# FLUTRIAFOL (248)

First draft prepared by Dr D.J. MacLachlan, Department of Agriculture and Water Resources, Canberra, Australia

## **EXPLANATION**

Flutriafol is a triazole fungicide used in many crops for control of a broad spectrum of leaf and ear cereal diseases, particularly embryo borne diseases e.g., bunts and smuts. The Meeting received information on identity, animal and plant metabolism, environmental fate in soil, rotational crops, analytical methods, storage stability, use patterns, supervised trials, farm animal feeding studies and fates of residues in processing. It was first evaluated for residues and toxicology by the 2011 JMPR. The ADI of flutriafol was 0–0.01 mg/kg bw and the ARfD was 0.05 mg/kg bw. The compound was listed by the 46<sup>th</sup> Session of CCPR for the JMPR to consider additional MRLs. The residue definition for compliance with MRL and for estimation of dietary intake (for animal and plant commodities) is flutriafol.

For the current evaluation the Meeting received new metabolism studies in lactating goats, storage stability data for animal commodities, residue trials on apples, pears, peaches/nectarines, plums, cherries, strawberries, Brassica vegetables (cabbages and broccoli), cucurbits (cucumbers, summer squash and muskmelons), tomatoes, peppers, leafy vegetables (lettuce, spinach, celery and mustard greens), sugar beets, maize, rice, sorghum, almonds, pecans, cotton, and rape, as well as a lactating cow feeding study (residue transfer study).

The chemical structures of the major degradation compounds from the metabolism of flutriafol are provided below.

List of metabolites in this evaluation:

| Code    | Compound                        | Structure                                 |  |
|---------|---------------------------------|-------------------------------------------|--|
| M1<br>T | 1,2,4-triazole                  | HZ,Z                                      |  |
| M3      | hydroxyl flutriafol glucuronide | CO <sub>2</sub> H<br>OH<br>OH<br>OH<br>OH |  |
| M3e     | dihydroxy flutriafol            | OH FOH                                    |  |

| Code   | Compound                                    | Structure                                                                     |  |
|--------|---------------------------------------------|-------------------------------------------------------------------------------|--|
| M3e-f1 | trihydroxymethoxy flutriafol<br>glucuronide | CO <sub>2</sub> H<br>OH<br>OH<br>OH<br>OH<br>OH<br>OH<br>OH<br>OH<br>OH<br>OH |  |
| M4     | flutriafol glucuronide                      | F OH OH OH                                                                    |  |
| M5     | hydroxymethoxy flutriafol                   | OH OH OCH3                                                                    |  |
| M7     | methoxy flutriafol glucuronide              | CO <sub>2</sub> H<br>OH<br>OH<br>OH<br>OH                                     |  |
| M10    | flutriafol sulfate                          | POSO <sub>3</sub>                                                             |  |
| TA     | 1,2,4-triazole analine                      | $N = NH_2$ OH                                                                 |  |
| TAA    | 1,2,4-triazole acetic acid                  | N OH                                                                          |  |

## **METABOLISM**

La Mar (2012 2470) studied the metabolism of flutriafol in lactating goats.

Triazole-label Carbinol-label

Two lactating goats (crossbreeds, 2–4 years old, 35 and 41 kg bw) were administered either [triazole-3(5)-14C]-flutriafol or [carbinol-14C]-flutriafol by capsule once daily in the morning for five consecutive days at a rate equivalent to 12.0 ppm in the feed (triazole) or 12.2 ppm (carbinol). Animals were fed 1.5 kg goat chow and 1 kg alfalfa hay daily. Milk production during the study averaged 0.54 L/day and 0.65 L/day respectively for the two goats. Excreta were collected once a day (in the morning, before dose administration). Milk was collected twice daily (morning and evening). The goats were sacrificed approximately 20–22 h after the last dose was administered and the following tissues were collected at necropsy—liver, kidney, muscle (loin and flank), fat (subcutaneous, omental and renal), bile, blood and gastrointestinal tract with contents. Analytical work was completed within 30 days after sacrifice.

