motorised knapsack, knapsack                                           | 10-50 m <sup>2</sup>     | 12 units              |
| Mango            | Brazil                 | 2003                         | motorised knapsack                                                     | 210-600 m <sup>2</sup>   | 12 fruits             |
| Oilseed rape     | France,<br>Germany     | 1988, 1996-<br>97            | high volume sprayer                                                    | 27-60 m <sup>2</sup>     | 0.5-3 kg              |
| Olives           | Europe                 | 2003-2005                    | air blast sprayer, knapsack mistblower                                 | 200-660 m <sup>2</sup>   | 1-20 kg               |
| Orange           | Brazil                 | 1995                         | motorised sprayer                                                      | 3 trees                  | 1 kg                  |
| Papaya           | Brazil                 | 2002                         | knapsack air blast sprayer                                             | 153-189 m <sup>2</sup>   | 12 fruits             |
| Peaches          | Europe                 | 2003-2004                    | knapsack, air blast sprayer                                            |                          | 2-5 kg (12-24 fruits) |
| Pears            | Europe                 | 2001-2002                    | motorised knapsack                                                     | 24-100 m <sup>2</sup>    | 2- 4 kg               |
| Plums            | Europe                 | 2003-2004                    | knapsack, tractor powered blower                                       | 64-260 m <sup>2</sup>    | 1-3 kg                |
| Potato           | Italy, Spain           | 2003, 2005                   | knapsack                                                               | 20-180 m <sup>2</sup>    | 2-7 kg                |
| Rice             | Indonesia,<br>Malaysia | 1994, 1998                   | knapsack, motorised knapsack                                           | 200-370 m <sup>2</sup>   | 0.6-1 kg              |
| Soya beans       | Brazil                 | 2000, 2003                   | CO <sub>2</sub> powered knapsack                                       | 30-100 m <sup>2</sup>    | 1-1.6 kg              |
| Sugarbeet        | Europe                 | 1985-91,<br>1995-96,<br>2004 | plot sprayer, knapsack, high volume<br>sprayer                         | 30-100 m <sup>2</sup>    | 1-10 kg               |
| Sunflower        | Europe                 | 2004-2005                    | knapsack, plot sprayer                                                 | 60-120 m <sup>2</sup>    | 1-21 kg               |

| Crop        | Place  | Year      | Sprayer                                            | Plot size             | Sample size |
|-------------|--------|-----------|----------------------------------------------------|-----------------------|-------------|
| Tomatoes    | Europe |           | plot sprayer, knapsack, motorised knapsack         | 20-80 m <sup>2</sup>  | 0.5-5 kg    |
| Watermelons | Brazil |           | motorised sprayer, CO <sub>2</sub> powered sprayer | 90-180 m <sup>2</sup> | 8-12 fruits |
| Wheat       | Europe | 4000 4000 | knapsack, plot sprayer, motorised sprayers         | 20-600 m <sup>2</sup> | 0.5-2.8 kg  |

Table 27. Difenoconazole residues in oranges resulting from supervised trials in Brazil

| ORANGES                | Applicat | ion      |       |        |     | PHI  | Commodity | Residues, mg/kg | Ref       |
|------------------------|----------|----------|-------|--------|-----|------|-----------|-----------------|-----------|
| country, year (variety | Form     | kg ai/ha | kg    | water  | no. | days |           | difenoconazole  |           |
|                        |          |          | ai/hL | (L/ha) |     |      |           |                 |           |
| Brazil (SP), 199       | 5 EC     |          | 0.005 | 2000   | 2   | 30   | fruit     | < 0 <u>.05</u>  | E-9079-94 |
| (Valencia)             |          |          |       |        |     |      |           |                 |           |
| Brazil (SP), 199       | 5 EC     |          | 0.005 | 2000   | 2   | 16   | fruit     | < 0.05          | E-9081-94 |
| (Pera Rio)             |          |          |       |        |     | 30   |           | < 0 <u>.05</u>  |           |
| Brazil (SP), 199       | 5 EC     |          | 0.01  | 2000   | 2   | 16   | fruit     | < 0.05          | E-9082-94 |
| (Pera Rio)             |          |          |       |        |     | 30   |           | < 0.05          |           |
| Brazil (SP), 199       | 5 EC     |          | 0.01  | 2000   | 2   | 30   | fruit     | < 0.05          | E-9080-94 |
| (Valencia)             |          |          |       |        |     |      |           |                 |           |

Table 28. Difenoconazole residues in apples resulting from supervised trials in France, Greece, Italy and Spain

| APPLES                                | Applicati |          |        |        |     | PHI      | Commodity | Residues, mg/kg | Ref     |
|---------------------------------------|-----------|----------|--------|--------|-----|----------|-----------|-----------------|---------|
| , , , , , , , , , , , , , , , , , , , | Form      | kg ai/ha |        | water  | no. | days     |           | difenoconazole  |         |
| (variety)                             |           |          |        | (L/ha) |     |          |           |                 |         |
| France, 2000 (Royal                   | EC        | 0.077-   | 0.0075 |        | 4   | 14       | fruit     | <u>0.11</u>     | 0012201 |
| Gala)                                 |           | 0.066    |        | 875    |     |          |           |                 |         |
| France, 2001 (Royal                   | EC        | 0.075    | 0.015  | 500    | 4   | 0        | fruit     | 0.29            | 0110601 |
| Gala, Pajam)                          |           |          |        |        |     | 3        |           | 0.24            |         |
|                                       |           |          |        |        |     | 7        |           | 0.35            |         |
|                                       |           |          |        |        |     | 10       |           | 0.23            |         |
|                                       |           |          |        |        |     | 14       |           | 0.28            |         |
| Greece, 2000                          | EC        | 0.072    | 0.005  | 1350   | 5   | 0        | fruit     | 0.12            | 2042/00 |
| (Granny Smith)                        |           |          |        |        |     | 7        |           | 0.13            |         |
|                                       |           |          |        |        |     | 14       |           | 0.13            |         |
|                                       |           |          |        |        | ļ., | 21       |           | 0.08            |         |
| Greece, 2001                          | EC        | 0.074    | 0.0063 | 1160   | 4   | 14       | fruit     | <u>0.05</u>     | 2019/01 |
| (Granny Smith)                        |           | 0.0==    |        | 1000   | L.  |          |           | 0.45            | 2025/00 |
| Italy, 2000 (Golden                   | EC        | 0.075    | 0.0075 | 1000   | 4   | 0        | fruit     | 0.15            | 2036/00 |
| Delicious Smoothee)                   |           |          |        |        |     | 14       |           | 0.04            |         |
|                                       |           | 0.064    | 0.0075 | 1200   |     | 21       |           | 0.06            |         |
| Italy, 2001 (Fuji)                    | EC        | 0.061    | 0.0052 |        | 4   | 0        | fruit     | 0.19            | 2070/01 |
|                                       |           |          |        | 1170   |     | 7        |           | 0.12            |         |
|                                       |           |          |        |        |     | 14<br>21 |           | 0.08<br>0.05    |         |
| G : 2000 (G 11                        | EC        | 0.075    | 0.005  | 1500   | 5   |          | C :       |                 | 2025/00 |
| Spain, 2000 (Golden<br>Delicious)     | EC        | 0.075    | 0.005  | 1500   | )   | 0 3      | fruit     | 0.21<br>0.29    | 2025/00 |
| Delicious)                            |           |          |        |        |     | 7        |           | 0.29            |         |
|                                       |           |          |        |        |     | 14       |           | 0.23<br>0.14    |         |
|                                       |           |          |        |        |     | 21       |           | 0.14<br>0.14    |         |
| Spain, 2000 (World                    | FC        | 0.075    | 0.005  | 1500   | 5   | 0        | fruit     | 0.14            | 2026/00 |
| Gala)                                 | LC        | 0.073    | 0.003  | 1500   | ,   | 3        | iruit     | 0.20            | 2020/00 |
| Guiu)                                 |           |          |        |        |     | 7        |           | 0.16            |         |
|                                       |           |          |        |        |     | 14       |           | 0.15<br>0.15    |         |
|                                       |           |          |        |        |     | 21       |           | 0.10            |         |
| Spain, 2001 (Reineta)                 | EC        | 0.075    | 0.0049 | 1490-  | 4   | 0        | fruit     | 0.19            | 2096/01 |
|                                       |           | 0.075    | 0.0017 | 1620   | '   | 14       |           | 0.10            |         |

Table 29. Difenoconazole residues in pears resulting from supervised trials in France and Greece

| PEARS        |      | Applicati | ion      |          |        |     | PHI  | Commodity | Residues, mg/kg | Ref     |
|--------------|------|-----------|----------|----------|--------|-----|------|-----------|-----------------|---------|
| country,     | year | Form      | kg ai/ha | kg ai/hL | water  | no. | days |           | difenoconazole  |         |
| (variety)    |      |           |          |          | (L/ha) |     |      |           |                 |         |
| France,      | 2002 | EC        | 0.075    | 0.005    | 1500   | 4   | 14   | fruit     | 0.07            | 02-2085 |
| (Conference) |      |           |          |          |        |     |      |           |                 |         |
| Greece,      | 2001 | EC        | 0.072    | 0.0068   | 1060   | 4   | 14   | fruit     | <u>0.16</u>     | 2020/01 |
| (Highland)   |      |           |          |          |        |     |      |           |                 |         |

Table 30. Difenoconazole residues in cherries resulting from supervised trials in France and Germany

| CHERRIES         |      | Applicati | ion      |          |        |     | PHI  | Commodity | Residues, mg/kg | Ref       |
|------------------|------|-----------|----------|----------|--------|-----|------|-----------|-----------------|-----------|
| country,         | year | Form      | kg ai/ha | kg ai/hL | water  | no. | days |           | difenoconazole  |           |
| (variety)        |      |           |          |          | (L/ha) |     |      |           |                 |           |
| France,          | 2004 | EC        | 0.057    | 0.00375  | 1510   | 3   | 14   | fruit     | 0.08            | 04-0309   |
| (Alegria)        |      |           | +0.054   | +0.00375 | +1430  |     |      |           |                 |           |
| sour cherries    |      |           | +0.047   | +0.00375 | +1250  |     |      |           |                 |           |
| Germany,         | 2003 | EC        | 0.059    |          | 1500   | 3   | 0    | fruit     | 0.31            | gch218403 |
| (Burlat)         |      |           |          |          |        |     | 3    |           | 0.20            |           |
| sweet cherries   |      |           |          |          |        |     | 7    |           | 0.13            |           |
|                  |      |           |          |          |        |     | 10   |           | 0.08            |           |
|                  |      |           |          |          |        |     | 14   |           | 0.06            |           |
| Germany,         | 2003 | EC        | 0.039    | 0.0039   | 1000   | 3   | 0    | fruit     | 0.32            | gch218103 |
| (Schattenmorelle | e)   |           |          |          |        |     | 3    |           | 0.21            |           |
| sour cherries    |      |           |          |          |        |     | 7    |           | 0.15            |           |
|                  |      |           |          |          |        |     | 10   |           | 0.09            |           |
|                  |      |           |          |          |        |     | 14   |           | <u>0.10</u>     |           |

Table 31. Difenoconazole residues in peaches resulting from supervised trials in France, Greece and Italy

| PEACH                |         | Applicat | ion      |          |        |     | PHI  | Commodity | Residues, mg/kg | Ref       |
|----------------------|---------|----------|----------|----------|--------|-----|------|-----------|-----------------|-----------|
| country,             | year    | Form     | kg ai/ha | kg ai/hL | water  | no. | days |           | difenoconazole  |           |
| (variety)            |         |          |          |          | (L/ha) |     |      |           |                 |           |
| France,              | 2004    | EC       | 0.11     | 0.0075   | 1500   | 3   | 7    | fruit     | 0.18            | 04-0505   |
| (Promesse)           |         |          |          |          |        |     |      |           |                 |           |
| Greece, 2004 (       | (Evert) | EC       | 0.11     | 0.0075   | 1460   | 3   | 7    | fruit     | 0.26            | 04-0412   |
|                      |         |          |          |          |        |     |      |           |                 | GR/FR/04- |
|                      |         |          |          |          |        |     |      |           |                 | 0093      |
| Greece, 2004         | 4 (Red  | EC       | 0.11     | 0.0075   | 1460   | 3   | 0    | fruit     | 0.14 0.18       | 04-0412   |
| Haven)               |         |          |          |          |        |     | 3    |           | 0.21            | GR/FR/04- |
|                      |         |          |          |          |        |     | 7    |           | <u>0.16</u>     | 0094      |
| Italy, 2003          | (Maria  | EC       | 0.090    | 0.0075   | 1500   | 3   | 7    | fruit     | 0.14            | 03-0443   |
| Marta)               |         |          |          |          |        |     |      |           |                 |           |
| Italy, 2003 (Pa      | dana)   | EC       | 0.090    | 0.0075   | 1500   | 3   | 0    | fruit     | 0.26            | 03-0441   |
|                      |         |          |          |          |        |     | 1    |           | 0.24            |           |
|                      |         |          |          |          |        |     | 3    |           | 0.20            |           |
|                      |         |          |          |          |        |     | 5    |           | 0.21            |           |
|                      |         |          |          |          |        |     | 7    |           | 0.19            |           |
| Italy, 2003          | (Stark  | EC       | 0.090    | 0.0075   | 1500   | 3   | 0    | fruit     | 0.13            | 03-0440   |
| Redgold)             |         |          |          |          |        |     | 1    |           | 0.09            |           |
|                      |         |          |          |          |        |     | 3    |           | 0.08            |           |
|                      |         |          |          |          |        |     | 5    |           | 0.08            |           |
|                      |         |          |          |          |        |     | 7    |           | 0.07            |           |
| Italy, 2003          | (Sweet  | EC       | 0.090    | 0.0075   | 1500   | 3   | 0    | fruit     | 0.15            | 03-0442   |
| Lady)                |         |          |          |          |        |     | 1    |           | 0.16            |           |
|                      |         |          |          |          |        |     | 3    |           | 0.18            |           |
|                      |         |          |          |          |        |     | 5    |           | 0.13            |           |
|                      |         |          |          |          |        |     | 7    |           | 0.14            |           |
| Italy, 2004<br>Lady) | (Sweet  | EC       | 0.090    | 0.0075   | 1500   | 3   | 7    | fruit     | <u>0.11</u>     | 04-0307   |

Table 32. Difenoconazole residues in plums resulting from supervised trials in France, Germany and Spain

| PLUM                 | Applicat | ion    |          |        |     | PHI     | Commodity | Residues, mg/kg     | Ref          |
|----------------------|----------|--------|----------|--------|-----|---------|-----------|---------------------|--------------|
| country, year        | Form     |        | kg ai/hL | water  | no. | days    |           | difenoconazole      |              |
| (variety)            |          | ai/ha  |          | (L/ha) |     |         |           |                     |              |
| France, 1998         | EC       | 0.050  | 0.005    | 1000   | 3   | 14      | fruit     | 0.07                | 2161/98      |
| (Quetsches d'Alsace) |          |        |          |        |     |         |           |                     |              |
| France, 1999         | EC       | 0.053  | 0.005    | 1070   | 3   | 14      | fruit     | 0.10                | 2108/99      |
| (Quetsches d'Alsace) |          |        |          |        |     |         |           |                     |              |
| France, 2004 (Reine  | EC       | 0.056  | 0.00375  | 1500   | 2   | 10      | fruit     | 0.04                | 04-0506      |
| Claude)              |          |        |          |        | 3   | 0       |           | 0.05                | AF/7874/SY/1 |
|                      |          |        |          |        |     | 3       |           | 0.04                |              |
|                      |          |        |          |        |     | 7       |           | 0.03                |              |
|                      |          |        |          |        |     | 10      |           | 0.03                |              |
|                      |          |        |          |        |     | 14      |           | 0.03                |              |
| France, 2004         | EC       | 0.056  | 0.00375  | 1500   | 2   | 10      | fruit     | 0.02                | 04-0506      |
| (Stanley)            |          |        |          |        | 3   | 0       |           | 0.06                | AF/7874/SY/2 |
|                      |          |        |          |        |     | 3       |           | 0.06                |              |
|                      |          |        |          |        |     | 7       |           | 0.03                |              |
|                      |          |        |          |        |     | 10      |           | 0.06                |              |
| 2002                 | EG       | 0.040  | 0.0020   | 1010   | -   | 14      | 6 1       | 0.02                | 1250202      |
| Germany, 2003        | EC       | 0.040  | 0.0039   | 1010   | 3   | 0       | fruit     | 0.03                | gpl258303    |
| (Cacaks Beste)       |          |        |          |        |     | 3       |           | 0.03                |              |
|                      |          |        |          |        |     | 7<br>10 |           | 0.03<br>0.03        |              |
|                      |          |        |          |        |     | 14      |           | 0.03<br><u>0.04</u> |              |
| Germany, 2003        | EC       | 0.079  | 0.0039   | 2000   | 3   | 0       | fruit     | 0.05                | gp1258203    |
| (Hauszwetsche)       | EC       | 0.079  | 0.0039   | 2000   | 3   | 14      | iiuit     | 0.03                | gp1238203    |
| Germany, 2003        | EC       | 0.059  | 0.0039   | 1500   | 3   | 0       | fruit     | 0.03                | gpl258103    |
| (Hermann)            | LC       | 0.039  | 0.0039   | 1300   | ]   | 3       | iiuit     | 0.03                | gp1236103    |
| (Termann)            |          |        |          |        |     | 7       |           | 0.01                |              |
|                      |          |        |          |        |     | 10      |           | < 0.01              |              |
|                      |          |        |          |        |     | 14      |           | < 0 <u>.01</u>      |              |
| Germany, 2003        | EC       | 0.059  | 0.0039   | 1500   | 2   | 11      | fruit     | 0.02                | gpl258403    |
| (Opal)               |          |        |          |        | 3   | 11      |           | 0.01                | Sr · · ·     |
| Spain, 2005          | EC       | 0.073  | 0.005    | 1460   | 2   | 7       | fruit     | 0.05                | 05-0503      |
| (Angelino)           |          | +0.080 |          | +1600  | 3   | 0       |           | 0.11                | ES-FR-05-    |
|                      |          | +0.085 |          | +1690  |     | 3       |           | 0.05                | 0429         |
|                      |          |        |          |        |     | 7       |           | 0.11                |              |
|                      |          |        |          |        |     | 10      |           | 0.08                |              |
|                      |          |        |          |        |     | 13      |           | 0.08                |              |
| Spain, 2005 (Black   | EC       | 0.071  | 0.005    | 1410   | 2   | 7       | fruit     | 0.03                | 05-0503      |
| Gold)                |          | +0.073 |          | +1460  | 3   | 0       |           | 0.09                | ES-FR-05-    |
|                      |          | +0.073 | 0.005    | +1460  |     | 3       |           | 0.07                | 0430         |
|                      |          |        |          |        |     | 7       |           | 0.06                |              |
|                      |          |        |          |        |     | 10      |           | 0.04                |              |
|                      | <u> </u> |        |          |        |     | 14      | <u> </u>  | 0.03                |              |

Table 33. Difenoconazole residues in grapes resulting from supervised trials in France and Italy

| GRAPES           | Application |      |          |          |        |     | PHI  | Commodity | Residues, mg/kg | Ref          |
|------------------|-------------|------|----------|----------|--------|-----|------|-----------|-----------------|--------------|
| country, year (  | (variety)   | Form | kg ai/ha | kg ai/hL | water  | no. | days |           | difenoconazole  |              |
|                  |             |      |          |          | (L/ha) |     |      |           |                 |              |
| France,          | 2004        | EC   | 0.050    | 0.005    | 820    | 4   | 21   | bunch     | 0.04            | 04-0601      |
| (Abouriou)       |             |      |          |          |        |     | 28   |           | 0.04            | AF/7875/SY/1 |
| France,          | 2004        | EC   | 0.050    | 0.005    | 870    | 4   | 21   | bunch     | 0.07            | 04-0601      |
| (Gamay)          |             |      |          |          |        |     | 28   |           | 0.07            | AF/7875/SY/2 |
| Italy, 2003 (Ita | alia)       | EC   | 0.050    | 0.005    | 1000   | 4   | 21   | bunch     | 0.04            | 03-0426      |
|                  |             |      |          |          |        |     | 28   |           | 0.05            |              |

| GRAPES                  | Applicati | on       |          |        |     | PHI  | Commodity | Residues, mg/kg | Ref          |
|-------------------------|-----------|----------|----------|--------|-----|------|-----------|-----------------|--------------|
| country, year (variety) | Form      | kg ai/ha | kg ai/hL | water  | no. | days |           | difenoconazole  |              |
|                         |           |          | -        | (L/ha) |     |      |           |                 |              |
| Italy, 2003 (Malvasia)  | EC        | 0.050    | 0.005    | 1000   | 4   | 0    | bunch     | 0.07            | 03-0427      |
|                         |           |          |          |        |     | 7    |           | 0.04            |              |
|                         |           |          |          |        |     | 14   |           | 0.04            |              |
|                         |           |          |          |        |     | 21   |           | 0.02            |              |
|                         |           |          |          |        |     | 28   |           | 0.02            |              |
| Italy, 2003 (Riesling)  | EC        | 0.050    | 0.005    | 1000   | 4   | 0    | bunch     | 0.08            | 03-0428      |
|                         |           |          |          |        |     | 7    |           | 0.07            |              |
|                         |           |          |          |        |     | 14   |           | 0.03            |              |
|                         |           |          |          |        |     | 21   |           | 0.03            |              |
|                         |           |          |          |        |     | 28   |           | 0.03            |              |
| Italy, 2004 (Merlot)    | EC        | 0.050    | 0.005    | 1000   | 3   | 10   | bunch     | 0.02            | 04-0501      |
|                         |           |          |          |        | 4   | 0    |           | 0.06            | IT-FR-04-    |
|                         |           |          |          |        |     | 7    |           | 0.02            | 0184         |
|                         |           |          |          |        |     | 14   |           | 0.03            |              |
|                         |           |          |          |        |     | 21   |           | 0.02            |              |
|                         |           |          |          |        |     | 28   |           | 0.02            |              |
| Italy, 2004             | EC        | 0.050    | 0.005    | 990    | 3   | 9    | bunch     | 0.03            | 04-0501      |
| (Sangiovese)            |           |          |          |        | 4   | 0    |           | 0.06            | IT-FR-04-    |
|                         |           |          |          |        |     | 7    |           | 0.03            | 0214         |
|                         |           |          |          |        |     | 14   |           | 0.01            |              |
|                         |           |          |          |        |     | 21   |           | <u>0.01</u>     |              |
|                         |           |          |          |        |     | 28   |           | 0.03            |              |
| Italy, 2004             | EC        | 0.050    | 0.005    | 830    | 4   | 21   | bunch     | <u>0.03</u>     | 04-0601      |
| (Trebbiano)             | 1         |          |          |        |     | 28   |           | 0.03            | AF/7875/SY/3 |

Table 34. Difenoconazole residues in olives resulting from supervised trials in France and Spain

| OLIVE                  |          | Applica | tion     |          |                 |     | PHI                                  | Commodity | Residues, mg/kg                                            | Ref                     |
|------------------------|----------|---------|----------|----------|-----------------|-----|--------------------------------------|-----------|------------------------------------------------------------|-------------------------|
| country, year (        | variety) | Form    | kg ai/ha | kg ai/hL | water<br>(L/ha) | no. | days                                 |           | difenoconazole<br>a                                        |                         |
| France,<br>(Verdale)   | 2005     | EC      | 0.13     | 0.016    |                 | 2   | 30                                   | fruit     | <u>0.76</u>                                                | 05-0603<br>AF/8567/SY/1 |
| Spain,<br>(Arbequina)  | 2003     | EC      | 0.14     | 0.016    | 850             | 2   | 0<br>7<br>14<br>21<br>30<br>35       | fruit     | 3.2<br>1.3<br>0.79<br>0.56<br><u>0.51</u><br>0.41          | 03-0522                 |
| Spain,<br>(Marteña)    | 2003     | EC      | 0.13     | 0.018    | 790             | 2   | 0<br>7<br>14<br>21<br>30<br>35       | fruit     | 0.81<br>0.42<br>0.48<br>0.29<br><u>0.42</u><br>0.38        | 03-0523                 |
| Spain,<br>(Zorzaleña)  | 2003     | EC      | 0.12     | 0.016    | 760             | 2   | 30                                   | fruit     | <u>0.90</u>                                                | 03-0524                 |
| Spain,<br>(Alberquina) | 2004     | EC      | 0.12     | 0.015    | 800             | 2   | 30                                   | fruit     | <u>0.40</u>                                                | 04-6067<br>AF/7872/SY/1 |
| Spain,<br>(Alberquina) | 2004     | EC      | 0.12     | 0.016    | 770             | 1 2 | 14<br>0<br>7<br>14<br>21<br>30<br>35 | fruit     | 0.69<br>2.0<br>0.66<br>0.44<br>0.34<br><u>0.29</u><br>0.16 | 04-6067<br>AF/7872/SY/2 |

| OLIVE         |             | Applicat | ion      |          |        |     | PHI  | Commodity | Residues, mg/kg | Ref          |
|---------------|-------------|----------|----------|----------|--------|-----|------|-----------|-----------------|--------------|
| country, year | r (variety) | Form     | kg ai/ha | kg ai/hL | water  | no. | days |           | difenoconazole  |              |
|               |             |          |          |          | (L/ha) |     |      |           | a               |              |
| Spain,        | 2004        | EC       | 0.12     | 0.015    | 800    | 1   | 14   | fruit     | 0.24            | 04-6067      |
| (Marteña)     |             |          |          |          |        | 2   | 0    |           | 0.69            | AF/7872/SY/3 |
|               |             |          |          |          |        |     | 7    |           | 0.58            |              |
|               |             |          |          |          |        |     | 14   |           | 0.44            |              |
|               |             |          |          |          |        |     | 21   |           | 0.52            |              |
|               |             |          |          |          |        |     | 30   |           | <u>0.22</u>     |              |
|               |             |          |          |          |        |     | 35   |           | 0.14            |              |
| Spain,        | 2005        | EC       | 0.13     | 0.015    | 840    | 2   | 30   | fruit     | <u>1.2</u>      | 05-0603      |
| (Arbequino)   |             |          |          |          |        |     |      |           |                 | AF/8567/SY/2 |

a - Analysis on fruit without stone, but calculated on whole fruit from weights of stone and fruit

In the banana trials in 1997 in Ecuador, Colombia and Honduras, unbagged fruit were chosen for study although these cropping conditions rarely occur in commercial banana production. Unbagged bananas represent the extreme case for consumer exposure. In these trials, difenoconazole residues were not present above the LOQ (< 0.02 mg/kg) in the edible portion.

Table 35. Difenoconazole residues in bananas resulting from supervised trials in Colombia, Costa Rica, Ecuador, Guatemala and Honduras

| BANANA                                |       | Applicat | ion      |          |        |        | PHI  | Commodity       | Residues, mg/kg                                | Ref     |
|---------------------------------------|-------|----------|----------|----------|--------|--------|------|-----------------|------------------------------------------------|---------|
| country,                              | year  | Form     | kg ai/ha | kg ai/hL | water  | no.    | days |                 | difenoconazole                                 |         |
| (variety)                             |       |          |          |          | (L/ha) |        |      |                 | a b                                            |         |
| Colombia,                             | 1997  | EC       | 0.093-   | 0.025    | 19-21  | 8      | 0 °  | fruit, unbagged |                                                | 119/96  |
| (Cavendish Robus                      | sta)  |          | 0.10     |          |        |        | 0    | fruit, unbagged | pe < 0.02 (3) 0.25                             | 2118/96 |
|                                       |       |          |          |          |        |        |      |                 | 0.02 0.24                                      |         |
|                                       |       |          |          |          |        |        | 0    | fruit, unbagged | wf < 0.02 (4) 0.13                             |         |
|                                       |       |          |          |          |        |        |      |                 | 0.12 (mean <u>0.04</u> )                       |         |
| ,                                     | 1997  | EC       | 0.091-   | 0.025    | 18-22  |        | 0 °  | fruit, unbagged |                                                | 119/96  |
| (Cavendish Robus                      | sta)  |          | 0.11     |          |        | aerial | 0    | fruit, unbagged |                                                | 2119/96 |
|                                       |       |          |          |          |        |        | 0    | fruit, unbagged |                                                |         |
|                                       | 1997  | EC       | 0.095-   | 0.025    | 14-17  |        | 0 °  | fruit, unbagged |                                                | 119/96  |
| (Cavendish Robus                      | sta)  |          | 0.11     |          |        | aerial | 0    |                 | pe < 0.02 (5) 0.03                             | 2120/96 |
|                                       |       |          | 0.10     | 0.44     |        |        | 0    |                 | wf < 0.02 (5) 0.02                             |         |
|                                       | 1993  | EC       | 0.10     | 0.44     | 24     | 8      | 0    |                 | pu < 0.02  wf < 0.02                           | 2127/92 |
| (Grand Naine)                         |       |          |          |          |        |        | 1    |                 | pu < 0.02  wf < 0.02                           |         |
|                                       |       |          |          |          |        |        | 2    |                 | pu < 0.02  wf < 0.02                           |         |
|                                       |       |          |          |          |        |        | 1    |                 | pu < 0.02 wf 0.03<br>pu < 0.02 wf <u>0.04</u>  |         |
|                                       |       |          |          |          |        |        | 2    |                 | pu $< 0.02$ wf $0.04$<br>pu $< 0.02$ wf $0.02$ |         |
| Costa Rica,                           | 1993  | EC       | 0.10     | 0.44     | 24     | 8      | 0    |                 | pu < 0.02  wf  < 0.02                          | 2128/02 |
| (Grand Naine)                         | 1773  | LC       | 0.10     | 0.44     | 24     | 0      | 1    |                 | pu < 0.02  wf < 0.02<br>pu < 0.02  wf < 0.02   | 2120/92 |
| (Grand Ivanic)                        |       |          |          |          |        |        | 2    |                 | pu < 0.02  wf < 0.02<br>pu < 0.02  wf < 0.02   |         |
|                                       |       |          |          |          |        |        | 0    |                 | pu $< 0.02$ wf $< 0.02$                        |         |
|                                       |       |          |          |          |        |        | 1    |                 | pu < $0.02$ wf $0.03$                          |         |
|                                       |       |          |          |          |        |        | 2    |                 | pu < 0.02 wf 0.03                              |         |
| Ecuador, 1997 (C                      | iant  | EC       | 0.10     | 0.025    | 19-22  | 8      | 0 °  | fruit, unbagged |                                                | 118/96  |
| Cavendish)                            |       |          |          | *****    |        |        | 0    |                 | pe $< 0.02$ (5) 0.02                           |         |
| ,                                     |       |          |          |          |        |        | 0    | fruit, unbagged |                                                |         |
| Ecuador, 1997 (C                      | Giant | EC       | 0.10     | 0.025    | 19-22  | 8      | 0 °  | fruit, unbagged |                                                | 118/96  |
| Cavendish)                            |       |          |          |          |        | aerial | 0    | fruit, unbagged |                                                | 2116/96 |
|                                       |       |          |          |          |        |        | 0    | fruit, unbagged |                                                |         |
| Ecuador, 1997 (C                      | Giant | EC       | 0.075-   | 0.025    | 11-16  | 8      | 0 °  | fruit, unbagged | pu < 0.02 (6)                                  | 118/96  |
| Cavendish)                            |       |          | 0.11     |          |        | aerial | 0    | fruit, unbagged | pe $< 0.02$ (6)                                | 2117/96 |
|                                       |       |          |          |          |        |        | 0    | fruit, unbagged |                                                |         |
| · · · · · · · · · · · · · · · · · · · | 1993  | EC       | 0.10     | 0.025    | 40     | 8      | 0    |                 | pu < 0.02 wf < 0.02                            | 2091/93 |
| (Grand Naine)                         |       |          |          |          |        |        | 1    |                 | pu < 0.02  wf < 0.02                           |         |
|                                       |       |          |          |          |        |        | 2    |                 | pu < 0.02  wf < 0.02                           |         |
|                                       |       |          |          |          |        |        | 0    |                 | pu < 0.02 wf 0.03                              |         |
|                                       |       |          |          |          |        |        | 1    |                 | pu < 0.02 wf <u>0.07</u>                       |         |
|                                       |       |          |          |          |        |        | 2    | fruit, unbagged | pu < 0.02  wf  0.03                            |         |

| BANANA              | Applicati | ion      |          |        |        | PHI  | Commodity       | Residues, mg/kg          | Ref     |
|---------------------|-----------|----------|----------|--------|--------|------|-----------------|--------------------------|---------|
| country, year       | Form      | kg ai/ha | kg ai/hL | water  | no.    | days |                 | difenoconazole           |         |
| (variety)           |           |          |          | (L/ha) |        |      |                 | a b                      |         |
| Honduras, 1997      | EC        | 0.10-    | 0.025    | 20-23  | 8      | 0 °  | fruit, unbagged | pu < 0.02 (6)            | 120/96  |
| (Cavendish Robusta) |           | 0.11     |          |        |        | 0    | fruit, unbagged | pe < 0.02 (3) 0.02       | 2121/96 |
|                     |           |          |          |        |        |      |                 | 0.03 0.12                |         |
|                     |           |          |          |        |        | 0    | fruit, unbagged | wf < 0.02 (4) 0.02       | 2       |
|                     |           |          |          |        |        |      |                 | 0.06 (mean <u>0.03</u> ) |         |
| Honduras, 1997      | EC        | 0.10-    | 0.025    | 20-26  | 8      | 0 °  | fruit, unbagged | pu < 0.02 (6)            | 120/96  |
| (Cavendish Robusta) |           | 0.12     |          |        | aerial | 0    | fruit, unbagged | pe $< 0.02$ (6)          | 2122/96 |
|                     |           |          |          |        |        | 0    | fruit, unbagged | wf < 0.02(6)             |         |
| Honduras, 1997      | EC        | 0.09-    |          | 10-15  | 8      | 0 °  | fruit, unbagged | pu < 0.02 (6)            | 120/96  |
| (Cavendish Robusta) |           | 0.14     |          |        | aerial | 0    | fruit, unbagged | pe $< 0.02$ (6)          | 2123/96 |
|                     |           |          |          |        |        | 0    | fruit, unbagged | wf < 0.02(6)             |         |

- a pu: pulp. pe: peel. wf: whole fruit, residue level calculated from residues in peel and pulp and relative weights.
- b Residues measured on pulp and peel and calculated on the whole fruit.
- c Six replicate samples were taken. Each sample consisted of 6 bananas (2 from the top, middle and bottom of a bunch). Peel and pulp were analysed separately and the residue concentration in the whole fruit was calculated.

Table 36. Difenoconazole residues in mango resulting from supervised trials in Brazil

| MANGO                          | Applicati | ion      |          |                 |     | PHI                   | Commodity <sup>a</sup> | Residues, mg/kg                                | Ref            |
|--------------------------------|-----------|----------|----------|-----------------|-----|-----------------------|------------------------|------------------------------------------------|----------------|
| country, year (variety)        | Form      | kg ai/ha | kg ai/hL | water<br>(L/ha) | no. | days                  |                        | difenoconazole                                 |                |
| Brazil, 2003 (Tommy<br>Atkins) | EC        | 0.13     | 0.013    |                 | 3   | 7                     | mango                  | 0.025                                          | M02017<br>LZF1 |
| Brazil, 2003 (Tommy<br>Atkins) | EC        | 0.13     | 0.013    |                 | 3   | 0<br>3<br>5<br>7<br>9 | mango                  | 0.065<br>0.04<br>0.04<br>0.015<br><u>0.025</u> | M02017<br>LZF2 |
| Brazil, 2003 (Tommy<br>Atkins) | EC        | 0.13     | 0.013    |                 | 3   | 7                     | mango                  | <u>0.04</u>                                    | M02017<br>LZF3 |
| Brazil, 2003 (Tommy<br>Atkins) | EC        | 0.13     | 0.013    |                 | 3   | 0<br>3<br>5<br>7<br>9 | mango                  | 0.075<br>0.06<br>0.03<br><u>0.035</u><br>0.02  | M02017<br>LZF4 |

a - Analysis on fruits without seed, but concentration calculated on whole fruit.

Table 37. Difenoconazole residues in papaya resulting from supervised trials in Brazil

| PAPAYA    |      | Applicat | ion   |          |       |     | PHI  | Commodity <sup>a</sup> |        | Residu | es, mg/        | kg   | Ref     |
|-----------|------|----------|-------|----------|-------|-----|------|------------------------|--------|--------|----------------|------|---------|
| country,  | year | Form     | kg    | kg ai/hL | water | no. | days |                        |        | difeno | conazol        | e    |         |
| (variety) |      |          | ai/ha |          | L/ha  |     |      |                        |        |        |                |      |         |
| Brazil,   | 2002 | EC       | 0.063 | 0.0075   | 840   | 4   | 0    | whole fruit            | 0.17   |        |                |      | 02-2076 |
| (Golden)  |      |          |       |          |       |     | 3    | pe: 0.35               | pu: <  | 0.01   | wf:            | 0.11 |         |
|           |      |          |       |          |       |     | 7    | pe: 0.20               | pu: <  | 0.01   | wf:            | 0.06 |         |
|           |      |          |       |          |       |     | 10   | pe: 0.16               | pu: <  | 0.01   | wf:            | 0.05 |         |
|           |      |          |       |          |       |     | 14   | pe: 0.19               | pu: <  | 0.01   | wf: <u>0.0</u> | )7   |         |
| Brazil,   | 2002 | EC       | 0.13  | 0.015    | 890   | 4   | 0    | whole fruit            | 0.34   |        |                |      | 02-2076 |
| (Golden)  |      |          |       |          |       |     | 3    | pe: 0.88               | pu: 0. | 01     | wf:            | 0.25 |         |
|           |      |          |       |          |       |     | 7    | pe: 0.51               | pu: 0. | 01     | wf:            | 0.16 |         |
|           |      |          |       |          |       |     | 10   | pe: 0.43               | pu: <  | 0.01   | wf:            | 0.13 |         |
|           |      |          |       |          |       |     | 14   | pe: 0.29               | pu: <  | 0.01   | wf: 0.0        | )9   |         |
| Brazil,   | 2002 | EC       | 0.065 | 0.0076   | 860   | 4   | 0    | whole fruit            | 0.27   |        |                |      | 02-2077 |
| (Golden)  |      |          |       |          |       |     | 3    | pe: 0.33               | pu: 0. | 01     | wf:            | 0.11 |         |
|           |      |          |       |          |       |     | 7    | pe: 0.39               | pu: <  | 0.01   | wf:            | 0.11 |         |
|           |      |          |       |          |       |     | 10   | pe: 0.42               | pu: <  | 0.01   | wf:            | 0.12 |         |
|           |      |          |       |          |       |     | 14   | pe: 0.30               | pu: <  | 0.01   | wf: <u>0.</u>  | 10   |         |

| PAPAYA    |      | Applicat | tion  |          |       |     | PHI  | Commodity <sup>a</sup> |        | Residu | ies, mg/       | kg        | Ref     |
|-----------|------|----------|-------|----------|-------|-----|------|------------------------|--------|--------|----------------|-----------|---------|
| country,  | year | Form     | kg    | kg ai/hL | water | no. | days |                        |        | difeno | conazol        | e         |         |
| (variety) |      |          | ai/ha |          | L/ha  |     |      |                        |        |        |                |           |         |
| Brazil,   | 2002 | EC       | 0.13  | 0.015    | 850   | 4   | 0    | whole fruit            | 0.44   |        |                |           | 02-2077 |
| (Golden)  |      |          |       |          |       |     | 3    | pe: 0.86               | pu: 0. | 01     | wf:            | 0.24      |         |
|           |      |          |       |          |       |     | 7    | pe: 0.95               | pu: 0. | 03     | wf:            | 0.25      |         |
|           |      |          |       |          |       |     | 10   | pe: 1.01               | pu: 0. | 02     | wf:            | 0.30      |         |
|           |      |          |       |          |       |     | 14   | pe: 0.73               | pu: 0. | 02     | wf: 0.2        | 20        |         |
| Brazil,   | 2002 | EC       | 0.062 | 0.0075   | 830   | 4   | 0    | whole fruit            | 0.18   |        |                |           | 02-2078 |
| (Taiwan)  |      |          |       |          |       |     | 3    | pe: 0.34               | pu: <  | 0.01   | wf:            | 0.11      |         |
|           |      |          |       |          |       |     | 7    | pe: 0.19               | pu: <  | 0.01   | wf:            | 0.05      |         |
|           |      |          |       |          |       |     | 10   | pe: 0.16               | pu: <  |        | wf:            | 0.04      |         |
|           |      |          |       |          |       |     | 14   | pe: 0.11               | pu: <  | 0.01   | wf: <u>0.0</u> | <u>)3</u> |         |
| Brazil,   | 2002 | EC       | 0.13  | 0.015    | 840   | 4   | 0    | whole fruit            | 0.34   |        |                |           | 02-2078 |
| (Taiwan)  |      |          |       |          |       |     | 3    | pe: 0.60               | pu: <  |        | wf:            | 0.18      |         |
|           |      |          |       |          |       |     | 7    | pe: 0.48               | pu: 0. |        | wf:            | 0.12      |         |
|           |      |          |       |          |       |     | 10   | pe: 0.27               | pu: <  |        | wf:            | 0.07      |         |
|           |      |          |       |          |       |     | 14   | pe: 0.43               | pu: <  | 0.01   | wf: 0.         | 12        |         |
| Brazil,   | 2002 | EC       | 0.062 | 0.0075   | 830   | 4   | 0    | whole fruit            | 0.16   |        |                |           | 02-2079 |
| (Golden)  |      |          |       |          |       |     | 3    | pe: 0.27               | pu: 0. | 02     | wf:            | 0.09      |         |
|           |      |          |       |          |       |     | 7    | pe: 0.17               | pu: 0. |        | wf:            | 0.06      |         |
|           |      |          |       |          |       |     | 10   | pe: 0.15               | pu: <  |        | wf:            | 0.04      |         |
|           |      |          |       |          |       |     | 14   | pe: 0.07               | pu: <  | 0.01   | wf: <u>0.0</u> | <u>)2</u> |         |
| Brazil,   | 2002 | EC       | 0.13  | 0.015    | 840   | 4   | 0    | whole fruit            | 0.25   |        |                |           | 02-2079 |
| (Golden)  |      |          |       |          |       |     | 3    | pe: 0.77               | pu: 0. |        | wf:            | 0.23      |         |
|           |      |          |       |          |       |     | 7    | pe: 0.33               | pu: <  |        | wf:            | 0.09      |         |
|           |      |          |       |          |       |     | 10   | pe: 0.15               | pu: <  |        | wf:            | 0.05      |         |
|           |      |          |       |          |       |     | 14   | pe: 0.34               | pu: <  | 0.01   | wf: 0.0        | )9        |         |

a - pu: pulp. pe: peel. wf: whole fruit, residue level calculated from residues in peel and pulp and relative weights.

Table 38. Difenoconazole residues in garlic resulting from supervised trials in Brazil

| GARLIC               |           | Applica | tion     |          |                 |     | PHI                | Commodity | Residues, mg/kg                      | Ref      |
|----------------------|-----------|---------|----------|----------|-----------------|-----|--------------------|-----------|--------------------------------------|----------|
| country, year        | (variety) | Form    | kg ai/ha | kg ai/hL | water<br>(L/ha) | no. | days               |           | difenoconazole                       |          |
| Brazil,<br>(Caçador) | 1995      | EC      | 0.19     | 0.038    | 500             | 6   | 0<br>8<br>15<br>21 | bulb      | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | FR001/95 |
| Brazil,<br>(Caçador) | 1995      | EC      | 0.38     | 0.076    | 500             | 6   | 0<br>8<br>15<br>21 | bulb      | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | FR002/95 |
| Brazil,<br>(Chonam)  | 1995      | EC      | 0.19     | 0.038    | 500             | 6   | 0<br>7<br>14<br>22 | bulb      | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | FR003/95 |
| Brazil,<br>(Chonam)  | 1995      | EC      | 0.38     | 0.076    | 500             | 6   | 0<br>7<br>14<br>22 | bulb      | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | FR004/95 |

Table 39. Difenoconazole residues in leeks resulting from supervised trials in France, Germany, Italy and Switzerland

| LEEK      |      | Applicat | ion   |          |        |     | PHI  | Commodity   | Residues, mg/kg | Ref          |
|-----------|------|----------|-------|----------|--------|-----|------|-------------|-----------------|--------------|
| country,  | year | Form     | kg    | kg ai/hL | water  | no. | days |             | difenoconazole  |              |
| (variety) |      |          | ai/ha |          | (L/ha) |     |      |             |                 |              |
| France,   | 2004 | EC       | 0.13  |          | 800    | 3   | 21   | whole plant | 0.03            | 04-0404      |
| (Durina)  |      |          |       |          |        |     |      |             |                 | AF/7894/SY/1 |

| LEEK            |       | Applica | tion  |          |        |     | PHI  | Commodity                | Residues, mg/kg | Ref          |
|-----------------|-------|---------|-------|----------|--------|-----|------|--------------------------|-----------------|--------------|
| country,        | year  | Form    | kg    | kg ai/hL | water  | no. | days |                          | difenoconazole  |              |
| (variety)       |       |         | ai/ha |          | (L/ha) |     |      |                          |                 |              |
| France,         | 2004  | EC      | 0.13  |          | 800    | 2   | 12   | whole plant              | 0.16            | 04-0404      |
| (Nunens)        |       |         |       |          |        | 3   | 0    | •                        | 1.2             | AF/7894/SY/2 |
|                 |       |         |       |          |        |     | 3    |                          | 1.2             |              |
|                 |       |         |       |          |        |     | 7    |                          | 0.33            |              |
|                 |       |         |       |          |        |     | 14   |                          | 0.09            |              |
|                 |       |         |       |          |        |     | 21   |                          | <u>0.05</u>     |              |
| France,         | 2004  | EC      | 0.12  |          | 790    | 2   | 12   | whole plant              | 0.13            | 04-0602      |
| (Porilux)       |       |         |       |          |        | 3   | 0    | _                        | 0.89            | AF/7893/SY1  |
|                 |       |         |       |          |        |     | 3    |                          | 0.53            |              |
|                 |       |         |       |          |        |     | 7    |                          | 0.24            |              |
|                 |       |         |       |          |        |     | 14   |                          | 0.18            |              |
|                 |       |         |       |          |        |     | 21   |                          | 0.13            |              |
| France,         | 2004  | EC      | 0.13  |          | 820    | 2   | 12   | whole plant              | 0.24            | 04-0602      |
| (Porilux)       |       |         |       |          |        | 3   | 0    | •                        | 1.6             | AF/7893/SY2  |
|                 |       |         |       |          |        |     | 3    |                          | 1.1             |              |
|                 |       |         |       |          |        |     | 7    |                          | 0.51            |              |
|                 |       |         |       |          |        |     | 14   |                          | 0.50            |              |
|                 |       |         |       |          |        |     | 21   |                          | 0.21            |              |
| Germany,        | 1998  | EC      | 0.10  |          | 600    | 3   | 0    | whole plant a            | 0.37            | gr 57898     |
| (Amundo)        |       |         |       |          |        |     | 21   | 1                        | 0.02            |              |
| Germany,        | 1998  | EC      | 0.10  |          | 600    | 3   | 0    | whole plant <sup>a</sup> | 1.4             | gr 58898     |
| (Amundo)        |       |         |       |          |        |     | 21   | ······· F-······         | 0.12            |              |
| Germany,        | 1998  | EC      | 0.10  |          | 600    | 3   | 0    | whole plant a            | 0.96            | gr 59998     |
| (Preliner)      |       |         |       |          |        |     | 21   | 1                        | 0.09            |              |
| Germany,        | 1998  | EC      | 0.10  |          | 600    | 3   | 0    | whole plant a            | 1.2             | RU-NO-08 98  |
| (Rami)          |       |         |       |          |        |     | 21   | F                        | 0.07            | MZ           |
| ` ,             |       |         |       |          |        |     |      |                          |                 | 2221/98      |
| Italy, 1990 (Pu | erro) | EC      | 0.13  | 0.021    | 600    | 3   | 0    | whole plant              | 2.1             | 2060/90      |
|                 |       |         |       |          |        |     | 7    | 1                        | 0.67            |              |
|                 |       |         | 1     |          |        |     | 14   |                          | 0.43            |              |
|                 |       |         |       |          |        |     | 21   |                          | 0.17            |              |
|                 |       |         |       |          |        |     | 28   |                          | 0.09            |              |
| Italy, 2004 (Ar | mour) | EC      | 0.13  |          | 810    | 3   | 21   | whole plant              | 0.14            | 04-0404      |
| ``              | ,     |         | 1     |          |        |     |      | _                        |                 | AF/7894/SY/3 |
| Switzerland,    | 1992  | EC      | 0.13  | 0.025    | 500    | 4   | 14   | stems b                  | 0.06            | 2011/92      |
| (Armor)         |       |         |       |          |        |     | 21   |                          | 0.04            |              |
| Switzerland,    | 1992  | EC      | 0.13  | 0.025    | 500    | 4   | 14   | stems b                  | 0.04            | 2010/92      |
| (Dubouchet-Se   |       |         |       |          |        |     | 21   |                          | 0.02            |              |

a - Leek samples for analysis: whole plants with roots removed.

Table 40. Difenoconazole residues in broccoli resulting from supervised trials in France, Netherlands and Spain

| BROCCOLI                    | Applicati | on       |          |                 |     | PHI                          | Commodity                                                                                | Residues, mg/kg             | Ref                     |
|-----------------------------|-----------|----------|----------|-----------------|-----|------------------------------|------------------------------------------------------------------------------------------|-----------------------------|-------------------------|
| country, year (variety)     | Form      | kg ai/ha | kg ai/hL | water<br>(L/ha) | no. | days                         |                                                                                          | difenoconazole              |                         |
| France, 2002<br>(Chevalier) | EC        | 0.13     |          | 400             | 2 3 | 6<br>0<br>15                 | flower heads                                                                             | 0.09<br>0.76<br><u>0.10</u> | 02-2027                 |
| France, 2002<br>(Marathon)  | EC        | 0.13     |          | 520             | 2 3 | 7<br>0<br>13                 | flower heads                                                                             | 0.07<br>1.1<br>0.02         | 02-2026                 |
| France, 2004 (Belstar)      | EC        | 0.13     |          | 410             | 2 3 | 7<br>0<br>3<br>7<br>14<br>21 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>flower heads<br>flower heads | 2.0<br>0.39<br>0.34         | 02-2043<br>AF/7866/SY/1 |

b - Only edible parts.

| BROCCOLI                | Applicati | on       |          |        |     | PHI  | Commodity    | Residues, mg/kg | Ref          |
|-------------------------|-----------|----------|----------|--------|-----|------|--------------|-----------------|--------------|
| country, year (variety) | Form      | kg ai/ha | kg ai/hL | water  | no. | days |              | difenoconazole  |              |
|                         |           |          |          | (L/ha) |     |      |              |                 |              |
| France, 2004            | EC        | 0.13     |          | 410    | 2   | 7    | whole plant  | 0.59            | 02-2043      |
| (Marathon)              |           |          |          |        | 3   | 0    | whole plant  | 2.5             | AF/7866/SY/2 |
|                         |           |          |          |        |     | 3    | whole plant  | 2.0             |              |
|                         |           |          |          |        |     | 7    | whole plant  | 0.94            |              |
|                         |           |          |          |        |     | 14   | flower heads | <u>0.05</u>     |              |
|                         |           |          |          |        |     | 21   | flower heads | 0.01            |              |
| Netherlands, 2002       | EC        | 0.12     |          | 490    | 2   | 7    | flower heads | 0.06            | 02-2042      |
| (Lord)                  |           |          |          |        | 3   | 0    |              | 0.81            |              |
|                         |           |          |          |        |     | 14   |              | <u>0.03</u>     |              |
| Netherlands, 2002       | EC        | 0.13     |          | 530    | 2   | 7    | flower heads | 0.07            | 02-2043      |
| (Lord)                  |           | +0.12    |          | +490   | 3   | 0    |              | 0.47            |              |
|                         |           | +0.15    |          | +600   |     | 14   |              | < 0 <u>.02</u>  |              |
| Spain, 2004             | EC        | 0.13     |          | 400    | 2   | 6    | whole plant  | 3.5             | 04-0426      |
| (Maraton)               |           |          |          |        | 3   | 0    | whole plant  | 4.4             | AF/7867/SY/2 |
|                         |           |          |          |        |     | 3    | whole plant  | 2.1             |              |
|                         |           |          |          |        |     | 7    | whole plant  | 2.2             |              |
|                         |           |          |          |        |     | 14   | flower heads |                 |              |
|                         |           |          |          |        |     | 21   | flower heads | 0.33            |              |
| Spain, 2005 (Monaco)    | EC        | 0.13     |          | 400    | 2   | 7    | whole plant  | 0.65            | 04-0426      |
|                         |           |          |          |        | 3   | 0    | whole plant  | 1.5             | AF/7867/SY/3 |
|                         |           |          |          |        |     | 3    | whole plant  | 0.48            |              |
|                         |           |          |          |        |     | 7    | whole plant  | 0.45            |              |
|                         |           |          |          |        |     | 14   | flower heads | 0.12            |              |
|                         |           |          |          |        |     | 21   | flower heads | <u>0.15</u>     |              |

Table 41. Difenoconazole residues in Brussels sprouts resulting from supervised trials in Belgium and UK

| BRUSSELS<br>SPROUTS                                   | Applica        | tion                 |                         |                   |     | PHI                      | Commodity                     | Residues, mg/kg                             | Ref                  |
|-------------------------------------------------------|----------------|----------------------|-------------------------|-------------------|-----|--------------------------|-------------------------------|---------------------------------------------|----------------------|
| country, year (variety)                               | Form           | kg ai/ha             | kg ai/hL                | water<br>(L/ha)   | no. | days                     |                               | difenoconazole                              |                      |
| Belgium, 1999<br>(Edmund)                             | EC             | 0.13                 | 0.031                   | 420               | 3   | 0<br>7<br>14<br>21<br>28 | buttons                       | 0.06<br>0.07<br>0.05<br><u>0.07</u><br>0.05 | RE<br>12038/1999     |
| Belgium, 1999<br>(Louis)                              | EC             | 0.13                 | 0.031                   | 400               | 3   | 0<br>6<br>13<br>20<br>27 | buttons                       | 0.04<br>0.04<br>0.06<br><u>0.05</u><br>0.04 | RE<br>12038/1999     |
| Belgium, 1999<br>(Maximus)                            | EC             | 0.12                 | 0.031                   | 380               | 3   | 0<br>7<br>14<br>21<br>28 | buttons                       | 0.04<br>0.03<br>0.02<br>< 0.02<br>0.02      | RE<br>12038/1999     |
| Belgium, 1999<br>(Philemon)                           | EC             | 0.13                 | 0.031                   | 410               | 3   | 0<br>7<br>14<br>21<br>28 | buttons                       | 0.03<br>0.03<br>0.04<br>0.07<br>0.09        | RE<br>12038/1999     |
|                                                       | EC             | 0.13                 | 0.031                   | 400               | 3   | 21                       | buttons                       | <u>0.05</u>                                 | CGA 0391             |
| UK, 1990 (Cavalier)                                   | EC             | 0.25                 | 0.062                   | 400               | 3   | 21                       | buttons                       | 0.09                                        | CGA 0391             |
| UK, 1990 (Gavin)                                      | EC             | 0.13                 | 0.031                   | 400               | 3   | 21                       | buttons                       | 0.06                                        | CGA 0391             |
| UK, 1990 (Gavin)                                      | EC             | 0.25                 | 0.062                   | 400               | 3   | 21                       | buttons                       | 0.13                                        | CGA 0391             |
| UK, 1990 (Rodger)                                     | EC             | 0.25                 | 0.062                   | 400               | 3   | 21                       | buttons                       | 0.11                                        | CGA 0391             |
| UK, 1990 (Rodger)                                     | EC             | 0.13                 | 0.031                   | 400               | 3   | 21                       | buttons                       | 0.07                                        | CGA 0391             |
| , , ,                                                 |                | _                    |                         |                   |     |                          |                               |                                             |                      |
| UK, 1990 (Rodger) UK, 1990 (Tardis) UK, 1990 (Tardis) | EC<br>EC<br>EC | 0.13<br>0.25<br>0.13 | 0.031<br>0.062<br>0.031 | 400<br>400<br>400 | 3 3 | 22<br>22                 | buttons<br>buttons<br>buttons | 0.24<br>0.14                                | CGA 0391<br>CGA 0391 |

| BRUSSELS<br>SPROUTS     | Applicati | on       |          |                 |     | PHI  | Commodity | Residues, mg/kg | Ref   |
|-------------------------|-----------|----------|----------|-----------------|-----|------|-----------|-----------------|-------|
| country, year (variety) | Form      | kg ai/ha | kg ai/hL | water<br>(L/ha) | no. | days |           | difenoconazole  |       |
| UK, 1995                | EC        | 0.13     | 0.05     | 250             | 3   | 14   | buttons   | 0.065           | 12845 |
|                         |           |          |          |                 | 4   | 21   |           | 0.05            |       |
| UK, 1995 (Amerose       | EC        | 0.13     | 0.05     | 250             | 3   | 14   | buttons   | 0.03            | 12847 |
| RS)                     |           |          |          |                 | 4   | 21   |           | 0.04            |       |
| UK, 1995 (Corrinth      | EC        | 0.13     | 0.05     | 250             | 3   | 14   | buttons   | 0.045           | 12846 |
| BS)                     |           |          |          |                 | 4   | 21   |           | 0.08            |       |
| UK, 1995 (Stephen)      | EC        | 0.13     | 0.05     | 250             | 3   | 14   | buttons   | 0.15            | 12844 |
|                         |           |          |          |                 | 4   | 21   |           | 0.10            |       |

 $\begin{tabular}{ll} Table 42. Diffeno conazole residues in cabbage resulting from supervised trials in Belgium, France, Germany, Netherlands and UK \\ \end{tabular}$ 

| CABBAGE                                         | Applica |            |          |                 |     | PHI                      | Commodity        | Residues, mg/kg                              | Ref      |
|-------------------------------------------------|---------|------------|----------|-----------------|-----|--------------------------|------------------|----------------------------------------------|----------|
| country, year (variety                          | Form    | kg ai/ha l | kg ai/hL | water<br>(L/ha) | no. | days                     |                  | difenoconazole                               |          |
| Belgium, 199<br>(Castello)<br>White cabbage     | 9 EC    | 0.13       | 0.031    | 400             | 3   | 0<br>7<br>14<br>21<br>28 | head             | 0.04<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | 12039/3  |
| Indurp)<br>Red cabbage                          | 9EC     | 0.13       | 0.031    |                 | 3   | 0<br>7<br>14<br>21<br>28 | head             | 0.04<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | 12039/4  |
| Melissa)<br>Savoy cabbage                       | 9 EC    | 0.13       | 0.031    | 400             | 3   | 20                       | head             | < 0 <u>.02</u>                               | 12039/5  |
| Tasmania)<br>Savoy cabbage                      | 9EC     | 0.13       | 0.031    | 410             | 3   | 0<br>7<br>14<br>21<br>27 | head             | 0.89<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | 12039/1  |
| Tasmania)<br>Savoy cabbage                      | 9 EC    | 0.12       | 0.031    | 390             | 3   | 21                       | head             | < 0 <u>.02</u>                               | 12039/2  |
| France, 2000 (Cho<br>pointu d<br>Chateaurenard) |         | 0.12       |          | 600             | 3   | 21                       | whole<br>product | < 0 <u>.05</u>                               | RLPM0690 |
| France, 200<br>(Wintessa)                       | 0 EC    | 0.12       |          | 460             | 3   | 21                       | whole<br>product | < 0 <u>.05</u>                               | RLPM0690 |
| France, 2002 (Clarisa                           | ) EC    | 0.12       |          | 470             | 2 3 | 7<br>0<br>14<br>21       | head             | 0.03<br>0.27<br>< 0.01<br>< 0 <u>.01</u>     | 02-2046  |
| France, 200<br>(Gloster)                        | 2 EC    | 0.12       |          | 500             | 2 3 | 7<br>0<br>14<br>21       | head             | 0.24<br>1.2<br>0.05<br>< 0 <u>.02</u>        | 02-2095  |
| Castello)                                       | 3 EC    | 0.13       |          | 600             | 3   | 0<br>7<br>14<br>21<br>28 | head             | 0.39<br>0.02<br>0.01<br>< 0.01<br>< 0.01     | 03-0421  |
| France, 200<br>(Rigoleto)                       | 3 EC    | 0.12       |          | 600             | 3   | 0<br>7<br>14<br>21<br>28 | head             | 2.2<br>0.96<br>0.02<br><u>0.01</u><br>0.01   | 03-0422  |

| CABBAGE                                           | Applicat | ion      |          |                 |     | PHI                      | Commodity | Residues, mg/kg                              | Ref                       |
|---------------------------------------------------|----------|----------|----------|-----------------|-----|--------------------------|-----------|----------------------------------------------|---------------------------|
| country, year (variety)                           | Form     | kg ai/ha | kg ai/hL | water<br>(L/ha) | no. | days                     |           | difenoconazole                               |                           |
| Germany, 1998<br>(Julius)                         | EC       | 0.1      |          | 600             | 3   | 0<br>7                   | head      | 0.40<br>0.07                                 | RU-L-19 98<br>MZ. 2222/98 |
| Savoy cabbage                                     |          |          |          |                 |     | 14<br>21<br>28           |           | 0.02<br>< 0 <u>.02</u><br>< 0.02             |                           |
| Germany, 1998<br>(Julius)<br>Savoy cabbage        | EC       | 0.1      |          | 600             | 3   | 0<br>7<br>14<br>21<br>28 | head      | 0.60<br>0.04<br>0.02<br>< 0.02<br>< 0.02     | RU-L-20 98<br>MZ. 2223/98 |
| Germany, 2003<br>(Castello)<br>White head cabbage | EC       | 0.14     |          | 630             | 3   | 0<br>7<br>14<br>21<br>28 | head      | 0.70<br>0.37<br>0.23<br><u>0.19</u><br>0.09  | ghc228103                 |
| Germany, 2003<br>(Castello)<br>White head cabbage | EC       | 0.13     |          | 590             | 3   | 0<br>7<br>14<br>21<br>28 | head      | 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | ghc228203                 |
| Netherlands, 2002<br>(Duchy)                      | EC       | 0.13     |          | 510             | 3   | 0<br>14<br>21            | head      | 0.16<br>< 0.02<br>< 0.02                     | 02-2044                   |
| Netherlands, 2002<br>(Duchy)                      | EC       | 0.13     |          | 530             | 3   | 0<br>14<br>21            | head      | 0.15<br>< 0.02<br>< 0.02                     | 02-2045                   |
| / \ //                                            | EC       | 0.25     | 0.062    | 400             | 3   | 21                       | heart     | 0.22                                         | CGA 0391                  |
|                                                   | EC       | 0.13     | 0.031    | 400             | 3   | 21                       | heart     | <u>0.10</u>                                  | CGA 0391                  |
|                                                   | EC       | 0.13     | 0.031    | 400             | 3   | 21                       | heart     | <u>0.13</u>                                  | CGA 0391                  |
| / \ //                                            | EC       | 0.25     | 0.062    | 400             | 3   | 21                       | heart     | 0.39                                         | CGA 0391                  |
|                                                   | EC       | 0.13     | 0.031    | 400             | 3   | 21                       | heart     | 0.06                                         | CGA 0391                  |
| UK, 1990 (Zorro)                                  | EC       | 0.25     | 0.062    | 400             | 3   | 21                       | heart     | 0.14                                         | CGA 0391                  |

Table 43. Difenoconazole residues in cauliflower resulting from supervised trials in France, Switzerland and UK

| CAULIFLOWER                | Applicat | ion      |          |                 |     | PHI                     | Commodity   | Residues, mg/kg                                | Ref               |
|----------------------------|----------|----------|----------|-----------------|-----|-------------------------|-------------|------------------------------------------------|-------------------|
| country, year (variety)    | Form     | kg ai/ha | kg ai/hL | water<br>(L/ha) | no. | days                    |             | difenoconazole                                 |                   |
| France, 1999 (Aviso)       | EC       | 0.13     | 0.025    | 500             | 3   | 13                      | flower head | 0.03                                           | 2070/99           |
| France, 1999 (Escale)      | EC       | 0.13     | 0.025    | 500             | 2   | 0 3                     | flower head | < 0.02<br>< 0.02                               | 2064/99<br>plot 1 |
|                            |          |          |          |                 |     | 7<br>14<br>21           |             | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02           | piot i            |
| France, 1999 (Escale)      | EC       | 0.13     | 0.025    | 500             | 3   | 0<br>3<br>7<br>14<br>21 | flower head | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | 2064/99<br>plot 2 |
| France, 1999<br>(Fremont)  | EC       | 0.13     | 0.025    | 500             | 3   | 15                      | flower head | < 0 <u>.02</u>                                 | 2069/99           |
| France, 1999<br>(Nautilus) | EC       | 0.13     | 0.025    | 500             | 2   | 14                      | flower head | < 0 <u>.02</u>                                 | 2065/99<br>plot 1 |
| France, 1999<br>(Nautilus) | EC       | 0.13     | 0.025    | 500             | 3   | 14                      | flower head | < 0 <u>.02</u>                                 | 2065/99<br>plot 2 |
| France, 1999<br>(Notilus)  | EC       | 0.13     | 0.025    | 500             | 3   | 0<br>3<br>7<br>14       | flower head | 0.08<br>0.14<br>0.06<br>0.10                   | 2068/99           |

| CAULIFLOWER                       | Applica | tion     |          |                 |     | PHI                           | Commodity                                                                              | Residues, mg/kg                                | Ref                     |
|-----------------------------------|---------|----------|----------|-----------------|-----|-------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------|-------------------------|
| country, year (variety            | ) Form  | kg ai/ha | kg ai/hL | water<br>(L/ha) | no. | days                          |                                                                                        | difenoconazole                                 |                         |
| France, 1999<br>(Sergent)         | 9 EC    | 0.13     | 0.025    | 500             | 2   | 14                            | flower head                                                                            | < 0 <u>.02</u>                                 | 2066/99<br>plot 1       |
| France, 1999<br>(Sergent)         | 9 EC    | 0.13     | 0.025    | 500             | 3   | 14                            | flower head                                                                            | < 0 <u>.02</u>                                 | 2066/99<br>plot 2       |
| France, 1999 (Sirente             | )EC     | 0.13     | 0.025    | 500             | 4   | 0<br>3<br>7<br>14<br>21       | flower head                                                                            | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02 | 2067/99                 |
| France, 2000<br>(Vinson)          | EC      | 0.12     | 0.031    | 390             | 3   | 0<br>7<br>14<br>21            | flower head                                                                            | 0.20<br>< 0.02<br>< 0 <u>.02</u><br>< 0.02     | 2113/00                 |
| France, 200.<br>(Amsterdam)       | 5 EC    | 0.13     |          | 400             | 2 3 | 14<br>0<br>3<br>7<br>10<br>14 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>whole plant<br>flower head | 0.44<br>2.4<br>0.75<br>0.49                    | 05-0514<br>AF/8564/SY/2 |
| Switzerland, 200:<br>(Fremont F1) | 5 EC    | 0.14     |          | 650             | 3   | 14                            | flower head                                                                            | < 0 <u>.01</u>                                 | 05-0530                 |
| UK, 1999 (Plana)                  | EC      | 0.13     | 0.032    | 400             | 3   | 14                            | flower head                                                                            | < 0 <u>.02</u>                                 | 2006/99                 |
| UK, 2005 (Avalon)                 | EC      | 0.13     |          | 500             | 2 3 | 14<br>0<br>3<br>7<br>10<br>14 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>whole plant<br>flower head | 1.4<br>0.22<br>0.24                            | 05-0514<br>AF/8564/SY/1 |

Table 44. Difenoconazole residues in watermelons resulting from supervised trials in Brazil.

| WATER    | RMELONS      | 3    | Applica | tion     |          |        |     | PHI  | Commodity      | Residues, mg/kg | Ref         |
|----------|--------------|------|---------|----------|----------|--------|-----|------|----------------|-----------------|-------------|
| country, | , year (vari | ety) | Form    | kg ai/ha | kg ai/hL | water  | no. | days |                | difenoconazole  |             |
|          |              |      |         |          |          | (L/ha) |     |      |                |                 |             |
| Brazil   | (SP), 1      | 995  | EC      | 0.040    | 0.010    | 400    | 4   | 0    | fruits, edible | < 0.05          | Fr 037/95   |
| (Hibrido | Imperor)     |      |         |          |          |        |     | 3    | portions       | < 0.05          |             |
|          |              |      |         |          |          |        |     | 7    |                | < 0.05          |             |
|          |              |      |         |          |          |        |     | 14   |                | < 0.05          |             |
|          |              |      |         |          |          |        |     | 29   |                | < 0.05          |             |
| Brazil   | (SP), 1      | 995  | EC      | 0.080    | 0.020    | 400    | 4   | 0    | fruits, edible | < 0.05          | Fr 038/95   |
| (Hibrido | Imperor)     |      |         |          |          |        |     | 3    | portions       | < 0.05          |             |
|          |              |      |         |          |          |        |     | 7    |                | < 0.05          |             |
|          |              |      |         |          |          |        |     | 14   |                | < 0.05          |             |
|          |              |      |         |          |          |        |     | 29   |                | < 0.05          |             |
| Brazil   | (SP), 1      | 995  | EC      | 0.060    | 0.010    | 600    | 4   | 0    | fruits, edible | < 0.05          | Fr 039/95 a |
| (Taiti)  |              |      |         |          |          |        |     | 3    | portions       | < 0.05          |             |
|          |              |      |         |          |          |        |     | 7    |                | < 0.05          |             |
|          |              |      |         |          |          |        |     | 14   |                | < 0.05          |             |
|          |              |      |         |          |          |        |     | 21   |                | < 0.05          |             |
| Brazil   | (SP), 1      | 995  | EC      | 0.12     | 0.020    | 600    | 4   | 0    | fruits, edible | < 0.05          | Fr 040/95 a |
| (Taiti)  |              |      |         |          |          |        |     | 3    | portions       | < 0.05          |             |
|          |              |      |         |          |          |        |     | 7    |                | < 0.05          |             |
|          |              |      |         |          |          |        |     | 14   |                | < 0.05          |             |
|          |              |      |         |          |          |        |     | 21   |                | < 0.05          |             |

a - Trials Fr 039/95 and Fr 040/95: analytical recoveries quite variable at 28-194%.

Table 45. Difenoconazole residues in chilli peppers resulting from supervised trials in Indonesia and Malaysia

| CHILLI PEPPE   | RS   | Applica | ation    |          |        |     | PHI  | Commodity | Residues, mg/kg    | Ref     |
|----------------|------|---------|----------|----------|--------|-----|------|-----------|--------------------|---------|
| country,       | year | Form    | kg ai/ha | kg ai/hL | water  | no. | days |           | difenoconazole     |         |
| (variety)      |      |         |          |          | (L/ha) |     |      |           | a                  |         |
| Indonesia,     | 1990 | EC      | 3×0.038  | 3×0.013  | 3×300  | 7   | 6    | fruits    | <u>1.2</u> u: 0.03 | 2005/89 |
| (Cipanas)      |      |         | +2×0.050 | +2×0.013 | +2×400 |     |      |           |                    |         |
|                |      |         | +2×0.075 | +2×0.013 | +2×600 |     |      |           |                    |         |
| Indonesia,     | 1990 | EC      | 3×0.075  | 3×0.025  | 3×300  | 7   | 6    | fruits    | 1.8 u: 0.03        | 2006/89 |
| (Cipanas)      |      |         | +2×0.10  | +2×0.025 | +2×400 |     |      |           |                    |         |
|                |      |         | +2×0.15  | +2×0.025 | +2×600 |     |      |           |                    |         |
| Malaysia, 1991 | (MC  | EC      | 0.11     | 0.013    | 850    | 5   | 0    | fruits    | <u>0.85</u>        | 2164/91 |
| 4)             |      |         |          |          |        |     | 3    |           | 0.77               |         |
|                |      |         |          |          |        |     | 7    |           | 0.67               |         |
|                |      |         |          |          |        |     | 14   |           | 0.66               |         |
| Malaysia, 1991 | (MC  | EC      | 0.23     | 0.025    | 900    | 5   | 0    | fruits    | 1.8                | 2165/91 |
| 4)             |      |         |          |          |        |     | 3    |           | 1.7                |         |
|                |      |         |          |          |        |     | 7    |           | 1.9                |         |
|                |      |         |          |          |        |     | 14   |           | 1.2                |         |

a - u: sample from control (untreated) plot.

Table 46. Difenoconazole residues in tomatoes resulting from supervised trials in France, Greece, Spain and UK

| TOMATOES                               | Applica |          |          |                 |     | PHI                    | Commodity | Residues, mg/kg                                          | Ref                     |
|----------------------------------------|---------|----------|----------|-----------------|-----|------------------------|-----------|----------------------------------------------------------|-------------------------|
| (variety)                              | Form    | kg ai/ha | kg ai/hL | water<br>(L/ha) | no. | days                   |           | Difenoconazole <sup>a</sup>                              |                         |
| France, 2005 (Belle)<br>glasshouse     | EC      | 0.13     |          | 1010            | 2 3 | 8<br>0<br>1<br>3<br>7  | fruits    | 0.03<br>0.04<br>0.08<br>0.03<br>0.04                     | 05-0414<br>AF/8577/SY/2 |
| France, 2005<br>(Brenda)<br>polytunnel | EC      | 0.12     |          | 980             | 2 3 | 10<br>0<br>1<br>3<br>7 | fruits    |                                                          | 05-0413<br>AF/8577/SY/1 |
| Greece, 2001 (Noa)                     | EC      | 0.12     | 0.010    | 1240            | 3 4 | 7<br>0<br>1<br>3<br>7  | fruits    | 0.20<br>0.51<br>0.24<br>0.16<br><u>0.36</u><br>0.23      | 2021/01                 |
| Greece, 2002 (Boss,<br>hybrid)         | EC      | 0.12     | 0.025    | 490             | 4   | 0<br>3<br>7<br>14      | fruits    | 0.51<br>0.17<br><u>0.18</u><br>0.16                      | 02-2087                 |
| Greece, 2002 (Senna,<br>hybrid)        | EC      | 0.12     | 0.025    | 490             | 4   | 0<br>3<br>7<br>14      | fruits    | 0.73 u: < 0.01<br>0.36<br>0.28 u: 0.01<br>0.16 u: < 0.01 |                         |
| Greece, 2003 (CV<br>Indo)              |         | 0.12     |          | 690             | 3   | 7                      | fruits    |                                                          | 03-0613                 |
| Greece, 2003 (CV<br>Rio Grande)        | EC      | 0.12     |          | 780             | 3   | 0<br>1<br>3<br>7<br>10 | fruits    | 0.22<br>0.15<br>0.15<br>0.11<br>0.13                     | 03-0614                 |

| TOMATOES             | Applica | tion     |          |        |     | PHI  | Commodity | Residues, mg/kg  | Ref          |
|----------------------|---------|----------|----------|--------|-----|------|-----------|------------------|--------------|
| country, year        | Form    | kg ai/ha | kg ai/hL | water  | no. | days |           | Difenoconazole a |              |
| (variety)            |         |          |          | (L/ha) |     |      |           |                  |              |
| Spain, 2003 (Jaguar) | EC      | 0.13     |          | 1240   | 3   | 0    | fruits    | 0.19             | 03-0520      |
|                      |         |          |          |        |     | 1    |           | 0.12             |              |
|                      |         |          |          |        |     | 3    |           | 0.13             |              |
|                      |         |          |          |        |     | 7    |           | 0.09             |              |
|                      |         |          |          |        |     | 10   |           | 0.07             |              |
| Spain, 2003 (Jaguar) | EC      | 0.13     |          | 1210   | 3   | 7    | fruits    | 0.03             | 03-0521      |
| Spain, 2005 (Dici)   | EC      | 0.12     |          | 970    | 2   | 10   | fruits    | 0.07             | 05-0413      |
| polytunnel           |         |          |          |        | 3   | 0    |           | 0.16             | AF/8577/SY/2 |
|                      |         |          |          |        |     | 1    |           | 0.16             |              |
|                      |         |          |          |        |     | 3    |           | 0.12             |              |
|                      |         |          |          |        |     | 7    |           | <u>0.12</u>      |              |
| UK, 2005 (Espiro)    | EC      | 0.13     |          | 1040   | 2   | 9    | fruits    | 0.11             | 05-0414      |
| glasshouse           |         |          |          |        | 3   | 0    |           | 0.11             | AF/8577/SY/1 |
|                      |         |          |          |        |     | 1    |           | 0.13             |              |
|                      |         |          |          |        |     | 3    |           | 0.09             |              |
|                      |         |          |          |        |     | 7    |           | <u>0.10</u>      |              |

a - u: sample from control (untreated) plot.

Table 47. Difenoconazole residues in lettuce resulting from supervised trials in Spain

|                                   | Applica |          |          |         |     | PHI      | Commodity | Residues, mg/kg     | Ref     |
|-----------------------------------|---------|----------|----------|---------|-----|----------|-----------|---------------------|---------|
| country, year (variety)           | Form    | kg ai/ha | kg ai/hL |         | no. | days     |           | difenoconazole      |         |
|                                   |         |          |          | (L/ha)  |     |          |           | а                   |         |
| Spain, 1991                       | EC      | 0.18     | 0.035    | 500     | 3   | 0        | lettuce   | 8.6                 | 2021/91 |
| (Francesa)                        |         |          |          |         |     | 7        |           | 1.6                 |         |
|                                   |         |          |          |         |     | 14       |           | <u>0.56</u>         |         |
|                                   |         | 0.10     | 0.007    | 700     |     | 21       | -         | 0.18                |         |
| Spain, 1991                       | EC      | 0.18     | 0.035    | 500     | 3   | 0        | lettuce   | 5.5                 | 2022/91 |
| (Francesa)                        |         |          |          |         |     | 7        |           | 1.5                 |         |
|                                   |         |          |          |         |     | 14<br>21 |           | 1.0<br>0.04         |         |
| Spain, 1991                       | EC      | 0.18     | 0.035    | 500     | 3   | 0        | lettuce   | 7.0                 | 2023/91 |
| (Francesa)                        | LC      | 0.16     | 0.033    | 300     | 3   | 7        | lettuce   | 1.2                 | 2023/91 |
| (1 rancesa)                       |         |          |          |         |     | 14       |           | 0.65                |         |
|                                   |         |          |          |         |     | 21       |           | $\frac{0.03}{0.41}$ |         |
| Spain, 1991 (Inverna)             | EC      | 0.18     | 0.022    | 800     | 3   | 0        | lettuce   | 2.5                 | 2024/91 |
| - F, - , , , . ( +)               |         |          | ****     |         |     | 7        |           | 1.0                 |         |
|                                   |         |          |          |         |     | 13       |           |                     |         |
|                                   |         |          |          |         |     | 20       |           | 0.31<br>0.11 b      |         |
| Spain, 1991 (Inverna)             | EC      | 0.18     | 0.022    | 800     | 3   | 0        | lettuce   | 2.0 u: 0.02         | 2027/91 |
|                                   |         |          |          |         |     | 7        |           | 0.74                |         |
|                                   |         |          |          |         |     | 13       |           | <u>0.51</u>         |         |
|                                   |         |          |          |         |     | 20       |           | 0.44                |         |
| Spain, 2003 (Little               | EC      | 0.17     |          | 700     | 3   | 0        | lettuce   | 2.7                 | 03-0423 |
| Gem)                              |         |          |          |         |     | 3        |           | 0.41                |         |
| cos lettuce                       |         |          |          |         |     | 7<br>14  |           | 0.55                |         |
| C: 2002 (J                        | EC      | 0.17     |          | 580-800 | 2   | 0        | 1-44      | <u>0.07</u>         | 03-0424 |
| Spain, 2003 (Inverna) cos lettuce | EC      | 0.17     |          | 380-800 | 3   | 3        | lettuce   | 3.9<br>2.0          | 03-0424 |
| cos iettuce                       |         |          |          |         |     | 7        |           | 1.1                 |         |
|                                   |         |          |          |         |     | 14       |           | 0.29                |         |
|                                   |         |          |          |         |     | 21       |           | $\frac{0.22}{0.13}$ |         |
| Spain, 2003 (Baby)                | EC      | 0.18     |          | 610-860 | 3   | 0        | lettuce   | 1.9                 | 03-0425 |
| cos lettuce                       | -       |          |          |         |     | 3        |           | 1.1                 |         |
|                                   |         |          |          |         |     | 7        |           | 0.50                |         |
|                                   |         |          |          |         |     | 14       |           | <u>0.08</u>         |         |
|                                   |         | 1        |          |         |     | 21       |           | 0.04                | 1       |

a - u: sample from control (untreated) plot.

b - The analytical results (< 0.02 and 0.10 mg/kg for the replicate samples) and 0.11 mg/kg for the sample from the untreated plot, suggested an interchange of samples.

Table 48. Difenoconazole residues in soya beans resulting from supervised trials in Brazil

| SOYA BEAN                   |      | Application                 |          |       |        |     | PHI                        | Commodity | Residues, mg/kg                                    | Ref                |
|-----------------------------|------|-----------------------------|----------|-------|--------|-----|----------------------------|-----------|----------------------------------------------------|--------------------|
| country,                    | year | Form                        | kg ai/ha | kg    |        | no. | days                       |           | difenoconazole                                     |                    |
| (variety)                   |      |                             |          | ai/hL | (L/ha) |     |                            |           |                                                    |                    |
| Brazil (SP),<br>(Foscarim)  | 2003 | SC includes<br>azoxystrobin | 0.075    |       | 200    | 2   | 30                         | dry bean  | < 0 <u>.01</u>                                     | MO2065             |
| Brazil (MG),<br>(Esplendor) |      | SC includes azoxystrobin    | 0.075    |       | 200    | 2   | 30                         | dry bean  | < 0 <u>.01</u>                                     | MO2065             |
| Brazil (GO),<br>(Monarca)   |      | SC includes azoxystrobin    | 0.075    |       | 200    | 2   | 30                         | dry bean  | < 0 <u>.01</u>                                     | MO2065             |
| Brazil,<br>(Monsoy)         | 2000 | EC                          | 0.075    |       | 300    | 2   | 10<br>14<br>20<br>25<br>30 | dry bean  | 0.20<br>0.04<br>< 0.02<br>< 0.02<br>< 0.02         | FR018/2000-<br>RK  |
| Brazil, 2000<br>10)         | (RS- | EC                          | 0.075    |       | 300    | 2   | 11<br>15<br>20<br>25<br>31 | dry bean  | 0.07<br>0.04<br>< 0.02<br>< 0.02<br>< 0.02         | FR018/2000-<br>MF  |
| Brazil, 2000 (1<br>22)      | AC   | EC                          | 0.075    |       | 300    | 2   | 10<br>15<br>20<br>25<br>30 | dry bean  | 0.42<br>0.29<br>< 0.02<br>< 0.02<br>< 0 <u>.02</u> | FR018/2000-<br>LZF |

Table 49. Difenoconazole residues in carrots resulting from supervised trials in France and Switzerland

| CARROT                                  | Applicati | on       |          |                 |     | PHI                      | Commodity | Residues, mg/kg                             | Ref     |
|-----------------------------------------|-----------|----------|----------|-----------------|-----|--------------------------|-----------|---------------------------------------------|---------|
| country, year (variety)                 | Form      | kg ai/ha | kg ai/hL | water<br>(L/ha) | no. | days                     |           | Difenoconazole <sup>a</sup>                 |         |
| France, 1991 (Anglia)                   | EC        | 0.13     |          | 400             | 3   | 13                       | root      | <u>0.05</u>                                 | OF91059 |
| France, 1991 (Luxor)                    | EC        | 0.13     |          | 400             | 3   | 13                       | root      | <u>0.03</u>                                 | OF91089 |
| France, 1992<br>(Nandrin)               | EC        | 0.13     |          | 1000            | 3   | 14<br>28                 | root      | <u>0.07</u><br>0.02                         | OF92025 |
| France, 1992<br>(Nantaise)              | EC        | 0.13     |          | 1000            | 3   | 14<br>28                 | root      | <u>0.02</u><br>0.02                         | OF92025 |
| France, 1993<br>(Nantaise)              | EC        | 0.13     |          | 1000            | 3   | 14<br>33                 | root      | 0.02 u: 0.03<br>0.02                        | OF93153 |
| France, 1993 (Valor)                    | EC        | 0.13     |          | 1000            | 3   | 14<br>29                 | root      | 0.11 u 0.04<br>0.04 u 0.06                  | OF93153 |
| France, 1996<br>(Tourino)               |           | 0.13     | 0.031    | 400             | 3   | 14                       | root      | < 0.02 b                                    | OF96134 |
| France, 2000<br>(Carotan)               | EC        | 0.12     |          | 390             | 3   | 0<br>3<br>7<br>10<br>14  | root      | 0.02<br>0.03<br>0.01<br>0.03<br><u>0.04</u> | 0012001 |
| France, 2000 (Colmar<br>Coeur Rouge)    | EC        | 0.13     | 0.031    | 400             | 3   | 14                       | root      | <u>0.13</u>                                 | 0011902 |
| France, 2000 (Nanda)                    | EC        | 0.13     |          | 410             | 3   | 14                       | root      | <u>0.11</u>                                 | 0011901 |
| France, 2000 (Presto)                   | EC        | 0.12     | 0.031    | 400             | 3   | 14                       | root      | <u>0.03</u>                                 | 0011903 |
| France, 2000 (Presto)                   | EC        | 0.13     | 0.031    | 400             | 3   | 0<br>3<br>7<br>10<br>15  | root      | 0.01<br>0.01<br>0.03<br>0.02<br>0.02        | 0012002 |
| Switzerland, 1987<br>(Nantaise Express) | EC        | 0.13     |          | 600             | 3 4 | 13<br>0<br>7<br>14<br>21 | root      | 0.06<br>0.07<br>0.13<br><u>0.07</u><br>0.07 | 2005/87 |

| CARROT              |      | Applicati | on       |          |        |     | PHI  | Commodity | Residues, mg/kg  | Ref     |
|---------------------|------|-----------|----------|----------|--------|-----|------|-----------|------------------|---------|
| country, year (vari | ety) | Form      | kg ai/ha | kg ai/hL | water  | no. | days |           | Difenoconazole a |         |
|                     |      |           |          |          | (L/ha) |     |      |           |                  |         |
| Switzerland, 1      | 987  | EC        | 0.13     |          | 600    | 3   | 14   | root      | 0.14             | 2006/87 |
| (Tip-Top)           |      |           |          |          |        | 4   | 0    |           | < 0.02 ° u: 0.19 |         |
|                     |      |           |          |          |        |     | 7    |           | 0.07             |         |
|                     |      |           |          |          |        |     | 14   |           | <u>0.12</u>      |         |
|                     |      |           |          |          |        |     | 21   |           | 0.07             |         |

- a u: sample from control (untreated) plot.
- b Sample stored for 34 months before analysis.
- c Noted in the study as an anomalous result, perhaps test and control samples switched.

Table 50. Difenoconazole residues in potatoes resulting from supervised trials in Italy and Spain

| POTATO                    | Applicat | ion           |          |                 |     | PHI                            | Commodity | Residues, mg/kg                                                    | Ref                      |
|---------------------------|----------|---------------|----------|-----------------|-----|--------------------------------|-----------|--------------------------------------------------------------------|--------------------------|
| country, year (variety)   | Form     | kg ai/ha      | kg ai/hL | water<br>(L/ha) | no. | days                           |           | Difenoconazole                                                     |                          |
| Italy, 2005 (Elvira)      | EC       | 0.13<br>+0.20 |          | 1020<br>+1020   | 2   | 29                             | tuber     | < 0 <u>.01</u>                                                     | 05-0505                  |
| Spain, 2003 (Carlita)     | EC       | 0.22          |          | 660             | 2   | 28                             | tuber     | < 0 <u>.01</u>                                                     | 03-0431                  |
| Spain, 2003 (Espunta)     | EC       | 0.21          |          | 410             | 2   | 0<br>8<br>14<br>21<br>30       | tuber     | < 0.01 0.01 a < 0.01 < 0.01 < 0.01 0.01 a                          | 03-0430                  |
|                           |          |               |          |                 |     | 35                             |           | < 0.01                                                             |                          |
| Spain, 2003 (Fabula)      | EC       | 0.21          |          | 630             | 2   | 0<br>7<br>13<br>19<br>27<br>34 | tuber     | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 03-0429                  |
| Spain, 2003<br>(Kennebec) | EC       | 0.22          |          | 500             | 2   | 30                             | tuber     | < 0 <u>.01</u>                                                     | 03-0432                  |
| Spain, 2005 (Agata)       | EC       | 0.20          |          | 410             | 2   | 0<br>7<br>14<br>22<br>31       | tuber     | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                     | 05-0419<br>ES-FR-05-0413 |
| Spain, 2005 (Hermes)      | EC       | 0.21          |          | 410             | 2   | 29                             | tuber     | < 0 <u>.01</u>                                                     | 05-0419<br>ES-FR-05-0414 |
| Spain, 2005<br>(Kennebec) | EC       | 0.19          |          | 390             | 2   | 0<br>6<br>14<br>21<br>30       | tuber     | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                     | 05-0419<br>ES-FR-05-0412 |

a - Confirmed by triplicate analysis (0.01, 0.01, 0.01 mg/kg).