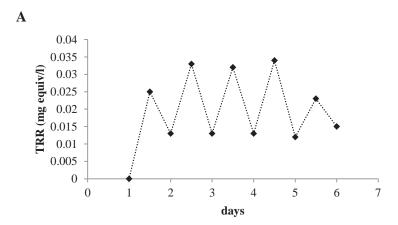

The majority of the administered dose was recovered in the faeces (60–69%) with 31.5–40.6% excreted in urine and 0.05–0.07% in milk (Table 1). The amount of administered radioactivity found in tissues was 0.35–0.45% while the gastrointestinal tract and contents contained 2.5–7.1% giving a total recovery of administered radioactivity of 103–110%. TRR in edible tissues were generally low (0.002–0.01 mg equiv/kg) with the exception of liver (0.264–0.305 mg equiv/kg) and kidney (0.035–0.061 mg equiv/kg).

Table 1 Distribution of TRR following dosing of [14C]flutriafol at 12 ppm for 5 days

|                    | Triazole-label |             | Carbinol-label |             |
|--------------------|----------------|-------------|----------------|-------------|
|                    | %AD            | mg equiv/kg | %AD            | mg equiv/kg |
| Tissues            |                |             |                |             |
| Liver              | 0.34           | 0.305       | 0.27           | 0.264       |
| Kidney             | 0.01           | 0.061       | < 0.01         | 0.035       |
| Omental fat        | < 0.01         | 0.004       | < 0.01         | 0.002       |
| Subcutaneous fat   | < 0.01         | 0.005       | < 0.01         | 0.003       |
| Renal fat          | < 0.01         | 0.004       | < 0.01         | 0.002       |
| Flank muscle       | < 0.01         | 0.01        | < 0.01         | 0.004       |
| Loin muscle        | 0.01           | 0.01        | < 0.01         | 0.004       |
| Blood              | _              | 0.022       | _              | 0.009       |
| Excreta/secretions |                |             |                |             |
| Faeces             | 60.0           |             | 69.0           |             |
| GIT and contents   | 7.12           |             | 2.5            |             |
| Urine              | 40.6           |             | 31.5           |             |
| Whole milk         | 0.05           | _           | 0.06           | _           |
| Bile               | 0.04           | 1.33        | 0.02           | 0.687       |
| Cage wash          | 0.01           |             | 0.2            |             |
| Total              | 110.2          |             | 103.4          |             |

Residues in milk appeared to reach plateau levels by Day 3 of dosing, with significant differences in <sup>14</sup>C levels between milk collected in the morning (low levels) compared to evening

milk (higher levels), suggesting flutriafol residues are rapidly eliminated following dosing (Figure 1).



B

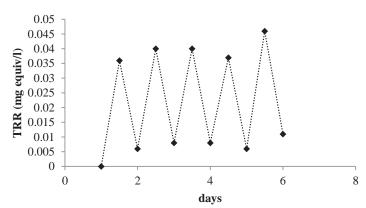



Figure 1 TRR in milk for goats dosed at the equivalent of 12 ppm in the feed with flutriafol (A) triazole label, (B) carbinol label

Acetonitrile and water extraction ( $2\times$  CH<sub>3</sub>CN/H<sub>2</sub>O,  $1\times$  CH<sub>3</sub>CN) of liver, kidney and in the case of the triazole-label also composite muscle, resulted in extraction efficiencies of 25.5–27.5% (liver), 67.7–79.7% (kidney) and 90% (muscle) (Table 2). The CH<sub>3</sub>CN/H<sub>2</sub>O extracts were concentrated, acidified (0.1% formic acid) and then partitioned with ethyl acetate to give aqueous/acetonitrile (aqueous) and ethyl acetate (organic) phases. Muscle from the carbinol-label and fat (both labels) were not subject to further analysis as the TRR levels were insignificant (< 0.01 mg eq/kg).

Radioactivity in PES of liver and kidney was characterized further. Samples of PES were treated with 1 M HCl in CH<sub>3</sub>CN/H<sub>2</sub>O (1:1) followed by 1 M KOH in H<sub>2</sub>O. Sub-samples of liver PES were also treated with and without pepsin in 0.1 M HCl/glycine buffer pH 2.2 at 37 °C overnight, followed by treatment with and without pancreatin and bile extract in 0.1 M sodium bicarbonate overnight at 37 °C. Any remaining radioactivity was solubilised by treatment with 24% KOH.