Table 51. Difenoconazole residues in sugar beet resulting from supervised trials in Denmark, France, Germany and UK

| SUGAR BEET      | 1     | Appli  | cation   |          |       |        |     | PHI  | Commodity | Residues, mg/kg  | Ref                  |
|-----------------|-------|--------|----------|----------|-------|--------|-----|------|-----------|------------------|----------------------|
| country,        | year  | Form   |          | kg ai/ha | kg    | water  | no. | days |           | Difenoconazole   |                      |
| (variety)       |       |        |          |          | ai/hL | (L/ha) |     |      |           |                  |                      |
| Denmark,        | 1989  | EC     |          | 0.13     |       | 400    | 2   | 24   | root      | 0.08             | 2059/89              |
| (Maribo Armad   | la)   |        |          |          |       |        |     | 37   | root      | <u>0.08</u>      |                      |
|                 |       |        |          |          |       |        |     | 59   | root      | 0.06             |                      |
| France, 1985 (A | Alto) | EC     |          | 0.13     |       | 500    | 2   | 24   | root      | <u>&lt; 0.02</u> | 48/87                |
| France,         | 1991  | EC     | includes | 0.1      |       | 500    | 2   | 33   | tuber     | < 0.02           | 0210F91 <sup>a</sup> |
| (Allyx)         |       | propio | conazole |          |       |        |     |      |           |                  |                      |

| SUGAR BEET            | ı     | Application   |          |       |        |          | PHI      | Commodity | Residues, mg/kg  | Ref                  |
|-----------------------|-------|---------------|----------|-------|--------|----------|----------|-----------|------------------|----------------------|
| country,              |       |               | kg ai/ha | kg    | water  | no.      | days     |           | Difenoconazole   |                      |
| (variety)             | _     |               |          | ai/hL | (L/ha) |          |          |           |                  |                      |
| France,               | 1991  |               | 0.1      |       | 500    | 2        | 29       | tuber     | < 0.02           | 0200F91 <sup>a</sup> |
| (Monos)               | 1007  | propiconazole | 0.1      |       | 100    | 1        | 20       |           | 0.02             | 2150/97              |
| Germany,<br>(Britta)  | 1987  | EC            | 0.1      |       | 400    | 2 3      | 30<br>0  | root      | 0.02<br>0.03     | 2150/87              |
| (Billia)              |       |               |          |       |        | 3        | 14       |           | 0.03             |                      |
|                       |       |               |          |       |        |          | 28       |           | 0.08             |                      |
|                       |       |               |          |       |        |          | 36       |           | < 0.02           |                      |
|                       |       |               |          |       |        |          | 43       |           | 0.03             |                      |
| Germany,              | 1987  | FC            | 0.1      |       | 400    | 2        | 30       | root      | < 0.02           | 2149/87              |
| (Diadem)              | 1707  | LC            | 0.1      |       | 100    | 3        | 0        | 1001      | < 0.02           | 2149/07              |
| (=)                   |       |               |          |       |        |          | 14       |           | 0.04             |                      |
|                       |       |               |          |       |        |          | 28       |           | 0.02             |                      |
|                       |       |               |          |       |        |          | 36       |           | < 0.02           |                      |
|                       |       |               |          |       |        |          | 43       |           | 0.02             |                      |
| Germany,              | 1987  | EC            | 0.1      |       | 400    | 2        | 20       | root      | 0.05             | 2148/87              |
| (Eva)                 |       |               |          |       |        | 3        | 0        |           | 0.22             |                      |
|                       |       |               |          |       |        |          | 14       |           | 0.07             |                      |
|                       |       |               |          |       |        |          | 28       |           | 0.04             |                      |
|                       |       |               |          |       |        |          | 35       |           | <u>0.08</u>      |                      |
|                       |       |               |          |       |        |          | 42       |           | 0.06             |                      |
|                       |       |               |          |       |        |          | 50       |           | 0.06             |                      |
| Germany,              | 1988  | EC            | 0.1      |       | 400    | 1        | 32       | root      | < 0.02           | 2053/88              |
| (Hilma)               |       |               |          |       |        | 2        | 0        |           | < 0.02           |                      |
|                       |       |               |          |       |        |          | 7        |           | < 0.02           |                      |
|                       |       |               |          |       |        |          | 14       |           | 0.02             |                      |
|                       |       |               |          |       |        |          | 22<br>28 |           | < 0.02<br>< 0.02 |                      |
|                       |       |               |          |       |        |          | 36       |           | < 0.02           |                      |
|                       |       |               |          |       |        |          | 42       |           | 0.02             |                      |
| Germany,              | 1988  | FC            | 0.1      |       | 400    | 1        | 32       | root      | < 0.02           | 2052/88              |
| (Kaweduca)            | 1900  | EC            | 0.1      |       | 400    | 2        | 0        | 1001      | < 0.02           | 2032/88              |
| (Nawcduca)            |       |               |          |       |        |          | 7        |           | < 0.02           |                      |
|                       |       |               |          |       |        |          | 14       |           | < 0.02           |                      |
|                       |       |               |          |       |        |          | 22       |           | < 0.02           |                      |
|                       |       |               |          |       |        |          | 28       |           | < 0.02           |                      |
|                       |       |               |          |       |        |          | 36       |           | < 0.02           |                      |
|                       |       |               |          |       |        |          | 42       |           | < 0.02           |                      |
| Germany,              | 1988  | EC            | 0.1      |       | 400    | 1        | 20       | root      | 0.03             | 2050/88              |
| (Primahill)           |       |               |          |       |        | 2        | 0        |           | 0.04             |                      |
|                       |       |               |          |       |        |          | 7        |           | 0.03             |                      |
|                       |       |               |          |       |        |          | 14       |           | 0.04             |                      |
|                       |       |               |          |       |        |          | 21       |           | 0.03             |                      |
|                       |       |               |          |       |        |          | 28       |           | 0.08             |                      |
|                       |       |               |          |       |        |          | 35       |           | 0.02             |                      |
| C                     | 1007  | EC 100 #      | 0.1      |       | 400    | <u> </u> | 42       | 41-       | 0.02             | 4005                 |
| Germany,<br>(Ribella) | 1995  | EC, 100 g/L   | 0.1      |       | 400    | 2        | 30       | tuber     | <u>0.02</u>      | gr 4995<br>gr 41595  |
| Germany,              | 1005  | EC, 250 g/L   | 0.1      |       | 400    | 2        | 30       | tuber     | 0.06             |                      |
| (Ribella)             | 1 ブブン | EC, 230 g/L   | 0.1      |       | 400    | _        | 30       | lubei     | <u>0.00</u>      | gr 4995<br>gr 41595  |
| Germany,              | 1005  | EC, 100 g/L   | 0.1      |       | 400    | 2        | 28       | tuber     | 0.10             | gr 4995              |
| (Sonja)               | 1773  | LC, 100 g/L   | 0.1      |       | 700    | -        | 20       | tubei     | <u>0.10</u>      | gr 31595             |
| Germany,              | 1995  | EC, 250 g/L   | 0.1      |       | 400    | 2        | 28       | tuber     | < 0.02           | gr 4995              |
| (Sonja)               | 1773  |               | 0.1      |       | 100    | 1 ~      |          | 14301     | 30.02            | gr 31595             |
| Germany,              | 1996  | EC includes   | 0.098    |       | 300    | 2        | 23       | root      | < 0.02           | 96 10 61 009         |
| (Reka)                | 1//0  | fenpropidin   | 0.070    |       | 500    | _        | 27       | root      | < 0.02           | 70 10 01 009         |
| -10114)               |       | - Supropromi  |          |       |        |          | 39       | root      | < 0.02           |                      |
| Germany,              | 1996  | EC includes   | 0.1      |       | 400    | 2        | 21       | root      | 0.06             | gr 49496             |
| (Ribella)             | 1770  | fenpropidin   | 0.1      |       | 100    | 1 ~      | 28       | root      | < 0.02           | 51 17170             |
| II                    |       |               |          | l     |        | 1        | 35       | root      | 0.02             |                      |
|                       |       |               |          |       |        |          |          | ποσι      | 0.0∠             |                      |
| Germany,              | 1996  | EC includes   | 0.10     |       | 400    | 2        | 21       | roots     | 0.054            | gr 50596             |

| SUGAR BEET |      | Applic | cation   |          |       |        |     | PHI  | Commodity | Residues, mg/kg | Ref          |
|------------|------|--------|----------|----------|-------|--------|-----|------|-----------|-----------------|--------------|
| country,   | year | Form   |          | kg ai/ha | kg    | water  | no. | days |           | Difenoconazole  |              |
| (variety)  |      |        |          |          | ai/hL | (L/ha) |     |      |           |                 |              |
| Germany,   | 1996 | EC     | includes | 0.098    |       | 300    | 2   | 25   | root      | 0.03            | 96 10 62 010 |
| (Hilma)    |      | fenpro | pidin    |          |       |        |     | 28   | root      | < 0.02          |              |
|            |      |        |          |          |       |        |     | 35   | root      | < 0.02          |              |
| UK,        | 2004 | EC     | includes | 0.1      |       | 300    | 2   | 27   | root      | <u>0.01</u>     | 04-6047      |
| (Veronica) |      | fenpro | pidin    |          |       |        |     |      |           |                 |              |

a - Inadequate supporting field data and analytical method

Table 52. Difenoconazole residues in asparagus resulting from supervised trials in France, Italy and Switzerland

| ASPARAGUS               | Applicati | on       |          |        |     | PHI  | Commodity | Residues, mg/kg | Ref      |
|-------------------------|-----------|----------|----------|--------|-----|------|-----------|-----------------|----------|
| country, year (variety) | Form      | kg ai/ha | kg ai/hL | water  | no. | days |           | Difenoconazole  |          |
|                         |           |          |          | (L/ha) |     |      |           |                 |          |
| France, 1989 (Aneto)    | EC        | 0.13     | 0.025    | 500    | 8   | 222  | shoots    | 0.02            | 78/90    |
| France, 1989 (Aneto)    | EC        | 0.13     | 0.025    | 500    | 8   | 234  | shoots    | < 0 <u>.02</u>  | 77/90    |
| France, 1990 (Desto)    | EC        | 0.13     |          | 300    | 7   | 203  | shoots    | < 0 <u>.02</u>  | 0090F/91 |
| France, 1990 (Larac)    | EC        | 0.13     | 0.025    | 500    | 9   | 179  | shoots    | < 0 <u>.02</u>  | 0070F/91 |
| Italy, 1990 (Larac)     | EC        | 0.13     | 0.013    | 1000   | 6   | 256  | shoots    | < 0 <u>.02</u>  | 2056/90  |
| Italy, 1991 (Larac)     | EC        | 0.13     | 0.013    | 1000   | 6   | 239  | shoots    | < 0 <u>.02</u>  | 2088/91  |
| Switzerland, 1988       | EC        | 0.13     | 0.021    | 600    | 4   | 248  | shoots    | < 0 <u>.02</u>  | 2114/88  |
|                         |           |          |          |        |     | 260  |           | < 0.02          |          |
| Switzerland, 1988       | EC        | 0.13     | 0.021    | 600    | 4   | 290  | shoots    | < 0 <u>.02</u>  | 2113/88  |
| (Novalis Vallieres)     |           |          |          |        |     | 298  |           | < 0.02          |          |

Table 53. Difenoconazole residues in celeriac resulting from supervised trials in Belgium

| CELERIAC        |           | Applicati | on       |          |        |     | PHI  | Commodity | Residues, mg/kg     | Ref        |
|-----------------|-----------|-----------|----------|----------|--------|-----|------|-----------|---------------------|------------|
| country, year ( | (variety) | Form      | kg ai/ha | kg ai/hL | water  | no. | days |           | Difenoconazole a    |            |
|                 |           |           |          |          | (L/ha) |     |      |           |                     |            |
| Belgium,        | 2001      | EC        | 0.13     | 0.031    | 410    | 4   | 15   | roots     | <u>0.12</u>         | RE 20245 / |
| (Brilliant)     |           |           |          |          |        |     |      |           |                     | 2001       |
| Belgium,        | 2001      | EC        | 0.12     | 0.031    | 400    | 4   | 15   | roots     | 0.08                | RE 20245 / |
| (Diamant)       |           |           |          |          |        |     |      |           |                     | 2001       |
| Belgium,        | 2001      | EC        | 0.13     | 0.031    | 430    | 4   | 15   | roots     | <u>0.22</u> u: 0.08 | RE 20245 / |
| (Monarch)       |           |           |          |          |        |     |      |           |                     | 2001       |
| Belgium,        | 2001      | EC        | 0.13     | 0.031    | 420    | 4   | 15   | roots     | 0.21 u: 0.18        | RE 20245 / |
| (Monarch)       |           |           |          |          |        |     |      |           |                     | 2001       |

a - u: sample from control (untreated) plot.

Table 54. Difenoconazole residues in celery resulting from supervised trials in France, Italy, Spain and Switzerland

| CELERY                  | Applicati | on       |          |                 |     | PHI  | Commodity, Res   | sidues, m | ıg/kg | Ref          |
|-------------------------|-----------|----------|----------|-----------------|-----|------|------------------|-----------|-------|--------------|
| country, year (variety) | Form      | kg ai/ha | kg ai/hL | water<br>(L/ha) | no. | days | Difenoconazole   | a         |       |              |
| France, 2003 (Elne)     | EC        | 0.13     |          | 630             | 3   | 14   | stem <u>0.14</u> | leaf      | 0.95  | RLCE21403    |
| France, 2003 (Lino)     | EC        | 0.14     |          | 420             | 3   | 14   | stem <u>0.03</u> | leaf      | 0.39  | RLCE21403    |
| France, 2004 (Golden    | EC        | 0.13     |          | 600             | 2   | 14   | stem 0.03        | leaf      | 0.77  | 04-0427      |
| Spartane)               |           |          |          |                 | 3   | 0    | stem 0.11        | leaf      | 5.1   | AF/7868/SY/2 |
|                         |           |          |          |                 |     | 3    | stem 0.12        | leaf      | 1.6   |              |
|                         |           |          |          |                 |     | 7    | stem 0.06        | leaf      | 1.2   |              |
|                         |           |          |          |                 |     | 14   | stem <u>0.04</u> | leaf      | 1.0   |              |
|                         |           |          |          |                 |     | 21   | stem 0.03        | leaf      | 0.82  |              |

| CELERY                  | Applicati | on       |          |        |         | PHI  | Commodity, Resid   | ues, m             | g/kg | Ref          |
|-------------------------|-----------|----------|----------|--------|---------|------|--------------------|--------------------|------|--------------|
| country, year (variety) | Form      | kg ai/ha | kg ai/hL | water  | no.     | days | Difenoconazole a   |                    |      |              |
|                         |           |          |          | (L/ha) |         |      |                    |                    |      |              |
| France, 2004 (Tall      | EC        | 0.13     |          | 600    | 2       | 14   | stem 0.08          | leaf               | 0.40 | 04-0427      |
| Utah)                   |           |          |          |        | 3       | 0    | stem 0.19          | leaf               | 6.6  | AF/7868/SY/1 |
|                         |           |          |          |        |         | 3    | stem 0.54          | leaf               | 3.5  |              |
|                         |           |          |          |        |         | 7    | stem 0.34          | leaf               | 2.0  |              |
|                         |           |          |          |        |         | 14   | stem <u>0.26</u>   | leaf               | 1.3  |              |
|                         |           |          |          |        |         | 21   | stem 0.15          | leaf               | 1.7  |              |
| Italy, 1990 (Elne)      | EC        | 0.10     | 0.017    | 600    | 3       | 0    | edible parts       | 3.7                |      | 2063/90      |
|                         |           |          |          |        |         | 7    | edible parts       | 2.0                |      |              |
|                         |           |          |          |        |         | 14   | edible parts       | $\frac{1.2}{1.2}$  |      |              |
|                         |           |          |          |        |         | 21   | edible parts       | 1.2                |      |              |
|                         |           |          |          |        |         | 28   | edible parts       | 0.61               |      |              |
| Italy, 1990 (Utah)      | EC        | 0.10     | 0.017    | 600    | 3       | 0    | stems              | 6.4                |      | 2064/90      |
|                         |           |          |          |        |         | 7    | stems              | 3.6                |      |              |
|                         |           |          |          |        |         | 14   | stems              | <u>2.0</u><br>0.81 |      |              |
|                         |           |          |          |        |         | 21   | stems              | 0.81               |      |              |
|                         |           |          |          |        |         | 28   | stems              | 0.74               |      |              |
| Spain, 2004 (Hurta)     | EC        | 0.13     |          | 620    | 3       | 7    | stem 0.07          | leaf               | 3.0  | 04-0306      |
|                         |           |          |          |        |         | 14   | stem <u>0.04</u>   | leaf               | 1.3  |              |
| Spain, 2004 (Local      | EC        | 0.13     |          | 600    | 3       | 7    | stem 0.06          | leaf               | 2.9  | 04-0306      |
| Population Variety)     |           |          |          |        |         | 14   | stem <u>0.05</u>   | leaf               | 2.0  |              |
| Switzerland, 1988       | EC        | 0.13     |          | 600    | 4       | 0    | stem 0.12          | leaf               | 3.0  | 2117/88      |
| (Claret)                |           |          |          |        |         | 7    | stem 0.087         | leaf               | 1.3  |              |
|                         |           |          |          |        | <u></u> | 14   | stem 0.058 u: 0.02 | leaf               | 1.1  |              |
| Switzerland, 1988       | EC        | 0.13     |          | 600    | 4       | 0    | stem 0.069         | leaf               | 2.6  | 2118/88      |
| (Claret)                |           |          |          |        |         | 7    | stem 0.16          | leaf               | 1.6  |              |
|                         |           |          |          |        |         | 14   | stem <u>0.17</u>   | leaf               | 1.6  |              |

a - u: sample from control (untreated) plot.

Table 55. Difenoconazole residues in rice resulting from supervised trials in Indonesia and Malaysia

| RICE                    | Application   |          |       |        |             | PHI  | Commodity | Residues, mg/kg  | Ref     |
|-------------------------|---------------|----------|-------|--------|-------------|------|-----------|------------------|---------|
| country, year (variety) | Form          | kg ai/ha | kg    | water  | no., growth | days |           | Difenoconazole a |         |
|                         |               |          | ai/hL | (L/ha) | stage final |      |           |                  |         |
| Indonesia, 1998         | EC includes   | 0.063    | 0.013 | 500    | 2           | 0    | ears      | 4.2              | 2110/98 |
| (Pelita)                | propiconazole |          |       |        | BBCH 57     | 7    | ears      | 0.96             |         |
|                         |               |          |       |        |             | 14   | ears      | 1.3              |         |
|                         |               |          |       |        |             | 21   | ears      | 1.4              |         |
|                         |               |          |       |        |             | 28   | grain     | <u>1.3</u>       |         |
| Indonesia, 1998         | EC includes   | 0.063    | 0.013 | 500    | 2           | 0    | ears      | 3.5              | 2111/98 |
| (Pelita)                | propiconazole |          |       |        | BBCH 57     | 7    | ears      | 1.7              |         |
|                         |               |          |       |        |             | 14   | ears      | 0.78             |         |
|                         |               |          |       |        |             | 21   | ears      | 0.38             |         |
|                         |               |          |       |        |             | 28   | grain     | <u>0.75</u>      |         |
| Malaysia, 1994 (MR      | EC .          | 0.075    |       | 350    | 3           | 30   | grain     | <u>0.15</u>      | 2184/94 |
| 84)                     |               |          |       |        | milky stage |      |           |                  |         |
| Malaysia, 1998 (MR      | EC includes   | 0.064    | 0.013 | 500    | 2           | 0    | ears      | 2.9              | 2113/98 |
| 185)                    | propiconazole |          |       |        | BBCH 69-75  | 7    | grain     | 0.30             |         |
|                         |               |          |       |        |             | 14   | grain     | 0.17             |         |
|                         |               |          |       |        |             | 21   | grain     | 0.10             |         |
|                         |               |          |       |        |             | 28   | grain     | <u>0.16</u>      |         |
| Malaysia, 1998 (MR      | EC includes   | 0.12     | 0.025 | 460    | 2           | 0    | ears      | 3.5              | 2112/98 |
| 84)                     | propiconazole |          |       |        | BBCH 69-73  | 14   | grain     | 0.97             |         |
|                         |               |          |       |        |             | 28   | grain     | <u>0.76</u>      |         |
| Malaysia, 1998 (MR      | EC includes   | 0.066    | 0.013 | 500    | 2           | 0    | ears      | 2.4              | 2112/98 |
| 84)                     | propiconazole |          |       |        | BBCH 69-73  | 7    | grain     | 0.99             |         |
|                         |               |          |       |        |             | 14   | grain     | 0.52             |         |
|                         |               |          |       |        |             | 21   | grain     | 0.50             |         |
|                         |               |          |       |        |             | 28   | grain     | <u>0.37</u>      |         |

a: u: sample from control (untreated) plot.

Table 56. Difenoconazole residues in wheat resulting from supervised trials in Denmark, France, Switzerland and UK

| WHEAT                                | Application <sup>a</sup> |          |                 |     |               | PHI  | Commodity   | Residues, mg/kg       | Ref       |
|--------------------------------------|--------------------------|----------|-----------------|-----|---------------|------|-------------|-----------------------|-----------|
| country, year (variety)              | Form                     | kg ai/ha | water<br>(L/ha) | no. | BBCH stage    | days |             | Difenoconazole        |           |
| Denmark, 1989<br>(Sleipner)          | EC                       | 0.13     | 300             | 1   | BBCH<br>54    | 75   | wheat grain | < 0 <u>.02</u>        | 2060/89   |
| Denmark, 1990<br>(Kraka)             | EC                       | 0.13     | 250             | 1   | BBCH<br>60    | 58   | wheat grain | < 0 <u>.02</u>        | 2047/90   |
| Denmark, 1990<br>(Kraka)             | EC                       | 0.13     | 250             | 1   | BBCH<br>60    | 57   | wheat grain | < 0 <u>.02</u>        | 2048/90   |
| France, 1988<br>(Festival)           | CGA 18251                |          | 450             | 1   | BBCH<br>66-76 |      | wheat grain | < 0.02                | 53/88     |
| France, 1989 (Garant)                | CGA 18251                |          | 500             | 1   | BBCH<br>61    |      | wheat grain | < 0 <u>.02</u>        | 08/90     |
| France, 1989 (Garant)                | CGA 18251                |          | 500             | 1   | BBCH<br>55-57 |      | wheat grain | < 0 <u>.02</u>        | 09/90     |
| France, 1989<br>(Goeland)            | CGA 18251                |          | 500             | 1   | BBCH<br>61    |      | wheat grain | < 0 <u>.02</u>        | 07/90     |
| France, 1989 (Tango)                 | SC includes<br>CGA 18251 |          | 500             | 1   | ripen-<br>ing | 57   | wheat grain | < 0.02                | 06/90     |
| France, 1993<br>(Capitaine)          | CGA 18251                |          | 400             | 1   | BBCH<br>83    | 31   | wheat grain | < 0.02                | OF93148   |
| France, 1993 (Recital)               | CGA 18251                |          | 400             |     | BBCH<br>87    | 39   | wheat grain | < 0.02                | OF93148   |
| France, 1993<br>(Soisson)            | CGA 18251                |          | 400             | 1   | BBCH<br>77    | 42   | wheat grain | < 0.02                | OF93148   |
| France, 1998 (Arstar)                | carbendazim              |          | 400             | 1   | BBCH<br>65    |      | wheat grain | < 0.02                | 9813303   |
| France, 1998<br>(Excalibur)          | carbendazim              |          | 400             | 1   | BBCH<br>69    | 49   | wheat grain | < 0.02                | 9813302   |
| France, 1998<br>(Primadur)           | carbendazim              |          | 400             | 1   | BBCH<br>65    | 45   | wheat grain | < 0.02                | 9813304   |
| France, 1998<br>(Rubbens)            | carbendazim              |          | 430             | 1   | BBCH<br>61-65 | 47   | wheat grain | < 0.02                | 9813301   |
| Switzerland, 1989<br>(Remia)         |                          | 0.13     | 500             | 1   | BBCH<br>59    | 45   | wheat grain | < 0 <u>.02</u> < 0.02 | 2031/89   |
| UK (Cambs), 1989<br>(Brock)          |                          | 0.15     | 200             | 1   | BBCH<br>64-65 |      | wheat grain | < 0.02                | R/0157/01 |
| UK (Cambs), 1989<br>(Mercia)         |                          | 0.15     | 200             | 1   | BBCH<br>61-63 | 65   | wheat grain | < 0.02                | R/0157/01 |
| UK (Essex), 1989<br>(Galahad)        |                          | 0.15     | 200             | 1   | BBCH<br>65    |      | wheat grain | < 0.02                | R/0157/01 |
| UK (Gt Halingbury),<br>1989 (Hornet) |                          | 0.15     | 200             |     | BBCH<br>65    |      | wheat grain | < 0.02                | R/0157/01 |
| UK(Bulbeck), 1989<br>(Mercia)        |                          | 0.15     | 200             | 1   | BBCH<br>64-65 |      | wheat grain | < 0.02                | R/0157/01 |
| UK, 1985 (Avalon)                    |                          | 0.13     | 200             |     | BBCH<br>65    |      | wheat grain | < 0.02                | 2229/85   |
| UK, 1985 (Norman)                    | ?                        | 0.13     | 200             | 1   | BBCH<br>65    | 67   | wheat grain | < 0.02                | 2230/85   |

a - BBCH growth stages for wheat (Stauss, 1994)

61: beginning of flowering, first anthers visible.

- 69: end of flowering, all spikelets have completed flowering but some dehydrated anthers may remain.
- ripe, first grains have reached half their final size.
- 75: medium milk, grain content milky, grains reached full size, still green. 77: late milk. 83: early dough. 85: soft dough, grain content soft but dry, fingernail impression not held.
- 87: hard dough, grain content solid, fingernail impression held.
- b Replicate data are from replicate plots.

<sup>55:</sup> middle of heading, half of inflorescences emerged.

<sup>57: 70%</sup> of inflorescences emerged.

<sup>59:</sup> end of heading, inflorescence fully emerged.

<sup>65:</sup> full flowering, 50% of anthers mature.

Table 57. Difenoconazole residues in oilseed rape resulting from supervised trials in France and Germany

| RAPE SEED             |         | Application <sup>a</sup> |              |                           |              |                         | PHI              | Commodity      | Residues, mg/kg      | Ref                                      |
|-----------------------|---------|--------------------------|--------------|---------------------------|--------------|-------------------------|------------------|----------------|----------------------|------------------------------------------|
| country, year (v      | ariety) | Form                     | kg ai/ha     |                           |              |                         | days             |                | difenoconazole       |                                          |
|                       |         |                          |              | (L/ha)                    |              | stage,<br>final ap      |                  |                |                      |                                          |
| France, 1988<br>Neuf) | (Jet    | SC includes<br>CGA 18251 | 8 0.13       | 500                       | 1            | F2-<br>G1 <sup>13</sup> | 83               | seed           | 0.04                 | 48/89                                    |
| France, 1988<br>Neuf) | (Jet    | EC                       | 0.13         | 500                       | 1            | F2-G1                   | 83               | seed           | 0.04                 | 48/89                                    |
| Germany,<br>(Evita)   | 1996    | SC includes carbendazim  | s 0.13       | 400                       | 2            | BBCH<br>65              | 56               | seed           | < 0 <u>.02</u>       | gr 54696                                 |
| Germany,<br>(Lirajet) | 1996    | SC includes carbendazim  | s 0.13       | 400                       | 2            | BBCH<br>63-65           | 69               | seed           | < 0 <u>.02</u>       | gr 53496                                 |
| Germany,<br>(Synergy) | 1996    | SC includes carbendazim  | 8 0.13       | 400                       | 2            | BBCH<br>63-65           | 80               | seed           | < 0 <u>.02</u>       | gr 51296                                 |
| Germany,<br>(Wotan)   | 1996    | SC includes carbendazim  | 0.13         | 400                       | 2            | BBCH<br>65              | 80               | seed           | < 0 <u>.02</u>       | gr 52396                                 |
| Germany,<br>(Capitol) | 1997    | SC includes carbendazim  | 0.13         | 400                       | 2            | BBCH<br>69-71           | 56               | seed           | < 0.02               | gr 52297                                 |
| Germany,<br>(Express) | 1997    | SC includes carbendazim  | 0.13         | 400                       | 2            | BBCH<br>71-75           | 55               | seed           | < 0.02               | gr 51197                                 |
| Germany,<br>(Express) | 1997    | SC includes carbendazim  | s 0.13       | 400                       | 2            | BBCH<br>71              | 55               | seed           | < 0.02               | gr 53497                                 |
| a -                   |         | BBCH<br>30%              | growth<br>of |                           | ages<br>lowe |                         | or<br>on         | oilseed<br>mai | rape (Sta<br>n racem |                                          |
| 65:<br>67:<br>69:     | full    | flowering,<br>flowering  | Ċ            | of flo<br>leclining<br>nd | owei<br>g,   |                         | main<br>majority | raceme<br>of   |                      | petals falling.<br>fallen.<br>flowering. |
| 71:<br>73:            | 207 6   | 10%<br>30%               | of<br>of     | r<br>r                    | ods<br>ods   |                         | have<br>have     | reac<br>reac   |                      | al size.                                 |

75: 50% of pods have reached final size.

Table 58. Difenoconazole residues in sunflower seed resulting from supervised trials in France and Switzerland

| SUNFLOWER SEED             | Application <sup>a</sup> |             |                 |   |                            | PHI  | Commodity | Residues, mg/kg | Ref                          |
|----------------------------|--------------------------|-------------|-----------------|---|----------------------------|------|-----------|-----------------|------------------------------|
| country, year<br>(variety) | Form                     | kg<br>ai/ha | water<br>(L/ha) |   | BBCH<br>stage,<br>final ap | days |           | difenoconazole  |                              |
| France, 2004<br>(Alstars)  | SC includes azoxystrobin | 0.13        | 400             | 2 | BBCH<br>51-55              | 59   | seed      | < 0 <u>.01</u>  | 04-0416<br>FR-FR-04-<br>0125 |
| France, 2004 (DK 3792)     | SC includes azoxystrobin | 0.13        | 400             | 2 | BBCH<br>51-55              | 101  | seed      | < 0 <u>.01</u>  | 04-0415                      |
| France, 2004 (Galix)       | SC includes azoxystrobin | 0.13        | 300             | 2 | BBCH<br>51-55              | 66   | seed      | 0.01            | 04-0416<br>FR-FR-04-<br>0123 |
| France, 2004 (Kolda)       | SC includes azoxystrobin | 0.13        | 310             | 2 | BBCH<br>59                 | 73   | seed      | < 0.01          | 04-0416<br>FR-FR-04-<br>0124 |
| France, 2004<br>(LG5655)   | SC includes azoxystrobin | 0.13        | 210             | 2 | BBCH<br>51-55              | 83   | seed      | < 0 <u>.01</u>  | 04-0416<br>FR-FR-04-<br>0126 |
| France, 2005<br>(Cargisol) | SC includes azoxystrobin | 0.13        | 300             | 2 | BBCH<br>51-55              | 90   | seed      | < 0 <u>.01</u>  | 05-0411<br>AF/8542/SY/2      |
| France, 2005 (Orasol)      | SC includes azoxystrobin | 0.13        | 300             | 2 | BBCH<br>51-55              | 74   | seed      | < 0 <u>.01</u>  | 05-0411<br>AF/8542/SY/1      |

 $^{13}$  Rapeseed 48/89. Growth stage F2-G1 is not clear. Assume from the 83 days PHI that it is similar to BBCH 63-65.

| SUNFLOWER SEED             | Application <sup>a</sup> |             |                 |     |             | PHI  | Commodity | Residues, mg/kg | Ref          |
|----------------------------|--------------------------|-------------|-----------------|-----|-------------|------|-----------|-----------------|--------------|
| country, year<br>(variety) | Form                     | kg<br>ai/ha | water<br>(L/ha) | no. | BBCH stage, | days |           | difenoconazole  |              |
|                            |                          |             |                 |     | final ap    |      |           |                 |              |
| Spain, 2005 (Circe)        | SC includes              | 0.13        | 200             | 2   | ВВСН        | 87   | seed      | < 0 <u>.01</u>  | 05-0411      |
|                            | azoxystrobin             |             | +400            |     | 51-55       |      |           |                 | AF/8542/SY/3 |
| Spain, 2005 (Latino)       | SC includes              | 0.13        | 200             | 2   | BBCH        | 74   | seed      | < 0 <u>.01</u>  | 05-0411      |
|                            | azoxystrobin             |             | +410            |     | 51-55       |      |           |                 | AF/8542/SY/4 |
| Switzerland, 2004          | SC includes              | 0.13        | 400             | 2   | BBCH        | 68   | seed      | < 0 <u>.01</u>  | 04-0311      |
| (Prodisol)                 | azoxystrobin             |             |                 |     | 51-55       |      |           |                 |              |
| Switzerland, 2005          | SC includes              | 0.13        | 410             | 2   | ВВСН        | 73   | seed      | < 0 <u>.01</u>  | 05-0401      |
| (Aurasol)                  | azoxystrobin             |             |                 |     | 51-55       |      |           |                 | CH-FR-05-    |
|                            |                          |             |                 |     |             |      |           |                 | 0313         |
| Switzerland, 2005          | SC includes              | 0.12        | 390             | 2   | BBCH        | 73   | seed      | < 0 <u>.01</u>  | 05-0401      |
| (Elansol)                  | azoxystrobin             |             |                 |     | 51-55       |      |           |                 | CH-FR-05-    |
|                            |                          |             |                 |     |             |      |           |                 | 0314         |

| a |     | - BBC         | CH gr      | owth | stages   | s f      | or     | sunflower       | (Stau    | ss,     | 1994)   |
|---|-----|---------------|------------|------|----------|----------|--------|-----------------|----------|---------|---------|
|   | 51: | inflore       | escence    | just | •        | visible  | be     | etween          | youngest |         | leaves. |
|   | 53: | inflorescence | separating | from | youngest | leaves,  | bracts | distinguishable | from     | foliage | leaves. |
|   | 55: | inflore       | escence    | sepa | ırated   | from     |        | youngest        | folia    | ge      | leaf.   |
|   | 57: | inflore       | escence    | clea | rly      | separate | ed     | from            | foliage  |         | leaves. |
|   | 70  |               | 1          | 1 .  |          |          |        |                 |          |         |         |

<sup>59:</sup> ray florets visible between the bracts, inflorescence still closed.

Table 59. Difenoconazole residues in wheat straw and fodder resulting from supervised trials in Denmark, France, Switzerland and UK

| WHEAT STRAW<br>AND FODDER   | Application <sup>a</sup> |             |                 |     |               | PHI  | Commodity   | Residues, mg/kg     | Ref     |
|-----------------------------|--------------------------|-------------|-----------------|-----|---------------|------|-------------|---------------------|---------|
| country, year (variety)     | Form                     | kg<br>ai/ha | water<br>(L/ha) | no. | BBCH<br>stage | days |             | Difenoconazole b    |         |
| Denmark, 1989               | EC                       | 0.13        | 300             | 1   | ВВСН          | 27   | whole plant | 0.21                | 2060/89 |
| (Sleipner)                  |                          |             |                 |     | 54            | 40   | whole plant | 0.14                |         |
|                             |                          |             |                 |     |               | 75   | wheat straw | <u>0.31</u>         |         |
| Denmark, 1990               | EC                       | 0.13        | 250             | 1   | BBCH          | 0-   | whole plant | < 0.02              | 2047/90 |
| (Kraka)                     |                          |             |                 |     | 60            | 7    | whole plant |                     |         |
|                             |                          |             |                 |     |               | 22   | whole plant | 0.52                |         |
|                             |                          |             |                 |     |               | 37   | whole plant | 0.35                |         |
|                             |                          |             |                 |     |               | 58   | wheat straw | <u>0.64</u>         |         |
| Denmark, 1990               | EC                       | 0.13        | 250             | 1   | BBCH          | 0-   | whole plant | < 0.02              | 2048/90 |
| (Kraka)                     |                          |             |                 |     | 60            | 7    | whole plant | 0.80                |         |
|                             |                          |             |                 |     |               | 22   | whole plant |                     |         |
|                             |                          |             |                 |     |               | 37   | whole plant |                     |         |
|                             |                          |             |                 |     |               | 57   | wheat straw | <u>0.26</u> u: 0.03 |         |
| France, 1988                |                          | 0.13        | 450             | 1   | BBCH          | 51   | wheat straw | 0.12 u: 0.15        | 53/88   |
| (Festival)                  | CGA 18251                |             |                 |     | 66-76         |      |             |                     |         |
| France, 1989 (Garant)       |                          | 0.13        | 500             | 1   | BBCH          | 57   | wheat straw | <u>0.73</u>         | 08/90   |
|                             | CGA 18251                |             |                 |     | 61            |      |             |                     |         |
| France, 1989 (Garant)       | SC includes<br>CGA 18251 | 0.13        | 500             | 1   | BBCH<br>55-57 | 63   | wheat straw | <u>0.82</u>         | 09/90   |
| France, 1989                | SC includes              | 0.13        | 500             | 1   | BBCH          | 52   | wheat straw | 0.16 u: 0.16        | 07/90   |
| (Goeland)                   | CGA 18251                |             |                 |     | 61            |      |             |                     |         |
| France, 1989 (Tango)        | SC includes<br>CGA 18251 | 0.13        | 500             | 1   | ripen-<br>ing | 57   | wheat straw | 0.28                | 06/90   |
| France, 1993                | GL includes              | 0.13        | 400             | 1   | BBCH          | 31   | wheat straw | 0.95                | OF93148 |
| (Capitaine)                 | CGA 18251                |             |                 |     | 83            |      |             |                     |         |
| France, 1993 (Recital)      | GL includes<br>CGA 18251 | 0.13        | 400             | 1   | BBCH<br>87    | 39   | wheat straw | 2.5                 | OF93148 |
| France, 1993                | GL includes              | 0.13        | 400             | 1   | ВВСН          | 42   | wheat straw | 2.4                 | OF93148 |
| (Soisson)                   | CGA 18251                |             |                 |     | 77            |      |             |                     |         |
| France, 1998 (Arstar)       | GL includes carbendazim  | 0.13        | 400             | 1   | BBCH<br>65    | 47   | wheat straw | 2.0                 | 9813303 |
| France, 1998<br>(Excalibur) |                          | 0.13        | 400             | 1   | BBCH<br>69    | 49   | wheat straw | 0.36                | 9813302 |

| WHEAT STRAW<br>AND FODDER           | Application <sup>a</sup> |             |                 |     |               | PHI  | Commodity   | Residues, mg/kg  | Ref       |
|-------------------------------------|--------------------------|-------------|-----------------|-----|---------------|------|-------------|------------------|-----------|
| country, year (variety              | Form                     | kg<br>ai/ha | water<br>(L/ha) | no. | BBCH<br>stage | days |             | Difenoconazole b | ,         |
| France, 1998<br>(Primadur)          | GL includes carbendazim  | 0.12        | 400             | 1   | BBCH<br>65    | 45   | wheat straw | 1.3              | 9813304   |
| France, 1998<br>(Rubbens)           | GL includes carbendazim  | 0.14        | 430             | 1   | BBCH<br>61-65 | 47   | wheat straw | 0.46             | 9813301   |
| Switzerland, 1989<br>(Remia)        | EC                       | 0.13        | 500             | 1   | BBCH<br>59    | 45   | wheat straw | <u>1.2</u> 0.9 ° | 2031/89   |
| UK (Cambs), 1989<br>(Brock)         | EC                       | 0.15        | 200             | 1   | BBCH<br>64-65 | 49   | wheat straw | 0.84 u: 0.02     | R/0157/01 |
| UK (Cambs), 1989<br>(Mercia)        | EC                       | 0.15        | 200             | 1   | BBCH<br>61-63 | 65   | wheat straw | 1.4 u: 0.36      | R/0157/01 |
| UK (Essex), 1989<br>(Galahad)       | EC                       | 0.15        | 200             | 1   | BBCH<br>65    | 55   | wheat straw | 3.7 u: 0.07      | R/0157/01 |
| UK (Gt Halingbury)<br>1989 (Hornet) | , EC                     | 0.15        | 200             | 1   | BBCH<br>65    | 57   | wheat straw | 0.71 u: 0.16     | R/0157/01 |
| UK(Bulbeck), 1989<br>(Mercia)       | EC                       | 0.15        | 200             | 1   | BBCH<br>64-65 | 57   | wheat straw | 0.32 u: 0.40     | R/0157/01 |

| ì |      | - B            | BCH        | grow         | th          | stages      | for     | W         | heat    | (Staus:    | s,         | 1994)    |
|---|------|----------------|------------|--------------|-------------|-------------|---------|-----------|---------|------------|------------|----------|
|   | 55:  | middl          | e          | of           | heading     | , ha        | alf     | of        | inflore | escences   | $\epsilon$ | emerged. |
|   | 57:  |                | 70%        | )            |             | of          |         | inflores  | cences  |            | $\epsilon$ | emerged. |
|   | 59:  | end            | l          | of           | hea         | ding,       | infl    | orescence |         | fully      | $\epsilon$ | emerged. |
|   | 61:  | beg            | ginning    | O            | f           | flowering   | g,      | first     |         | anthers    |            | visible. |
|   | 65:  | ful            | 11         | flowe        | ring,       | 50%         | ,       | of        | 8       | anthers    |            | mature.  |
|   | 69:  | end of flowe   | ering, all | spikelets    | have co     | mpleted flo | owering | but some  | dehydra | ited anthe | rs may     | remain.  |
|   | 71:  | watery         | ripe,      | first        | grain       | s have      | rea     | ached     | half    | their      | final      | size.    |
|   | 73:  |                |            |              |             | early       |         |           |         |            |            | milk.    |
|   | 75:  | medium         | milk,      | grain        | content     | milky,      | grains  | reache    | d full  | size,      | still      | green.   |
|   | 77:  |                |            |              |             | late        |         |           |         |            |            | milk.    |
|   | 83:  |                |            |              |             | early       |         |           |         |            |            | dough.   |
|   | 85:  | soft do        | ugh, g     | grain c      | ontent      | soft but    | t dry   | , finger  | nail ii | mpression  | not        | held.    |
|   | 87:1 | nard dough, gr | ain conte  | nt solid, fi | ngernail ir | npression h | eld.    |           |         |            |            |          |

b - u: sample from control (untreated) plot.

Table 60. Difenoconazole residues in rice straw and fodder resulting from supervised trials in Indonesia and Malaysia

| RICE STRAW A           | AND    | Application               |          |       |                 |     | PHI                      | Commodity                                      | Residues, mg/kg                     | Ref     |
|------------------------|--------|---------------------------|----------|-------|-----------------|-----|--------------------------|------------------------------------------------|-------------------------------------|---------|
| country, year (var     | riety) | Form                      | kg ai/ha | _     | water<br>(L/ha) | no. | days                     |                                                | Difenoconazole <sup>a</sup>         |         |
| Indonesia,<br>(Pelita) | 1998   | EC includ                 | es 0.063 | 0.013 | 500             | 2   | 0<br>7                   | stalks<br>stalks                               | 3.7<br>1.9                          | 2110/98 |
|                        |        |                           |          |       |                 |     | 14<br>21                 | stalks<br>stalks                               | 1.1<br>0.68                         |         |
|                        |        |                           |          |       |                 |     | 28                       | stalks                                         | 0.55                                |         |
| Indonesia,<br>(Pelita) | 1998   | EC includ propiconazol    | es 0.063 | 0.013 | 500             | 2   | 0<br>7<br>14<br>21<br>28 | stalks<br>stalks<br>stalks<br>stalks<br>stalks | 1.1<br>1.3<br>0.45<br>0.30<br>1.1   | 2111/98 |
| Malaysia, 1998<br>185) |        | EC includ<br>propiconazol | es 0.064 | 0.013 | 500             | 2   | 0<br>7<br>14<br>21<br>28 | stalks<br>stalks<br>stalks<br>stalks<br>stalks | 1.8<br>0.22<br>0.14<br>0.10<br>0.08 | 2113/98 |

 $<sup>\</sup>boldsymbol{c}$  - Replicate data are from replicate plots.

| RICE STRAW AND<br>FODDER | Application   |          |       |                 |     | PHI  | Commodity | Residues, mg/kg             | Ref     |
|--------------------------|---------------|----------|-------|-----------------|-----|------|-----------|-----------------------------|---------|
| country, year (variety)  | Form          | kg ai/ha |       | water<br>(L/ha) | no. | days |           | Difenoconazole <sup>a</sup> |         |
| Malaysia, 1998 (MR       | EC includes   | 0.066    | 0.013 | 500             | 2   | 0    | stalks    | 1.3                         | 2112/98 |
| 84)                      | propiconazole |          |       |                 |     | 7    | stalks    | 0.62                        |         |
|                          |               |          |       |                 |     | 14   | stalks    | 0.34                        |         |
|                          |               |          |       |                 |     | 21   | stalks    | 0.40                        |         |
|                          |               |          |       |                 |     | 28   | straw     | 0.19 u: 0.05                |         |
| Malaysia, 1998 (MR       | EC includes   | 0.12     | 0.025 | 460             | 2   | 0    | stalks    | 2.1                         | 2112/98 |
| 84)                      | propiconazole |          |       |                 |     | 14   | stalks    | 0.75                        |         |
|                          |               |          |       |                 |     | 28   | straw     | 0.44                        |         |

a - u: sample from control (untreated) plot.

Table 61. Difenoconazole residues in sugar beet leaves and tops resulting from supervised trials in Denmark, France, Germany and UK

| SUGAR BEET<br>LEAVES & TOPS      | Application   |          |             |                 |               | PHI            | Commodity            | Residues, mg/kg             | Ref                  |
|----------------------------------|---------------|----------|-------------|-----------------|---------------|----------------|----------------------|-----------------------------|----------------------|
| country, year<br>(variety)       | Form          | kg ai/ha | kg<br>ai/hL | water<br>(L/ha) | no.           | days           |                      | Difenoconazole              |                      |
| Denmark, 1989<br>(Maribo Armada) | EC            | 0.13     |             | 400             | 2             | 24<br>37<br>59 | leaf<br>leaf<br>leaf | 0.74<br><u>0.45</u><br>0.24 | 2059/89              |
| France, 1985 (Alto)              | FC            | 0.13     |             | 500             | 2             | 24             | leaves               | 0.17                        | 48/87                |
| France, 1983 (1991)              |               |          |             | 500             | 2             | 33             | leaf                 | 0.07                        | 0210F91 <sup>a</sup> |
| (Allyx)                          | propiconazole | 0.1      |             | 300             |               | 33             | icai                 | 0.07                        | 0210F91              |
| France, 1991                     |               | s 0.1    |             | 500             | 2             | 29             | leaf                 | 0.32                        | 0200F91 <sup>a</sup> |
| (Monos)                          | propiconazole | 0.1      |             | 300             |               | 29             | icai                 | 0.32                        | 0200191              |
| Germany, 1987                    |               | 0.1      |             | 400             | 2             | 30             | leaf                 | 0.07                        | 2150/87              |
| (Britta)                         | EC            | 0.1      |             | 400             | $\frac{2}{3}$ | 0              | icai                 | 2.2                         | 2130/67              |
| (Diitta)                         |               |          |             |                 | ]             | 14             |                      | 0.29                        |                      |
|                                  |               |          |             |                 |               | 28             |                      | 0.29<br>0.11                |                      |
|                                  |               |          |             |                 |               | 36             |                      | $\frac{0.11}{0.10}$         |                      |
|                                  |               |          |             |                 |               | 43             |                      | 0.10                        |                      |
| Germany, 1987                    | EC            | 0.1      |             | 400             | 2             | 30             | leaf                 |                             | 2149/87              |
| • ,                              | EC            | 0.1      |             | 400             | 3             |                | lear                 | 0.06                        | 2149/8/              |
| (Diadem)                         |               |          |             |                 | 3             | 0              |                      | 1.9                         |                      |
|                                  |               |          |             |                 |               | 14             |                      | 0.22                        |                      |
|                                  |               |          |             |                 |               | 28             |                      | 0.09                        |                      |
|                                  |               |          |             |                 |               | 36             |                      | 0.08                        |                      |
| - 100-                           | 7.0           | 0.1      |             | 100             | <u> </u>      | 43             |                      | 0.06                        | 211010               |
| Germany, 1987                    | EC            | 0.1      |             | 400             | 2             | 20             | leaf                 | 0.29                        | 2148/87              |
| (Eva)                            |               |          |             |                 | 3             | 0              |                      | 4.6                         |                      |
|                                  |               |          |             |                 |               | 14             |                      | 1.2                         |                      |
|                                  |               |          |             |                 |               | 28             |                      | 0.39                        |                      |
|                                  |               |          |             |                 |               | 35             |                      | <u>0.95</u>                 |                      |
|                                  |               |          |             |                 |               | 42             |                      | 0.37                        |                      |
|                                  |               |          |             |                 |               | 50             |                      | 0.61                        |                      |
| Germany, 1988                    | EC            | 0.1      |             | 400             | 1             | 32             | leaf                 | 0.15                        | 2053/88              |
| (Hilma)                          |               |          |             |                 | 2             | 0              |                      | 4.4                         |                      |
|                                  |               |          |             |                 |               | 7              |                      | 1.2                         |                      |
|                                  |               |          |             |                 | 1             | 14             |                      | 0.72                        |                      |
|                                  |               |          |             |                 |               | 22             |                      | 0.49                        |                      |
|                                  |               |          |             |                 | 1             | 28             |                      | <u>0.53</u>                 |                      |
|                                  |               |          |             |                 | 1             | 36             |                      | 0.21                        |                      |
|                                  |               |          | <u> </u>    | <u> </u>        | <u>l</u>      | 42             | <u> </u>             | 0.28                        |                      |
| Germany, 1988                    | EC            | 0.1      |             | 400             | 1             | 32             | leaf                 | 0.17                        | 2052/88              |
| (Kaweduca)                       |               |          |             |                 | 2             | 0              |                      | 4.3                         |                      |
| ·                                |               |          |             |                 | 1             | 7              |                      | 1.0                         |                      |
|                                  |               |          |             |                 |               | 14             |                      | 0.64                        |                      |
|                                  |               |          |             |                 | 1             | 22             |                      | 0.38                        |                      |
|                                  |               |          |             |                 | 1             | 28             |                      | 0.43                        |                      |
|                                  |               |          |             |                 |               | 36             |                      | 0.31                        |                      |
| II .                             |               | 1        |             |                 |               | 42             |                      | 0.38                        | 1                    |

| SUGAR I<br>LEAVES & TO  |      | Application             |          |             |                 |     | PHI                       | Commodity                                                               | Residues, mg/kg                     | Ref                 |
|-------------------------|------|-------------------------|----------|-------------|-----------------|-----|---------------------------|-------------------------------------------------------------------------|-------------------------------------|---------------------|
| country,<br>(variety)   | year | Form                    | kg ai/ha | kg<br>ai/hL | water<br>(L/ha) | no. | days                      |                                                                         | Difenoconazole                      |                     |
| Germany,<br>(Primahill) | 1988 | EC                      | 0.1      |             | 400             | 1 2 | 20<br>0<br>7<br>14        | leaf                                                                    | 0.13<br>1.8<br>1.4<br>1.1           | 2050/88             |
|                         |      |                         |          |             |                 |     | 21<br>28<br>35            |                                                                         | 0.55<br><u>0.47</u><br>0.33         |                     |
| Germany,<br>(Ribella)   |      | EC, 100 g/L             | 0.1      |             | 400             | 2   | 42<br>30                  | tops                                                                    | 0.39<br><u>0.62</u>                 | gr 4995<br>gr 41595 |
| Germany,<br>(Ribella)   |      | EC, 250 g/L             | 0.1      |             | 400             | 2   | 30                        | tops                                                                    | <u>0.26</u>                         | gr 4995<br>gr 41595 |
| Germany,<br>(Sonja)     |      | EC, 100 g/L             | 0.1      |             | 400             | 2   | 28                        | tops                                                                    | <u>0.25</u>                         | gr 4995<br>gr 31595 |
| Germany,<br>(Sonja)     |      | EC, 250 g/L             | 0.1      |             | 400             | 2   | 28                        | tops                                                                    | <u>0.43</u>                         | gr 4995<br>gr 31595 |
| Germany,<br>(Hilma)     | 1996 | EC includes fenpropidin | 0.098    |             | 300             | 2   | 0<br>14<br>25<br>28<br>35 | whole plant<br>whole plant<br>leaves+tops<br>leaves+tops<br>leaves+tops |                                     | 96 10 62 010        |
| Germany,<br>(Reka)      | 1996 | fenpropidin             | 0.098    |             | 300             | 2   | 0<br>15<br>23<br>27<br>39 | whole plant<br>whole plant<br>leaves+tops<br>leaves+tops<br>leaves+tops |                                     | 96 10 61 009        |
| Germany,<br>(Ribella)   | 1996 | fenpropidin             |          |             | 400             | 2   | 0<br>14<br>21<br>28       | whole plant<br>whole plant<br>leaves+tops<br>leaves+tops                | 0.44<br>0.50<br><u>0.087</u>        | gr 50596            |
| Germany,<br>(Ribella)   | 1996 | fenpropidin             |          |             | 400             | 2   | 0<br>14<br>21<br>28<br>35 | whole plant<br>whole plant<br>leaves+tops<br>leaves+tops                | 0.24<br>0.31<br><u>0.25</u><br>0.25 | gr 49496            |
| UK,<br>(Veronica)       | 2004 | EC includes fenpropidin | 0.1      |             | 300             | 2   | 27                        | leaves                                                                  | <u>0.09</u>                         | 04-6047             |

a - Inadequate supporting field data and analytical method

Table 62. Difenoconazole residues in oilseed rape fodder resulting from supervised trials in Germany

|                             | SEED    | Applic | cation a |          |                 |   |             | PHI  | Commodity   | Residues, mg/kg | Ref      |
|-----------------------------|---------|--------|----------|----------|-----------------|---|-------------|------|-------------|-----------------|----------|
| FODDER<br>country, year (va | ariety) | Form   |          | kg ai/ha | water<br>(L/ha) |   | BBCH stage, | days |             | difenoconazole  |          |
|                             |         |        |          |          | (2,114)         |   | final ap    |      |             |                 |          |
| Germany,                    | 1997    | SC     | includes | 0.13     | 400             | 2 | ВВСН        | 0    | whole plant | 1.4             | gr 52297 |
| (Capitol)                   |         | carben | dazim    |          |                 |   | 69-71       | 35   | pods + seed | 0.18            |          |
|                             |         |        |          |          |                 |   |             | 35   | stubble     | 0.14            |          |
| Germany,                    | 1997    | SC     | includes | 0.13     | 400             | 2 | BBCH        | 0    | whole plant | 1.5             | gr 51197 |
| (Express)                   |         | carben | dazim    |          |                 |   | 71-75       | 35   | pods + seed | 0.02            |          |
|                             |         |        |          |          |                 |   |             | 35   | stubble     | 0.02            |          |
| Germany,                    | 1997    | SC     | includes | 0.13     | 400             | 2 | BBCH        | 0    | whole plant | 1.7             | gr 53497 |
| (Express)                   |         | carben | dazim    |          |                 |   | 71          | 34   | pods + seed | 0.12            |          |
|                             |         |        |          |          |                 |   |             | 34   | stubble     | 0.04            |          |
| Germany,                    | 1996    | SC     | includes | 0.13     | 400             | 1 | BBCH        | 28   | whole plant | < 0.02          | gr 54696 |
| (Evita)                     |         | carben | dazim    |          |                 | 2 | 65          | 0    | whole plant | 1.8             |          |
|                             |         |        |          |          |                 |   |             | 35   | green pods  | < 0.02          |          |
|                             |         |        |          |          |                 |   |             | 35   | stubble     | 0.06            |          |

| RAPE SI<br>FODDER   | EED   | Application <sup>a</sup> |          |                 |      |             | PHI  | Commodity   | Residues, mg/ | kg     | Ref      |      |
|---------------------|-------|--------------------------|----------|-----------------|------|-------------|------|-------------|---------------|--------|----------|------|
| country, year (vari | iety) | Form                     | kg ai/ha | water<br>(L/ha) | no.  | BBCH stage, | days |             | difenoconazol | e      |          |      |
|                     |       |                          |          | (L/III)         |      | final ap    |      |             |               |        |          |      |
| Germany, 1          | 1996  | SC includes              | 0.13     | 400             | 1    | ВВСН        | 21   | whole plant | < 0.02        |        | gr 53496 |      |
| (Lirajet)           |       | carbendazim              |          |                 | 2    | 63-65       | 0    | whole plant | 2.3           |        |          |      |
|                     |       |                          |          |                 |      |             | 34   | green pods  | < 0.02        |        |          |      |
|                     |       |                          |          |                 |      |             | 34   | stubble     | 0.04          |        |          |      |
| Germany, 1          | 1996  | SC includes              | 0.13     | 400             | 1    | BBCH        | 28   | whole plant | < 0.02        |        | gr 51296 |      |
| (Synergy)           |       | carbendazim              |          |                 | 2    | 63-65       | 0    | whole plant | 2.5           |        |          |      |
|                     |       |                          |          |                 |      |             | 35   | green pods  | < 0.02        |        |          |      |
|                     |       |                          |          |                 |      |             | 35   | stubble     | 0.09          |        |          |      |
| Germany, 1          | 1996  | SC includes              | 0.13     | 400             | 1    | BBCH        | 28   | whole plant | < 0.02        |        | gr 52396 |      |
| (Wotan)             |       | carbendazim              |          |                 | 2    | 65          | 0    | whole plant | 1.6           |        |          |      |
|                     |       |                          |          |                 |      |             | 35   | green pods  | < 0.02        |        |          |      |
|                     |       |                          |          |                 |      |             | 35   | stubble     | 0.05          |        |          |      |
| a -                 |       | BBCH g                   | growth   | sta             | ages | s f         | or   | oilseed     | rape (        | Stauss | s, 19    | 994) |
| 63:                 |       | 30%                      | of       | fl              | owe  | ers         | on   | main        | n rac         | eme    | o        | pen. |

| a | -     |       | BRCH            | C             |        | stages  | for |          | oilseed | rape   | (Sta   | auss,      | 1994)    |
|---|-------|-------|-----------------|---------------|--------|---------|-----|----------|---------|--------|--------|------------|----------|
| ( | 63:   |       | 30%             | of            |        | flowers |     | on       | m       | ain    | raceme |            | open.    |
| ( | 65:   | full  | flowering,      | 50%           | of     | flowers | on  | main     | raceme  | open,  | older  | petals     | falling. |
| ( | 67:   |       | flowering       |               | declir | ning,   | 1   | majority |         | of     | petals |            | fallen.  |
| ( | 69:   |       |                 | (             |        |         |     | of       |         |        |        | flowering. |          |
| - | 71:   |       | 10%             | end<br>of pod |        | pods    |     | have     | reached |        | fin    | ıal        | size.    |
| 1 | 73:   |       | 30%             | of            |        | pods    |     | have     | re      | eached | fin    | ıal        | size.    |
| , | 75.50 | 07 of | anda harra mana | had final     | .:     |         |     |          |         |        |        |            |          |

75: 50% of pods have reached final size.

Table 63. Difenoconazole residues in sunflower plant and stubble resulting from supervised trials in France and Switzerland

| SUNFLOWER<br>PLANT & STUBBLE | Application <sup>a</sup>    |             |                 |     |                            | PHI                             | Commodity                                                               | Residues, mg/kg                             | Ref                          |
|------------------------------|-----------------------------|-------------|-----------------|-----|----------------------------|---------------------------------|-------------------------------------------------------------------------|---------------------------------------------|------------------------------|
| country, year (variety)      | Form                        | kg<br>ai/ha | water<br>(L/ha) | no. | BBCH<br>stage,<br>final ap | days                            |                                                                         | difenoconazole                              |                              |
| France, 2004 (Alstars)       | SC includes azoxystrobin    | 0.13        | 400             | 1 2 | BBCH<br>51-55              | 15<br>0<br>11<br>21<br>32       | whole plant<br>whole plant<br>whole plant<br>whole plant<br>whole plant | 1.5                                         | 04-0416<br>FR-FR-04-<br>0125 |
| France, 2004 (DK 3792)       | SC includes azoxystrobin    | 0.13        | 400             | 1 2 | ВВСН                       | 42<br>21<br>0                   | whole plant<br>whole plant<br>whole plant                               | 0.01<br>0.06<br>2.0                         | 04-0415                      |
|                              |                             |             |                 |     | 51-55                      | 10<br>20<br>31<br>45            | whole plant<br>whole plant<br>whole plant<br>whole plant                | 0.47<br>0.28<br>0.27<br>0.34                |                              |
| France, 2004 (Galix)         | SC includes<br>azoxystrobin | 0.13        | 300             | 1 2 | BBCH<br>51-55              | 14<br>0<br>10<br>21<br>31<br>46 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>whole plant | 2.4<br>6.2<br>1.8<br>1.0<br>0.87<br>0.28    | 04-0416<br>FR-FR-04-<br>0123 |
| France, 2004 (Kolda)         | SC includes<br>azoxystrobin | 0.13        | 310             | 1 2 | BBCH<br>59                 | 15<br>0<br>10<br>21<br>29<br>45 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>whole plant | 0.29<br>3.7<br>1.1<br>0.48<br>0.25<br>0.35  | 04-0416<br>FR-FR-04-<br>0124 |
| France, 2004<br>(LG5655)     | SC includes azoxystrobin    | 0.13        | 210             | 1 2 | BBCH<br>51-55              | 14<br>0<br>10<br>20<br>31<br>46 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>whole plant | 0.29<br>5.3<br>0.61<br>0.39<br>0.36<br>0.23 | 04-0416<br>FR-FR-04-<br>0126 |

| SUNFLOWER<br>PLANT & STUBBLE | Application <sup>a</sup> |      |                 |     |                            | PHI  | Commodity   | Residues, mg/kg | Ref     |
|------------------------------|--------------------------|------|-----------------|-----|----------------------------|------|-------------|-----------------|---------|
| country, year (variety)      |                          | 0    | water<br>(L/ha) | no. | BBCH<br>stage,<br>final ap | days |             | difenoconazole  |         |
| Switzerland, 2004            | SC includes              | 0.13 | 400             | 1   |                            | 15   | whole plant | 0.17            | 04-0311 |
| (Prodisol)                   | azoxystrobin             |      |                 | 2   | BBCH                       | 0    | whole plant | 4.6             |         |
|                              |                          |      |                 |     | 51-55                      | 9    | whole plant | 0.90            |         |
|                              |                          |      |                 |     |                            | 20   | whole plant | 0.20            |         |
|                              |                          |      |                 |     |                            | 30   | whole plant | 0.16            |         |
|                              |                          |      |                 |     |                            | 44   | whole plant | 0.07            |         |
|                              |                          |      |                 |     |                            | 68   | stubble     | 0.04            |         |

| a |     | - BBC         | - 6                    |         | growth stages |           | or     | sunflower       | (Stauss, |         | 1994)   |
|---|-----|---------------|------------------------|---------|---------------|-----------|--------|-----------------|----------|---------|---------|
|   | 51: | inflore       | inflorescence          |         | V             | isible    | be     | etween          | youngest |         | leaves. |
|   | 53: | inflorescence | florescence separating |         | youngest      | leaves,   | bracts | distinguishable | from     | foliage | leaves. |
|   | 55: | inflore       | inflorescence          |         | separated     |           |        | youngest        | foliag   | ge      | leaf.   |
|   | 57: | inflorescence |                        | clearly |               | separated |        | from            |          | foliage |         |

<sup>59:</sup> ray florets visible between the bracts, inflorescence still closed.

### FATE OF RESIDUES IN STORAGE AND PROCESSING

#### In processing

The Meeting received information on the fate of difenoconazole residues during the processing of apples for juice, carrots for juice and canning, grapes for wine and raisins, olives for oil, rape seed for oil, sugar beet and tomatoes for juice and puree. Also information was provided on hydrolysis studies of difenoconazole to assist with identification of the nature of the residue during processing.

Processing factors have been calculated for difenoconazole residues in apples, carrots, grapes, olives and tomatoes. The data for rape seed and sugar beet could not be used because residue levels did not exceed the LOQ in the raw commodity.

Muir (2003, RJ3360B) measured the hydrolysis of [\frac{14}{C}]triazole-difenoconazole in aqueous buffers at pHs and temperatures experienced during food processing and cooking. Recoveries of total \frac{14}{C} ranged from 102 – 111%. Very little of the difenoconazole was hydrolysed (Table 64). Low levels (< 1.1%) of a minor unknown were noted in the pH 5 pH 6 solutions when analysed by TLC. Difenoconazole was essentially stable during the hydrolysis conditions simulating food processing conditions.

Table 64. Hydrolysis of [14C]triazole-difenoconazole under conditions representing food processes

| Difenoconazole concentration | Hydrol | ysis condit | tions   | Represent                   | %<br>remaining | difenoconazole |
|------------------------------|--------|-------------|---------|-----------------------------|----------------|----------------|
| 2 mg/L                       | pH 4   | 90 °C       | 20 mins | pasteurisation              | 95.6%          |                |
| 2 mg/L                       | pH 5   | 100 °C      | 60 mins | baking, brewing and boiling | 98.0%          |                |
| 2 mg/L                       | pH 6   | 120 °C      | 20 mins | sterilisation               | 98.5%          |                |

Zietz (1998, IF-97/33628-00, IF-97/33752-00) processed samples of rape seed from supervised trials with difenoconazole in Germany (Smith, 1998, gr 52297, gr 51197). The pilot plant processing on 3 kg oilseed samples was designed to simulate the commercial processes of drying, expelling and filtering and produced dried seed, oil and oilseed cake. Residue data are summarised in Table 65.

In a trial in Spain, Richards (2006, 04-6067) treated olives with difenoconazole at 0.24 kg difenoconazole per hectare ( $2 \times \text{label rate}$ ) and harvested samples of 20 kg for processing to olive oil. Whole olives were processed into virgin oil and refined oil (Figure 7). Difenoconazole residues from the olives partitioned into the oil fraction. The refining step had very little influence on the difenoconazole residues (Table 65).

Beinhauer (1997, 96 10 62 010) treated sugar beet twice with a formulation containing difenoconazole and fenpropidin and harvested the beets 28 days later for processing (Figure 8). Difenoconazole residues in the raw and processed commodities were below the LOQ (Table 65). The process and results were similar for a second sugar beet processing trial (Beinhauer, 1997, 96 10 61 009).

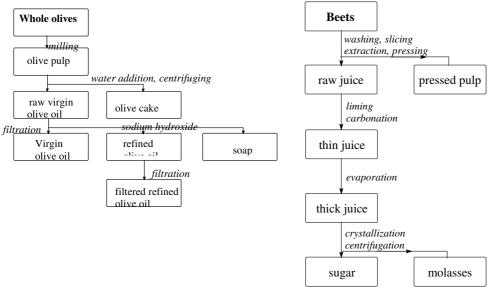



Figure 7. Olive processing

Figure 8. Sugar beet processing

Simon (2002, gap82901) treated apple trees with an exaggerated rate of difenoconazole and harvested fruit 18 days after the final of 4 applications for processing into juice and puree. Fruit (70 kg) were manually washed with cold water, then sliced, wrapped in press cloths and pressed in a juice press, which separated juice from pomace. Juice was pasteurised at 80 - 82 °C for 30 minutes. For puree, apples (12 kg) were manually washed in cold water and then boiled in water until the puree was passable through a sieve. Sugar, citric acid and ascorbic acid were added until the puree reached a pH of 3.0 - 4.5. A tin was filled with puree, and then sealed and heated at 95 °C for 20 minutes. Some difenoconazole residues were removed in the initial washing steps. Difenoconazole residues did not appear in the apple juice and were concentrated in the pomace. Much of the residue was lost in converting apples to puree (Table 65).

In a grape drying trial in Chile, Kühne-Thu (1999, 225/98) applied difenoconazole at  $1\times$  and  $5\times$  the label rate (0.05 and 0.25 kg ai/ha) and harvested grapes 63 days after the final of 3 applications. Grapes were washed for about one minute and then placed in wooden trays with mesh bottoms and subjected to sulphur dioxide fumigation for 12 h. The trays of grapes were then dried in ovens at 65 °C for about 36 – 40 h losing about two-thirds of their weight, 30 kg grapes producing 10 kg raisins. Residue data are summarised in Table 65.

Table 65. Difenoconazole residues in raw and processed commodities resulting from supervised trials on rape seed, olives, sugar beet and apples

| CROP                          |      | Application             |   |   |                 |     | PHI  | Commodity                              | Residues,<br>mg/kg | Ref                        |
|-------------------------------|------|-------------------------|---|---|-----------------|-----|------|----------------------------------------|--------------------|----------------------------|
| country,<br>(variety)         | year |                         | _ | 0 | water<br>(L/ha) | no. | days | a                                      | difenoconazole     |                            |
| RAPE<br>Germany,<br>(Capitol) |      | SC includes carbendazim |   |   | 400             | 2   |      | seed<br>dried seed<br>oil<br>presscake |                    | gr 52297<br>IF-97/33628-00 |

| CROP                                |                  | Application             |             |             |                       |      | PHI    | Commodity                                                                         | Residues,<br>mg/kg                                                                                                                     | Ref                        |
|-------------------------------------|------------------|-------------------------|-------------|-------------|-----------------------|------|--------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| country,<br>(variety)               | year             | Form                    | kg<br>ai/ha | kg<br>ai/hL | water<br>(L/ha)       | no.  | days   | a                                                                                 | difenoconazole                                                                                                                         |                            |
| RAPE<br>Germany,<br>(Express)       |                  | SC includes carbendazim | 0.13        |             | 400                   | 2    | 55     | seed<br>dried seed<br>oil<br>presscake                                            | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02                                                                                                   | gr 51197<br>IF-97/33752-00 |
| RAPE<br>Germany,<br>(Express)       |                  | SC includes carbendazim | 0.13        |             | 400                   | 2    | 55     | seed<br>dried seed<br>oil<br>presscake                                            | < 0.02                                                                                                                                 | gr 53497<br>IF-97/33753-00 |
| OLIVE<br>Spain,<br>(Alberquina)     | 2004             | EC                      | 0.24        |             | 800                   | 2    | 30     | whole olives<br>virgin oil<br>refined oil                                         | 0.93<br>1.4<br>1.3                                                                                                                     | 04-6067<br>AF/7872/SY/1    |
|                                     |                  |                         |             |             | replicate 2 replicate |      |        | virgin oil<br>refined oil<br>whole olives                                         | 1.4<br>1.3<br>0.75                                                                                                                     |                            |
|                                     |                  |                         |             |             | replicate             | proc | essing | virgin oil<br>refined oil<br>whole olives<br>virgin oil<br>refined oil            |                                                                                                                                        |                            |
| SUGAR<br>Germany,<br>(Hilma)        |                  | EC includes fenpropidin | 0.098       |             | 300                   | 2    | 28     | root juice pressed pulp thin juice thick juice raw sugar molasses                 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02                                                                                         | 96 10 62 010               |
| SUGAR<br>Germany,<br>(Reka)         |                  | EC includes fenpropidin | 0.098       |             | 300                   | 2    | 39     | root juice pressed pulp thin juice thick juice raw sugar molasses                 | < 0.02<br>< 0.02<br>< 0.02<br>< 0.02<br>< 0.02                                                                                         | 96 10 61 009               |
| APPLES<br>Germany,<br>(Mondial Gala | 2001<br>a)       | EC                      | 0.34        |             | 1000                  | 4    | 18     | fruit washed fruits pomace 22%dm pomace 95%dm juice before b juice after          | 0.415<br>0.30<br>1.48<br>6.55                                                                                                          | gap82901                   |
| APPLES<br>Germany,<br>(Mondial Gala | 2001             | EC                      | 0.34        |             | 1000                  | 4    | 18     | fruit washed fruits puree                                                         | 0.56<br>0.47<br>0.08                                                                                                                   | gap82901                   |
| APPLES<br>Chile, 1994-9<br>Spur)    |                  | EC                      |             | 0.0031      | 1600                  | 6    |        | fruit<br>fruit<br>fruit<br>fruit<br>fruit<br>fruit                                | 0.16 (< 0.02)<br>0.06 (0.02)<br>0.02 (< 0.02)<br>0.02 (< 0.02)<br>< 0.02 (< 0.02)<br>< 0.02 (< 0.02)<br>< 0.02 (< 0.02)<br>0.06 (0.02) | 2207/94 <sup>c</sup>       |
| APPLES<br>Chile, 1<br>(Golden Delic | 994-95<br>cious) | EC                      | 0.096       | 0.0065      | 1480                  |      |        | fruit<br>fruit<br>fruit<br>fruit<br>fruit<br>fruit<br>apple juice<br>pomace 16%dm | 0.17 (0.02)<br>0.16 (0.02)<br>0.06 (< 0.02)<br>0.05 (< 0.02)<br>0.02 (< 0.02)<br>< 0.02 (< 0.02)                                       | 2205/94 °                  |

| CROP                                           | Application |       |             |                 |     | PHI                        | Commodity                                 | Residues,<br>mg/kg                                                                                   | Ref |
|------------------------------------------------|-------------|-------|-------------|-----------------|-----|----------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------|-----|
| country, year (variety)                        | Form        |       | kg<br>ai/hL | water<br>(L/ha) | no. | days                       | a                                         | difenoconazole                                                                                       |     |
| APPLES<br>Chile, 1994-95<br>(Golden Delicious) | EC          | 0.050 | 0.0034      | 1470            | 6   | 14<br>27<br>41<br>55<br>91 | fruit<br>fruit<br>fruit<br>fruit<br>fruit | 0.10 (< 0.02)<br>0.07 (< 0.02)<br>0.03 (< 0.02)<br>0.02 (< 0.02)<br>0.02 (< 0.02)<br>< 0.02 (< 0.02) |     |

a - dm: dry matter. bw: before washing; aw: after washing.

Table 66. Difenoconazole residues in raw and processed commodities resulting from supervised processing trials on grapes

| CROP                                            |     | Application |                                     |             |                             |     | PHI  | Commodity                                    | Residues,<br>mg/kg                 | Ref            |
|-------------------------------------------------|-----|-------------|-------------------------------------|-------------|-----------------------------|-----|------|----------------------------------------------|------------------------------------|----------------|
| country, ye (variety)                           | ear | Form        |                                     | kg<br>ai/hL | water<br>(L/ha)             | no. | days | a                                            | difenoconazole                     |                |
| (Malvasia)                                      | 992 | EC          | 0.013<br>+0.018<br>+0.020<br>+0.026 |             | 250<br>+360<br>+400<br>+520 | 4   | 42   | grapes<br>wine                               | 0.05 0.02<br>< 0.01 < 0.01         | 2051/92        |
| GRAPES<br>Spain, 19<br>(Palamino)               | 992 | EC          | 0.018<br>+0.025<br>+0.037<br>+0.043 | 0.005       | 360<br>+500<br>+730<br>+850 | 4   | 54   | grapes<br>wine                               | 0.05 0.06<br>< 0.01 < 0.01         | 2053/92        |
| GRAPES<br>France, 19<br>(Grenache)              | 992 | EC          | 0.16                                |             | 200                         | 6   | 72   | grapes<br>wine                               | 0.03<br>< 0.01                     | OF92010<br>G98 |
| GRAPES<br>France, 1992 (Pin<br>Noir)            |     | EC          | 0.16                                |             | 850<br>+110<br>+110<br>+110 | 4   | 82   | grapes<br>wine                               | 0.02<br>< 0.01                     | OF92010<br>734 |
| GRAPES<br>France, 19<br>(Semillon)              | 992 | EC          | 0.16                                |             | 200                         | 4   | 63   | grapes<br>wine                               | 0.02<br>< 0.01                     | OF92010<br>Q98 |
| GRAPES<br>France, 19<br>(Sauvignon)             | 992 | EC          | 0.030                               |             | 150                         | 4   | 68   | grapes<br>must<br>wine, white<br>pomace, dry | < 0.02<br>< 0.02<br>< 0.01<br>0.21 | OF92016<br>U59 |
| (Gamay)                                         | 992 | EC          | 0.030                               |             | 250<br>+3×120               | 4   | 73   | grapes<br>must<br>wine, red<br>pomace, dry   | 0.05<br>0.05<br>< 0.01<br>0.77     | OF92016<br>Y56 |
| GRAPES<br>France, 1992 (Pinoir)                 | not | EC          | 0.030                               |             | 850<br>+3×110               | 4   | 82   | grapes<br>must<br>wine, red<br>pomace, dry   | 0.11                               | OF92016<br>731 |
| GRAPES<br>France, 19<br>(Chardonnay)            | 992 | EC          | 0.030                               |             | 150<br>+3×120               | 4   | 82   | grapes<br>must<br>wine, white<br>pomace, dry | 0.03<br>< 0.02<br>< 0.01<br>0.28   | OF92016<br>830 |
| GRAPES<br>France, 19<br>(Cabernet<br>Sauvignon) | 992 | EC          | 0.030                               |             | 200                         | 4   | 90   | grapes<br>must<br>wine, red<br>pomace, dry   | 0.03<br>0.02<br>< 0.01<br>0.31     | OF92016<br>Q92 |

b - Juice before and after pasteurization.

c - Studies 2204/94, 2205/94, 2207/94. Residues of metabolite CGA 205375 are in parentheses.

| CROP                                                | Application |                           |             |                        |     | PHI                             | Commodity                                                             | Residues,<br>mg/kg                                                 | Ref             |
|-----------------------------------------------------|-------------|---------------------------|-------------|------------------------|-----|---------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|-----------------|
| country, year (variety)                             | Form        | kg<br>ai/ha               | kg<br>ai/hL | water<br>(L/ha)        | no. | days                            | a                                                                     | difenoconazole                                                     |                 |
| GRAPES<br>France, 1992<br>(Tannat)                  | EC          | 0.030                     |             | 200                    | 4   | 81                              | grapes<br>must<br>wine, red<br>pomace, dry                            | 0.02<br>< 0.02<br>< 0.01<br>0.28                                   | OF92016<br>Q93  |
| GRAPES<br>France, 1992 (Ugni<br>Blanc)              | EC          | 0.030                     |             | 200                    | 4   | 60                              | grapes<br>must<br>wine, white<br>pomace, dry                          | 0.05<br>< 0.02<br>< 0.01<br>6.6                                    | OF92016<br>G94  |
| GRAPES<br>France, 1992<br>(Carignan)                | EC          | 0.030                     |             | 100                    | 4   | 71                              | grapes<br>must<br>wine, red<br>pomace, dry                            | < 0.02<br>< 0.02                                                   | OF92016<br>J97  |
| GRAPES<br>France, 1995 (Pinot<br>Noir)              | EC          | 0.030                     | 0.023       | 130                    | 4   | 68                              | grapes<br>juice<br>wine<br>wine                                       | 0.02 (< 0.02)<br>< 0.01 (< 0.01)<br>< 0.01 (0.01)<br>(u 0.01)<br>d | OF95144<br>DE97 |
| GRAPES<br>Chile, 1996-97<br>(Thomson seedless)      | EC          | 0.050                     |             | 1040<br>+740<br>+1600  | 3   | 7<br>21<br>35<br>62<br>62<br>62 | grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>juice<br>pomace 26% | 0.16<br>0.09<br>0.05<br>0.03<br>< 0.02<br>< 0.02<br>0.07           | 2217/96         |
| GRAPES<br>Chile, 1996-97<br>(Thomson seedless)      | EC          | 0.050                     |             | 810<br>+470<br>+1220   | 3   | 59                              | grapes<br>juice<br>pomace 27%<br>dm                                   | < 0.02<br>< 0.02<br>0.07                                           | 2219/96         |
| GRAPES<br>Chile, 1996-97 (Red<br>Globe)             | EC          | 0.055                     |             | 1170<br>+1280<br>+1420 | 3   | 72                              | grapes<br>juice<br>pomace 28%<br>dm                                   | < 0.02<br>< 0.02<br>0.09                                           | 2220/96         |
| GRAPES<br>Chile, 1996-97<br>(Cabernet<br>Sauvignon) | EC          | 0.046<br>+0.061<br>+0.049 |             | 730<br>+980<br>+1530   | 3   | 102                             | grapes<br>juice<br>pomace 45%<br>dm                                   | < 0.02<br>< 0.02<br>0.05                                           | 2221/96         |
| GRAPES<br>Chile, 1998-99<br>(Thompson<br>Seedless)  | EC          |                           | 0.005       | 1000                   | 3   |                                 | grapes bw<br>grapes aw<br>raisins                                     | 0.04<br>0.07 0.07                                                  | 2258/98         |
| GRAPES<br>Chile, 1998-99<br>(Thompson<br>Seedless)  | EC          | 0.25                      | 0.025       | 1000                   | 3   | 63                              | grapes bw<br>grapes aw<br>raisins                                     |                                                                    | 2258/98         |

- a dm: dry matter; bw: before washing; aw: after washing; u: sample from control (untreated) plot.
- b Duplicate plots and wine from duplicate plots.
- c Study OF92016, trial G94. The analytical result (6.6 mg/kg) was confirmed by repeat analysis. The study director investigated this apparently anomalous high result, but was not able to find a reason.
- d Study OF95144. Residues of metabolite CGA 205375 are in parentheses.

In a tomato processing trial in France, Ryan (2006, 04-6049) sprayed tomato vines with difenoconazole at 0.37 kg ai/ha and harvested tomatoes (200 kg) 7 days after the final of 3 applications. Tomatoes were processed in a set of full balance studies and then in 3 follow-up studies. Data are summarised in Table 67.

The effect on residue levels of sorting and washing tomatoes with water was first examined.

In processing to juice, unwashed tomatoes were crushed and juice and pomace were separated on a sieve. Dry pomace was produced by placing the wet pomace in an oven at  $60 \,^{\circ}\text{C}$  for 2-3 days. Citric acid (to pH 3.5) and salt (7 g/kg) were added to raw juice and the finished juice was produced by pasteurization for 1 minute at  $82-85\,^{\circ}\text{C}$ .

In the production of puree, unwashed tomatoes were crushed and concentrated in a saucepan and then sieved. Salt and citric acid were added and the puree, in glass jars, was sterilised for 10 minutes at  $115\,^{\circ}$ C.

In the simulation of canning, unwashed tomatoes were blanched and then immediately plunged into cold water to split and loosen the peel which was removed with a knife. The peeled tomatoes, in glass jars, were covered with tomato juice and sterilised for 10 minutes at 115 - 120 °C.

Table 67. Difenoconazole residues in raw and processed commodities resulting from supervised processing trials on tomatoes

| TOMATO    | ES   | Applic | ation |        |     | PHI  | Commodity       |        | Difenoconaz  | ole residues | , mg/kg  |             |
|-----------|------|--------|-------|--------|-----|------|-----------------|--------|--------------|--------------|----------|-------------|
| country,  | year | Form   | kg    | water  | no. | days |                 |        | Full balance | Follow up    | Follow u | p Follow up |
| (variety) |      |        | ai/ha | (L/ha) |     |      |                 |        | study        | study 1      | study 2  | study 3     |
| France,   | 2004 | EC     | 0.37  | 610    | 3   | 7    | fruit received  |        | 0.18         | 0.26         | 0.19     | 0.28        |
| (Netico)  |      |        |       | +720   |     |      |                 |        |              |              |          |             |
|           |      |        |       | +720   |     |      |                 |        |              |              |          |             |
| sorting   | and  |        |       |        |     |      | fruit           | sorted | 0.19         | 0.20         | 0.22     | 0.20        |
| washing   |      |        |       |        |     |      | fruit washed    |        | 0.15         | 0.11         | 0.18     | 0.16        |
| juicing   |      |        |       |        |     |      | crushed         |        | 0.24         |              |          |             |
|           |      |        |       |        |     |      | pomace,         | wet    | 0.39         | 0.54         | 0.58     | 0.47        |
|           |      |        |       |        |     |      | juice,          | raw    | 0.07         |              |          |             |
|           |      |        |       |        |     |      | pomace,         | dry    | 5.1          | 5.2          | 5.7      | 4.8         |
|           |      |        |       |        |     |      | juice, finished | i      | 0.05         | 0.04         | 0.06     | 0.04        |
| puree     |      |        |       |        |     |      | crushed         |        | 0.22         |              |          |             |
|           |      |        |       |        |     |      | sieved          | tomato | 0.18         |              |          |             |
|           |      |        |       |        |     |      | pomace,         | wet    | 1.3          |              |          |             |
|           |      |        |       |        |     |      | puree,          | raw    | 0.16         |              |          |             |
|           |      |        |       |        |     |      | puree, finishe  | d      | 0.18         | 0.15         | 0.14     | 0.15        |
| canning   |      |        |       |        |     |      | fruit,          | peeled | < 0.01       |              |          |             |
|           |      |        |       |        |     |      | peel            |        | 1.9          |              |          |             |
|           |      |        |       |        |     |      | canned          |        | 0.02         |              |          |             |
|           |      |        |       |        |     |      | canned & ster   | ilized | 0.01         | 0.02         | < 0.01   | 0.02        |

In a carrot processing trial in France, Anderson (2006, 05-6022-REG) sprayed a carrot crop with difenoconazole at 0.50 kg ai/ha and harvested carrots (160 kg) 7 days after the final of 3 applications. Carrots were processed in a set of full balance studies and then in 3 follow-up studies. Data are summarised in Table 68.

In the simulation of canning, carrots were sorted and peeled and both ends were removed. The peeled carrots were washed thoroughly and blanched in boiling water for 1 minute and placed in jars with brine and citric acid to produce pH 3.5 and then sealed and sterilized for 10 minutes at  $115 - 120\,^{\circ}$ C. For cooked carrots, the washed carrots were cooked in boiling water for 15 minutes and packaged in plastic bags under vacuum.

For juicing, carrots were washed thoroughly after sorting, peeling and end removal. The washed carrots were processed in a juice extractor which separated juice from pulp in a centrifugal filter. After the pH of the juice was adjusted to 3.5 with citric acid, the juice was pasteurized at approximately 85 °C and packaged in glass jars.

Table 68. Difenoconazole residues in raw and processed commodities resulting from supervised processing trials on carrots

| CARROT    | S    | Appli | cation |        |     | PHI  | _                 |          | Difenoconaz  | ole residues | , mg/kg  |          |    |
|-----------|------|-------|--------|--------|-----|------|-------------------|----------|--------------|--------------|----------|----------|----|
| country,  | year | Form  | kg     | water  | no. | days |                   |          | Full balance | Follow up    | Follow u | Follow 1 | up |
| (variety) |      |       | ai/ha  | (L/ha) |     |      |                   |          | study        | study 1      | study 2  | study 3  |    |
| France, 2 | 2005 | EC    | 0.50   | 400    | 3   | 7    | carrots pre-proc  | essing   | 0.31         | 0.25         | 0.44     | 0.44     |    |
| (Maestro) |      |       |        |        |     |      |                   |          |              |              |          |          |    |
| canning   |      |       |        |        |     |      | carrots,          | peeled   | 0.04         |              |          |          |    |
|           |      |       |        |        |     |      | carrots,          | washed   | 0.02         | 0.08         | 0.02     | 0.02     |    |
|           |      |       |        |        |     |      | carrots,          | blanched | 0.03         |              |          |          |    |
|           |      |       |        |        |     |      | carrots, canned   |          | 0.01         | 0.03         | 0.02     | 0.01     |    |
| cooking   |      |       |        |        |     |      | carrots,          | peeled   | 0.03         |              |          |          |    |
|           |      |       |        |        |     |      | carrots,          | washed   | 0.04         | 0.03         | 0.02     | 0.02     |    |
|           |      |       |        |        |     |      | carrots, cooked   |          | 0.02         | 0.01         | 0.02     | 0.02     |    |
| juicing   |      |       |        |        |     |      | carrots,          | peeled   | 0.05         |              |          |          |    |
|           |      |       |        |        |     |      | carrots,          | washed   | 0.05         | 0.04         | 0.02     | 0.03     |    |
|           |      |       |        |        |     |      | juice,            | raw      | 0.02         |              |          |          |    |
|           |      |       |        |        |     |      | carrot            | pulp     | 0.03         |              |          |          |    |
|           |      |       |        |        |     |      | juice, pasteurize | ed       | 0.02         | 0.03         | 0.01     | 0.02     |    |

Table 69. Summary of processing factors for difenoconazole residues. The factors are calculated from the data recorded in tables in this section

| Raw agricultural commodity (RAC) | Processed commodity | Calculated processing factors.                  | Median or best estimate |  |
|----------------------------------|---------------------|-------------------------------------------------|-------------------------|--|
|                                  |                     |                                                 |                         |  |
| Apple                            | juice               | < 0.02, < 1.0. < 1.0                            | < 0.02                  |  |
| Apple                            | dry pomace          | 15.4                                            | 15                      |  |
| Apple                            | puree               | 0.14                                            | 0.14                    |  |
| Carrot                           | canned              | 0.02, 0.03, 0.05, 0.12                          | 0.04                    |  |
| Carrot                           | juice               | 0.02, 0.05, 0.06, 0.12                          | 0.055                   |  |
| Grapes                           | juice               | < 0.5                                           | < 0.5                   |  |
| Grapes                           | dry pomace          | 9.3, 10.3, 14.0, 15.4                           | 12                      |  |
| Grapes                           | raisins             | 1.01, 1.4                                       | 1.2                     |  |
| Grapes                           | wine                | < 0.18, < 0.20, < 0.20, < 0.29, < 0.33, < 0.33, | < 0.18                  |  |
| •                                |                     | < 0.33, < 0.50, < 0.50, < 0.50, < 0.50          |                         |  |
| Olives                           | refined oil         | 1.19, 1.40, 1.50, 1.51                          | 1.4                     |  |
| Olives                           | virgin oil          | 1.47, 1.50, 1.50, 1.63                          | 1.5                     |  |
| Tomatoes                         | canned tomato       | < 0.05, 0.06, 0.07, 0.08                        | 0.065                   |  |
| Tomatoes                         | juice               | 0.14, 0.15, 0.28, 0.32                          | 0.22                    |  |
| Tomatoes                         | puree               | 0.54, 0.58, 0.74, 1.00                          | 0.66                    |  |

### **RESIDUES IN ANIMAL COMMODITIES**

# Farm animal feeding studies

The meeting received a lactating dairy cow feeding study and a laying hen feeding study, which provided information on likely residues resulting in animal commodities, milk and eggs from difenoconazole residues in the animal diet.

## Lactating dairy cows

Groups of 3 lactating Holstein dairy cows (animals weighing 498-608 kg and 522-636 kg on days 1 and 29 respectively) were dosed once daily via gelatin capsule with difenoconazole at 1 ppm (1×), 3 ppm (3×) and 10 ppm (10×) in the dry-weight diet, equivalent to doses of 0.035, 0.11 and 0.35 mg difenoconazole per kg body weight, for 29-30 consecutive days (Tribolet, 2000, 202/99). Milk was collected on 9 occasions for analysis (days 0, 2, 5, 8, 12, 15, 19, 22 and 28). On days 29 and 30, the

animals were slaughtered for tissue collection. Tissues collected for analysis were liver, kidney, perirenal fat, omental fat, round muscle, diaphragm muscle and loin muscle. Animals consumed approximately 20 kg dry feed each per day and produced approximately 19 - 26 kg milk per animal per day (means for each animal through the test period).

Parent difenoconazole residues did not occur above LOQ in muscle, kidney or fat tissues or milk for any of the test doses (Table 70). Parent difenoconazole residues were present in liver at the 10 ppm feeding level. Metabolite CGA 205375 was present in each of the tissues at 3 and 10 ppm feeding levels and in the liver and fat at the 1 ppm feeding level. The concentration of metabolite CGA 205375 in fat was approximately 3.3 times its concentration in muscle.

The average concentration of metabolite CGA 205375 in the tissues at the 10 ppm feeding level were: muscle 0.020 mg/kg; liver 0.30 mg/kg; kidney 0.044 mg/kg; fat 0.072 mg/kg. For liver, the transfer factors for the 3 feeding levels were reasonably consistent for metabolite CGA 205375. For fat, the transfer factors for metabolite CGA 205375 apparently decreased as the feeding level increased.

Metabolite CGA 205375 was consistently present in the milk from day 2 onwards at 0.005 - 0.009 mg/kg for the 10 ppm feeding level (Table 70).

Table 70. Residues in milk and tissues of lactating Holstein dairy cows (3 per group) dosed once daily via gelatin capsule with difenoconazole at the equivalent of 1 ppm (1 $\times$ ), 3 ppm (3 $\times$ ) and 10 ppm (10 $\times$ ) in the dry-weight diet, for 29 – 30 consecutive days

| Substrate                | Residues, mg/kg – individual animals |                   |                |                      |                 |                |       |  |  |
|--------------------------|--------------------------------------|-------------------|----------------|----------------------|-----------------|----------------|-------|--|--|
|                          | Dosing, 1 ppm                        |                   | Dosing, 3 ppm  |                      | Dosing, 10 ppn  |                |       |  |  |
|                          | difenoconazole                       | CGA 205375        | difenoconazole | CGA 205375           | difenoconazole  | CGA 20537      | 75    |  |  |
| Loin muscle              | < 0.01 (3)                           | < 0.01 (3)        | < 0.01 (3)     | 0.01 0.012 < 0.01    | < 0.01 (3)      | 0.021 0.024    | 0.02  |  |  |
| Round muscle             | < 0.01 (3)                           | < 0.01 (3)        | < 0.01 (3)     | $0.01 \ 0.01 < 0.01$ | < 0.01 (3)      | 0.016          | 0.019 |  |  |
|                          |                                      |                   |                |                      |                 | 0.014          |       |  |  |
| Diaphragm muscle         | < 0.01 (3)                           | < 0.01 (3)        | < 0.01 (3)     | $0.022\ 0.01 < 0.01$ | < 0.01 (3)      | 0.023          | 0.028 |  |  |
|                          |                                      |                   |                |                      |                 | 0.013          |       |  |  |
| Liver                    | < 0.01 (3)                           | 0.035 0.038 0.044 | ` '            |                      | 0.012 0.02 0.01 |                |       |  |  |
| Kidney                   | < 0.01 (3)                           | < 0.01 (3)        | < 0.01 (3)+    | 0.018 0.018 0.015    | < 0.01 (3)      | 0.041          | 0.052 |  |  |
|                          | 0.04 (2)                             | 0.01.0.010.0.01   | 0.04 (0)       |                      | 0.04 (0)        | 0.038          | 0.00= |  |  |
|                          | < 0.01 (3)                           | 0.01 0.013 0.01   | < 0.01 (3)     | 0.033 0.027 0.02     | < 0.01 (3)      | 0.063          | 0.095 |  |  |
|                          | 0.01.(2)                             | 0.01.0.012.0.01   | 0.01.(2)       | 0.001.0.000.0.000    | 0.01 (2)        | 0.072          | 0.070 |  |  |
| Perirenal fat            | < 0.01 (3)                           | 0.01 0.013 0.01   | < 0.01 (3)     | 0.031 0.032 0.022    | < 0.01 (3)      | 0.057          | 0.079 |  |  |
|                          | 0.005 (2)                            | 0.005 (2)         | 0.005 (2)      | 0.007 (2)            | 0.005 (2)       | 0.065          |       |  |  |
| Milk, day 0 <sup>a</sup> | < 0.005 (3)                          | < 0.005 (3)       | < 0.005 (3)    | < 0.005 (3)          | < 0.005 (3)     | < 0.005 (3)    |       |  |  |
| Milk, day 2              | < 0.005 (3)                          | < 0.005 (3)       | < 0.005 (3)    | < 0.005 (3)          | < 0.005 (3)     | 0.009          | 0.007 |  |  |
|                          |                                      |                   |                |                      |                 | 0.006          |       |  |  |
| Milk, day 5              | < 0.005 (3)                          | < 0.005 (3)       | < 0.005 (3)    | < 0.005 (3)          | < 0.005 (3)     | 0.008          | 0.009 |  |  |
|                          | 0.005 (2)                            | 0.005 (2)         | 0.005 (2)      | 0.005 (2)            | 0.005 (2)       | 0.005          | 0.000 |  |  |
| Milk, day 8              | < 0.005 (3)                          | < 0.005 (3)       | < 0.005 (3)    | < 0.005 (3)          | < 0.005 (3)     | 0.009          | 0.008 |  |  |
| M:II 1 10                | .0.005 (2)                           | .0.005 (2)        | . 0. 005 (2)   | .0.005 (2)           | .0.005 (2)      | 0.005          | 0.000 |  |  |
| Milk, day 12             | < 0.005 (3)                          | < 0.005 (3)       | < 0.005 (3)    | < 0.005 (3)          | < 0.005 (3)     | 0.007<br>0.005 | 0.009 |  |  |
| Milk, day 15             | < 0.005 (3)                          | < 0.005 (3)       | < 0.005 (3)    | < 0.005 (3)          | < 0.005 (3)     | 0.003          | 0.008 |  |  |
| Milk, day 15             | < 0.003 (3)                          | < 0.003 (3)       | < 0.003 (3)    | < 0.003 (3)          | < 0.003 (3)     | 0.008          | 0.008 |  |  |
| Milk, day 19             | < 0.005 (3)                          | < 0.005 (3)       | < 0.005 (3)    | < 0.005 (3)          | < 0.005 (3)     | 0.003          | 0.008 |  |  |
|                          | (0.003 (3)                           | < 0.003 (3)       | < 0.003 (3)    | < 0.003 (3)          | < 0.003 (3)     | 0.007          | 0.008 |  |  |
| Milk, day 22             | < 0.005 (3)                          | < 0.005 (3)       | < 0.005 (3)    | < 0.005 (3)          | < 0.005 (3)     | 0.007          | 0.008 |  |  |
|                          | 0.005 (5)                            | (0.003 (3)        | 0.003 (3)      | (0.005 (5)           | 0.005 (3)       | 0.007          | 0.000 |  |  |
| Milk, day 28             | < 0.005 (3)                          | < 0.005 (3)       | < 0.005 (3)    | < 0.005 (3)          | < 0.005 (3)     | 0.007          | 0.008 |  |  |
|                          | 0.005 (5)                            | (0.005 (5)        | 0.003 (3)      | (0.005 (5)           | 0.005 (5)       | 0.006          | 5.000 |  |  |

a - Milk concentrations were provided as  $\mu$ g/L. They have been converted to mg/kg on the assumption that milk density is 1 kg/L.

Groups of 3 lactating Holstein dairy cows (animals weighing 508 – 708 kg and 508 – 710 kg at study initiation and completion respectively) were dosed once daily via gelatin capsule with

difenoconazole at 1 ppm (1×), 5 ppm (5×) and 15 ppm (15×) in the dry-weight diet, equivalent to doses of 20, 100 and 300 mg per animal, for 29-30 consecutive days (Ryan, 2006, T009107-04-REG). Milk was collected on 10 days for analysis, equal volumes of evening and morning milk, (days 0 before treatment, 2, 5, 8, 12, 15, 19, 22, 26 and 28). On days 29 and 30, the animals were slaughtered between 24-30 hours after the final dose for tissue collection. Tissues collected for analysis were liver, kidney, perirenal fat, mesenterial fat, subcutaneous fat, round muscle, diaphragm muscle and loin muscle. Animals consumed approximately 22-25 kg dry feed each per day and produced approximately 13-35 kg milk per animal per day (means for each animal through the test period).

Parent difenoconazole residues did not occur above LOQ in muscle, kidney or fat tissues or milk for any of the test doses (Table 71). Parent difenoconazole residues were present in liver at the 5 and 15 ppm feeding levels. Metabolite CGA 205375, the major part of the residue, was present in each of the tissues at 5 and 15 ppm feeding levels and in the liver, kidney and fat at the 1 ppm feeding level. At the 15 ppm feeding level, the concentration of metabolite CGA 205375 in fat was approximately 3.1 times its concentration in muscle. Metabolite 1,2,4-triazole did not occur above LOQ in tissues and milk at the 1 ppm dosing level or in fat at the 15 ppm dosing level; it was present in milk, muscle, liver and kidney at the 5 and 15 ppm feeding levels.

The average concentration of metabolite CGA 205375 in the tissues at the 15 ppm feeding level were: muscle 0.04 mg/kg; liver 0.57 mg/kg; kidney 0.11 mg/kg; fat 0.12 mg/kg. For liver, the transfer factors for the 5 ppm and 15ppm feeding levels were close for metabolite CGA 205375. For fat, the transfer factors for metabolite CGA 205375 were also consistent for the 5 ppm and 15ppm feeding levels.

Metabolite CGA 205375 reached a plateau level in milk of approximately 0.012 mg/kg within 2 days at the 15 ppm feeding level. Metabolite 1,2,4-triazole was consistently present in the milk at the 5 and 15 ppm feeding levels. Plateau concentrations in milk of approximately 0.017 mg/kg and 0.04 mg/kg were quickly reached for the 5 ppm and 15 ppm feeding levels respectively (Table 71).

Table 71. Residues in milk and tissues of lactating Holstein dairy cows (3 per group) dosed once daily via gelatin capsule with difenoconazole at the equivalent of 1 ppm  $(1\times)$ , 5 ppm  $(5\times)$  and 15 ppm  $(15\times)$  in the dry-weight diet, for 29-30 consecutive days

| Substrate        | Residues, 1   | mg/kg – ind | ividual anim | als        |          |                 |                |           |            |
|------------------|---------------|-------------|--------------|------------|----------|-----------------|----------------|-----------|------------|
|                  | Dosing, 1 ppm |             |              | Dosing, 5  | opm      |                 | Dosing, 15 ppm |           |            |
|                  | difeno-       | CGA         | 1,2,4-       | difeno-    | CGA      | 1,2,4-          | difeno-        | CGA       | 1,2,4-     |
|                  | conazole      | 205375      | triazole     | conazole   | 205375   | triazole        | conazole       | 205375    | triazole   |
| Loin muscle      | < 0.01 (3)    | < 0.01 (3)  | < 0.01 (3)   | < 0.01 (3) | < 0.01   | 0.01 0.01 0.02  | < 0.01 (3)     | 0.04 0.03 | 0.03 0.04  |
|                  |               |             |              |            | 0.01     | 0.01            |                | 0.04      | 0.03       |
| Round muscle     | < 0.01 (3)    | < 0.01 (3)  | < 0.01 (3)   | < 0.01 (3) | < 0.01   | (2) 0.01 (3)    | < 0.01 (3)     | 0.04 0.04 | 0.03 0.04  |
|                  |               |             |              |            | 0.01     |                 |                | 0.03      | 0.03       |
| Diaphragm muscle | < 0.01 (3)    | < 0.01 (3)  | < 0.01 (3)   | < 0.01 (3) | 0.01 (3) | 0.01(3)         | < 0.01 (3)     | 0.05 0.05 | 0.03 0.04  |
|                  |               |             |              |            |          |                 |                | 0.04      | 0.03       |
| Liver            | < 0.01 (3)    | 0.06 0.07   | 7 < 0.01 (3) | 0.01 0.01  | 0.14     | 0.23 0.01 0.01  | 0.03(3)        | 0.66 0.52 | 0.03 0.02  |
|                  |               | 0.05        |              | 0.02       | 0.22     | < 0.01          |                | 0.53      | 0.02       |
| Kidney           | < 0.01 (3)    | < 0.01      | < 0.01 (3)   | < 0.01 (3) | 0.03     | 0.04 0.02 (3)   | < 0.01 (3)     | 0.12 0.12 | 0.03 0.05  |
|                  |               | 0.01        |              |            | 0.04     |                 |                | 0.09      | 0.03       |
|                  |               | < 0.01      |              |            |          |                 |                |           |            |
| Perirenal fat    | < 0.01 (3)    | < 0.01      | < 0.01 (3)   | < 0.01 (3) | 0.03     | 0.05 < 0.01 (3) | < 0.01 (3)     | 0.13 0.13 | < 0.01 (3) |
|                  |               | 0.01        |              |            | 0.05     |                 |                | 0.10      |            |
|                  |               | < 0.01      |              |            |          |                 |                |           |            |

| Substrate        | Residues,     | Residues, mg/kg – individual animals |                |             |              |             |       |            |          |        |              |        |
|------------------|---------------|--------------------------------------|----------------|-------------|--------------|-------------|-------|------------|----------|--------|--------------|--------|
|                  | Dosing, 1 ppm |                                      |                | Dosing, 5   | ppm          |             |       | Dosing, 15 |          |        |              |        |
|                  | difeno-       | CGA                                  | 1,2,4-         | difeno-     | CGA          | 1,2,        |       | difeno-    | CGA      |        | 1,2,4        |        |
|                  | conazole      | 205375                               | triazole       | conazole    | 205373       |             |       | conazole   | 20537    |        | triaz        |        |
| Mesenterial fat  | < 0.01 (3)    |                                      | < 0.01 (3)     | < 0.01 (3)  |              | 0.04 < 0.0  | 1 (3) | < 0.01 (3) |          | 0.12   | < 0.0        | 1 (3)  |
|                  |               | 0.01                                 |                |             | 0.04         |             |       |            | 0.12     |        |              |        |
|                  |               | < 0.01                               |                |             |              |             |       |            |          |        |              |        |
| Subcutaneous fat | < 0.01 (3)    | < 0.01                               | < 0.01 (3)     | < 0.01 (3)  |              | 0.04 < 0.0  | 1 (3) | < 0.01 (3) |          | 0.13   | < 0.0        | 01 (3) |
|                  |               | 0.02                                 |                |             | 0.04         |             |       |            | 0.11     |        |              |        |
| Milk, day 0      | < 0.005 (2)   | < 0.01                               | 3) < 0.01 (3)  | < 0.005 (3) | 0 00         | 5 (2) < 0.0 | 1 (2) | < 0.005 (3 | ) < 0.00 | )5 (2) | z 0 0        | 1 (2)  |
| Milk, day 0      |               |                                      | 3) < 0.01 (3)  | < 0.005 (3) |              |             |       | < 0.005 (3 |          | 13 (3) | < 0.0        |        |
| wilk, day 2      | < 0.003 (3)   | ) < 0.003 (                          | 3) < 0.01 (3)  | < 0.003 (3) | 0.007 (0.00) | 0.02        | 0.01  | < 0.003 (3 | 0.012    |        | 0.02         | 0.02   |
|                  |               |                                      |                |             | 0.007        | 0.02        |       |            | 0.013    |        | 0.03         |        |
| Milk, day 5      | < 0.005 (3)   | ) < 0.005 (                          | 3) < 0.01 (3)  | < 0.005 (3) | < 0.00       | 5 (2)0.01   | 0.02  | < 0.005 (3 |          |        | 0.03         | 0.04   |
| ivilik, day 5    | 0.005 (5)     | ( 0.005                              | 3) < 0.01 (3)  | 0.005 (5)   | 0.006        | 0.02        | 0.02  | 0.005 (5   | 0.012    |        | 0.04         | 0.01   |
|                  |               |                                      |                |             | 0.000        | 0.02        |       |            | 0.013    |        | 0.0.         |        |
| Milk, day 8      | < 0.005 (3)   | ) < 0.005 (                          | 3) < 0.01(3)   | < 0.005 (3) | 0.00         | 5 (3) 0.01  | 0.01  | < 0.005 (3 |          |        | 0.04         | 0.04   |
|                  | , ,           | `                                    | , , ,          |             |              | 0.02        |       | ,          | 0.013    |        | 0.05         |        |
|                  |               |                                      |                |             |              |             |       |            | 0.009    |        |              |        |
| Milk, day 12     | < 0.005 (3)   | ) < 0.005 (                          | (3) < 0.01 (3) | < 0.005 (3) | 0.00         | 5 (3) 0.01  | 0.03  | < 0.005 (3 | /        |        | 0.04         | 0.04   |
|                  |               |                                      |                |             |              | 0.02        |       |            | 0.011    |        | 0.05         |        |
|                  |               |                                      |                |             |              |             |       |            | 0.008    |        |              |        |
| Milk, day 15     | < 0.005 (3)   | ) < 0.005 (                          | 3) < 0.01 (3)  | < 0.005 (3) | ) < 0.00     | 5 (3) 0.02  | (3)   | < 0.005 (3 |          |        | 0.03         | 0.04   |
|                  |               |                                      |                |             |              |             |       |            | 0.014    |        | 0.05         |        |
| <b>N</b> CH 1 10 | 0.005 (2)     | 0.005.4                              | 2) . 0.01 (2)  | 0.005 (2)   | 0.00         | 5 (2) 0 01  | 0.02  | 0.005.0    | 0.009    |        | 0.02         | 0.02   |
| Milk, day 19     | < 0.005 (3)   | ) < 0.005 (.                         | 3) < 0.01 (3)  | < 0.005 (3) | ) < 0.00     | 0.02        | 0.02  | < 0.005 (3 | 0.011    |        | 0.03<br>0.05 | 0.03   |
|                  |               |                                      |                |             |              | 0.02        |       |            | 0.013    |        | 0.03         |        |
| Milk, day 22     | < 0.005 (3)   | ) < 0.005 (°                         | 3) < 0.01 (3)  | < 0.005 (3) | <u> </u>     | 5 (3) 0 01  | 0.02  | < 0.005 (3 |          |        | 0.04         | 0.04   |
| Willik, day 22   | 0.003 (3)     | ) < 0.003 (                          | 3) < 0.01 (3)  | < 0.003 (3) | ) < 0.00.    | 0.02        | 0.02  | (3         | 0.011    |        | 0.04         | 0.04   |
|                  |               |                                      |                |             |              | 0.02        |       |            | 0.011    |        | 0.03         |        |
| Milk, day 26     | < 0.005 (3)   | ) < 0.005 (                          | 3) < 0.01 (3)  | < 0.005 (3) | 0.00         | 5 (3) 0.01  | 0.02  | < 0.005 (3 |          |        | 0.04         | 0.04   |
| inini, aay 20    | 10.000 (2)    | , 10.000 (                           | e) (0.01 (e)   | 10.000 (5)  | , (0.00.     | 0.02        | 0.02  | (5         | 0.010    |        | 0.05         | 0.0.   |
|                  |               |                                      |                |             |              |             |       |            | 0.009    |        |              |        |
| Milk, day 28     | < 0.005 (3)   | ) < 0.005 (                          | 3) < 0.01 (3)  | < 0.005 (3) | ) < 0.00     | 5 (3) 0.01  | 0.02  | < 0.005 (3 |          |        | 0.04         | 0.03   |
|                  |               | `                                    |                |             |              | 0.02        |       | ì          | 0.009    |        | 0.04         |        |
|                  |               |                                      |                |             |              |             |       |            | 0.011    |        |              |        |

## Laying hens

Four groups of 15 laying white leghorn hens (3 subgroups of 5 birds per group weighing approximately 1.6 kg/bird at study initiation and completion respectively) were fed rations treated with difenoconazole at 0.3 ppm, 1 ppm, 3 ppm and 10 ppm, for 28 consecutive days (Ryan, 2006, T000141-05-REG). Eggs were collected on 10 occasions for analysis (days 0 before treatment, 1, 3, 6, 9, 13, 16, 20, 23 and 28). The birds were slaughtered between 20 – 24 h after removal of the treated food. Tissues collected for analysis were skin plus attached fat, peritoneal fat, liver and breast plus thigh muscle. Birds consumed approximately 130 – 140 g feed each per day. Residues data for difenoconazole and metabolites CGA 205375 and 1,2,4-triazole are summarised in Table 72. Tissue samples from the 0.3 ppm feeding group were not analysed because residues were at or below LOQ in the 1 ppm feeding group.

Parent difenoconazole residues did not occur above LOQ in muscle, fat, liver or eggs for any of the test doses (Table 72). Metabolite CGA 205375 was not present in the tissues. Average levels of 1,2,4-triazole in the tissues at the 10 ppm feeding level were: skin + attached fat 0.012 mg/kg; peritoneal fat < 0.005 mg/kg; liver 0.02 mg/kg; muscle 0.022 mg/kg.

Metabolite CGA 205375 occurred in eggs at the 1, 3 and 10 ppm feeding levels. It reached a plateau after approximately 9 days with plateau levels of 0.037 mg/kg and 0.13 mg/kg at the 3 and 10 ppm feeding levels respectively. At the 1 ppm feeding level, CGA 205375 was present in eggs at close to the LOQ (0.01 mg/kg).

Metabolite 1,2,4-triazole occurred in eggs at the 1, 3 and 10 ppm feeding levels. It reached a plateau after approximately 6 days with plateau levels of 0.007, 0.020 and 0.060 mg/kg at the 1, 3 and 10 ppm feeding levels respectively.

Table 72. Residues in eggs and tissues of laying white leghorn hens fed rations treated with difenoconazole at 1 ppm, 3 ppm and 10 ppm, for 28 consecutive days

| Substrate           | Residues               | , mg/kg – da | ta on 3 subgr        | oups of 5           | 5 birds p | oer gro | oup <sup>a</sup> |        |         |         |                 |                |       |
|---------------------|------------------------|--------------|----------------------|---------------------|-----------|---------|------------------|--------|---------|---------|-----------------|----------------|-------|
|                     | Dosing, 1              |              |                      | Dosing,             |           |         |                  |        | Dosing  | g, 10 j | ppm             |                |       |
|                     | difeno-                | CGA          | 1,2,4-               | difeno-             | CGA       | 1       | 1,2,4-           |        | difeno- | . (     | CGA             | 1,2,4-         |       |
|                     | conazole               | 205375       | triazole             | conazol             | e 20537   | 75 t    | riazol           | le     | conazo  | le 2    | 05375           | triazole       | ;     |
| Skin + attached fat | na <sup>b</sup>        | na           | < 0.005 (3)          | < 0.01 (3           | 3) < 0.01 | 1 0     | .005             |        | < 0.01  | (3) <   | 0.01            | 0.013          | 0.014 |
|                     |                        |              |                      |                     | (3)       | <       | 0.00             | 5 (2)  |         | (.      | 3)              | 0.009          |       |
| Peritoneal fat      | na                     | na           | < 0.005 (3)          | < 0.01 (3           | 3) < 0.01 | 1 <     | 0.00             | 5 (3)  | < 0.01  | (3) <   | : 0.01          | < 0.005        | (3)   |
|                     |                        |              |                      |                     | (3)       |         |                  |        |         |         | 3)              |                |       |
| Liver               | na                     | na           | < 0.01 (3)           | < 0.01 (3           | 3) < 0.01 | 1 0     | .01              | < 0.01 | < 0.01  | (3) <   | 0.01            | 0.02(3)        | 1     |
|                     |                        |              |                      |                     | (3)       | ,       | 2)               |        |         |         | 3)              |                |       |
| Breast, thigh       | na                     | na           | < 0.005 (3)          | < 0.01 (3           | 3) < 0.01 | 1 0     | .008             |        | < 0.01  | (3) <   | 0.01            | 0.022          | 0.023 |
| muscle              |                        |              |                      |                     | (3)       |         | 0.00             |        |         |         | 3)              | 0.020          |       |
| Eggs, day 0         | < 0.01 (3)             | (0.01(3))    | < 0.005 (3)          | < 0.01 (3           | 3) < 0.01 | 1 <     | 0.00             | 5 (3)  | < 0.01  | (3) <   | : 0.01          | < 0.005        | (3)   |
|                     |                        |              |                      |                     | (3)       |         |                  |        |         | _ `     | 3)              |                |       |
| Eggs, day 1         | < 0.01 (3)             | (0.01(3))    | < 0.005 (3)          | < 0.01 (3           | *         | 1 <     | 0.00             | 5 (3)  | < 0.01  | . ,     |                 | < 0.005        | (3)   |
|                     |                        |              |                      |                     | (3)       |         |                  |        |         |         | 3)              |                |       |
| Eggs, day 3         | < 0.01 (3)             | (3)          | 0.005 0.005          | < 0.01 (3           | -         |         |                  | 0.017  | < 0.01  | (3) 0   | .03 (3)         | 0.052          | 0.041 |
|                     |                        |              | 0.006                |                     | (3)       |         | .013             |        |         |         |                 | 0.046          |       |
| Eggs, day 6         | < 0.01 (3)             | (3)          | 0.006 0.007          | < 0.01 (3           | -         |         |                  | 0.022  | < 0.01  | (3) 0   | .10 (3)         | 0.067          | 0.060 |
|                     |                        |              | 0.007                |                     | 0.03      |         | .023             |        |         |         |                 | 0.060          |       |
| Eggs, day 9         | < 0.01 (3)             | •            | 0.008 0.007          | < 0.01 (3           | -         |         |                  | 0.022  | < 0.01  | . ,     |                 | 0.067          | 0.055 |
|                     |                        | < 0.01 (2)   | 0.006                |                     | 0.04      | 0       | .022             |        |         |         | .12             | 0.056          |       |
|                     | 0.04 (2)               |              |                      |                     |           |         |                  | 0.051  | 0.04    |         | .13             | 0.066          | 0.055 |
| Eggs, day 13        | < 0.01 (3)             | (0.01(3))    | 0.007 0.006          | <b>&lt;</b> 0.01 (3 | -         |         |                  | 0.021  | < 0.01  | . ,     |                 |                | 0.056 |
| F 1 16              | 0.01.(0)               | 0.01         | 0.005                | 0.01.0              | 0.04      |         | .023             | 0.000  | 0.01    |         | .12             | 0.056          | 0.056 |
| Eggs, day 16        | < 0.01 (3)             |              | 0.007 0.007          | < 0.01 (3           | -         |         |                  | 0.022  | < 0.01  |         |                 |                | 0.056 |
| E 1 20              | . 0.01 (2)             | < 0.01 (2)   | 0.006                | . 0. 01. //         | 0.04      |         | 0.024            | 0.000  | . 0.01  |         | .14             | 0.059          | 0.050 |
| Eggs, day 20        | < 0.01 (3 <sub>2</sub> |              | 0.010 0.008          | < 0.01 (3           | -         |         |                  | 0.023  | < 0.01  | . ,     |                 |                | 0.058 |
| E 1 22              | . 0.01 (2)             | < 0.01       | 0.007                | . 0. 01. //         | 0.04      |         | 0.023            | 0.001  | . 0.01  |         | .13             | 0.060          | 0.056 |
| Eggs, day 23        | < 0.01 (3)             | 0.01 (3)     | 0.008 0.007<br>0.007 | K 0.01 (.           | 3)0.04 (  |         | 0.016            | 0.021  | < 0.01  | (3) 0   | .13 (3)         | 0.068<br>0.055 | 0.056 |
| E 1 20              | + O O1 /2              | \0.01 (2)    |                      | 40.01.0             | 2)0.02    |         |                  | 0.010  | 4 0 01  | (2) 0   | 12 0 14         |                | 0.056 |
| Eggs, day 28        | < 0.01 (3              | )0.01 (3)    | 0.008 0.007<br>0.007 | K 0.01 (.           | 0.04      |         | 0.016            | 0.019  | < 0.01  |         | .13 0.14<br>.13 | 0.069          | 0.056 |
|                     |                        |              | 0.007                |                     | 0.04      | U       | .024             |        |         | U       | .13             | 0.030          |       |
|                     |                        |              |                      |                     | 0.03      |         |                  |        |         |         |                 |                |       |

a - Residues of difenoconazole, CGA 205375 and 1,2,4-triazole did not exceed LOQ values in any egg sample from the 0.3 ppm feeding group.

# RESIDUES IN FOOD IN COMMERCE OR AT CONSUMPTION

Difenoconazole was included in the list of analytes examined in foods in the 20th Australian Total Diet Survey (FSANZ, 2003). The dietary exposure for difenoconazole was estimated to be zero, because its concentration in the surveyed foods was less than the limit of detection (0.01 mg/kg).

Difenoconazole was included in the Australian National Residue Survey program of monitoring apples and pears in 2004-05 (NRS, 2005) and 2005-06 (NRS, 2006). No residues (limit of reporting 0.05 mg/kg) were reported in apples (471 samples) and pears (139 samples) for the two years.

# NATIONAL MAXIMUM RESIDUE LIMITS

Information was provided on national residue definitions for difenoconazole.

Australia:- (FSANZ, 2007):- Plant and animal commodities: difenoconazole.

b - na: not analysed because no residues found at the higher feeding levels.

Brazil:- Difenoconazole.

Costa Rica:- Difenoconazole.

Europe:- Plants: Difenoconazole (for monitoring and risk assessment).

Livestock: Difenoconazole and CGA205375 (for monitoring). Difenoconazole (for risk

assessment)

Indonesia: - Difenoconazole.

Japan:- Difenoconazole.

Netherlands (Muller, 2007):- Plant products: difenoconazole

Products of animal origin: sum of difenoconazole and 1-[2-[2-chlor-4(4-chlorphenoxy)-phenyl]-2-hydroxy-1-1ethyl]-H-1,2,4-triazole.

Switzerland:- Difenoconazole.

USA:- Difenoconazole.

### APPRAISAL - RESIDUE AND ANALYTICAL ASPECTS

Difenoconazole was considered for the first time by the present meeting. It is a broad-spectrum fungicide used for disease control in many fruits, vegetables, cereals and other field crops. It has preventive and curative action. Difenoconazole acts by inhibition of demethylation during ergosterol synthesis.

1-[2-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-4-methyl[1,3]dioxolan-2-ylmethyl]-1H-1,2,4-triazole

# Animal metabolism

The Meeting received animal metabolism studies with difenoconazole in rats, lactating goats and laying hens. Difenoconazole [<sup>14</sup>C] labelled in the central phenyl ring or the triazole ring was used in most of the metabolism studies. Difenoconazole [<sup>14</sup>C] labelled in the chlorophenoxy ring was used in some of the studies.

Difenoconazole is rapidly metabolized, initially to 1-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-2-(1,2,4-triazol)-1-yl-ethanol (CGA 205375) and then with cleavage of the triazole moiety from the chlorophenoxyphenyl moiety. Conjugates are formed from hydroxylated metabolites. TRR levels are higher in the liver than in other tissues. Most of the TRR is rapidly excreted.

Parent difenoconazole has a tendency to fat-solubility, but it is always a minor component of the residue. The major component of the residue in most animal commodities is CGA 205375, which appears to be fat-soluble because residue concentrations in fat are approximately 3 times as high as those in muscle. However, it is not strong fat-solubility because residue concentrations in fat are less than those in kidney and much less than those in liver (typically residues in liver are 6-8 times as high as in the fat).

When <u>rats</u> were orally dosed with labelled difenoconazole it was readily absorbed followed by extensive metabolism and excretion. The following metabolites were identified in excreta: CGA 205375, 1,2,4-triazole, 2-chloro-4-(4-chlorophenoxy)-benzoic acid, 2-chloro-4-(4-chlorophenoxy)-phenyl-hydroxyacetic acid, hydroxylated difenoconazole and hydroxylated CGA 205375. Sulphate conjugates of the hydroxylated metabolites were identified in urine. (See the toxicology report for more details of laboratory animal metabolism)

When two <u>lactating goats</u> were orally dosed with labelled ([<sup>14</sup>C]triazole and [<sup>14</sup>C]phenyl) difenoconazole for 10 consecutive days at 7.5 mg/animal/day, equivalent to 4.7 and 5.6 ppm in the feed, most of the administered [<sup>14</sup>C] was excreted in the faeces (75% and 67%) and urine (31% and 21%). Residues in milk reached a plateau by day 2 (phenyl) and days 4 – 7 (triazole). Of the [<sup>14</sup>C] in milk, 19% and 32% were distributed into the fat portion for the triazole and phenyl labels respectively (metabolite 1,2,4-triazole is water soluble). Residues of [<sup>14</sup>C] were higher in liver (0.28 and 0.26 mg/kg) than in other tissues. Metabolite CGA 205375 constituted 57 – 58% of the TRR in liver, with parent difenoconazole at 1% or less. Triazole was the major component identified in milk, constituting 47% TRR.

When four <u>lactating goats</u> were orally dosed with labelled ([ $^{14}$ C]triazole and [ $^{14}$ C]phenyl) difenoconazole for 4 consecutive days at 150 mg/animal/day, equivalent to 100 ppm in the feed, [ $^{14}$ C] recovery was marginal at 40 – 64%. The TRR in liver (7.5 and 6.0 mg/kg) was much higher than other tissues. CGA 205375 was the major residue in each tissue, accounting for approximately 30–70% of the TRR. Difenoconazole residues in liver (0.62 and 0.40 mg/kg) were higher than in other tissues. Difenoconazole accounted for 1.5 – 8.3% of the TRR in each of the tissues. In milk, CGA 205375 accounted for 21% and 34% of the TRR (0.38 and 0.14 mg/kg), while difenoconazole (6 – 9% TRR) and triazole (6% TRR) were minor parts of the residue.

Two <u>lactating goats</u> were dosed orally once daily for 4 consecutive days by gelatin capsule with 150 mg/animal/day of [\frac{14}{C}-phenyl]difenoconazole, equivalent to 100 ppm in the feed and were slaughtered approximately 6 h after the final dose for tissue collection. CGA 205375 was the major component of the residue in all tissues and milk. Parent difenoconazole was present in all tissues and milk, but never exceeding 10% of the TRR. A number of metabolites resulted from hydroxylation and conjugation with glucuronic acid, sulphate and glycine. The concentration of the main component, CGA 205375, in fat was 2.3 times its concentration in muscle, but much below its concentration in liver and similar to that in kidney, suggesting borderline fat solubility.

When 4 <u>laying hens</u> were orally dosed with labelled ([<sup>14</sup>C]triazole and [<sup>14</sup>C]phenyl) difenoconazole for 14 consecutive days at 0.55 mg/bird/day, equivalent to 5 ppm in the feed, most of the administered [<sup>14</sup>C] was excreted in the faeces (> 89%). Highest TRR appeared in the kidney (0.43 and 0.49 mg/kg) and liver (0.13 and 0.13 mg/kg). Apparent plateaus for TRR in egg whites and yolks were reached after approximately 4 and 7 days of dosing respectively. The plateau TRR values in egg whites were quite different for the two labels: 0.14 mg/kg for [<sup>14</sup>C]triazole label and 0.011 mg/kg for [<sup>14</sup>C]phenyl label, whereas the plateau levels in the yolks were essentially the same (0.28 and 0.29 mg/kg).

When 20 <u>laying hens</u> were orally dosed with labelled ([14C]triazole and [14C]phenyl) difenoconazole for 3 consecutive days at 7.5 mg/bird/day, equivalent to 68 ppm in the feed, most of the administered [14C] was excreted in the faeces (76%). Highest TRR occurred in the liver (4.3 and 4.7 mg/kg) and kidney (1.9 and 2.2 mg/kg). CGA 205375 was the major identified component in each tissue: liver (30% and 34% TRR), kidney (20% and 22%), muscle (8.8% and 35%) and fat (46% and 64%). Parent difenoconazole accounted for less than 5% TRR in each tissue. For eggs from the phenyl label treatment, CGA 205375 was the main component of the residue (73 – 83% TRR). For the triazole label, triazole accounted for 67% of TRR in egg white and 33% TRR in egg yolk, while CGA 205375 accounted for 7.8% TRR in egg white and 36% TRR in egg yolk. Approximately 4 – 5% of the TRR in egg yolks was identified as parent difenoconazole.

Five <u>laying hens</u> were dosed orally once daily for 4 consecutive days by gelatin capsule with 12.5 mg/bird/day of [<sup>14</sup>C-triazole]difenoconazole, equivalent to 121 ppm in the feed and were slaughtered approximately 6 h after the final dose for tissue collection. Significant [<sup>14</sup>C] levels

appeared in all tissues (liver 13 mg/kg, muscle 4.9 mg/kg, fat 10.4 mg/kg) and eggs (whites 4.0 mg/kg, yolks 4.5 mg/kg). CGA 205375 was a major component of the residue in tissues (liver 56% TRR, muscle 24% TRR, fat 61% TRR) and egg yolk (53% TRR). Triazole was also a significant component of the residue in tissues (liver 18% TRR, muscle 55% TRR, fat 4.6% TRR) and eggs (whites 75% TRR, yolks 31% TRR). Parent difenoconazole was a minor component of the residue in liver, muscle and egg yolk (< 5%TRR) but accounted for 18% of the TRR in fat.

The metabolism of difenoconazole in rats, goats and hens is qualitatively similar.

#### Plant metabolism

The Meeting received plant metabolism studies with difenoconazole in tomatoes, wheat, potatoes, grapes and oilseed rape. Difenoconazole [<sup>14</sup>C] labelled in the central phenyl ring, in the triazole ring or in the chlorophenoxy ring was used in the metabolism studies.

Difenoconazole is generally slowly absorbed and metabolized. In most cases, particularly for parts of the plant directly exposed to the treatment, the parent difenoconazole is the dominant part of the residue. Parts of the plant not directly exposed are more likely to contain a residue dominated by a mobile water-soluble metabolite such as triazolylalanine.

The following plant metabolites apparently do not occur as animal metabolites of difenoconazole: triazolylalanine (2-amino-3-(1,2,4]triazol)-1-yl-propionic acid), triazolyl acetic acid (1,2,4-triazol-1-yl-acetic acid) and triazolyl-lactic acid (1,2,4-triazol-1-yl-lactic acid). At least some of these metabolites are common to other fungicides containing the 1,2,4-triazole moiety.

In a <u>tomato</u> metabolism study in USA, tomato plants in pots in a greenhouse were foliar sprayed 6 times at 7 day intervals with [<sup>14</sup>C]phenyl and [<sup>14</sup>C]triazole labelled difenoconazole at the equivalent of 0.12 kg ai/ha. Parent difenoconazole was the major part of the residue on foliage. Residue levels on tomato fruits sampled 7 days after the final treatment were insufficient for identification. A field-grown tomato metabolism study produced similar results.

In another <u>tomato</u> metabolism study in USA, tomato plants in pots in a greenhouse were foliar sprayed 6 times at 7 day intervals with [\frac{14}{C}]triazole labelled difenoconazole at the equivalent of 0.12 kg ai/ha. In tomato fruits sampled 33 days after the final treatment, parent difenoconazole (12 – 51% TRR) and metabolite triazolylalanine (19 – 42% TRR) were major components of the residue (TRR 0.13 – 0.20 mg/kg). In a parallel study with phenyl labelled difenoconazole, tomato fruits, sampled 33 days after the final treatment, contained parent difenoconazole (66% TRR) as the major part of the residue (TRR 0.17 mg/kg). In both of these studies low concentrations (< 2% TRR) of metabolite CGA 205375 and its ketone (1-(2-chloro-4-(4-chloro-phenoxy)-phenyl)-2-(1,2,4-triazol)-1-yl-ethanone) occurred in the fruits.

In a <u>wheat</u> metabolism study, triazole and triazolylacetic acid were identified in the mature stalks and grain produced from [<sup>14</sup>C]triazole labelled difenoconazole treated seed. Metabolite CGA 205375 was identified in wheat tops from a parallel wheat metabolism study with [<sup>14</sup>C]phenyl labelled difenoconazole.

In a greenhouse wheat metabolism study in USA, spring wheat seeds were treated with [\frac{14}{C}]phenyl and [\frac{14}{C}]triazole labelled difenoconazole at 0.25 and 0.30 g ai/kg seed and grown to maturity. Parent difenoconazole and metabolite CGA 205375 were identified at low levels in wheat tops at 25% maturity (40 days post sowing).

In a greenhouse wheat metabolism study in USA, spring wheat was foliar sprayed 4 times with [\frac{14}{C}]phenyl and [\frac{14}{C}]triazole labelled difenoconazole at a rate equivalent to 0.25 kg ai/ha. Mature samples of grain were harvested 29 days after the final application. In grain from the [\frac{14}{C}-triazole]difenoconazole treated crop, triazolylacetic acid and triazole accounted for 20% and 10% of the TRR (1.4 mg/kg) respectively. In grain from the [\frac{14}{C}-phenyl]difenoconazole treated crop, the TRR (0.064 mg/kg) was much lower, demonstrating that metabolic cleavage of the compound occurred before translocation to the grain. In the mature stalks, difenoconazole accounted for 50% of the TRR (54 and 47 mg/kg) for both labels.

Parent difenoconazole was not identified in mature grain from the wheat metabolism studies.

In a greenhouse <u>potato</u> metabolism study in USA, potato plants were foliar sprayed 6 times with [\(^{14}\text{C}\)]chlorophenoxy labelled difenoconazole at the equivalent of 0.12 kg ai/ha per application. Very little of the [\(^{14}\text{C}\)] translocated to the tubers (TRR 0.012 mg/kg) with parent difenoconazole and two primary metabolites identified as low-level components of the residue (< 10% TRR). Parent difenoconazole was the major component (76% TRR) of the foliage residue.

In a parallel study on <u>potatoes</u> with [<sup>14</sup>C]triazole labelled difenoconazole, triazolylalanine (79% TRR) was the major part of the residue in tubers (TRR 0.087 mg/kg). Parent difenoconazole was again the major component (71% TRR) of the foliage residue.

In a field plot grape metabolism study in USA, grape vines were foliar sprayed 5 times with [\frac{14}{C}]phenyl and [\frac{14}{C}]triazole labelled difenoconazole. Parent difenoconazole was the major component (51% and 45% TRR) of the residue (TRR 0.13 and 0.12 mg/kg) in grapes harvested 20 days after 3 and 5 sprays. None of the identified metabolites exceeded 10% of the TRR in grapes. Parent difenoconazole was also the major identified component (17% TRR) of the residue (TRR 0.047 mg/kg) in grapes harvested 77 days after the second treatment.

In a field plot <u>oilseed rape</u> metabolism study in Switzerland, spring rape received two foliar sprays with [<sup>14</sup>C]chlorophenoxy labelled difenoconazole at the equivalent of 0.13 kg ai/ha. Parent difenoconazole was the major identified component of the residue in stalks (17% TRR), seeds (15% TRR) and pods (17% TRR) taken at mature harvest 39 days after the second application and in oil (26% TRR) produced from the seed. Metabolite CGA 205375 exceeded 10% of TRR in the stalks (14%) and pods (11%).

In a parallel <u>oilseed rape</u> study with [<sup>14</sup>C]triazole labelled difenoconazole, parent difenoconazole was a major identified component of the residue in stalks (17% TRR), pods (14% TRR) from samples taken at mature harvest, 39 days after the second application, and in oil (84% TRR) produced from the seed. Metabolite CGA 205375 exceeded 10% of TRR in the stalks (17%) and pods (13%). Triazolylalanine, the major residue component in the seed (56% TRR) also exceeded 10% in pods (12%). Triazolylalanine was also the major residue component in the meal (56% TRR). Other identified components of the residue in the meal were triazolylacetic acid, CGA 205375 and difenoconazole.

Parent difenoconazole is the main component of the residues in those parts of the crop directly exposed to treatment. For other parts of the crop, e.g., the grain of cereals and the tubers of potatoes, the main components of the residue are translocatable metabolites, e.g., triazolylalanine, which are common to other fungicides containing the 1,2,4-triazole moiety.

### Environmental fate in soil

The Meeting received information on soil aerobic metabolism and soil photolysis properties of difenoconazole as well as studies on the behaviour of difenoconazole residues in crop rotations. Difenoconazole residues are reasonably persistent in soils and are expected to be present in the soil at harvest time for treated root and tuber crops. Difenoconazole residues are also expected to persist in the soil until the sowing of rotational crops. The confined rotational crops studies demonstrate that difenoconazole itself does not appear as a residue in the rotational crop. The water-soluble and mobile metabolites triazolylalanine, triazolylacetic acid and triazolyl-lactic acid have been identified in the rotational crops.

Aerobic soil degradation rates were influenced by the nature of the soil, temperature, moisture status of the soil and dose when  $[^{14}C]$ difenoconazole was subjected to laboratory soil incubation. Estimated <u>aerobic soil metabolism</u> half-lives for difenoconazole at 20 °C ranged from 63 to 700 days (n=12) with a median of 181 days. After 220 - 300 days, mineralization and unextractable residues (20 - 54% of dose) were major sinks for the  $[^{14}C]$  label. The degree of mineralization was different for the phenyl and triazole label positions, e.g., 0.8 - 4.6% of the dose for the triazole label and 3.4 - 33% for the phenyl label.

CGA 205375 and 1,2,4-triazole were identified as soil metabolites. Metabolite CGA 205375 consistently reached a maximum (expressed as parent) of 5-10% of the dose and had begun to decline by the end of the observation period. Metabolite 1,2,4-triazole typically reached a maximum (expressed as parent) around 20% of the dose during the observation period. The aerobic soil metabolism of the metabolites, CGA 205375 and 1,2,4-triazole, was studied separately. The major metabolite of CGA 205375 was 1,2,4-Triazole.

Difenoconazole on a soil surface was stable to photolysis during the test period of 30 days.

In <u>rotational crops</u> with the [<sup>14</sup>C] label in the phenyl moiety, the level of carry-over residues in rotational crops was too low for characterization or identification. With the [<sup>14</sup>C] label in the triazole moiety and application to bare ground at 0.13 kg ai/ha, metabolites triazolylalanine, triazolylacetic acid and triazolyl-lactic acid were identified in rotational crops: maize grain TRR 0.21 mg/kg (66% triazolylalanine 66%); wheat grain 0.34 mg/kg (44% triazolylalanine, 26% triazolylacetic acid); lettuce heads 0.017 mg/kg (31% triazolylalanine, 43% triazolyl-lactic acid; and sugar beet tops 0.029 mg/kg (25% triazolylalanine, 54% triazolyl-lactic acid).

In outdoor <u>non-confined rotational crop</u> studies in Germany, bare ground was treated directly with difenoconazole at a rate equivalent to 0.75~kg ai/ha and the upper 10~cm soil layer was turned over to mix in the applied material. Carrots or spinach were sown 30-31~days after the difenoconazole application and harvested for analysis 97-136~days (carrots) and 62-77~days (spinach) after the application. Residues of difenoconazole (LOQ 0.02~mg/kg) and triazolylalanine (LOQ 0.05~mg/kg) in the carrots and spinach did not exceed the LOQs. Difenoconazole residue levels in the soil were in the range 0.15-0.23~mg/kg during rotational crop samplings.

## Methods of residue analysis

The Meeting received descriptions and validation data for analytical methods for residues of parent difenoconazole in raw agricultural commodities, processed commodities, feed commodities, animal tissues, milk and eggs. Methods were provided also for metabolite CGA 205375 in animal tissues, milk and eggs.

In the methods for plant commodities, macerated samples are typically extracted with methanol or acetonitrile and the extract is cleaned up by solvent partitions and solid phase column chromatography. The final residue may be determined by GLC with ECD or NPD or alternatively by LC-MS-MS. LOQs are typically in the 0.01-0.05 mg/kg range. The analytical methods for animal commodities are similar, but with extraction methods tailored for milk, eggs or animal tissues. The LOQ for milk is 0.005 mg/kg and eggs and tissues 0.01-0.05 mg/kg.

Analytical recovery data were satisfactory for difenoconazole and CGA 205375 (in animal commodities) for numerous commodities.

Residue methods were tested by independent laboratories unfamiliar with the analysis and were found to have satisfactory recoveries and no background interferences.

DFG Method S19 (revision) was demonstrated to be suitable for analysis of difenoconazole residues in a number of crop commodities.

The acetonitrile-water extraction of poultry tissues and eggs, as in the analytical method, was applied to liver, fat, muscle and egg yolk samples from a [\frac{14}{C}\triazole]diffenoconazole metabolism study and was shown to provide comparable extraction for diffenoconazole, CGA 205375 and 1,2,4-triazole with the exhaustive extraction of the metabolism study.

Stability of residues in stored analytical samples

Information was received on the freezer storage stability of parent difenoconazole residues in plant and animal commodities, and of residues of CGA 205375 in animal commodities.

Difenoconazole residues were stable in the following crop commodities for the intervals tested, some for 1 year, but most for 2 years: banana, cotton seed, cotton seed meal, cotton seed oil, lettuce, potatoes, soya beans, tomatoes, wheat forage, wheat grain and wheat straw.

Difenoconazole and metabolite CGA 205375 spiked into animal tissues (0.2 mg/kg) and milk (0.05 mg/kg) were stable when stored at or below -18 °C for approximately 10 months.

# Definition of the residue

Parent difenoconazole is the dominant component of the residue in crop commodities and is a suitable analyte for enforcement purposes.

Parent difenoconazole is generally no more than a minor component in animal commodities. The major component of the residue in most animal commodities is metabolite CGA 205375 (1-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-2-(1,2,4-triazol)-1-yl-ethanol).

In the goat metabolism studies, the concentration of CGA 205375 in the fat was approximately 3 times as high as in the muscle, but much lower than in the liver. In the dairy cow feeding studies, the concentration of CGA 205375 in the fat was approximately 3 times as high as in the muscle, but much lower than in the liver. In the laying hen metabolism studies, the concentration of CGA 205375 in the fat was approximately 5-8 times as high as in the muscle, but also much lower than in the liver. The octanol-water partition coefficient of CGA 205375 (log  $P_{OW}$ =3.8) suggests fat-solubility.

The Meeting decided the residue would be defined as fat-soluble.

The Meeting recommended a residue definition for difenoconazole.

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant commodities: difenoconazole.

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for animal commodities: sum of diffenoconazole and 1-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-2-(1,2,4-triazol)-1-yl-ethanol), expressed as diffenoconazole.

The residue is fat soluble.

### Results of supervised residue trial on crops

The Meeting received supervised trials data for difenoconazole uses on oranges, pome fruits (apple, pear), stone fruits (cherries, peach, plum), grapes, olives, tropical fruits (banana, mango, papaya), bulb vegetables (garlic, leek), Brassica vegetables (broccoli, Brussels sprouts, cabbages, cauliflower), watermelon, fruiting vegetables (chilli peppers, tomatoes), lettuce, soya beans, root and tuber vegetables (carrot, potato, sugar beet), stalk and stem vegetables (asparagus, celeriac, celery), cereal grains (rice, wheat) and oilseeds (rape seed, sunflower seed). Residue data were also provided on wheat straw and fodder, rice straw and fodder, sugar beet leaves and tops, oilseed rape fodder and sunflower plant and stubble.

In trials where duplicate field samples from an unreplicated plot were taken at each sampling time and analysed separately, the mean of the two results was taken as the best estimate of the residue from the plot.

Labels (or translations of labels) were available from Australia, Belgium, Brazil, Central America (Belize, Costa Rica, Dominican Republic, El Salvador, Guatemala, Honduras, Nicaragua, and Panama), France, Germany, Indonesia, Italy, Poland, Spain, Switzerland and UK describing the registered uses of difenoconazole.

## Citrus fruits

In Brazil, difenoconazole may be applied to citrus trees twice at a spray concentration of 0.005 kg ai/hL with a 30 days PHI. In two trials in Brazil matching GAP and two others with a spray concentration of 0.01 kg ai/ha, difenoconazole residue levels were < 0.05 mg/kg.

The number of trials was insufficient for an orange MRL recommendation.

## Pome fruit

Spanish GAP allows five applications of difenoconazole to apple or pear trees at 0.075 kg ai/ha with a PHI of 14 days. In three trials from Spain, matching GAP, difenoconazole residues in apples were 0.10, 0.14 and 0.15 mg/kg.

In two apple trials from France with application parameters matching Spanish GAP, difenoconazole residues were 0.11 and 0.28 mg/kg.

In two trials from Greece, also with application parameters matching Spanish GAP, difenoconazole residues were 0.05 and 0.13 mg/kg.

In two trials from Italy also with application conditions matching Spanish GAP, difenoconazole residues were 0.06 and 0.08 mg/kg.

In one pear trial from France and one from Greece, matching Spanish GAP, difenoconazole residues in pears were 0.07 and 0.16 mg/kg, respectively.

The Meeting decided to combine the apple and pear data to support a pome fruit MRL. Residues in the 11 trials in ranked order (median underlined) were: 0.05, 0.06, 0.07, 0.08, 0.10, 0.11, 0.13, 0.14, 0.15, 0.16 and 0.28 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in pome fruit of 0.5, 0.11 and 0.28 mg/kg respectively.

## Stone fruits

Polish GAP allows 3 applications of difenoconazole to cherry trees at 0.05 kg ai/ha with a PHI of 14 days.

In a cherry trial from France and two from Germany, with application conditions matching Polish GAP, difenoconazole residues in cherries were 0.08, 0.06 and 0.10 mg/kg, respectively.

Italian GAP allows 3 applications of difenoconazole to peach trees with a spray concentration of 0.0075 kg ai/hL with a PHI of 7 days. In five Italian trials matching Italian GAP, difenoconazole residues on peaches were 0.07, 0.11, 0.14, 0.14 and 0.19 mg/kg.

In a peach trial from France and two from Greece with application conditions matching Italian GAP, difenoconazole residues in peaches were 0.18, 0.16 and 0.26 mg/kg, respectively.

In summary, the difenoconazole residues on peaches from eight trials (in ranked order, median underlined) were: 0.07, 0.11, 0.14, 0.14, 0.16, 0.18, 0.19 and 0.26 mg/kg.

French GAP allows 3 applications of difenoconazole to plum trees with a spray concentration of 0.005~kg ai/hL with a PHI of 14 days. In four French trials matching GAP (accepted variation on spray concentration 0.0035-0.0065~kg ai/hL) difenoconazole residues on plums were  $0.02,\,0.03,\,0.07$  and 0.10~mg/kg.

In four German trials on plums with application conditions matching French GAP (accepted variation on spray concentration 0.0035 - 0.0065 kg ai/hL), difenoconazole residues were < 0.01, 0.01, 0.02 and 0.04 mg/kg.

In two Spanish trials on plums with application parameters matched French GAP, difenoconazole residues were 0.03 and 0.08 mg/kg.

In summary, the difenoconazole residues on plums from 10 trials were: < 0.01, 0.01, 0.02, 0.02, 0.03, 0.03, 0.04, 0.07, 0.08 and 0.10 mg/kg.

The data from the peaches and plums were apparently of different populations and could not be combined.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in peaches of 0.5, 0.15 and 0.26 mg/kg respectively. These values may also be used for nectarines.

The data from plums and cherries were combined for mutual support, residues in 13 trials in ranked order (median underlined) were: < 0.01, 0.01, 0.02, 0.02, 0.03, 0.03, 0.04, 0.06, 0.07, 0.08, 0.08, 0.10 and 0.10 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in plums and cherries of 0.2, 0.04 and 0.10 mg/kg respectively.

### Grapes

Italian GAP allows 4 applications of difenoconazole to grape vines with a spray concentration of 0.005 kg ai/hL with a PHI of 21 days. In six Italian trials from 2003 – 2004 matching GAP, difenoconazole residues on grapes were 0.01, 0.02, 0.02, 0.03, 0.03 and 0.04 mg/kg. In two French trials matching Italian GAP, residues in grapes were 0.04 and 0.07 mg/kg.

In summary, the difenoconazole residues on grapes from eight trials in ranked order (median underlined) were: 0.01, 0.02, 0.02, 0.03, 0.04, 0.04 and 0.07 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in grapes of 0.1, 0.03 and 0.07 mg/kg respectively.

#### Olives

In Spain, difenoconazole may be applied to olive trees three times at a spray concentration of 0.015 kg ai/hL with a 30 days PHI. In seven trials in Spain in 2003 – 2005 matching GAP, difenoconazole residue levels were 0.22, 0.29, 0.40, 0.42, 0.51, 0.90 and 1.2 mg/kg.

In an olive trial in France with application conditions matching Spanish GAP, difenoconazole residues on olives were 0.76 mg/kg.

In summary, difenoconazole residues in olives from eight trials in ranked order (median underlined) were: 0.22, 0.29, 0.40, 0.42, 0.51, 0.76, 0.90 and 1.2 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in olives of 2, 0.465 and 1.2 mg/kg respectively.

#### Bananas

In Costa Rica, Guatemala and Honduras difenoconazole may be applied 8 times to bananas at 0.1 kg ai/ha with harvest permitted on the day of application. The use pattern includes aerial application.

In the banana trials in 1997 in Ecuador, Colombia and Honduras, unbagged fruit were chosen for study although these cropping conditions, approved as GAP, rarely occur in commercial banana production. The trials of 1993 in Costa Rica and Guatemala included both bagged and unbagged fruits. For the purposes of estimating an MRL, only data from unbagged fruit are considered in this case.

In three banana trials in Colombia with conditions matching the GAP of Costa Rica, residues of difenoconazole in whole fruit were < 0.02, 0.02 and 0.04 mg/kg, with residues in pulp all at < 0.02 mg/kg.

In two banana trials in Costa Rica with conditions matching GAP, difenoconazole in whole fruit were 0.03 and 0.04 mg/kg, with residues in pulp both at < 0.02 mg/kg.

In three banana trials in Ecuador with conditions matching the GAP of Costa Rica, difenoconazole in whole fruit were all < 0.02 mg/kg, with residues in pulp also all at < 0.02 mg/kg.

In one banana trial from Guatemala with conditions matching the GAP of Costa Rica, difenoconazole in whole fruit were 0.07 mg/kg, with residues in pulp at < 0.02 mg/kg.

In three banana trials in Honduras with conditions matching the GAP of Costa Rica, difenoconazole in whole fruit were < 0.02, < 0.02 and 0.03 mg/kg, with residues in pulp also all at < 0.02 mg/kg.

In summary, difenoconazole residues in whole bananas from the 12 unbagged trials were: <0.02 (5), 0.02, 0.02, 0.03, 0.03, 0.04, 0.04 and 0.07 mg/kg. Residues in banana pulp were all <0.02 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in bananas of 0.1, 0.02 and 0.02 mg/kg respectively.

### Mango

In Brazil, difenoconazole may be applied to mango trees three times at a spray concentration of 0.0125 kg ai/hL with a 7 days PHI. In four trials in Brazil in 2003 matching GAP, difenoconazole residues in mango whole fruits were 0.025, 0.025, 0.035 and 0.04 mg/kg. No data were available for residues in edible portion.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in mangos of 0.07, 0.03 and 0.04 mg/kg respectively.

## Papaya

In Brazil, difenoconazole may be applied to papayas four times at a spray concentration of 0.0075 kg ai/hL with a 14 days PHI. In four trials in Brazil in 2002 matching GAP, difenoconazole residues in papaya whole fruits were 0.02, 0.03, 0.07 and 0.10 mg/kg and residues in edible portion were all < 0.01 mg/kg. In four trials where the spray concentration was 0.015 kg ai/hL (2× label) residues in whole papaya fruit were 0.09, 0.09 0.12 and 0.20 mg/kg and residues in edible portion were < 0.01 (3) and 0.02 mg/kg, suggesting residues could occur in the edible portion, i.e., not a nil residue.

The double rate trials provided additional support, particularly in cases such as this for difenoconazole where the residue is generally external and essentially non-systemic.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in papaya of 0.2, 0.01 and 0.02 mg/kg respectively.

### Garlic

In Brazil, difenoconazole may be applied to garlic crops six times at a rate of 0.13 kg ai/ha with a 14 days PHI. In four trials in Brazil in 1995 with 6 applications of 0.19 or 0.38 kg ai/ha ( $1.5 \times$  and  $3 \times$  label rates), difenoconazole residues in bulbs of garlic were all < 0.02 mg/kg at PHIs of approximately 0, 7, 14 and 21 days.

Data from the exaggerated rates and various sampling intervals suggest that difenoconazole residues do not reach garlic bulbs.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in garlic of 0.02\*, 0 and 0 mg/kg respectively.

## Leeks

In Germany, difenoconazole may be applied to leek crops 3 times at a rate of 0.1 kg ai/ha with a 21 days PHI. In four trials in Germany with application in line with GAP, difenoconazole residues in whole plants with roots removed were 0.02, 0.07, 0.09 and 0.12 mg/kg.

In four leek trials in France with conditions matching German GAP, difenoconazole residues in whole plants were 0.03, 0.05, 0.13 and 0.21 mg/kg.

In two leek trials from Italy with conditions matching German GAP, difenoconazole residues in whole plants were 0.14 and 0.17 mg/kg.

In two leek trials from Switzerland with conditions matching German GAP, difenoconazole residues in edible portions were 0.02 and 0.04 mg/kg.

The Meeting accepted that the three descriptions of the commodity analysed, i.e., (1) whole plants with roots removed, (2) whole plants and (3) edible parts, were all intended to agree with the Codex description of the commodity for analysis: Whole vegetable after removal of roots and adhering soil.

In summary, difenoconazole residue in leeks from the 12 trials, in rank order (median underlined), were: 0.02, 0.02, 0.03, 0.04, 0.05, 0.07, 0.09, 0.12, 0.13, 0.14, 0.17 and 0.21 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in leeks of 0.3, 0.08 and 0.21 mg/kg respectively.

### Broccoli

In Belgium, difenoconazole may be applied twice to broccoli at a rate of 0.13 kg ai/ha with a 14 days PHI. In trials in France, Netherlands and Spain, difenoconazole was applied 3 times rather than twice. Difenoconazole is a reasonably persistent residue as found in the decline trials with residue remaining on the whole plant just prior to the final application. However, carryover on the flower heads is not expected as they were unlikely to be formed at the time of the first application.

In four broccoli trials in France with conditions matching Belgian GAP, except for 3 applications instead of 2, difenoconazole residues in flower heads on days 13 - 15 after the final application were 0.02, 0.05, 0.08 and 0.10 mg/kg.

In two broccoli trials from The Netherlands, with conditions matching Belgian GAP except for 3 applications instead of 2, difenoconazole residues in flower heads on day 14 after the final application were < 0.02 and 0.03 mg/kg.

In two broccoli trials in Spain, with conditions matching Belgian GAP except for 3 applications instead of 2, difenoconazole residues in flower heads on day 14 and day 21 (higher residues than on day 14) after the final application were 0.41 and 0.15 mg/kg.

In summary, difenoconazole residue in broccoli flower heads from the eight trials, in ranked order (median underlined), were: 0.02, 0.02, 0.03, 0.05, 0.08, 0.10, 0.15 and 0.41 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in broccoli of 0.5, 0.065 and 0.41 mg/kg respectively.

# Brussels sprouts

In France, difenoconazole may be applied to Brussels sprouts 3 times at a rate of 0.13 kg ai/ha with a 21 days PHI.

In four Brussels sprouts trials from Belgium in 1999, with conditions in line with French GAP, difenoconazole residues in buttons on days 20-21 and 28 (higher residues than on day 21) after the final application were 0.02, 0.05, 0.07 and 0.09 mg/kg.

In eight Brussels sprouts trials in the UK, with conditions matching French GAP, difenoconazole residues in buttons on days 21 - 22 after the final application were 0.04, 0.05, 0.05, 0.06, 0.07, 0.08, 0.10 and 0.14 mg/kg.

In summary, difenoconazole residues in Brussels sprouts buttons from the 12 trials, in ranked order (median underlined), were: 0.02, 0.04, 0.05, 0.05, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.10 and 0.14 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in Brussels sprouts of 0.2, 0.065 and 0.14 mg/kg respectively.

### Cabbage

In France, difenoconazole may be applied to cabbage 3 times at a rate of 0.13 kg ai/ha with a 21 days PHI. In six trials from France, with application parameters in line with GAP, difenoconazole residues in cabbage heads were < 0.01 (2), 0.01, < 0.02 and < 0.05 (2) mg/kg.

In Germany, difenoconazole may be applied to cabbage 3 times at a rate of 0.1 kg ai/ha with a 21 days PHI. In two trials in Germany, with trial parameters in line with GAP, difenoconazole residues in cabbage heads were < 0.02 (2) mg/kg.

In five cabbage trials in Belgium in 1999, with conditions in line with French GAP, difenoconazole residues in cabbage heads on day 21 after the final application were < 0.02 (5) mg/kg.

In two cabbage trials in Germany in 2003, with conditions in line with French GAP, difenoconazole residues in cabbage heads on day 21 after the final application were < 0.02 and 0.19 mg/kg.

In two cabbage trials in The Netherlands in 2002, with conditions in line with French GAP, difenoconazole residues in cabbage heads on day 21 after the final application were < 0.02 (2) mg/kg.

In three cabbage trials in UK in 1990 with conditions in line with French GAP, difenoconazole residues in cabbage hearts on day 21 after the final application were 0.06, 0.10 and 0.13 mg/kg. The Meeting accepted that cabbage "hearts" meant the same as cabbage "heads".

In summary, difenoconazole residues in cabbages from the 20 trials, in rank order (median underlined), were: < 0.01 (3), 0.01, < 0.02 (10), < 0.05 (2), 0.06, 0.10, 0.13 and 0.19 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in head cabbage of 0.2, 0.035 and 0.19 mg/kg respectively.

# Cauliflowers

In France, difenoconazole may be applied to cauliflowers 3 times at a rate of 0.13 kg ai/ha with a 14 days PHI. In 12 trials from France matching GAP, difenoconazole residues in the flower heads were 0.01, < 0.02 (9), 0.03 and 0.10 mg/kg.

In a cauliflower trial in Switzerland in 2005, with conditions in line with French GAP, difenoconazole residues in flower heads on day 14 after the final application were < 0.01 mg/kg.

In two cauliflower trials in the UK in 1999 and 2005, with conditions matching French GAP, difenoconazole residues in flower heads on day 14 after the final application were < 0.02 and 0.02 mg/kg.

In summary, difenoconazole residues in cauliflowers from the 15 trials, in ranked order (median underlined), were: < 0.01, 0.01, < 0.02 (10), 0.02, 0.03 and 0.10 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in cauliflowers of 0.2, 0.02 and 0.10 mg/kg respectively.

### Watermelons

Residue data were available only on the edible portion of the watermelons in the four trials provided, so estimation of an MRL was not possible.

# Chilli peppers

In Indonesia, difenoconazole may be applied at 7 day intervals to chilli pepper crops at a spray concentration of 0.0063 - 0.013 kg ai/hL with no required PHI.

One trial from Indonesia matched GAP for maximum spray concentration with harvest on day 6 after treatment. A second Indonesian trial used a spray concentration of 0.025 kg ai/hL ( $2 \times \text{label}$  rate). One trial from Malaysia matched Indonesian GAP for maximum spray concentration and harvest on the day of treatment. A second Malaysian trial used a spray concentration of 0.025 kg ai/hL ( $2 \times \text{label}$  rate).

The Meeting agreed that, for a minor use, a minimum of three trials matching GAP conditions is needed. The Meeting was not able to recommend a maximum residue level for difenoconazole residues in chilli peppers.

#### **Tomatoes**

In Italy, difenoconazole may be applied to tomato crops 4 times at a rate of 0.13 kg ai/ha with a 7 days PHI

In two tomato trials (glasshouse and polytunnel) in France in 2005, with conditions in line with Italian GAP, difenoconazole residues in tomatoes on day 7 after the final application were 0.04 and 0.05 mg/kg.

In five tomato trials (field) in Greece in 2001 - 2003, with conditions in line with Italian GAP, difenoconazole residues in tomatoes on day 7 and 10 (higher residues than on day 10) after the final application were 0.10, 0.13, 0.18, 0.28 and 0.36 mg/kg.

In a tomato trial (glasshouse) in UK in 2005, with conditions in line with Italian GAP, difenoconazole residues in tomatoes on day 7 after the final application were 0.10 mg/kg.

In two tomato trials (field) in Spain in 2003, with conditions in line with Italian GAP, difenoconazole residues in tomatoes on day 7 after the final application were 0.03 and 0.09 mg/kg.

In a tomato trial (polytunnel) in Spain in 2005, with conditions in line with Italian GAP, difenoconazole residues in tomatoes on day 7 after the final application were 0.12 mg/kg.

In summary, difenoconazole residues in tomatoes from the field trials were: 0.03, 0.09, 0.10, 0.13, 0.18, 0.28 and 0.36 mg/kg; and from protected trials were: 0.04, 0.05, 0.10, and 0.12 mg/kg. The data appear to be from similar populations and can be combined.

In summary, difenoconazole residues in tomatoes from the 11 trials, in ranked order (median underlined), were: 0.03, 0.04, 0.05, 0.09, 0.10, 0.10, 0.12, 0.13, 0.18, 0.28 and 0.36 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in tomatoes of 0.5, 0.10 and 0.36 mg/kg respectively.

## Lettuce

In Spain, the registration document states that difenoconazole is registered for use on lettuce at a rate of 0.13–0.20 kg ai/ha with a 14 days PHI. The maximum application rate on the available label was 0.13 kg ai/ha. The Meeting agreed to use the GAP from the registration document.

In eight lettuce trials from Spain in 1991 and 2003 with application rates of 0.1 - 0.18 kg ai/ha (within 30% of GAP rate) the residues 13 - 14 days after the final application, in ranked order (median underlined), were: 0.07, 0.08, 0.29, 0.31, 0.51, 0.56, 0.65 and 1.0 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in head lettuce and leaf lettuce of 2, 0.41 and 1.0 mg/kg respectively.

### Sova beans

In Brazil, difenoconazole may be applied to soya bean crops once at a rate of 0.075 kg ai/ha with a 30 days PHI. In six soya bean trials in 2000 and 2003 in Brazil with conditions in line with GAP, except that there were 2 applications in place of 1, difenoconazole residues in the dry beans on day 30 and 31 after the final application were < 0.01 (3) and < 0.02 (3) mg/kg.

The Meeting estimated a maximum residue level and an STMR value for difenoconazole in soya beans of 0.02\* and 0.02 mg/kg respectively.

## Carrots

In France, difenoconazole may be applied to carrot crops 3 times at a rate of 0.13 kg ai/ha with a 14 days PHI. In nine carrot trials in 1991 – 1993, 1996 and 2000 in France, with conditions in line with GAP, difenoconazole residues in the carrots on days 14 or 15 after the final application were 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.07, 0.11 and 0.13 mg/kg.

In two carrot trials in 1987 in Switzerland, with conditions in line with French GAP, difenoconazole residues in carrots on day 14 after the final application were 0.07 and 0.12 mg/kg.

In summary, difenoconazole residues in carrots from the 11 trials, in rank order (median underlined), were: 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.07, 0.07, 0.11, 0.12 and 0.13 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in carrots of 0.2, 0.05 and 0.13 mg/kg respectively.

#### **Potatoes**

In Spain, difenoconazole may be applied to potato crops 4 times at a rate of 0.2 kg ai/ha with a 30 days PHI. In seven potato trials in 2003 and 2005 in Spain with conditions in line with GAP except that only 2 applications were made, difenoconazole residues in the potato tubers on days 27 - 31 after the second and final application were < 0.01 (6) and 0.01 mg/kg.

In a trial in 2005 in Italy with the application rate in line with Spanish GAP, difenoconazole residues in potato tubers on day 29 after the second application were < 0.01 mg/kg.

The potato metabolism studies suggest that parent difenoconazole residues in tubers should be below LOQ. However, residues might be occasionally expected in tubers with surface exposure to spray application.

In summary, difenoconazole residues in potatoes from the eight trials, in rank order (median underlined), were: < 0.01 (7), 0.01 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in potatoes of 0.02, 0.01 and 0.01 mg/kg respectively.

# Sugar beet

In Germany, difenoconazole may be applied to sugar beet crops twice at a rate of 0.1 kg ai/ha with a 28 days PHI. In 14 sugar beet trials in 1987 - 88 and 1995 - 96 in Germany with conditions in line with GAP except that in some trials 3 applications were made, difenoconazole residues in the sugar beet roots on days 27 - 30, or later if higher residues, after the second application were < 0.02 (4), 0.02 (4), 0.03, 0.03, 0.06, 0.08, 0.08 and 0.10 mg/kg.

In three sugar beet trials in 1985 and 1991 in France, with conditions in line with German GAP, difenoconazole residues in sugar beet tubers on days 25, 29 and 33 after the second application were all < 0.02 mg/kg.

In a sugar beet trial in Denmark with conditions matching German GAP, difenoconazole residue in sugar beet root 37 days after the second application was 0.08 mg/kg.

In a sugar beet trial in the UK with conditions matching German GAP, difenoconazole residue in sugar beet root 35 days after the second application was 0.08 mg/kg.

In summary, difenoconazole residues in sugar beet from the 19 trials, in ranked order (median underlined), were: 0.01, < 0.02 (7), 0.02 (4), 0.03, 0.033, 0.06, 0.08, 0.08, 0.08 and 0.10 mg/kg.

The Meeting estimated a maximum residue level and an STMR value for difenoconazole in sugar beet of 0.2 and 0.02 mg/kg respectively.

## Asparagus

In France, difenoconazole may be applied to asparagus crops 3 times at 0.13 kg ai/ha. In asparagus crops protected by 6 to 8 applications of fungicide per year, the difenoconazole product should be used for the first three treatments and other products that act in a different way should be used to complete the season.

In four asparagus trials in France, two in Italy and two in Switzerland where difenoconazole was applied 4 - 8 times at 0.13 kg ai/ha and asparagus shoots were harvested for analysis 179 -

290 days later (approximating French GAP), the resulting difference residues were < 0.02 (7) and 0.02 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in asparagus of 0.03, 0.02 and 0.02 mg/kg respectively.

### Celeriac

In Belgium, difenoconazole may be applied to celeriac 4 times at a rate of 0.13 kg ai/ha with a 14 days PHI. In three Belgian trials matching GAP, difenoconazole residues in celeriac roots 15 days after the final treatment were 0.08, 0.12 and 0.22 mg/kg.

The Meeting acknowledged that celeriac is a minor crop and decided to estimate an MRL based on the three trials. The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in celeriac of 0.5, 0.12 and 0.22 mg/kg respectively.

### Celerv

In France, difenoconazole may be applied to celery crops 4 times at a rate of 0.13 kg ai/ha with a 14 days PHI.

The Codex description of the sample to be analysed is: "Whole commodity as marketed after removal of obviously decomposed or withered leaves." For celery, the commodity marketed is usually trimmed celery, i.e., most foliage removed. In a number of the celery trials, leaf and stems had been detached and analysed separately. The Meeting agreed to use the stem data where stems and leaf were analysed separately.

In four celery trials in 2003 - 04 in France, with conditions in line with GAP, difenoconazole residues in celery stems on day 14 after the final application were 0.03, 0.04, 0.14 and 0.26 mg/kg.

In two celery trials in 1990 in Italy, with conditions in line with French GAP, difenoconazole residues in celery edible parts and celery stems on day 14 after the final application were 1.2 and 2.0 mg/kg respectively.

In two celery trials in 2004 in Spain and one in Switzerland in 1988, with conditions in line with French GAP, difenoconazole residues in celery stems on day 14 after the final application were  $0.04,\ 0.05$  and 0.17 mg/kg. Data from a second trial in Switzerland were not used because difenoconazole residues  $(0.02\ \text{mg/kg})$  in a sample from the control plot were significant with respect to the residue  $(0.058\ \text{mg/kg})$  in the treated plot.

In summary, difenoconazole residues in celery from the nine trials, in ranked order (median underlined), were: 0.03, 0.04, 0.04, 0.05, 0.14, 0.17, 0.26, 1.2 and 2.0 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in celery of 3, 0.14 and 2.0 mg/kg respectively.

## Rice

In Indonesia, difenoconazole may be applied to rice at 0.050 to 0.10 kg ai/ha, with one application at the mid booting stage (45 days after sowing) and one at the 75% flowering stage (approximately 60 days after sowing). These growth stages are interpreted as equivalent to BBCH 43 – 45 and BBCH 63 – 67 growth stages.

In two rice trials in Indonesia with application rates of 0.063 kg ai/ha (37% below maximum GAP) and with timing to match GAP, residues in rice grain were 1.3 and 0.75 mg/kg.

In three rice trials in Malaysia with application rates of 0.064 - 0.075 kg ai/ha and timing to match Indonesian GAP, difenoconazole residues in rice grain harvested 28–30 days after the second application were 0.15, 0.16 and 0.37 mg/kg. In another trial in Malaysia at 0.12 kg ai/ha and with similar timing, residues of difenoconazole in rice grain were 0.76 mg/kg.

In summary, difenoconazole residues in rice grain from the six trials were: 0.15, 0.16, 0.37, 0.75, 0.76 and 1.3 mg/kg.

The Meeting decided that six trials (some at application rates not close enough to maximum GAP) were insufficient for a major commodity such as rice and did not estimate a maximum residue level.

### Wheat

In Switzerland, difenoconazole may be applied once to wheat crops at a rate of 0.13 kg ai/ha up to growth stage BBCH 61.

In three wheat trials in Denmark, three in France and one in Switzerland where the difenoconazole was applied at 0.13 kg ai/ha up to growth stage BBCH 61, residues of difenoconazole in wheat grain were all < 0.02 mg/kg.

In nine wheat trials in France and seven in the UK, where the difenoconazole was applied at 0.12-0.15 kg ai/ha from growth stages BBCH 61 to 87, residues of difenoconazole in wheat grain were also all < 0.02 mg/kg.

In summary, difenoconazole residues in wheat grain from the 23 trials were all < 0.02 mg/kg.

The metabolism studies suggest that parent difference residues should not occur in the grain. The Meeting agreed that the evidence supported an STMR of nil residues in wheat.

The Meeting estimated a maximum residue level and an STMR value for difenoconazole in wheat of 0.02\* and 0 mg/kg respectively.

## Rapeseed

In the UK, difenoconazole may be applied twice to oilseed rape crops at a rate of 0.13 kg ai/ha up to the end of flowering (growth stage BBCH 69).

In four oilseed rape trials in 1996 in Germany, with conditions in line with GAP of the UK, difenoconazole residues in rape seed on days 56-80 after the second application were all <0.02 mg/kg.

In three oilseed rape trials in 1997 in Germany with the second of two applications of difenoconazole of 0.13 kg ai/ha at growth stages BBCH 69-75, i.e., later than approved in UK GAP, difenoconazole residues in rape seed on days 55-56 after the second application were all <0.02 mg/kg.

In two oilseed rape trials in 1988 in France with two applications of difenoconazole of  $0.13~\rm kg$  ai/ha and harvest 83 days after the second application (probably before end of flowering), i.e., within the conditions of UK GAP, difenoconazole residues in rape seed were both  $0.04~\rm mg/kg$ .

In summary, difenoconazole residues in rape seed from the nine trials, in ranked order (median underlined), were: < 0.02 (7), 0.04 and 0.04 mg/kg.

The Meeting estimated a maximum residue level and an STMR value for difenoconazole in rape seed of 0.05 and 0.02 mg/kg respectively.

### Sunflower seed

In Switzerland, difenoconazole may be applied once to sunflower crops at a rate of 0.13 kg ai/ha up to growth stage BBCH 51. In three trials on sunflower in 2004-2005 in Switzerland according to the conditions of GAP, except that 2 applications were made instead of 1, difenoconazole residues in sunflower seed, harvested 68-73 days after the second application were all < 0.01 mg/kg.

In six sunflower trials in 2004-05 in France, with conditions matching Swiss GAP, except for 2 applications instead of 1, difenoconazole residues in sunflower seed harvested 59-101 days after the second application were < 0.01 (5) and 0.01 mg/kg.

In two sunflower trials in 2005 in Spain with conditions matching Swiss GAP, except for 2 applications instead of 1, difenoconazole residues in sunflower seed harvested 74 and 87 days after the second application were both < 0.01 mg/kg.

In summary, difenoconazole residues in sunflower seed from the 11 trials, in ranked order (median underlined), were: < 0.01 (10), 0.01 mg/kg.

The Meeting estimated a maximum residue level and an STMR value for difenoconazole in sunflower seed of 0.02 and 0.01 mg/kg respectively.

## Wheat straw and fodder

In Switzerland, difenoconazole may be applied once to wheat crops at a rate of 0.13 kg ai/ha up to growth stage BBCH 61. In a Swiss trial on wheat in 1989 with conditions matching GAP, difenoconazole residues in wheat straw harvested 45 days after the single application were 1.2 mg/kg.

In three wheat trials in 1989 - 1990 in Denmark with conditions in line with Swiss GAP, difenoconazole residues in wheat straw on days 57, 58 and 75 after the single application were 0.26, 0.64 and 0.31 mg/kg.

In two wheat trials in 1989 in France, with conditions in line with Swiss GAP, difenoconazole residues in wheat straw on days 57 and 63 after the single application were 0.73 and 0.82 mg/kg.

In summary, difenoconazole residues in wheat straw from the six trials, in ranked order (median underlined), were: 0.26, 0.31, 0.64, 0.73, 0.82 and 1.2 mg/kg.

The Meeting estimated a maximum residue level, an STMR value and a highest residue value for difenoconazole in wheat straw and fodder of 3, 0.685 and 1.2 mg/kg respectively.

## Sugar beet leaves or tops

In Germany, difenoconazole may be applied to sugar beet crops twice at a rate of 0.1 kg ai/ha with a 28 days PHI. In 14 sugar beet trials in 1987 - 1988 and 1995 - 1996 in Germany with conditions in line with GAP except that in some trials 3 applications were made, difenoconazole residues in the sugar beet leaves or tops on days 27 - 30 after the second application were 0.084, 0.087, 0.09, 0.11, 0.20, 0.25, 0.25, 0.26, 0.43, 0.43, 0.47, 0.53, 0.62 and 0.95 mg/kg.

In a sugar beet trial in 1985 in France, with conditions in line with German GAP, difenoconazole residues in sugar beet leaves 24 days after the second application were 0.17 mg/kg.

In a sugar beet trial in Denmark with conditions matching German GAP, difenoconazole residues in sugar beet leaves 37 days after the second application were 0.45 mg/kg.

In a sugar beet trial in the UK, with conditions matching German GAP, difenoconazole residues in sugar beet leaves 27 days after the second application were 0.09 mg/kg.

In summary, difenoconazole residues in sugar beet leaves or tops from the 17 trials in ranked order (median underlined), were: 0.084, 0.087, 0.09, 0.09, 0.11, 0.17, 0.20, 0.25, 0.25, 0.26, 0.43, 0.43, 0.45, 0.47, 0.53, 0.62 and 0.95 mg/kg.

The Meeting estimated an STMR value and a highest residue value for difenoconazole in sugar beet leaves or tops of 0.25 and 0.95 mg/kg (fresh weight), respectively.

## Fate of residues during processing

The Meeting received information on the fate of difenoconazole residues during the processing of apples for juice, carrots for juice and canning, grapes for wine and dried grapes, olives for oil, rape seed for oil, sugar beet for sugar and molasses, and tomatoes for juice and puree. Also information was provided on hydrolysis studies of difenoconazole to assist with identification of the nature of the residue during processing.

Processing factors have been calculated for difenoconazole residues in apples, carrots, grapes, olives and tomatoes. The data for rape seed and sugar beet could not be used as residue levels in the raw commodity did not exceed the LOQ.

Difenoconazole was stable under the hydrolysis conditions (pH, temperature, time) representing the food processes pasteurisation, baking, brewing and boiling and sterilisation.

Apples from difenoconazole field trials at exaggerated application rates were washed, sliced and pressed to separate pomace from juice. The juice was pasteurised at 80 - 82 °C for 30 minutes. Puree was produced by boiling washed apples until the puree passed through a sieve. Sugar, citric acid and ascorbic acid were added until the puree reached a pH of 3.0 - 4.5 and then was heated at 95 °C for 20 minutes.

In a grape drying trial in Chile, grapes were harvested 63 days after the third of 3 applications of difenoconazole at  $1 \times$  and  $5 \times$  the label rate. The grapes were washed for about one minute and then placed in wooden trays with mesh bottoms and subjected to sulphur dioxide fumigation for 12 h. The trays of grapes were then dried in ovens at 65 °C for about 36 – 40 h losing approximately two-thirds of their weight, 30 kg grapes producing 10 kg dried grapes.

Wine was produced from grapes in a series of supervised field trials in France and Spain. Difenoconazole residues appeared in the pomace, but not in the wine. In grape trials in Chile, difenoconazole residues appeared in the pomace, but not in the juice.

Olives from a difenoconazole field trial at an exaggerated rate (2×) were processed into virgin oil and refined oil. The virgin oil was separated by centrifuging the mixture of olive pulp (from milling) and added water. The oil was refined by a sodium hydroxide process to produce soap from free acids. Residue levels in virgin and refined oil were essentially the same.

In a <u>tomato</u> processing trial in France, tomatoes were harvested 7 days after the final of 3 applications of difenoconazole at 0.37 kg ai/ha. In processing to juice, unwashed tomatoes were crushed and sieved to produce juice and pomace. Finished juice was produced by pasteurization for 1 minute at 82 - 85 °C after citric acid and salt were added to raw juice. In the production of puree, unwashed tomatoes were crushed and concentrated in a saucepan and then sieved. Salt and citric acid were added and the puree, in glass jars, was sterilised for 10 minutes at 115 °C. In the simulation of canning, unwashed tomatoes were blanched and then immediately plunged into cold water to split and loosen the peel which was removed with a knife. The peeled tomatoes, in glass jars, were covered with tomato juice and sterilised for 10 minutes at 115 - 120 °C.

In a <u>carrot</u> processing trial in France, carrots were harvested 7 days after the final of 3 difenoconazole applications at 0.50 kg ai/ha. In the simulation of canning, carrots were sorted and peeled with both ends removed. The peeled carrots were washed thoroughly and blanched in boiling water for 1 minute and placed in jars with brine and added citric acid to produce a pH of 3.5 and then sealed and sterilized for 10 minutes at 115 – 120 °C. For cooked carrots, the washed carrots were cooked in boiling water for 15 minutes and packaged in plastic bags under vacuum. For juicing, carrots were washed thoroughly after sorting, peeling and end removal and were then processed in a juice extractor which separated juice from pulp in a centrifugal filter. After the pH of the juice was adjusted to 3.5 with citric acid, the juice was pasteurized at approximately 85 °C and packaged in glass jars.

Calculated processing factors and the median or best estimate are summarized in the following table.

| Raw<br>commod | agricultural<br>lity (RAC) | Processed commodity | Calculated processing factors. | Median or best estimate |  |
|---------------|----------------------------|---------------------|--------------------------------|-------------------------|--|
| Apple         |                            | juice               | < 0.02, < 1.0. < 1.0           | < 0.02                  |  |
| Apple         |                            | dry pomace          | 15.4                           | 15                      |  |
| Apple         |                            | puree               | 0.14                           | 0.14                    |  |
| Carrot        |                            |                     | 0.02, 0.03, 0.05, 0.12         | 0.04                    |  |
| Carrot        |                            | juice               | 0.02, 0.05, 0.06, 0.12         | 0.055                   |  |
| Grapes        | Grapes juice               |                     | < 0.5                          | < 0.5                   |  |
| Grapes        |                            | dry pomace          | 9.3, 10.3, 14.0, 15.4          | 12                      |  |
| Grapes        |                            | dried grapes        | 1.01, 1.4                      | 1.2                     |  |

| Raw agricultural commodity (RAC) | Processed commodity | Calculated processing factors.                                              | Median or best estimate |
|----------------------------------|---------------------|-----------------------------------------------------------------------------|-------------------------|
| Grapes                           | wine                | <0.18, <0.20, <0.20, <0.29, <0.33, <0.33, <0.33, <0.50, <0.50, <0.50, <0.50 | < 0.18                  |
| Olives                           | refined oil         | 1.19, 1.40, 1.50, 1.51                                                      | 1.4                     |
| Olives                           | virgin oil          | 1.47, 1.50, 1.50, 1.63                                                      | 1.5                     |
| Tomatoes                         | canned tomato       | < 0.05, 0.06, 0.07, 0.08                                                    | 0.065                   |
| Tomatoes                         | juice               | 0.14, 0.15, 0.28, 0.32                                                      | 0.22                    |
| Tomatoes                         | puree               | 0.54, 0.58, 0.74, 1.00                                                      | 0.66                    |

The processing factors for dry apple pomace (15), apple juice (< 0.02) and apple puree (0.14) were applied to the estimated STMR for pome fruits (0.11 mg/kg) to produce STMR-P values for dry apple pomace (1.65 mg/kg), apple juice (0.0022 mg/kg) and apple puree (0.015 mg/kg).

The processing factors for dry grape pomace (12), grape juice (< 0.5) and wine (< 0.18) were applied to the estimated STMR for grapes (0.03 mg/kg) to produce STMR-P values for dry grape pomace (0.36 mg/kg), grape juice (0.015 mg/kg) and wine (0.0054 mg/kg).

The processing factor for dried grapes (1.2) was applied to the estimated STMR and HR for grapes (0.03 and 0.07 mg/kg) to produce STMR-P and HR-P values for dried grapes (raisins) of 0.036 and 0.084 mg/kg respectively.

The Meeting estimated a maximum residue level for difenoconazole in dried grapes (= currants, raisins, sultanas) of 0.1 mg/kg. The estimated maximum residue level is the same as for grapes, so no separate MRL recommendation is necessary.

The processing factors for canned carrots (0.04) and carrot juice (0.055) were applied to the estimated STMR for carrots (0.05 mg/kg) to produce STMR-P values for canned carrots (0.002 mg/kg) and carrot juice (0.0028 mg/kg).

The processing factors for tomato puree (0.66), tomato juice (0.22) and canned tomato (0.065) were applied to the estimated STMR for tomatoes (0.10 mg/kg) to produce STMR-P values for tomato puree (0.066 mg/kg), tomato juice (0.022 mg/kg) and canned tomato (0.0065 mg/kg).

The processing factors for virgin olive oil (1.5) and refined olive oil (1.4) were applied to the estimated STMR for olives (0.465 mg/kg) to produce STMR-P values for virgin olive oil (0.70 mg/kg) and refined olive oil (0.65 mg/kg)

## Residues in animal commodities

### Livestock feeding

The meeting received lactating dairy cow feeding studies and a laying hen feeding study, which provided information on likely residues resulting in animal commodities, milk and eggs from difenoconazole residues in the animal diet.

# Lactating dairy cows

Groups of 3 lactating Holstein dairy cows were dosed once daily via gelatin capsule with difenoconazole at 1 ppm (1×), 3 ppm (3×) and 10 ppm (10×) in the dry-weight diet for 29 – 30 consecutive days. Parent difenoconazole residues did not occur above LOQ in muscle, kidney or fat tissues or milk for any of the test doses, but were present in liver from the 10 ppm feeding-level group. Metabolite CGA 205375 was present in each of the tissues from the 3 and 10 ppm feeding-level groups and in the liver and fat from the 1 ppm feeding-level animals. The concentration of metabolite CGA 205375 in fat was approximately 3.3 times its concentration in muscle. The average concentrations of metabolite CGA 205375 in the tissues from the 10 ppm feeding-level animals were: muscle 0.020 mg/kg; liver 0.30 mg/kg; kidney 0.044 mg/kg; fat 0.072 mg/kg. For metabolite CGA 205375 in liver, the transfer factors for the 3 feeding levels were reasonably consistent. For fat, the transfer factors for metabolite CGA 205375 apparently decreased as the feeding level increased.

For the 10 ppm feeding-level animals, metabolite CGA 205375 was consistently present in the milk from day 2 onwards at 0.005 - 0.009 mg/kg.

In a second study, groups of 3 lactating Holstein dairy cows were dosed once daily via gelatin capsule with diffenoconazole at 1 ppm (1×), 5 ppm (5×) and 15 ppm (15×) in the dry-weight diet for 29 – 30 consecutive days. Parent difenoconazole residues did not occur above LOQ in muscle, kidney or fat tissues or milk for any of the test doses. Parent difenoconazole residues were present in liver from the 5 and 15 ppm feeding-level groups. Metabolite CGA 205375, the major part of the residue, was present in each of the tissues from the 5 and 15 ppm feeding-level animals and in the liver, kidney and fat from the 1 ppm feeding-level group. In the 15 ppm feeding-level group, the concentration of metabolite CGA 205375 in fat was approximately 3.1 times its concentration in muscle. The average concentrations of metabolite CGA 205375 in the tissues from the 15 ppm feeding-level animals were: muscle 0.04 mg/kg; liver 0.57 mg/kg; kidney 0.11 mg/kg; fat 0.12 mg/kg. For metabolite CGA 205375 in liver, the transfer factors for the 5 ppm and 15ppm feeding levels were close. For fat, the transfer factors for metabolite CGA 205375 were also consistent for the 5 ppm and 15 ppm feeding levels. Metabolite CGA 205375 reached a plateau level in milk of approximately 0.012 mg/kg within 2 days from the 15 ppm feeding-level animals. Metabolite 1,2,4-triazole (not included in the diffenoconazole residue definition) was consistently present in the milk from the 5 and 15 ppm feeding levels groups where plateau concentrations in milk of approximately 0.017 mg/kg and 0.04 mg/kg respectively were quickly reached.

The two feeding studies were generally in good agreement of transfer factors. The Meeting decided to use the study with the 1 and 3 ppm feeding levels as most closely bracketing the dietary burdens.

# Laying hens

Laying white leghorn hens were fed rations treated with difenoconazole at 0.3 ppm, 1 ppm, 3 ppm and 10 ppm for 28 consecutive days. Parent difenoconazole residues did not occur above LOQ (0.01 mg/kg) in muscle, fat, liver or eggs for any of the test doses. Metabolite CGA 205375 also was not present in the tissues above LOQ (0.01 mg/kg). Average levels of 1,2,4-triazole in the tissues from the 10 ppm feeding-level birds were: skin plus attached fat 0.012 mg/kg; peritoneal fat < 0.005 mg/kg; liver 0.02 mg/kg; muscle 0.022 mg/kg. Metabolite CGA 205375 occurred in eggs from the 1, 3 and 10 ppm feeding-level groups reaching a plateau after approximately 9 days with levels of 0.037 mg/kg and 0.13 mg/kg in eggs from the 3 and 10 ppm feeding-level groups respectively. At the 1 ppm feeding level, CGA 205375 was present in eggs at close to the LOQ (0.01 mg/kg). Metabolite 1,2,4-triazole occurred in eggs from the 1, 3 and 10 ppm feeding-level birds. It reached a plateau after approximately 6 days with plateau levels of 0.007, 0.020 and 0.060 mg/kg in eggs from the 1, 3 and 10 ppm feeding-level birds respectively.

## Livestock dietary burden

The Meeting estimated the dietary burden of difenoconazole in livestock on the basis of the diets listed in Annex 6 of the 2006 JMPR Report (OECD Feedstuffs Derived from Field Crops). Calculation from highest residue, STMR (some bulk commodities) and STMR-P values provides the levels in feed suitable for estimating MRLs, while calculation from STMR and STMR-P values for feed is suitable for estimating STMR values for animal commodities. The percentage dry matter is taken as 100% when the highest residue levels and STMRs are already expressed as dry weight.

## Estimated maximum and mean dietary burdens of livestock

Dietary burden calculations for beef cattle, dairy cattle, broilers and laying poultry are provided in Annex 6. The calculations were made according to the livestock diets from US-Canada, EU and Australia in the OECD Table (Annex 6 of the 2006 Report of the JMPR).

|                   | Livestock of | Livestock dietary burden, difenoconazole, ppm of dry matter diet |                   |                   |      |                  |  |  |
|-------------------|--------------|------------------------------------------------------------------|-------------------|-------------------|------|------------------|--|--|
|                   | US-Canada    |                                                                  | EU                | EU                |      |                  |  |  |
|                   | max          | mean                                                             | max               | mean              | max  | mean             |  |  |
| Beef cattle       | 0.62         | 0.48                                                             | 1.85              | 0.81              | 1.42 | 0.9 <sup>b</sup> |  |  |
| Dairy cattle      | 0.44         | 0.30                                                             | 2.10 <sup>a</sup> | 0.76 <sup>c</sup> | 0.59 | 0.44             |  |  |
| Poultry - broiler | 0.01         | 0.01                                                             | 0.12              | 0.05              | 0.01 | 0.01             |  |  |
| Poultry - layer   | 0.01         | 0.01                                                             | 0.54 <sup>d</sup> | 0.20 <sup>e</sup> | 0.01 | 0.01             |  |  |

- a Highest maximum beef or dairy cattle dietary burden suitable for MRL estimates for mammalian meat and milk
- b Highest mean beef or dairy cattle dietary burden suitable for STMR estimates for mammalian meat.
- c Highest mean dairy cattle dietary burden suitable for STMR estimates for milk.
- d Highest maximum poultry dietary burden suitable for MRL estimates for poultry meat and eggs.
- e Highest mean poultry dietary burden suitable for STMR estimates for poultry meat and eggs.

## Animal commodities, MRL estimation

For MRL estimation, the residues in the animal commodities are the sum of difenoconazole and CGA 205375 (1-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-2-(1,2,4-triazol)-1-yl-ethanol)) expressed as difenoconazole.

### Cattle

For MRL estimation, the high residues in the tissues were calculated by interpolating the maximum dietary burden (2.10 ppm) between the relevant feeding levels (1 and 3 ppm) from the dairy cow feeding study and using the highest tissue concentrations from individual animals within those feeding groups.

The STMR values for the tissues were calculated by taking the STMR dietary burden (0.95 ppm) as a proportion of the lowest feeding level (1 ppm) multiplied by the feeding-level residue (mean of the 3 animals).

Residues in the milk were below LOQ (0.005 mg/kg) for all samples from the 1 ppm and 3 ppm feeding groups, so the dietary burdens (2.10 and 0.95 ppm) were taken as a proportion of the 3 ppm to calculate the residues resulting from the dietary burdens.

In the table below, dietary burdens are shown in round brackets (), feeding levels and residue concentrations from the feeding study are shown in square brackets [] and estimated concentrations related to the dietary burdens are shown without brackets.

| Dietary<br>Feeding lo | burden<br>evel [ppm] | (ppm)  | Milk                   | Muscle          | Liver         | Kidney                                  | Fat            |
|-----------------------|----------------------|--------|------------------------|-----------------|---------------|-----------------------------------------|----------------|
| MRL                   |                      |        |                        |                 |               |                                         |                |
|                       |                      |        | mean                   | highest         | highest       | highest                                 | highest        |
| MRL                   | dairy                | cattle |                        |                 |               |                                         |                |
| (2.10)                |                      |        | < 0.004                | 0.019           | 0.11          | 0.016                                   | 0.028          |
| [1, 3]                |                      |        | [<0.005, <0.005]       | [< 0.01, 0.026] | [0.051, 0.15] | [< 0.01, 0.021]                         | [0.015, 0.038] |
| STMR                  |                      |        |                        |                 |               |                                         |                |
|                       |                      |        | mean                   | mean            | mean          | mean                                    | mean           |
| STMR                  | beef                 | cattle |                        |                 |               |                                         |                |
| (0.95)                |                      |        |                        | < 0.01          | 0.043         | < 0.01                                  | 0.012          |
| [0, 1]                |                      |        |                        | [0, < 0.01]     | [0, 0.045]    | [0, < 0.01]                             | [0, 0.013]     |
| STMR                  | dairy                | cattle |                        |                 |               | *************************************** |                |
| (0.76)                | •                    |        | < 0.001                |                 |               |                                         |                |
| [0, 1, 3]             |                      |        | [0, < 0.005, < 0.005)] |                 |               |                                         |                |

The data from the cattle feeding studies were used to support mammalian meat and milk MRLs.

The Meeting estimated a maximum residue level and an STMR value for difenoconazole in milks of 0.005\* and 0.001 mg/kg, respectively. No information was available on the distribution of residue between the fat and non-fat milk fractions.

For muscle, the residue arising from a dietary burden of 2.10 ppm was 0.019 mg/kg, while the residue resulting from a dietary burden of 0.95 ppm was <0.01 mg/kg. For fat, the residue arising from a dietary burden of 2.10 ppm was 0.028 mg/kg, while the residue resulting from a dietary burden of 0.95 ppm was 0.012 mg/kg.

The Meeting estimated a maximum residue level for difenoconazole in mammalian meat (fat) of 0.05 mg/kg. The Meeting estimated STMR and HR values for meat (fat) of 0.012 and 0.028 mg/kg respectively. The Meeting estimated STMR and HR values for meat (muscle) of 0.01 and 0.019 mg/kg respectively.

For liver, the residue arising from a dietary burden of 2.10 ppm was 0.11 mg/kg, while the residue resulting from a dietary burden of 0.95 ppm was 0.043 mg/kg. The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in liver of 0.2, 0.043 and 0.11 mg/kg, respectively.

For kidney, the residue arising from a dietary burden of 2.10 ppm was 0.016 mg/kg, while the residue resulting from a dietary burden of 0.95 ppm was < 0.01 mg/kg. Although the residue levels in kidney were somewhat below those in liver, the Meeting decided that it was preferable to have an offal MRL which would be supported by the liver data.

The Meeting estimated a maximum residue level, an STMR value and an HR value for difenoconazole in mammalian edible offal of 0.2, 0.043 and 0.11 mg/kg, respectively.

## **Poultry**

In the table, dietary burdens are shown in round brackets (), feeding levels and residue concentrations from the feeding study are shown in square brackets [] and estimated concentrations related to the dietary burdens are shown without brackets.

| Dietary burden (ppm) |             |                     |                     |                     |                     |
|----------------------|-------------|---------------------|---------------------|---------------------|---------------------|
| Feeding level [ppm]  | Eggs        | Muscle              | Liver               | Fat                 | Skin + attached fat |
| MRL                  |             |                     |                     |                     |                     |
|                      | highest     | highest             | highest             | highest             | highest             |
| MRL laying hen       | s           |                     |                     |                     |                     |
| (0.54)               | 0.0054      |                     |                     |                     |                     |
| [0, 1]               | [0, 0.01]   |                     |                     |                     |                     |
| MRL laying hen       | S           |                     |                     |                     |                     |
| (0.54)               |             | < 0.00054           | < 0.00054           | < 0.00054           | < 0.00054           |
| [0, 3, 10]           |             | [0, < 0.01, < 0.01] | [0, < 0.01, < 0.01] | [0, < 0.01, < 0.01] | [0, < 0.01, < 0.01] |
| STMR                 | · I         | l .                 |                     | I                   | 1 . 0.0 - 1         |
|                      | mean        | mean                | mean                | mean                | mean                |
| STMR laying hen      | s           |                     |                     |                     |                     |
| (0.20)               | < 0.0020    |                     |                     |                     |                     |
| [0, 1]               | [0, < 0.01] |                     |                     |                     |                     |
| STMR laying hen      | S           |                     |                     |                     |                     |
| (0.20)               |             | < 0.0002            | < 0.0002            | < 0.0002            | < 0.0002            |
| [0, 3, 10]           |             | [0, < 0.01, < 0.01] | [0, < 0.01, < 0.01] | [0, < 0.01, < 0.01] | [0, < 0.01, < 0.01] |

The data from the laying hen feeding studies were used to support poultry meat and egg MRLs.

The residue levels of difenoconazole + CGA 205375, expressed as difenoconazole, in poultry tissues and eggs arising from the dietary burdens (0.54 and 0.20 ppm difenoconazole in feed, dry weight) were all less than the analytical method LOQ (0.01 mg/kg).

For poultry tissues, residues were below LOQ (0.01 mg/kg) even at the 10 ppm feeding level, so an estimate of the STMRs was made by dividing the dietary burden (0.20 ppm) by 10 ppm and multiplying by the LOQ (0.01 mg/kg) to produce a value of 0.00020 mg/kg. An estimate of the HRs was made by dividing the dietary burden (0.54 ppm) by 10 ppm and multiplying by the LOQ (0.01 mg/kg) to produce a value of 0.00054 mg/kg.

For eggs, residues were below LOQ (0.01 mg/kg) at the 1 ppm feeding level, so an estimate of the STMR was made by dividing the dietary burden (0.20 ppm) by 1 ppm and multiplying by the LOQ (0.01 mg/kg) to produce a value of 0.0020 mg/kg. Similarly, a calculation for the HR for eggs produced a value of 0.0054 mg/kg.

The Meeting estimated maximum residue levels of 0.01\* mg/kg for poultry eggs, poultry meat (fat) and poultry edible offal.

The Meeting estimated STMRs of 0.0020 mg/kg for eggs and 0.00020 mg/kg for poultry meat and poultry edible offal.

The Meeting estimated HRs of 0.0054 mg/kg for eggs and 0.00054 mg/kg for poultry meat and poultry edible offal.

### RECOMMENDATIONS

On the basis of the data from supervised trials, the Meeting concluded that the residue concentrations listed below are suitable for establishing MRLs and for assessing IEDIs and IESTIs.

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for plant commodities: *difenoconazole*.

Definition of the residue (for compliance with the MRL and for estimation of dietary intake) for animal commodities: *sum of difenoconazole and 1-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-2-(1,2,4-triazol)-1-yl-ethanol), expressed as difenoconazole.* 

The residue is fat soluble.

| CCN     | Commodity                                                    | MRL,<br>mg/kg | STMR or STMR-P,<br>mg/kg | HR or HR-P,<br>mg/kg |
|---------|--------------------------------------------------------------|---------------|--------------------------|----------------------|
| VS 0621 | Asparagus                                                    | 0.03          | 0.02                     | 0.02                 |
| FI 0327 | Banana                                                       | 0.1           | 0.02                     | 0.02                 |
| VB 0400 | Broccoli                                                     | 0.5           | 0.065                    | 0.41                 |
| VB 0402 | Brussels sprouts                                             | 0.2           | 0.065                    | 0.14                 |
| VB 0041 | Cabbages, head                                               | 0.2           | 0.035                    | 0.19                 |
| VR 0577 | Carrots                                                      | 0.2           | 0.05                     | 0.13                 |
| VB 0404 | Cauliflowers                                                 | 0.2           | 0.02                     | 0.10                 |
| VR 0578 | Celeriac                                                     | 0.5           | 0.12                     | 0.22                 |
| VS 0624 | Celery                                                       | 3             | 0.14                     | 2.0                  |
| FS 0013 | Cherries                                                     | 0.2           | 0.04                     | 0.10                 |
| DF 0269 | Dried grapes (= currants, Raisins and Sultanas) <sup>a</sup> | 3             | 0.036                    | 0.084                |
| MO 0105 | Edible offal (Mammalian)                                     | 0.2           | 0.043                    | 0.11                 |
| PE 0112 | Eggs                                                         | 0.01*         | 0.0020                   | 0.0054               |
| VA 0381 | Garlic                                                       | 0.02*         | 0                        | 0                    |
| FB 0269 | Grapes                                                       | 0.1           | 0.03                     | 0.07                 |
| VA 0384 | Leek                                                         | 0.3           | 0.08                     | 0.21                 |
| VL 0482 | Lettuce, Head                                                | 2             | 0.41                     | 1.0                  |
| VL 0483 | Lettuce, Leaf                                                | 2             | 0.41                     | 1.0                  |
| FI 0345 | Mango                                                        | 0.07          | 0.03                     | 0.04                 |

| CCN     | •                             | MRL,<br>mg/kg | STMR or STMR-P,<br>mg/kg    | HR or HR-P,<br>mg/kg          |
|---------|-------------------------------|---------------|-----------------------------|-------------------------------|
| MM 0095 | Meat (from mammals other than | 0.05 (fat)    |                             | 0.019 muscle                  |
|         | marine mammals)               |               | 0.012 fat                   | 0.028 fat                     |
| ML 0106 | Milks                         | 0.005*        | 0.001                       |                               |
| FS 0245 | Nectarine                     | 0.5           | 0.15                        | 0.26                          |
| FT 0305 | Olives                        | 2             | 0.465                       | 1.2                           |
| FI 0350 | Papaya                        | 0.2           | 0.01                        | 0.02                          |
| FS 0247 | Peach                         | 0.5           | 0.15                        | 0.26                          |
| FS 0014 | Plums (including prunes)      | 0.2           | 0.04                        | 0.10                          |
| FP 0009 | Pome fruits                   | 0.5           | 0.11                        | 0.28                          |
| VR 0589 | Potato                        | 0.02          | 0.01                        | 0.01                          |
| PM 0110 | Poultry meat                  | 0.01* (fat)   | 0.0002 muscle<br>0.0002 fat | 0.00054 muscle<br>0.00054 fat |
| PO 0111 | Poultry, Edible offal of      | 0.01*         | 0.0002                      | 0.00054                       |
| SO 0495 | Rape seed                     | 0.05          | 0.02                        |                               |
| VD 0541 | Soya bean (dry)               | 0.02*         | 0.02                        |                               |
| VR 0596 | Sugar beet                    | 0.2           | 0.02                        |                               |
| SO 0702 | Sunflower seed                | 0.02          | 0.01                        |                               |
| VO 0448 | Tomato                        | 0.5           | 0.10                        | 0.36                          |
| GC 0654 | Wheat                         | 0.02*         | 0                           |                               |
| AS 0654 | Wheat straw and fodder, Dry   | 3             | 0.685                       | 1.2                           |
| JF 0226 | Apple juice                   | -             | 0.0022                      |                               |
| AB 0226 | Apple pomace, dry             | -             | 1.65                        |                               |
| -       | Apple puree                   | -             | 0.015                       |                               |
| -       | Carrot, canned                | -             | 0.002                       |                               |
| -       | Carrot, juice                 | -             | 0.0028                      |                               |
| JF 0269 | Grape juice                   | -             | 0.015                       |                               |
| AB 0269 | Grapes pomace, dry            | -             | 0.36                        |                               |
| OR 0305 | Olive oil, refined            | -             | 0.65                        |                               |
| OC 0305 | Olive oil, virgin             | -             | 0.70                        |                               |
| JF 0048 | Tomato juice                  | -             | 0.022                       |                               |
| -       | Tomato puree                  | -             | 0.066                       |                               |
| -       | Tomato, canned                | -             | 0.0065                      |                               |
| -       | Wine                          |               | 0.0054                      |                               |

<sup>\*</sup> at or about the LOQ.

### **DIETARY RISK ASSESSMENT**

Also see the General Report on triazoles.

# Long-term intake

The evaluation of difenoconazole resulted in recommendations for MRLs and STMR values for raw and processed commodities. Where data on consumption were available for the listed food commodities, dietary intakes were calculated for the 13 GEMS/Food Consumption Cluster Diets. The results are shown in Annex 3 of the 2007 Report of the JMPR.

The IEDIs in the thirteen Cluster Diets, based on estimated STMRs were 1 - 10% of the maximum ADI (0.01 mg/kg bw). The Meeting concluded that the long-term intake of residues of

a - Dried grapes (= currants, Raisins and Sultanas). The estimated maximum residue level is the same as for grapes, so no separate MRL recommendation is necessary.

difenoconazole from uses that have been considered by the JMPR is unlikely to present a public health concern.

## Short-term intake

The IESTI of difenoconazole calculated on the basis of the recommendations made by the JMPR represented 0 - 10% of the ARfD (0.3 mg/kg bw) for children and 0 - 7% for the general population.

The Meeting concluded that the short-term intake of residues of difenoconazole resulting from uses that have been considered by the JMPR is unlikely to present a public health concern.

## **REFERENCES**

| Code     | Author                     | Year    | Title, Institution, Report reference                                                                                                                                                                                                                        |
|----------|----------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | FSANZ                      | 2003    | The 20th Australian Total Diet Survey. Food Standards Australia New Zealand. www.foodstandards.gov.au                                                                                                                                                       |
|          | FSANZ                      | 2007    | Food Standards Code. Part 1.4. Contaminants and Residues. Standard 1.4.2. Maximum Residue Limits (Australia Only). Schedule 1 – Maximum Residue Limits. Food Standards Australia New Zealand. http://www.foodstandards.gov.au/thecode/foodstandardscode.cfm |
|          | JMPR                       | 2003    | 2.11 Revised data requirements for studies of environmental fate. JMPR Report. Pesticide Residues in Food – 2003. FAO Plant Production and Protection Paper, 176:12-14.                                                                                     |
|          | Muller E.                  | 2007    | JMPR 2007 – Netherlands difenoconazole residue definition. Email, 1-May.07.                                                                                                                                                                                 |
|          | NRS                        | 2005    | National Residue Survey Annual Report 2004-2005. Australian Government. Department of Agriculture, Fisheries and Forestry, Canberra. http://www.affa.gov.au/content/output.cfm?ObjectID=715E69E1-5C4B-4439-84A2091FE098AD6D                                 |
|          | NRS                        | 2006    | National Residue Survey Annual Report 2005-2006. Report on Results 2005–2006. Australian Government. Department of Agriculture, Fisheries and Forestry, Canberra. http://www.affa.gov.au/content/output.cfm?ObjectID=715E69E1-5C4B-4439-84A2091FE098AD6D    |
|          | Stauss R                   | 1994    | Compendium of growth stage identification keys for mono- and dicotyledonous plants. Extended BBCH scale. A joint publication of BBA, BSA, IGZ, IVA, AgrEvo, BASF, Bayer and Ciba. Basel, 1994.                                                              |
|          | Vlasov ON an<br>Sukhova SI | id 1988 | Russian Journal of Physical Chemistry 62:978-979.                                                                                                                                                                                                           |
| 0011901  | Pointurier R               | 2001    | Residue study with difenoconazole (CGA 169374) in or on carrots in France (north). ADME - Bioanalyses, Vergèze, France. Report no. 0011901. Unpublished.                                                                                                    |
| 0011902  | Pointurier R               | 2001    | Residue study with difenoconazole (CGA 169374) in or on carrots in France (south). ADME - Bioanalyses, Vergèze, France. Report no. 0011902. Unpublished.                                                                                                    |
| 0011903  | Pointurier R               | 2001    | Residue study with difenoconazole (CGA 169374) in or on carrots in France (south). ADME - Bioanalyses, Vergèze, France. Report no. 0011903. Unpublished.                                                                                                    |
| 0012001  | Pointurier R               | 2001    | Residue study with difenoconazole (CGA 169374) in or on carrots in France (north). ADME - Bioanalyses, Vergèze, France. Report no. 0012001. Unpublished.                                                                                                    |
| 0012002  | Pointurier R               | 2001    | Residue study with difenoconazole (CGA 169374) in or on carrots in France (south). ADME - Bioanalyses, Vergèze, France. Report no. 0012002. Unpublished.                                                                                                    |
| 0012201  | Pointurier R               | 2001    |                                                                                                                                                                                                                                                             |
| 0070F/91 | Tournayre J-C              | 1991    | Determination of CGA 169374 in asparagus. France. Ciba-Geigy SA, Rueil-Malmaison, France. Report no. 0070F/91. Unpublished.                                                                                                                                 |

| Code     | Author        | Year | Title, Institution, Report reference                                                                                                                                                                |  |  |  |
|----------|---------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0090F/91 | Tournayre J-C | 1991 | Determination of CGA 169374 in asparagus. France. Ciba-Geigy SA, Rueil-Malmaison, France. Report no. 0090F/91. Unpublished.                                                                         |  |  |  |
| 0110601  | Pointurier R  | 2002 | Residue study with difenoconazole (CGA 169374) in or on apples in France. South. ADME - Bioanalyses, Vergèze, France. Report no. 0110601, Syngenta. Unpublished.                                    |  |  |  |
| 0200F91  | Argento JC    | 1992 | Determination of CGA 64250 (propiconazole) and CGA 169374 (difenoconazole) in sugar-beet. Ciba-Geigy SA, Rueil-Malmaison, France. Report no. 0200F91. Unpublished.                                  |  |  |  |
| 0210F91  | Argento JC    | 1992 | Determination of CGA 64250 (propiconazole) and CGA 169374 (difenoconazole) in sugar-beet. Ciba-Geigy SA, Rueil-Malmaison, France. Report no. 0210F91. Unpublished.                                  |  |  |  |
| 02-2026  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on broccoli in France (south). RCC Ltd., Itingen, Switzerland. Report no. 02-2026. Unpublished.                                                |  |  |  |
| 02-2027  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on broccoli in France (south). RCC Ltd., Itingen, Switzerland. Report no. 02-2027. Unpublished.                                                |  |  |  |
| 02-2042  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on broccoli in The Netherlands. RCC Ltd., Itingen, Switzerland. Syngenta report no 02-2042. Unpublished.                                       |  |  |  |
| 02-2043  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on broccoli in The Netherlands. RCC Ltd., Itingen, Switzerland. Syngenta report no. 02-2043. Includes AF/7866/SY/1, AF/7866/SY/2. Unpublished. |  |  |  |
| 02-2044  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on cabbage in The Netherlands. RCC Ltd., Itingen, Switzerland. Report no. 02-2044. Unpublished.                                                |  |  |  |
| 02-2045  | Krainz A      | 2003 | Residue study with difenocoazole (CGA 169374) in or on cabbage in the Netherlands. RCC Ltd., Itingen, Switzerland. Report no. 02-2045. Unpublished.                                                 |  |  |  |
| 02-2046  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on head cabbage in France (south). RCC Ltd., Itingen, Switzerland. Report no. 02-2046. Unpublished.                                            |  |  |  |
| 02-2076  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on papaya in Brazil. RCC Ltd., Itingen, Switzerland. Report 02-2076. Unpublished.                                                              |  |  |  |
| 02-2077  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on papaya in Brazil. RCC Ltd., Itingen, Switzerland. Report 02-2077. Unpublished.                                                              |  |  |  |
| 02-2078  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on papaya in Brazil. RCC Ltd., Itingen, Switzerland. Report 02-2078. Unpublished.                                                              |  |  |  |
| 02-2079  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on papaya in Brazil. RCC Ltd., Itingen, Switzerland. Report 02-2079. Unpublished.                                                              |  |  |  |
| 02-2085  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on pears in France. South. RCC Ltd., Itingen, Switzerland. Report no. 02-2085, Syngenta. Unpublished.                                          |  |  |  |
| 02-2086  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on tomatoes in Greece. RCC Ltd., Itingen, Switzerland. Report no. 02-2086. Unpublished.                                                        |  |  |  |
| 02-2087  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on tomatoes in Greece. RCC Ltd., Itingen, Switzerland. Report no 02-2087. Unpublished.                                                         |  |  |  |
| 02-2095  | Krainz A      | 2003 | Residue study with difenoconazole (CGA 169374) in or on cabbage in France (south). RCC Ltd., Itingen, Switzerland. Report no. 02-2095. Unpublished.                                                 |  |  |  |
| 03-0421  | Solé C        | 2004 | Residue study with difenoconazole (CGA 169374) in or on head cabbage in France (south). ADME - Bioanalyses, Vergèze, France. Report no. 03-0421. Unpublished.                                       |  |  |  |
| 03-0422  | Solé C        | 2004 | Residue study with difenoconazole (CGA 169374) in or on head cabbage in France (south). ADME - Bioanalyses, Vergèze, France. Report no. 03-0422. Unpublished.                                       |  |  |  |
| 03-0423  | Solé C        | 2004 | Residue study with difenoconazole (CGA 169374) in or on outdoor cos lettuce in Spain. ADME - Bioanalyses, Vergèze, France. Report no 03-0423. Unpublished.                                          |  |  |  |
| 03-0424  | Solé C        | 2004 | Residue study with difenoconazole (CGA 169374) in or on outdoor cos lettuce in Spain. ADME – Bioanalyses, Vergèze, France. Report no 03-0424. Unpublished.                                          |  |  |  |

| Code    | Author      | Year | Title, Institution, Report reference                                                                                                                                         |
|---------|-------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 03-0425 | Solé C      | 2004 | Residue study with difenoconazole (CGA 169374) in or on outdoor cos lettuce in Spain. ADME - Bioanalyses, Vergèze, France. Report no 03-0425. Unpublished.                   |
| 03-0426 | Solé C      | 2004 | Residue study with difenoconazole (CGA 169374) in or on grapes in Italy. ADME - Bioanalyses, Vergèze, France, Syngenta report no. 03-0426. Unpublished.                      |
| 03-0427 | Solé C      | 2004 | Residue study with difenoconazole (CGA 169374) in or on grapes in Italy. ADME - Bioanalyses, Vergèze, France, Syngenta report no. 03-0427. Unpublished.                      |
| 03-0428 | Solé C      | 2004 | Residue study with difenoconazole (CGA 169374) in or on grapes in Italy. ADME - Bioanalyses, Vergèze, France, Syngenta report no. 03-0428. Unpublished.                      |
| 03-0429 | Benazeraf L | 2004 | Residue study with difenoconazole (CGA 169374) in or on potato in Spain. ADME - Bioanalyses, Vergèze, France. Report no. 03-0429. Unpublished.                               |
| 03-0430 | Benazeraf L | 2004 | Residue study with difenoconazole (CGA 169374) in or on potato in Spain. ADME - Bioanalyses, Vergèze, France. Report no. 03-0430. Unpublished.                               |
| 03-0431 | Benazeraf L | 2004 | Residue study with difenoconazole (CGA 169374) in or on potato in Spain. ADME - Bioanalyses, Vergèze, France. Report no. 03-0431. Unpublished.                               |
| 03-0432 | Benazeraf L | 2004 | Residue study with difenoconazole (CGA 169374) in or on potato in Spain. ADME - Bioanalyses, Vergèze, France. Report no. 03-0432. Unpublished.                               |
| 03-0440 | Solé C      | 2004 | Residue study with difenoconazole (CGA 169374) in or on peach in Italy. ADME – Bioanalyses, Vergèze, France. Syngenta report No 03-0440. Unpublished.                        |
| 03-0441 | Solé C      | 2004 | Residue study with difenoconazole (CGA 169374) in or on peach in Italy. ADME – Bioanalyses, Vergèze, France. Syngenta report no 03-0441. Unpublished.                        |
| 03-0442 | Solé C      | 2004 | Residue study with difenoconazole (CGA 169374) in or on peach in Italy. ADME – Bioanalyses, Vergèze, France. Syngenta report no 03-0442. Unpublished.                        |
| 03-0443 | Solé C      | 2004 | Residue study with difenoconazole (CGA 169374) in or on peach in Italy. ADME – Bioanalyses, Vergèze, France. Syngenta report no 03-0443. Unpublished.                        |
| 03-0520 | Solé C      | 2004 | Residue study with difenoconazole (CGA 169374) in or on outdoor tomatoes in Spain. ADME - Bioanalyses, Vergèze, France. Report no 03-0520. Unpublished.                      |
| 03-0521 | Solé C      | 2004 | Residue study with difenoconazole (CGA 169374) in or on outdoor tomatoes in Spain. ADME - Bioanalyses, Vergèze, France. Report no 03-0521. Unpublished.                      |
| 03-0522 | Benazeraf L | 2004 | Residue study with difenoconazole (CGA 169374) in or on olives in Spain. ADME - Bioanalyses, Vergèze, France. Report no. 03-0522. Unpublished.                               |
| 03-0523 | Benazeraf L | 2004 | Residue study with difenoconazole (CGA 169374) in or on olives in Spain. ADME - Bioanalyses, Vergèze, France. Report no. 03-0523. Unpublished.                               |
| 03-0524 | Benazeraf L | 2004 | Residue study with difenoconazole (CGA 169374) in or on olives in Spain. ADME - Bioanalyses, Vergèze, France. Report no. 03-0524. Unpublished.                               |
| 03-0613 | Solé C      | 2004 | Residue study with difenoconazole (CGA 169374) in or on outdoor tomatoes in Greece. ADME - Bioanalyses, Vergèze, France. Report no. 03-0613. Unpublished.                    |
| 03-0614 | Solé C      | 2004 |                                                                                                                                                                              |
| 04-0306 | Benazeraf L | 2005 | Difenoconazole (GA169374): residue study in or on celery in Spain. ADME - Bioanalyses, Vergèze, France. Report no. 04-0306. Unpublished.                                     |
| 04-0307 | Benazeraf L | 2005 | Residue study with difenoconazole (CGA 169374) in or on peach in Italy. ADME – Bioanalyses, Vergèze, France. Syngenta report no 04-0307. Unpublished.                        |
| 04-0309 | Benazeraf L | 2005 | Residues of difenoconazole after application of A7402T in cherries in France. North. ADME – Bioanalyses, Vergèze, France. Syngenta report no 04-0309, Syngenta. Unpublished. |

| Code    | Author      | Year | Title, Institution, Report reference                                                                                                                                                                                                                            |
|---------|-------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 04-0311 | Benazeraf L | 2005 | Azoxystrobin (ICI5504) and difenoconazole (CGA 169374): residue study in or on sunflowers in Switzerland. ADME - Bioanalyses, Vergèze, France. Report no. 04-0311. Unpublished.                                                                                 |
| 04-0404 | Benazeraf L | 2005 | Difenoconazole (CGA 169374): residue study in or on leek in France (south) and Italy. ADME - Bioanalyses, Vergèze, France. Report no 04-0404. Includes AF/7894/SY/1, AF/7894/SY/2, AF/7894/SY/3. Unpublished.                                                   |
| 04-0405 | Benazeraf L | 2005 | Difenoconazole (CGA 169374): residue study in or on broccoli in France (north). ADME - Bioanalyses, Vergèze, France. Syngenta report no 04-0405. Unpublished.                                                                                                   |
| 04-0412 | Benazeraf L | 2005 | Residue study with difenoconazole (CGA 169374) in or on peach in Greece. ADME – Bioanalyses, Vergèze, France. Syngenta report no 04-0412. Includes GR/FR/04-0093, GR/FR/04-0094. Unpublished.                                                                   |
| 04-0415 | Benazeraf L | 2005 | Azoxystrobin (ICI5504) and difenoconazole (CGA 169374): residue study in or on sunflowers in northern France. ADME - Bioanalyses, Vergèze, France. Report no. 04-0415. Unpublished.                                                                             |
| 04-0416 | Benazeraf L | 2005 | Azoxystrobin (ICI5504) and difenoconazole (CGA 169374): residue study in or on sunflowers in southern France. ADME - Bioanalyses, Vergèze, France. Report no. 04-0416. Includes FR-FR-04-0123, FR-FR-04-0124, FR-FR-04-0125, FR-FR-04-0126, Unpublished.        |
| 04-0426 | Benazeraf L | 2005 | Difenoconazole (CGA 169374): residue study in or on broccoli in Spain. ADME - Bioanalyses, Vergèze, France. Report no. 04-0426. Includes AF/7867/SY/2, AF/7866/SY/3. Unpublished.                                                                               |
| 04-0427 | Benazeraf L | 2005 | Difenoconazole (CGA 169374): residue study in or on celery in France (north). ADME - Bioanalyses, Vergèze, France. Report no. 04-0427. Includes AF/7868/SY/1, AF/7868/SY/2. Unpublished.                                                                        |
| 04-0501 | Benazeraf L | 2005 | Difenoconazole (CGA 169374): residue study in or on grapes in Italy. ADME - Bioanalyses, Vergèze, France. Syngenta report no. 04-0501. Includes IT-FR-04-0184, IT-FR-04-0214, Unpublished.                                                                      |
| 04-0505 | Benazeraf L | 2005 | Residue Study with difenoconazole (CGA 169374) in or on peach in France. South. ADME – Bioanalyses, Vergèze, France. Syngenta report no 04-0505. Unpublished.                                                                                                   |
| 04-0506 | Benazeraf L | 2005 | Residue study with difenoconazole (CGA 169374) in or on plum in France. North. ADME – Bioanalyses, Vergèze, France. Syngenta report no 04-0506. Includes AF/7874/SY/1, AF/7874/SY/2. Unpublished.                                                               |
| 04-0601 | Benazeraf L | 2005 | Difenoconazole (CGA 169374): residue study in or on grapes in France (South) and Italy. ADME - Bioanalyses, Vergèze, France. Syngenta report no. 04-0601. Includes AF/7875/SY/1, AF/7875/SY/2, AF/7875/SY/3. Unpublished.                                       |
| 04-0602 | Benazeraf L | 2005 | Difenoconazole (CGA 169374): residue study in or on leeks in France (north). ADME - Bioanalyses, Vergèze, France. Report no 04-0602. Includes AF/7893/SY/1, AF/7893/SY/2. Unpublished.                                                                          |
| 04-6047 | Richards S  | 2005 | Fenpropidin (CGA114900) and difenoconazole (CGA 169374): residue study in or on sugar beet in France (north). Syngenta, Jealott's Hill, UK, report no. 04-6047. Unpublished.                                                                                    |
| 04-6049 | Ryan J      | 2006 | Difenoconazole (CGA 169374): residue study in or on outdoor tomatoes and processed fractions in France (south). Syngenta - Jealott's Hill International, Bracknell, Berkshire, UK. Report no 04-6049. Includes AF/7870/SY/1. Unpublished.                       |
| 04-6067 | Richards S  | 2006 | Difenoconazole (CGA 169374): residue study in or on olives and processed fractions in Spain. Syngenta - Jealott's Hill International, Bracknell, Berkshire, United Kingdom. Report no. 04-6067. Includes AF/7872/SY/1, AF/7872/SY/2, AF/7872/SY/3. Unpublished. |
| 05-0401 | Solé C      | 2006 | Azoxystrobin (ICI5504) and difenoconazole (CGA 169374): residue study on sunflowers in Switzerland. ADME - Bioanalyses, Vergèze, France. Report no. 05-0401. Includes CH-FR-05-0313, CH-FR-05-0314. Unpublished.                                                |
| 05-0411 | Bour D      | 2006 | Azoxystrobin (ICI5504) and difenoconazole (CGA 169374): residue study on sunflowers in France (south) and Spain. ADME - Bioanalyses, Vergèze, France. Report no. 05-0411. Includes AF/8542/SY/1, AF/8542/SY/2, AF/8542/SY/3, AF/8542/SY/4. Unpublished.         |

| Code        | Author                | Year   | Title, Institution, Report reference                                                                                                                                                                                            |
|-------------|-----------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 05-0413     | Bour D                | 2006   | Difenoconazole (CGA 169374): residue study on protected tomatoes in southern France and Spain. ADME - Bioanalyses, Vergèze, France. Report no. 05-0413. Includes AF/8577/SY/1, AF/8577/SY/2. Unpublished.                       |
| 05-0414     | Bour D                | 2006   | Difenoconazole (CGA 169374): residue study on protected tomatoes in northern France and the United Kingdom. ADME - Bioanalyses, Vergèze, France. Syngenta report no. 05-0414. Includes AF/8577/SY/1, AF/8577/SY/2. Unpublished. |
| 05-0419     | Bour D                | 2006   | Difenoconazole (CGA 169374): residue study in potatoes in Spain. ADME - Bioanalyses, Vergèze, France. Report no. 05-0419. Unpublished.                                                                                          |
| 05-0503     | Bour D                | 2006   | Difenoconazole (CGA 169374): Residue study in plums in Spain. ADME – Bioanalyses, Vergèze, France. Syngenta report no 05-0503. Includes ES-FR-05-0429, ES-FR-05-0430. Unpublished.                                              |
| 05-0505     | Bour D                | 2006   | Difenoconazole (CGA 169374): residue study on potatoes in Italy. ADME - Bioanalyses, Vergèze, France. Report no. 05-0505. Includes ES-FR-05-0412, ES-FR-05-0413, ES-FR-05-0414. Unpublished.                                    |
| 05-0514     | Bour D                | 2006   | Difenoconazole (CGA 169374): residue study on cauliflower in the UK and northern France. ADME - Bioanalyses, Vergèze, France, Syngenta report no. 05-0514. Includes AF/8564/SY/1, AF/8564/SY/2. Unpublished.                    |
| 05-0530     | Bour D                | 2006   | Difenoconazole (CGA 169374): residue study on cauliflower in Switzerland. ADME - Bioanalyses, Vergèze, France, Syngenta report no. 05-0530. Unpublished.                                                                        |
| 05-0603     | Bour D                | 2006   | Difenoconazole (CGA 169374): residue study on olives in southern France and Spain. ADME - Bioanalyses, Vergèze, France. Report no 05-0603. Includes AF/8567/SY/1, AF/8567/SY/2. Unpublished.                                    |
| 05-6022-REG | Anderson L            | 2006   | Difenoconazole (CGA 169374): residue study on carrots and processed fractions in France (north). Syngenta - Jealott's Hill International, Bracknell, Berkshire, UK. Report no 05-6022-REG. Unpublished.                         |
| 06/90       | Tournayre JC          | 1990   | Determination of CGA 169374 and CGA 18251 in wheat. France. Syngenta report no. 06/90. Unpublished.                                                                                                                             |
| 07/90       | Tournayre JC          | 1990   | Determination of CGA 169374 and CGA 18251 in wheat. France. Syngenta report no. 07/90. Unpublished.                                                                                                                             |
| 08/90       | Tournayre J           | 1990   | Determination of CGA 169374 and CGA 18251 in wheat. France. Syngenta report no. 08/90. Unpublished.                                                                                                                             |
| 09/90       | Tournayre J           | 1990   | Determination of CGA 169374 and CGA 18251 in wheat. France. Syngenta report no. 09/90. Unpublished.                                                                                                                             |
| 100415      | Weber R an<br>Krohn J | d 2001 | Vapour pressure curve of 1,2,4-triazole. Bayer AG, Leverkusen, Germany. Report 100415. Unpublished.                                                                                                                             |
| 107458      | Das R                 | 2001   | Octanol / water partition coefficient of CGA 205375. Syngenta Crop Protection Münchwilen AG, Münchwilen, Switzerland. Report 107458. Unpublished.                                                                               |
| 107459      | Das R                 | 2001   | Water solubility of CGA 205375. Syngenta Crop Protection Münchwilen AG, Münchwilen, Switzerland. Report 107459. Unpublished.                                                                                                    |
| 11/93       | Neumann Ch            | 1993   | Metabolism of [phenyl- <sup>14</sup> C]CGA 169374 in field grown spring rape. Ciba-Geigy Ltd., Basel, Switzerland. Report 11/93. Unpublished.                                                                                   |
| 118/96      | Kühne-Thu H           | 1997   | Magnitude of residues of difenoconazole applied as Score to banana plants in Ecuador. Novartis Crop Protection AG, Basel, Switzerland. Report 118/96. Includes 2115/96, 2116/96, 2117/96. Unpublished.                          |
| 119/96      | Kühne-Thu H           | 1998   | Magnitude of residues of difenoconazole applied as Score EC 250 to banana plants in Colombia. Novartis Crop Protection AG, Basel, Switzerland. Report 119/96. Includes 2118/96, 2119/96, 2120/96. Unpublished.                  |
| 12/93       | Neumann Ch            | 1993   | Metabolism of [triazole- <sup>14</sup> C]CGA 169374 in field grown spring rape. Ciba-Geigy Ltd., Basel, Switzerland. Report 12/93. Unpublished.                                                                                 |
| 120/96      | Kühne-Thu H           | 1998   | Magnitude of residues of difenoconazole applied as Score EC 250 to banana plants in Honduras. Novartis Crop Protection AG, Basel, Switzerland. Report 120/96. Includes 2121/96, 2122/96, 2123/96. Unpublished.                  |
| 12039       | Pigeon O              | 2000   | Determination of residues of difenoconazole in head cabbage after treatment with SCORE 250 EC. Departement de Phytopharmacie, Gembloux, Belgium. Report no. 12039. Unpublished.                                                 |

| Code     | Author                  | Year   | Title, Institution, Report reference                                                                                                                                                                                                                                                       |
|----------|-------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 125/93   | Kühne-Thu H             | 1994   | Residue stability of CGA 169374 (difenoconazole) in banana (whole fruit) under freezer storage conditions. Ciba-Geigy Ltd., Basel, Switzerland. Report 125/93. Unpublished.                                                                                                                |
| 12844    | Old J, Smith and Bass R | A 1996 | Generation of Brussel sprout samples treated with test material containing CGA 169374 EC for subsequent residue analysis. Inveresk Res. Int. Ltd., UK. Report no 12844. Unpublished.                                                                                                       |
| 12845    | Old J, Smith and Bass R | A 1996 | Generation of Brussel sprout samples treated with test material containing CGA 169374 EC for subsequent residue analysis. Inveresk Res. Int. Ltd., UK. Report no 12845. Unpublished.                                                                                                       |
| 12846    | Old J, Smith and Bass R | A 1996 | Generation of Brussel sprout samples treated with test material containing CGA 169374 EC for subsequent residue analysis. Inveresk Res. Int. Ltd., UK. Report no 12846. Unpublished.                                                                                                       |
| 12847    | Old J, Smith and Bass R | A 1996 | Generation of Brussel sprout samples treated with test material containing CGA 169374 EC for subsequent residue analysis. Inveresk Res. Int. Ltd., UK. Report no 12847. Unpublished.                                                                                                       |
| 2001WI07 | Widmer H                | 2001   | Vapour pressure of CGA 205375. Syngenta Crop Protection AG, Basel, Switzerland. Report 2001WI07. Unpublished.                                                                                                                                                                              |
| 2005/87  | Kühne-Thu H             | 1988   | Determination of residues in carrots (roots) and soil after application of EC 250. Switzerland. Ciba-Geigy Ltd., Basel, Switzerland, report no. 2005/87. Unpublished.                                                                                                                      |
| 2005/89  | Kühne-Thu H             | 1991   | CGA 169374 (difenoconazole), chilli-pepper, Indonesia. Determination of residues of parent compound in chilli-pepper after treatment with 'Score EC 250' – field experiment. Ciba-Geigy Ltd., Basel, Switzerland, report no. 2005/89. Unpublished.                                         |
| 2006/87  | Kühne-Thu H             | 1989   | Determination of residues in carrots (roots) and soil after application of EC 250. Switzerland. Ciba-Geigy Ltd., Basel, Switzerland, report no. 2006/87. Unpublished.                                                                                                                      |
| 2006/89  | Kühne-Thu H             | 1991   | CGA 169374 (difenoconazole), chilli-pepper, Indonesia. Determination of residues of parent compound in chilli-pepper after treatment with 'Score EC 250' – field experiment. Ciba-Geigy Ltd., Basel, Switzerland, report no. 2006/89. Unpublished.                                         |
| 2006/99  | Kühne-Thu H             | 2001   | Residue study with difenoconazole (CGA 169374) in or on cauliflower in the United Kingdom. Syngenta AG, Basel, Switzerland. Report no 2006/99. Unpublished.                                                                                                                                |
| 2010/92  | Kühne-Thu H             | 1993   | Difenoconazole (CGA 169374), leek, Switzerland. Determination of residues of difenoconazole in leek (stems) – field trial. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2010/92. Unpublished.                                                                                           |
| 2011/92  | Kühne-Thu H             | 1993   | Difenoconazole (CGA 169374), leek, Switzerland. Determination of residues of difenoconazole in leek (stems) – field trial. Ciba-Geigy Ltd., Basel, Switzerland, Syngenta Report No. 2011/92. Unpublished.                                                                                  |
| 2019/01  | Solé C                  | 2002   | Residue study with difenoconazole (CGA 169374) in or on apples in Greece. ADME - Bioanalyses, Vergèze, France. Report no. 2019/01, Syngenta. Unpublished.                                                                                                                                  |
| 202/99   | Tribolet R              | 2000   | Residues of difenoconazole (CGA 169374) and its metabolite CGA 205375 in milk, blood, and tissues (muscle, fat, liver, kidney) of dairy cattle resulting from feeding of difenoconazole at three dose levels. Novartis Crop Protection AG, Basel, Switzerland. Report 202/99. Unpublished. |
| 2020/01  | Solé C                  | 2002   | Residue study with difenoconazole (CGA 169374) in or on pears in Greece. ADME - Bioanalyses, Vergèze, France. Report no. 2020/01, Syngenta. Unpublished.                                                                                                                                   |
| 2021/01  | Solé C                  | 2002   | Residue study with difenoconazole (CGA 169374) in or on tomatoes in Greece. ADME - Bioanalyses, Vergèze, France. Report no. 2021/01. Unpublished.                                                                                                                                          |
| 2021/91  | Kühne-Thu H             | 1992   | Difenoconazole (CGA 169374), lettuce, Spain. Determination of residues of parent compound in lettuce – field trial. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2021/91. Unpublished.                                                                                                  |
| 2022/91  | Kühne-Thu H             | 1992   | Difenoconazole (CGA 169374), lettuce, Spain. Determination of residues of parent compound in lettuce – field trial. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2022/91. Unpublished.                                                                                                  |

| Code    | Author      | Year | Title, Institution, Report reference                                                                                                                                                            |
|---------|-------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2023/91 | Kühne-Thu H | 1992 | Difenoconazole (CGA 169374), lettuce, Spain. Determination of residues of parent compound in lettuce – field trial. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2023/91. Unpublished.       |
| 2024/91 | Kühne-Thu H | 1992 | Difenoconazole (CGA 169374), lettuce, Spain. Determination of residues of parent compound in lettuce – field trial. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2024/91. Unpublished.       |
| 2025/00 | Kühne-Thu H | 2001 | Residue study with difenoconazole (CGA 169374) in or on apples in Spain. Syngenta Crop Protection AG, Basel, Switzerland. Report no. 2025/00. Unpublished.                                      |
| 2026/00 | Kühne-Thu H | 2001 | Residue study with difenoconazole (CGA 169374) in or on apples in Spain. Syngenta Crop Protection AG, Basel, Switzerland. Report no. 2026/00. Unpublished.                                      |
| 2027/91 | Kühne-Thu H | 1992 | Difenoconazole (CGA 169374), lettuce, Spain. Determination of residues of parent compound in lettuce – field trial. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2027/91. Unpublished.       |
| 2036/00 | Kühne-Thu H | 2001 | Residue study with difenoconazole (CGA 169374) in or on apples in Italy. Syngenta Crop Protection AG, Basel, Switzerland. Report no. 2036/00. Unpublished.                                      |
| 2042/00 | Kühne-Thu H | 2001 | Residue study with difenoconazole (CGA 169374) in or on apples in Greece. Syngenta Crop Protection AG, Basel, Switzerland. Report no. 2042/00. Unpublished.                                     |
| 2047/90 | Kühne-Thu H | 1992 | Determination of residues of parent compound in wheat and soil – field trial. Difenoconazole (CGA 169374) Denmark. Syngenta report no. 2047/90. Unpublished.                                    |
| 2048/90 | Kühne-Thu H | 1992 | Determination of residues of parent compound in wheat and soil – field trial. Difenoconazole (CGA 169374) Denmark. Syngenta report no. 2048/90. Unpublished.                                    |
| 2050/88 | Kühne-Thu H | 1990 | CGA 169374, sugarbeet, EC 100, A-7951 A, Germany. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2050/88. Unpublished.                                                                         |
| 2051/92 | Kühne-Thu H | 1993 | Determination of residues of difenoconazole (CGA 169374) in grapes and wine – field trial. Spain. Ciba-Geigy France. Report no. 2051/92. Unpublished.                                           |
| 2052/88 | Kühne-Thu H | 1990 |                                                                                                                                                                                                 |
| 2053/88 | Kühne-Thu H | 1990 |                                                                                                                                                                                                 |
| 2053/92 | Kühne-Thu H | 1992 | Determination of residues of difenoconazole (CGA 169374) in grapes and wine – field trial. Spain. Ciba-Geigy France. Report no. 2053/92. Unpublished.                                           |
| 2056/90 | Kühne-Thu H | 1992 | Determination of residues of difenoconazole (CGA 169374) in asparagus and soil - field trial. Italy. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2056/90. Unpublished.                      |
| 2059/89 | Kühne-Thu H | 1991 | Determination of residues of parent compound in sugar beets (roots and leaves) – field trial. Denmark Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2059/89. Unpublished.                     |
| 2060/89 | Kühne-Thu H | 1991 | Determination of residues of parent compound in wheat (green plants, grain, straw) – field trial. Difenoconazole (CGA 169374), winter wheat, Denmark. Syngenta report no. 2060/89. Unpublished. |
| 2060/90 | Kühne-Thu H | 1992 | CGA 169374, leek, Italy. Determination of residues of parent compound in leek – field trial. Ciba-Geigy Ltd., Basel, Switzerland. Report no 2060/90. Unpublished.                               |
| 2063/90 | Kühne-Thu H | 1992 | Determination of residues of parent compound in celery – field trial. Difenoconazole (CGA 169374) Italy. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2063/90. Unpublished.                  |
| 2064/90 | Kühne-Thu H | 1992 |                                                                                                                                                                                                 |
| 2064/99 | Kühne-Thu H | 2000 | Residue study with difenoconazole (CGA 169374) in or on cauliflower in France (north). Novartis Crop Protection AG, Basel, Switzerland. Report no 2064/99. Unpublished.                         |

| Code    | Author      | Year | Title, Institution, Report reference                                                                                                                                                             |
|---------|-------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2065/99 | Kühne-Thu H | 2000 | Residue study with difenoconazole (CGA 169374) in or on cauliflower in France (north). Novartis Crop Protection AG, Basel, Switzerland. Report no 2065/99. Unpublished.                          |
| 2066/99 | Kühne-Thu H | 2000 | Residue study with difenoconazole (CGA 169374) in or on cauliflower in France (north). Novartis Crop Protection AG, Basel, Switzerland. Report no 2066/99. Unpublished.                          |
| 2067/99 | Kühne-Thu H | 2000 | Residue study with difenoconazole (CGA 169374) in or on cauliflower in France (south). Novartis Crop Protection AG, Basel, Switzerland. Report no. 2067/99. Unpublished.                         |
| 2068/99 | Kühne-Thu H | 2000 | Residue study with difenoconazole (CGA 169374) in or on cauliflower in France (south). Novartis Crop Protection AG, Basel, Switzerland. Report no 2068/99. Unpublished.                          |
| 2069/99 | Kühne-Thu H | 2000 | Residue study with difenoconazole (CGA 169374) in or on cauliflower in France (south). Novartis Crop Protection AG, Basel, Switzerland. Report no. 2069/99. Unpublished.                         |
| 2070/01 | Solé C      | 2002 | Residue study with difenoconazole (CGA 169374) in or on apples in Italy. ADME - Bioanalyses, Vergèze, France. Report no. 2070/01, Syngenta. Unpublished.                                         |
| 2070/99 | Kühne-Thu H | 2000 | Residue study with difenoconazole (CGA 169374) in or on cauliflower in France (south). Novartis Crop Protection AG, Basel, Switzerland. Report no 2070/99. Unpublished.                          |
| 2088/91 | Kühne-Thu H | 1993 | Determination of residues of difenoconazole (CGA 169374) in asparagus (shoots) field trial. Italy. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2088/91. Unpublished.                         |
| 2091/93 | Kühne-Thu H | 1994 | Determination of residues of difenoconazole (CGA 169374) in bananas – field trial. Guatemala. Ciba-Geigy Ltd., Basel, Switzerland. Report 2091/93. Unpublished.                                  |
| 2096/01 | Solé C      | 2002 | Residue study with difenoconazole (CGA 169374) in or on apples in Spain. ADME - Bioanalyses, Vergèze, France. Report no. 2096/01, Syngenta. Unpublished.                                         |
| 2108/99 | Kühne-Thu H | 2000 | Residue study with difenoconazole (CGA 169374) in or on plums in France. North. Novartis Crop Protection AG, Basel, Switzerland. Syngenta report no 2108/99. Unpublished.                        |
| 2110/98 | Kühne-Thu H | 1999 | Residue study with difenoconazole (CGA 169374) and propiconazole (CGA 64250) in or on rice in Indonesia. Novartis Crop Protection AG, Basel, Switzerland. Report no. 2110/98. Unpublished.       |
| 2111/98 | Kühne-Thu H | 1999 | Residue study with difenoconazole (CGA 169374) and propiconazole (CGA 64250) in or on rice in Indonesia. Novartis Crop Protection AG, Basel, Switzerland. Report no. 2111/98. Unpublished.       |
| 2112/98 | Kühne-Thu H | 2000 | Residue study with difenoconazole (CGA 169374) and propiconazole (CGA 64250) in or on rice in Malaysia. Novartis Crop Protection AG, Basel, Switzerland. Report no. 2112/98. Unpublished.        |
| 2113/00 | Kühne-Thu H | 2001 | Residue study with difenoconazole (CGA 169374) in or on cauliflower in France (north). Novartis Crop Protection AG, Basel, Switzerland. Report no 2113/00. Unpublished.                          |
| 2113/88 | Kühne-Thu H | 1989 | Asparagus and soil, Switzerland. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2113/88. Unpublished.                                                                                           |
| 2113/98 | Kühne-Thu H | 2000 | •                                                                                                                                                                                                |
| 2114/88 | Kühne-Thu H | 1989 | Asparagus and soil, Switzerland. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2114/88. Unpublished.                                                                                           |
| 2117/88 | Kühne-Thu H | 1989 | Determination of residues in celery after application of EC 250. Difenoconazole (CGA 169374), 250 EC, celery, Switzerland. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2117/88. Unpublished. |
| 2118/88 | Kühne-Thu H | 1989 | Determination of residues in celery after application of EC 250. Difenoconazole (CGA 169374), 250 EC, celery. Switzerland. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2118/88. Unpublished. |

| Code    | Author      | Year | Title, Institution, Report reference                                                                                                                                                                                                                                             |
|---------|-------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2127/92 | Kühne-Thu H | 1994 | Determination of residues of difenoconazole (CGA 169374) in bananas – field trial. Costa Rica. Ciba-Geigy Ltd., Basel, Switzerland. Report 2127/92. Unpublished.                                                                                                                 |
| 2128/92 | Kühne-Thu H | 1994 | Determination of residues of difenoconazole (CGA 169374) in bananas – field trial. Costa Rica. Ciba-Geigy Ltd., Basel, Switzerland. Report 2128/92. Unpublished.                                                                                                                 |
| 2148/87 | Kühne-Thu H | 1989 | CGA 169374, sugarbeet, Fed. Rep. of Germany. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2148/87. Unpublished.                                                                                                                                                               |
| 2149/87 | Kühne-Thu H | 1989 | CGA 169374, sugarbeet, Fed. Rep. of Germany. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2149/87. Unpublished.                                                                                                                                                               |
| 2150/87 | Kühne-Thu H | 1989 | CGA 169374, sugarbeet, Fed. Rep. of Germany. Ciba-Geigy Ltd., Basel, Switzerland. Report no. 2150/87. Unpublished.                                                                                                                                                               |
| 2161/98 | Kühne-Thu H | 2000 | Residue study with difenoconazole (CGA 169374) in or on plums in France. North. Novartis Crop Protection AG, Basel, Switzerland. Syngenta report no 2161/98. Unpublished.                                                                                                        |
| 2164/91 | Kühne-Thu H | 1992 | Difenoconazole (CGA 169374), chilli-pepper, Malaysia. Determination of residues of parent compound in chilli-pepper (fruits) – field trial. Ciba-Geigy Ltd., Basel, Switzerland, report no. 2164/91. Unpublished.                                                                |
| 2165/91 | Kühne-Thu H | 1992 | Difenoconazole (CGA 169374), chilli-pepper, Malaysia. Determination of residues of parent compound in chilli-pepper (fruits) – field trial. Ciba-Geigy Ltd., Basel, Switzerland, report no. 2165/91. Unpublished.                                                                |
| 2184/94 | Kühne-Thu H | 1995 | Determination of residues of difenoconazole in rice (grain) – field report. Malaysia. Ciba-Geigy Ltd., Basel, Switzerland. Report No. 2184/94. Unpublished.                                                                                                                      |
| 2204/94 | Kühne-Thu H | 1997 | Magnitude of residues of difenoconazole applied as EC 250 to apple trees in Chile. Determination of difenoconazole and CGA 205375 (metabolite) in apples and processed fractions. Novartis Crop Protection AG, Basel, Switzerland. Report no 2204/94. Unpublished.               |
| 2205/94 | Kühne-Thu H | 1997 | Magnitude of residues of difenoconazole applied as EC 250 (double rate) on apple trees in Chile. Determination of difenoconazole and CGA 205375 (metabolite) in apples and processed fractions. Novartis Crop Protection AG, Basel, Switzerland. Report no 2205/94. Unpublished. |
| 2207/94 | Kühne-Thu H | 1997 | Magnitude of residues of difenoconazole applied as EC 250 on apple trees in Chile. Determination of difenoconazole and CGA 205375 (metabolite) in apples and processed fractions. Novartis Crop Protection AG, Basel, Switzerland. Report no 2207/94. Unpublished.               |
| 2217/96 | Kühne-Thu H | 1998 | Residue study with difenoconazole in or on grapes in Chile. Novartis Crop Protection Ag, Basel, Switzerland. Report no. 2217/96. Unpublished.                                                                                                                                    |
| 2219/96 | Kühne-Thu H | 1998 | Residue study with difenoconazole in or on grapes in Chile. Novartis Crop Protection Ag, Basel, Switzerland. Report no. 2219/96. Unpublished.                                                                                                                                    |
| 2220/96 | Kühne-Thu H | 1998 | Residue study with difenoconazole in or on grapes in Chile. Novartis Crop Protection Ag, Basel, Switzerland. Report no. 2220/96. Unpublished.                                                                                                                                    |
| 2221/96 | Kühne-Thu H | 1998 | Residue study with difenoconazole in or on grapes in Chile. Novartis Crop Protection Ag, Basel, Switzerland. Report no. 2221/96. Unpublished.                                                                                                                                    |
| 2229/85 | Kühne-Thu H | 1986 | Determination of residues of parent compound in wheat after application of CGA 169374 and tridemorph. Geat Britain. Syngenta report no. 2229/85. Unpublished.                                                                                                                    |
| 2230/85 | Kühne-Thu H | 1986 | Determination of residues of parent compound in wheat after application of CGA 169374 and tridemorph. Geat Britain. Syngenta report no. 2230/85. Unpublished.                                                                                                                    |
| 2258/96 | Kühne-Thu H | 1999 | Residue study with difenoconazole (CGA1693874) in or on grapes and raisins in Chile. Novartis Crop Protection Ag, Basel, Switzerland. Report no. 2259/98. Unpublished.                                                                                                           |
| 231/89  | Kühne-Thu H | 1989 | Determination of residues of parent compound in wheat and soil after treatment with fungicide 'Score EC 250'. Switzerland. Syngenta report no. 2031/89. Unpublished.                                                                                                             |
| 23321   | Stulz J     | 1994 | Report on water solubility. Ciba-Geigy Münchwilen AG, Münchwilen, Switzerland. Report 23321. Unpublished.                                                                                                                                                                        |

| Code   | Author            | Year   | Title, Institution, Report reference                                                                                                                                                                                                    |
|--------|-------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 278336 | Slangen PJ        | 2000   | Degradation of 1,2,4-triazole in three soils under aerobic conditions. Novartis Crop Protection AG, Basel, Switzerland NOTOX B.V., 'S Hertogenbosch, Netherlands. Report no NOTOX 278336. Unpublished.                                  |
| 4/94   | Walser M          | 1994   | Outdoor confined accumulation study on rotational crops after bareground soil application of [14C-triazole]-CGA 169374. Ciba-Geigy Ltd. Report 4/94. Unpublished.                                                                       |
| 48/87  | Tournayre J-C     | 1987   | Determination of CGA 169374 in sugarbeet. France. Ciba-Geigy Agriculture, Aigues-Vives, France. Report no. 48/87. Unpublished.                                                                                                          |
| 48/89  | Tournayre J       | 1989   | Determination of CGA 169374 and CGA 18251 in rape. Syngenta report no. 48/89. Unpublished.                                                                                                                                              |
| 488001 | Heyer R           | 1995   | Determination of difenoconazole and triazolylalanine in field soil and rotational crop (spinach). Germany. RCC Umweltchemie GmbH & Co. KG, Rossdorf, Germany. Project 488001. Unpublished.                                              |
| 488002 | Heyer R           | 1995   | Determination of difenoconazole and triazolylalanine in field soil and rotational crop (carrot). Germany. RCC Umweltchemie GmbH & Co. KG, Rossdorf, Germany. Project 488002. Unpublished.                                               |
| 494    | Atkins RH         | 1991   | Hydrolysis of [ <sup>14</sup> C]CGA 169374 at pH 5, 7 and 9. Novartis Crop Protection AG, Basel, Switzerland and PTRL East, Inc., Richmond, United States. Report 494. Unpublished.                                                     |
| 53/88  | Tournayre JC      | 1989   | Determination of CGA 169374 and CGA 18251 in wheat. France. Syngenta report no. 53/88. Unpublished.                                                                                                                                     |
| 70157  | Das R             | 1999   | Report on melting point / melting range. Novartis Crop Protection Münchwilen AG, Münchwilen, Switzerland. Report 70157 Unpublished.                                                                                                     |
| 70159  | Hörmann A         | 1999   | Final report on dissociation constant in water. Novartis Services AG, Basel, Switzerland. Report 70159. Unpublished.                                                                                                                    |
| 70160  | Das R             | 1999   | Report on general physico-chemical properties. pure active ingredient - colour, aspect and odour. Novartis Crop Protection Münchwilen AG, Münchwilen, Switzerland. Report 70160. Unpublished.                                           |
| 738606 | Mamouni A         | 2000   | Degradation and metabolism of CGA 169374 [ <sup>14</sup> C-triazole] in one soil incubated under aerobic conditions. Syngenta Crop Protection AG, Basel, Switzerland RCC Ltd., Itingen, Switzerland. Report no 738606. Unpublished.     |
| 738617 | Mamouni A         | 2000   | Degradation and metabolism of CGA 169374 [ <sup>14</sup> C-chlorophenyl] in one soil incubated under aerobic conditions. Syngenta Crop Protection AG, Basel, Switzerland RCC Ltd., Itingen, Switzerland. Report no 738617. Unpublished. |
| 738628 | Völkel W          | 2000   | Degradation of CGA 169374[ <sup>14</sup> C-triazole] in one soil incubated under various conditions. Syngenta Crop Protection AG, Basel, Switzerland RCC Ltd., Itingen, Switzerland. Report no 738628. Unpublished.                     |
| 76303  | Kettner R         | 1999   | Octanol / water partition coefficient of CGA 169374. Novartis Crop Protection Münchwilen AG, Münchwilen, Switzerland. Report 76303. Unpublished.                                                                                        |
| 76994  | Kettner R         | 1999   | Solubility in organic solvents of CGA 169374. Novartis Crop Protection Münchwilen AG, Münchwilen, Switzerland. Report 76994. Unpublished.                                                                                               |
| 77/90  | Tournayre J-C     | 1990   | Determination of CGA 169374 in asparagus. France. Ciba-Geigy SA, Rueil-Malmaison, France. Report no. 77/90. Unpublished.                                                                                                                |
| 775438 | Mamouni A         | 2002   | Degradation of CGA 169374 [ <sup>14</sup> C-chlorophenyl] in three soils incubated under aerobic conditions. Syngenta Crop Protection AG, Basel, Switzerland RCC Ltd., Itingen, Switzerland. Report no 775438. Unpublished.             |
| 775451 | Völkel W          | 2002   | Degradation of CGA 205375 [ <sup>14</sup> C-triazole] in three soils incubated under aerobic and anaerobic conditions. Syngenta Crop Protection AG, Basel, Switzerland RCC Ltd., Itingen, Switzerland. Report no 775451. Unpublished.   |
| 78/90  | Tournayre J-C     | 1990   | Determination of CGA 169374 in asparagus. France. Ciba-Geigy SA, Rueil-Malmaison, France. Report no. 78/90. Unpublished.                                                                                                                |
| 786-02 | Ray W             | 2004   | [Triazole- <sup>14</sup> C] CGA 169374 - Nature of the residue in laying hens. Syngenta Crop Protection, Inc., Greensboro, United States. Report 786-02. Unpublished.                                                                   |
| 791    | Atkins RH         | 1994   | CGA 169374. Soil surface photolysis of phenyl- <sup>14</sup> C-CGA-169374 under artificial sunlight. Novartis Crop Protection AG, Basel, Switzerland PTRL East, Inc., Richmond, United States. Report no 791. Unpublished.              |
| 798658 | Van Der Gaau<br>A | w 2001 | CGA 205375 [ <sup>14</sup> C-triazole]: hydrolysis at three different pH values. Syngenta Crop Protection AG, Basel, Switzerland RCC Ltd., Itingen, Switzerland. Report no 798658. Unpublished.                                         |

| Code             | Author Ye                    | /ear | Title, Institution, Report reference                                                                                                                                                                                                                                |
|------------------|------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8/94             | Walser M 19                  | 994  | Outdoor confined accumulation study on rotational crops after bareground soil application of [\(^{14}\text{C-phenyl}\)]-CGA 169374. Ciba-Geigy Ltd., Basel, Switzerland. Report 8/94. Unpublished.                                                                  |
| 815635           | Van der Gaauw A 20           | 002  | Aqueous photolysis of CGA 169374 [ <sup>14</sup> C-triazole] under laboratory conditions. RCC Ltd., Itingen, Switzerland. Report 815635. Unpublished.                                                                                                               |
| 815657           | Van Der Gaauw 20<br>A        | 002  | Aqueous photolysis of CGA 205375 [ \$^{14}\$C-triazole] under laboratory conditions. Syngenta Crop Protection AG, Basel, Switzerland RCC Ltd., Itingen, Switzerland. Report no 815657. Unpublished.                                                                 |
| 83-E-074         | Spare WC 19                  | 983  | Determination of the hydrolysis rate constants of 1,2,4-H-triazole. Novartis Crop Protection AG, Basel, Switzerland Ciba-Geigy Corp., Greensboro, United States. Report no 83-E-074. Unpublished.                                                                   |
| 8804             | Das R 19                     | 993  | Report on general physico-chemical properties. Ciba-Geigy Münchwilen AG, Münchwilen, Switzerland. Report 8804. Unpublished.                                                                                                                                         |
| 900201           | Yarko J 19                   | 990  | Independent laboratory confirmation of a proposed tolerance enforcement method for CGA 169374 / AG-575. Ciba-Geigy Corp., Greensboro, United States. Report 900201. Unpublished.                                                                                    |
| 91GJ01<br>91GJ02 | Gonzalez-Valero 19<br>J      | 992  | Rate of degradation of <sup>14</sup> C-CGA 169374 in aerobic soil at various conditions. Novartis Crop Protection AG, Basel, Switzerland Ciba-Geigy Ltd., Basel, Switzerland. Report no 12-92. Project 91GJ01, 91GJ02. Unpublished.                                 |
| 91GJ05           | Gonzalez-Valero 19<br>J      | 992  | Degradation of CGA 169374 in soil under aerobic conditions at 20°C. Novartis Crop Protection AG, Basel, Switzerland Ciba-Geigy Basel, Oekotoxikologie, Basel, Switzerland. Report no 91GJ05. Unpublished.                                                           |
| 96 10 62 010     | Beinhauer J. 19              | 997  | Study on the residue behaviour in field samples and processed fractions of sugar beets according to BBA Guideline IV, 3-3 And 3-4. 1990. Report no. 96 10 62 010. Unpublished.                                                                                      |
| 96 10 61 009     | Beinhauer 19                 | 997  | Study on the residue behaviour in field samples and processed fractions of sugar beets according to BBA Guideline IV, 3-3 and 3-4. 1990. Report no. 96 10 61 009. Unpublished.                                                                                      |
| 9813301          | Maffezzoni M 19              | 999  | Residue study with difenoconazole and carbendazime in or on wheat in north of France. Syngenta report no. 9813301. Unpublished.                                                                                                                                     |
| 9813302          | Maffezzoni M 19              | 999  | Residue study with difenoconazole and carbendazime in or on wheat in north of France. Syngenta report no. 9813302. Unpublished.                                                                                                                                     |
| 9813303          | Maffezzoni M 19              | 999  | Residue study with difenoconazole and carbendazime in or on wheat in south of France. Syngenta report no. 9813303. Unpublished.                                                                                                                                     |
| 9813304          | Maffezzoni M 19              | 999  | Residue study with difenoconazole and carbendazime in or on wheat in south of France. Syngenta report no. 9813304. Unpublished.                                                                                                                                     |
| ABR-87025        | Madrid SO and 19<br>Huber MK | 987  | The distribution and characterization of phenyl- <sup>14</sup> C vs. triazole <sup>14</sup> C-CGA 169374 on spray treated tomatoes - a side by side comparison study in the greenhouse. Ciba-Geigy Corp., Greensboro, United States. Report ABR-87025. Unpublished. |
| ABR-87033        | Madrid SO and 19<br>Huber MK | 987  | The distribution and characterization of phenyl- <sup>14</sup> C vs. triazole- <sup>14</sup> C-CGA 169374 and their metabolites in field grown tomatoes. Ciba-Geigy Corp., Greensboro, United States. Report ABR-87033. Unpublished.                                |
| ABR-88087        | Madrid SO 19                 | 988  | Metabolism of triazole and phenyl- <sup>14</sup> C-CGA 169374 in lactating goats dosed daily for ten consecutive days. Ciba-Geigy Corp., Greensboro, United States. Report ABR-88087. Unpublished.                                                                  |
| ABR-89051        | Madrid SO 19                 | 989  | Metabolism of triazole and phenyl- <sup>14</sup> C-CGA 169374 in laying hens dosed daily for fourteen consective days. Ciba-Geigy Corp., Greensboro, United States. Report ABR-89051. Unpublished.                                                                  |
| ABR-89100        | Maynard MS 19                | 990  | [ <sup>14C</sup> ]-CGA 169374 phenyl and triazole label distribution, elimination and metabolism in goats. Ciba-Geigy Corp., Greensboro, United States. Report ABR-89100. Unpublished.                                                                              |
| ABR-89101        | Maynard MS 19                | 990  | [ <sup>14</sup> C]-CGA 169374 phenyl and triazole label distribution, elimination and metabolism in hens. Ciba-Geigy Corp., Greensboro, United States. Report ABR-89101. Unpublished.                                                                               |
| ABR-90009        | Hubbard L 19                 | 991  | Uptake and metabolism of <sup>14</sup> C-CGA 169374 by wheat resulting from seed treatment application under field conditions. Ciba-Geigy Corp., Greensboro, United States. Report ABR-90009. Unpublished.                                                          |

| Code       | Author Year                             | Title, Institution, Report reference                                                                                                                                                                                           |
|------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ABR-90010  | Hubbard L 1991                          | Uptake and metabolism of <sup>14</sup> C-CGA 169374 by wheat resulting from seed treatment application under greenhouse conditions. Ciba-Geigy Corp., Greensboro, United States. Report ABR-90010. Unpublished.                |
| ABR-90011  | Hubbard L 1991                          | Uptake and metabolism of <sup>14</sup> C-CGA 169374 by wheat resulting from foliar spray application in a greenhouse environment. Ciba-Geigy Corp., Greensboro, United States. Report ABR-90011. Unpublished.                  |
| ABR-90019  | Capps TM and 1993<br>Anderson W         | Supplemental report on the metabolism of <sup>14</sup> C-phenyl-CGA 169374 in rats – identification of the major urinary metabolites. Ciba-Geigy Corp., Greensboro, United States. Report ABR-90019. Unpublished.              |
| ABR-90019  | Capps TM, Barr 1990<br>HP and Carlin TJ | Characterization and identification of major triazole- <sup>14</sup> C and phenyl- <sup>14</sup> C-CGA 169374 metabolites in rats. Ciba-Geigy Corp., Greensboro, United States. Report ABR-90019. Unpublished.                 |
| ABR-90069  | Beidler WT 1991                         | Stability of CGA 169374 residues in tomatoes under freezer storage conditions for 2 years. Ciba-Geigy Corp., Greensboro, United States. Report ABR-90069. Unpublished.                                                         |
| ABR-90070  | Beidler WT 1991                         | Stability of CGA 169374 residues in potatoes under freezer storage conditions for 2 years. Ciba-Geigy Corp., Greensboro, United States. Report ABR-90070. Unpublished.                                                         |
| ABR-91024  | Beidler WT 1992                         | Stability of CGA 169374 residues in lettuce, soybeans and wheat forage under freezer storage conditions for one year. Ciba-Geigy Corp., Greensboro, United States. Report ABR-91024. Unpublished.                              |
| ABR-92003  | Capps T 1992                            | Uptake and metabolism of <sup>14</sup> C-CGA 169374 by grapes from foliar spray treatment. Ciba-Geigy Corp., Greensboro, United States. Report ABR-92003. Unpublished.                                                         |
| ABR-92084  | Yokley RA 1993                          | Specificity of analytical method AG-575A for the determination of CGA 169374 in small grains. Ciba-Geigy Corp., Greensboro, United States. Report ABR-92084. Unpublished.                                                      |
| ABR-93012  | Wurz REM and 1993<br>McCaskill LM       | Storage stability study of CGA 169374 in dairy and poultry tissues, eggs and milk under freezer storage conditions. Ciba-Geigy Corp., Greensboro, United States. Report ABR-93012. Unpublished.                                |
| ABR-93022  | Wurz REM 1993                           | Method validation ruggedness trial for the determination of CGA 169374 in beef liver, eggs and milk using analytical method AG-544. Ciba-Geigy Corp., Greensboro, United States. Report ABR-93022. Unpublished.                |
| ABR-93022  | Wurz REM 1994                           | Analytical method for the determination of CGA 169374 residues in dairy and poultry tissue, eggs and milk by gas chromatography. Ciba-Geigy Corp., Greensboro, United States. Report AG-544A. Unpublished.                     |
| ABR-95057  | Close C 1995                            | <sup>14</sup> C-CGA-169374: Uptake and distribution of residues in confined rotational crops. Ciba-Geigy Corp., Greensboro, United States. Report ABR-95057. Unpublished.                                                      |
| ABR-95099  | Ray WJ 1996                             | Metabolism of phenyl- <sup>14</sup> C-CGA 169374 in lactating goats. Ciba-Geigy Corp., Greensboro, United States. Report ABR-95099. Unpublished.                                                                               |
| ABR-98061  | Hayworth CG 1998                        | Stability of CGA 169374 fortified into wheat and cotton substrates under freezer storage conditions. Novartis Crop Protection Inc., Greensboro, United States. Report ABR-98061. Unpublished.                                  |
| AG 88/11 P | Rordorf B 1988                          | Report on vapor pressure curve. Ciba-Geigy Ltd., Basel, Switzerland. Report AG-88-11P. Unpublished.                                                                                                                            |
| AG-514     | Williams RK and 1987<br>Shoffner KP     |                                                                                                                                                                                                                                |
| AG-537     | Williams WL 1988                        | CGA 169374, Analytical method for the determination of CGA 169374 in wheat raw agricultural commodities by gas chromatography. Ciba-Geigy Corp., Greensboro, United States. Report AG-537. Unpublished.                        |
| AG-544     | Ward MK 1988                            | CGA 169374, Analytical method for the determination of CGA 169374 residues in dairy and poultry tissue, eggs and milk by gas chromatography. Ciba-Geigy Corp., Greensboro, United States. Report AG-544. Unpublished.          |
| AG-575     | Darnow J and 1990<br>Sayers L           | Analytical method for the determination of CGA 169374 in wheat raw agricultural commodities by gas chromatography with nitrogen/phosphorus detection. Ciba-Geigy Corp., Greensboro, United States. Report AG-575. Unpublished. |

| Code                 | Author                  | Year | Title, Institution, Report reference                                                                                                                                                                                                        |
|----------------------|-------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AG-575A              | Ross J                  | 1991 | Analytical method for the determination of CGA 169374 in wheat raw agriculatural commodities by gas chromatography with nitrogen/phosphorus detection. Ciba-Geigy Corp., Greensboro, United States. Report Ag-575A. Unpublished.            |
| AG-575B              | Ross J                  | 1993 | Analytical method for the determination of CGA 169374 in wheat raw agricultural commodities by gas chromatography with nitrogen/phosphorus detection. Ciba-Geigy Corp., Greensboro, United States. Report AG-575B. Unpublished.             |
| CGA 0391             | Brown D                 | 1992 | The determination of concentrations of CGA 169374 in Brassicas. Restec Laboratories Ltd., Birlingham, United Kingdom. Report no CGA 0391, Syngenta. Unpublished.                                                                            |
| E 9079-94            | Machado TR              | 1995 | CGA 169374, Score EC 250, A-7402, Oranges, Brazil. Ciba-Geigy Quimica SA, Sao Paulo, Brazil. Report no. E 9079-94, Syngenta. Unpublished.                                                                                                   |
| E 9080-94            | Machado TR              | 1995 | CGA 169374, Score EC 250, A-7402, Oranges, Brazil. Ciba-Geigy Quimica SA, Sao Paulo, Brazil. Report no. E 9080-94, Syngenta. Unpublished.                                                                                                   |
| E 9082-94            | Machado TR              | 1996 |                                                                                                                                                                                                                                             |
| EMS9003.1            | Whetzel JE              | 1990 | Method ruggedness trial for Ciba-Geigy analytical method no AG-537A for the determination of CGA 169374 in wheat raw agric. commodities by gas chromatography. Ciba-Geigy Corp., Greensboro, United States. Project EMS9003.1. Unpublished. |
| Fr 038/95            | 5 de Campos Leite<br>OM | 1997 | CGA 169374, 250 EC, A-7402 A, watermelon, Brazil. Novartis Biocienicias SA, Sao Paulo, Brazil, report no. Fr 037/95 and Fr 038/95. Unpublished.                                                                                             |
| Fr 040/95 039/95     | 5 de Campos Leite<br>OM | 1997 | CGA 169374, 250 EC, A-7402 A, watermelon, Brazil. Novartis Biocienicias SA, Sao Paulo, Brazil, report no. Fr 039/95 and Fr 040/95. Unpublished.                                                                                             |
| FR001/95<br>FR002/95 | de Campos Leite<br>OM   | 1997 | Pesticide residue study. SCORE on garlic. Novartis Biocienicias SA. Report no FR001/95, FR002/95. Unpublished.                                                                                                                              |
| FR003/95<br>FR004/95 | de Campos Leite<br>OM   | 1997 | Pesticide residue study. SCORE on garlic. Novartis Biocienicias SA. Report no FR003/95, FR004/95. Unpublished.                                                                                                                              |
| FR018/2000-MF        | Ciscato C               | 2001 | Residues of Score (difenoconazole) in soybean. Syngenta Proteção de Cultivos Ltda, São Paulo, Brazil. Report no FR018/2000-MF. Unpublished.                                                                                                 |
| FR018/2000-MF        | Ciscato C               | 2001 | Residues of Score (difenoconazole) in soybean. Syngenta Proteção de Cultivos Ltda, São Paulo, Brazil. Report no FR018/2000-LZF. Unpublished.                                                                                                |
| FR018/2000-RK        | Ciscato C               | 2001 | Residues of Score (difenoconazole) in soybean. Syngenta Proteção de Cultivos Ltda, São Paulo, Brazil. Report no FR018/2000-RK. Unpublished.                                                                                                 |
| gap82901             | Simon P                 | 2002 | Determination of residues of difenoconazole after application of Score in apples and processed commodities in Germany. Syngenta Agro GmbH, Maintal, Germany. Report no gap82901. Unpublished.                                               |
| gch218103            | Simon P                 | 2004 | Residues of difenoconazole after application of A7402G in sour cherries, Germany 2003. Syngenta Agro GmbH, Mainal, Germany. Syngenta report no gch218103. Unpublished.                                                                      |
| gch218403            | Simon P                 | 2004 | Residues of difenoconazole after application of A7402G in sweet cherries, Germany 2003. Syngenta Agro GmbH, Maintal, Germany. Syngenta report no gch218403. Unpublished.                                                                    |
| ghc228103            | Simon P                 | 2004 | Residues of difenoconazole after application of A7402G in white head cabbage, Germany 2003. Syngenta Agro GmbH, Maintal, Germany. Report no. ghc228103. Unpublished.                                                                        |
| ghc228203            | Simon P                 | 2004 | Residues of difenoconazole after application of A7402G in white head cabbage, Germany 2003. Syngenta Agro GmbH, Maintal, Germany. Report no. ghc228203. Unpublished.                                                                        |
| gp1258103            | Simon P                 | 2004 | Residues of difenoconazole after application of A7402G in plums, Germany 2003. Syngenta Agro GmbH, Maintal, Germany. Syngenta report no gpl258103. Unpublished.                                                                             |
| gp1258203            | Simon P                 | 2004 | Residues of difenoconazole after application of A7402G in plums, Germany 2003. Syngenta Agro GmbH, Maintal, Germany. Syngenta report no gpl258203. Unpublished.                                                                             |
| gpl258303            | Simon P                 | 2004 | Residues of difenoconazole after application of A7402G in plums, Germany 2003. Syngenta Agro GmbH, Maintal, Germany. Syngenta report no gp1258303. Unpublished.                                                                             |

| Code           | Author        | Year | Title, Institution, Report reference                                                                                                                                                                                                     |
|----------------|---------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gpl258403      | Simon P       | 2004 | Residues of difenoconazole after application of A7402G in plums, Germany 2003. Syngenta Agro GmbH, Maintal, Germany. Syngenta report no gpl258403. Unpublished.                                                                          |
| gr 49496       | Smith J       | 1998 | Residues of difenoconazole + fenpropidin in sugarbeet (Test product: CGD 20750 F – A9424A). Germany. Novartis Agro GmbH, Frankfurt, Germany. Report no. gr 49496. Unpublished.                                                           |
| gr 4995        | Smith J       | 1998 | Field Trial for the determination of residues of CGD96430 F (A7402G) in comparison with CGD 96440 F (A7915B Bardos) in sugar beet. Novartis Agro GmbH, Frankfurt, Germany. Report no. GR 4995. Includes gr 41595. gr 31595. Unpublished. |
| gr 50596       | Smith J       | 1998 | Residues of difenoconazole + fenropidin in sugarbeet (Test product: CGD 20750 F –A9424A). Novartis Agro GmbH, Frankfurt, Germany, Report no. gr 50596. Unpublished.                                                                      |
| gr 57898       | Smith J       | 1999 | Determination of residues of difenoconazole in leeks, Germany. Novartis Crop Protection AG, Basel, Switzerland. Report no gr 57898. Unpublished.                                                                                         |
| gr 58898       | Smith J       | 1999 | Determination of residues of difenoconazole in leeks, Germany. Novartis Crop Protection AG, Basel, Switzerland. Report no gr 58898. Unpublished.                                                                                         |
| gr 59998       | Smith J       | 1999 | Determination of residues of difenoconazole in leeks, Germany. Novartis Crop Protection AG, Basel, Switzerland. Report no gr 59998. Unpublished.                                                                                         |
| gr 51197       | Smith JA      | 1998 | Determination of residues of CGA 169374 + carbendazim in oilseed rape, rape oil and oilseed cake. Syngenta report no. gr 51197. Includes IF-97/33752-00. Unpublished.                                                                    |
| gr 51296       | Smith JA      | 1997 | Residues of difenoconazole + carbendazim in oilseed rape (test product: CGD 20700 F – A8769A). Syngenta report no. gr 51296. Unpublished.                                                                                                |
| gr 52297       | Smith JA      | 1998 | Determination of residues of CGA 169374 + carbendazim in oilseed rape, rape oil and oilseed cake. Syngenta report no. gr 52297. Includes IF-97/33628-00. Unpublished.                                                                    |
| gr 52396       | Smith JA      | 1997 | Residues of difenoconazole + carbendazim in oilseed rape (test product: CGD 20700 F – A8769A). Syngenta report no. gr 52396 Unpublished.                                                                                                 |
| gr 53496       | Smith JA      | 1997 | Residues of difenoconazole + carbendazim in oilseed rape (test product: CGD 20700 F – A8769A). Syngenta report no. gr 53496 Unpublished.                                                                                                 |
| gr 53497       | Smith JA      | 1998 | Determination of residues of CGA 169374 + carbendazim in oilseed rape, rape oil and oilseed cake. Syngenta report no. gr 53497. Includes IF-97/33753-00. Unpublished.                                                                    |
| gr 54696       | Smith JA      | 1997 | Residues of difenoconazole + carbendazim in spring oilseed rape (test product: CGD 20700 F – A8769A). Syngenta report no. gr 54696. Unpublished.                                                                                         |
| IF-04/00160619 | Schulz H      | 2004 | Independent laboratory validation of DFG Method S19, extended revision, for the determination of residues of difenoconazole in/on plant matrices. Institut Fresenius, Taunusstein, Germany. Report IF-04/00160619. Unpublished.          |
| IF-97/33628-00 | Zietz E       | 1998 | Field trial to determine the residues of NAD 21150 F (A8769A) in rape seed, rape oil and oilseed cake. Processing part. Fresenius project IF-97/33628-00. gr 52297. Unpublished.                                                         |
| IF-97/33752-00 | Zietz E       | 1998 | Field trial to determine the residues of NAD 21150 F (A8769A) in rape seed, rape oil and oilseed cake. Processing part. Fresenius project IF-97/33752-00. gr 51197. Unpublished.                                                         |
| IF-97/33753-00 | Zietz E       | 1998 | Field trial to determine the residues of NAD 21150 F (A8769A) in rape seed, rape oil and oilseed cake. Processing part. Fresenius project IF-97/33753-00. gr 53497. Unpublished.                                                         |
| M02017         | Roncato C     | 2006 |                                                                                                                                                                                                                                          |
| M02065         | Casagrande CR | 2004 |                                                                                                                                                                                                                                          |
| M8274          | Anon          | 1983 | Physico-chemical properties of 1,2,4 triazole (CGA 71019). Ciba-Geigy Ltd., Basel, Switzerland. Report M8274. Unpublished.                                                                                                               |
| MO-01-005554   | Krohn J       | 2001 | Water solubility and Henry law constant of 1,2,4-triazole. Bayer AG, Leverkusen, Germany. Report MO-01-005554. Unpublished.                                                                                                              |

| Code            | Author                      | Year   | Title, Institution, Report reference                                                                                                                                                                                                                                                   |
|-----------------|-----------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N-0964-0400     | Schweitzer MG               | 1990   | Metabolism of phenyl <sup>14</sup> C-CGA 169374 in spray treated potatoes. Battelle, Columbus, United States. Report N-0964-0400. Unpublished.                                                                                                                                         |
| N-0964-0500     | Velagaleti PR               | 1990   | Metabolism of triazole- <sup>14</sup> C-CGA 169374 in spray-treated potatoes. Battelle, Columbus, United States. Report N-0964-0500. Unpublished.                                                                                                                                      |
| N-0964-0600     | Velagaleti PR               | 1990   | Metabolism of triazole- <sup>14</sup> C-CGA 169374 in spray-treated tomatoes. Battelle, Columbus, United States. Report N-0964-0600. Unpublished.                                                                                                                                      |
| N-0964-0700     | Schweitzer MG               | 1990   | Metabolism of phenyl- <sup>14</sup> C-CGA 169374 in spray-treated tomatoes. Battelle, Columbus, United States. Report N-0964-0700. Unpublished.                                                                                                                                        |
| OF2016          | Argento JC                  | 1994   | Residue determinations of CGA 169374 (fungicide) in Grape, must, wine and pomace. Ciba-Giegy, France. Report no. OF2016. Includes U59, Y56, 731, 830, Q92, Q93, G94, J97. Unpublished.                                                                                                 |
| OF91059         | Maffezoni M                 | 1993   | Determination of residues of CGA 169374 (fungicide) in carrot. Ciba-Geigy SA, Rueil-Malmaison, France. Report no. OF91059. Unpublished.                                                                                                                                                |
| OF91089         | Maffezoni M                 | 1993   | Determination of residues of CGA 169374 (fungicide) in carrot. Ciba-Geigy SA, Rueil-Malmaison, France. Report no. OF91089. Unpublished.                                                                                                                                                |
| OF92010         | Maffezzoni M                | 1993   | Determination of residues of CGA 169374 (fungicide) in Vine (Grapes and Wine). France. Ciba Division Agriculture, France. Report no. OF92010. Includes G98, 734 and Q98. Unpublished.                                                                                                  |
| OF92025         | Maffezoni M                 | 1993   | Determination of residues of CGA 169374 (fungicide) in carrot. Ciba-Geigy SA, Rueil-Malmaison, France. Report no. OF92025. Unpublished.                                                                                                                                                |
| OF93148         | Pointurier R                | 1994   | Determination of residues of CGA 169374 and CGA 18251 in grains and straw of wheat. France. Syngenta report no. OF93148. Unpublished.                                                                                                                                                  |
| OF93153         | Maffezzoni M                | 1995   | Determination of residues of CGA 169374 (difenoconazole) in carrot after application of formulation F70464 EC250. Ciba-Geigy SA, Rueil-Malmaison, France. Report no. OF93153. Unpublished.                                                                                             |
| OF95144         | Maffezzoni M                | 1997   | Report on residue study OF95144 Trial DE97 (France, north) .Magnitude of residues after application of CGA 169374 as formulation EC 250 in vine (grapes, juice and wine). Ciba Crop Protection Division, France. Report no. OF95144 trial DE97. Unpublished.                           |
| OF96134         | Maffezzoni M                | 1999   | Residue study with CGA 169374 in or on carrots in south of France. ADME - Bioanalyses, Aigues-Vives, France. Report no. OF96134 Trial AC 20. Unpublished.                                                                                                                              |
| PP-98/137P.DES  | Füldner HH                  | 1999   | Report on density of solid. Novartis Services AG, Basel, Switzerland. Report PP-98/137P.DES. Unpublished.                                                                                                                                                                              |
| R/0157/01       | Reid HG                     | 1989   | The determination of concentrations of CGA 169374 in winter wheat - grain and straw in UK. Syngenta report no. R/0157/01. Unpublished.                                                                                                                                                 |
| RE 12038/1999   | Pigeon O                    | 2000   |                                                                                                                                                                                                                                                                                        |
| RE 20245 / 2001 | Pigeon O                    | 2002   | Determination of residues of difenoconazole in celeriac after treatment with Score 250 EC BEAGx, Faculte Universitaire des Sciences Agronomiques, Gembloux, Belgium. Report no, MINISTRY / RE 20245 / 2001, Syngenta. Includes method validation for Method MR-046-02-01. Unpublished. |
| REM 147.07      | Crook S                     | 2004   | Residue method for the determination of residues of difenoconazole (CGA 169374) and CGA 205375 in animal products. Final determination by LC-MS/MS. Syngenta, Jealott's Hill, UK. Report REM 147.07. Unpublished.                                                                      |
| REM 147.08      | Crook SJ                    | 2004   | Residue method for the determination of difenoconazole (CGA 169374) in various crops and processed crop fractions. Final determination by LC-MS/MS. Syngenta, Jealott's Hill, UK. Report REM 147.08. Unpublished.                                                                      |
| REM 7/86        | Kühne-Thu H                 | 1986   |                                                                                                                                                                                                                                                                                        |
| RES 10/93       | Bussy L and<br>Maffezzoni M | 1 1993 |                                                                                                                                                                                                                                                                                        |
| RJ3360B         | Muir GT                     | 2003   | Difenoconazole. Aqueous hydrolysis at 90, 100 and 120°C. Syngenta, Jealott's Hill International, Bracknell, UK. Report no. RJ3360B. Unpublished.                                                                                                                                       |
| RJ3478B         | Ryan J                      | 2004   | Difenoconazole (CGA 169374) and CGA 205375: Validation of residue analytical method REM 147.07 for the determination of residues in animal products. Syngenta, Jealott's Hill, UK. Report RJ3478B. Unpublished.                                                                        |

| Code                     | Author               | Year       | Title, Institution, Report reference                                                                                                                                                                                                                                                                     |
|--------------------------|----------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RJ3560B                  | Ely S and Ry         | an J. 2004 | Difenoconazole (CGA 169374): Validation of residue analytical method REM147.08 for the determination of residues in various crops and processed crop fractions. Syngenta, Jealott's Hill, UK. Report RJ3560B. Unpublished.                                                                               |
| RLCE21403                | Malet JC<br>Allard L | and 2005   | Residues of difenoconazole after 3 applications of SCORE in celery for the registration. Ministère de l'agriculture et de la peche, Paris, France. Report no. RLCE21403. Unpublished.                                                                                                                    |
| RLPM06900                | Malet J<br>Allard L  | and 2001   | Residues of difenoconazole in head cabbage. Ministère de l'agriculture. Paris. Paris, France. Report no. RLPM06900. Unpublished.                                                                                                                                                                         |
| RU-L-19 98 N<br>2222/98  | 1Z. Guendel L        | 1999       | Erstellung einer Abbaureihe zum Rückstandsverhalten von der Prüfsubstanz Bardos Neu (Difenoconazol) in/auf Wirsing (Feldteil). Novartis Crop Protection AG, Basel, Switzerland. Report no. RU-L-19 98 MZ. 2222/98. Unpublished.                                                                          |
| RU-L-20 98 N<br>2223/98  | MZ. Guendel L        | 1999       | Erstellung einer Abbaureihe zum Rückstandsverhalten von der Prüfsubstanz Bardos Neu (Difenoconazol) in/auf Wirsing (Feldteil). Novartis Crop Protection AG, Basel, Switzerland. Report no. RU-L-20 98 MZ. 2223/98. Unpublished.                                                                          |
| RU-NO-08<br>MZ           | 98 Guendel L         | 2001       | Gewinnung von Proben and Bestimmung der Rueckstaende nach Behandlung der Pruefsubstanz Bardos Neu (Difenoconazol) in/auf Porree zum Erntzeitpunkt (Feldteil). Landesanstalt für Pflanzenbau & Pflanzenschutz, Mainz, Germany. Report no RU-NO-08 98 MZ. Includes 2221/98. Includes 2221/98. Unpublished. |
| SYN/DIF/0403             | 1 Benazeraf L        | 2004       | Independent laboratory validation of residue method REM 147.07 for the determination of difenoconazole and CGA 205375 in animal products. ADME - Bioanalyses, Vergèze, France. Report SYN/DIF/04031. Unpublished.                                                                                        |
| SYN-0211V<br>Az.G02-0092 | Steinhauer S         | 2002       | Difenoconazole: validation of the DFG Method S19, extended revision, for the determination of residues of difenoconazole in asparagus. Dr. Specht & Partner Chem. Laboratorien GmbH, Hamburg, Germany. Report SYN-0211V Az.G02-0092. Unpublished.                                                        |
| SYN-0301V<br>G03-0012    | Az. Steinhauer S     | 2004       | Difenoconazole: validation of the DFG Method S19, extended revision, for the determination of residues of difenoconazole in apple, oil seed rape, wheat grain. and lettuce. Dr. Specht & Partner Chem. Laboratorien GmbH, Hamburg, Germany. Report SYN-0301V Az. G03-0012. Unpublished.                  |
| T000141-05-R             | EG Ryan J            | 2006       | Difenoconazole (CGA 169374) - magnitude of the residue in meat and eggs resulting from the feeding at four dose levels to laying hens. Syngenta - Jealott's Hill International, Bracknell, Berkshire, UK. Report T000141-05-REG. Unpublished.                                                            |
| T008949-04               | Brown K              | 2005       | Extractability of difenoconazole residues from animal tissues using residue analytical method REM 147.07. Syngenta Crop Protection, Inc., Greensboro, United States. Report T008949-04. Unpublished.                                                                                                     |
| T009107-04-R             | EG Ryan J            | 2006       | Difenoconazole (CGA 169374) - magnitude of the residue in meat and milk resulting from the feeding at three levels to dairy cattle. Syngenta - Jealott's Hill International, Bracknell, Berkshire, UK. Report T009107-04-REG. Unpublished.                                                               |
| TMJ4940B                 | Ryan J               | 2004       | Difenoconazole (CGA 169374): summary of validation data for analytical method RES10/93 on various crops. Syngenta, Jealott's Hill, United Kingdom, report TMJ4940B. Unpublished.                                                                                                                         |
| TMJ5014B                 | Ryan J               | 2005       | Difenoconazole (CGA 169374): Summary of validation data for analytical method AG-575 A on various crops. Syngenta, Jealott's Hill, UK. Report TMJ5014B. Unpublished.                                                                                                                                     |
| TMJ5031B                 | Ryan J               | 2005       | Difenoconazole (CGA 169374): Summary of validation data for analytical method AG-575A on various crops with final determination by GC-MSD. Syngenta, Jealott's Hill, UK. Report TMJ5031B. Unpublished.                                                                                                   |