Milk samples (whole milk) with the highest residue present (typically Day 4, pm) were separated into milk fat and skim milk for extraction. Protein was precipitated from skim milk by adding acetone and chilling in an ice bath. The protein pellet was then extracted with acetone/ $H_2O$  (1:1) followed by acetone. Skim milk and protein pellet extracts were combined, concentrated, acidified (0.1% formic acid) and then partitioned with ethyl acetate. Milk fat was extracted with acetone/hexane 1:4 (2×) and acetone (1×). Solids were separated by centrifugation and fat extracts were then concentrated to remove acetone, and partitioned with acetonitrile.

For the TZ label, extraction of liver with CH<sub>3</sub>CN/H<sub>2</sub>O released M1 (2.9% TRR), M2 (1.5% TRR), M3 (2.6% TRR), M3e (1.8% TRR), M5 (4.7% TRR) and flutriafol (1.5% TRR). The total identified residues in the liver accounted for 13.5% of TRR. A number of unidentified compounds (10% TRR) were observed that were individually present at  $\leq$  2.9% TRR ( $\leq$  0.008 mg equiv/kg). Hydrolysis of the liver PES under mild acid and alkaline conditions released all of the remaining <sup>14</sup>C residues which were able to be resolved into more than six peaks by chromatography. Subsequent treatment of the hydrolysis extracts with enzymes to release conjugates did not result in additional compounds being identified; largest individual component 9.8% TRR.

In kidneys the main <sup>14</sup>C residue components were 1,2,4-triazole (M1, 10% TRR), M2 (10% TRR), hydroxyl flutriafol glucuronide (M3, 30% TRR) and dihydroxy flutriafol (M3e, 3.4% TRR). No other single metabolite comprised more than 10% of TRR (0.006 mg equiv/kg).

Residues in skim milk were extracted with acetonitrile and water. Main components identified were 1,2,4-triazole (M1, 26.5% TRR), M2 (2.9% TRR), hydroxyl flutriafol

glucuronide (M3, 23.5% TRR) and dihydroxy flutriafol (M3e, 17.6% TRR). No other single metabolite comprised more than 8.8% of TRR (0.003 mg equiv/kg).

Residues in milk fat were extracted with acetone/hexane. Main components identified were 1,2,4-triazole (M1, 13.8% TRR), dihydroxyl flutriafol (M3e, 37.9% TRR) and flutriafol (3.4% TRR). No other single metabolite comprised more than 6.9% of TRR (0.002 mg equiv/kg).

Table 2 Characterisation and identification of <sup>14</sup>C residues in tissues and milk of a goat dosed at 12 ppm with triazole-label

| Matrix                        | Liver            | Kidney            | Skim Milk | Milk Fat                  | Flank muscle c |  |  |  |  |
|-------------------------------|------------------|-------------------|-----------|---------------------------|----------------|--|--|--|--|
| TRR (ppm)                     | 0.274            | 0.059             | 0.034     | 0.029                     | 0.01           |  |  |  |  |
| %TRR                          |                  |                   |           |                           |                |  |  |  |  |
| Solvent extracts <sup>a</sup> | 25.5             | 79.7              | 97.1      | 86.2                      | 90.0           |  |  |  |  |
| Aqueous soluble b             | 12.4             | 66.1              | 70.6      | 79.3 (CH <sub>3</sub> CN) | 70.0           |  |  |  |  |
| M1                            | 2.9              | 10.2              | 26.5      | 13.8                      | 40.0           |  |  |  |  |
| M2                            | 1.5              | 10.2              | 2.9       |                           | 10.0           |  |  |  |  |
| M3 <sup>d</sup>               | 2.6              | 30.5              | 23.5      |                           | 10.0           |  |  |  |  |
| M3e                           |                  |                   |           | 37.9                      |                |  |  |  |  |
| Flutriafol                    |                  |                   |           | 3.4                       |                |  |  |  |  |
| Unknowns                      | 4(2)             | 15.3 (2)          | 11.7 (2)  | 13.8 (2)                  | 10 (1)         |  |  |  |  |
| Organic soluble b             | 13.1             | 13.6              | 26.5      | 6.9 (hexane)              | 20.0           |  |  |  |  |
| M3e                           | 1.8              | 3.4               | 17.6      |                           |                |  |  |  |  |
| M5                            | 4.7              |                   |           |                           |                |  |  |  |  |
| Flutriafol                    | 1.5              |                   | < 2.9     |                           |                |  |  |  |  |
| Unknowns                      | 4.4 (2)          | 10.2 (4)          | < 2.9 (1) |                           |                |  |  |  |  |
| PES                           | 74.4             | 20.4              | 2.9       | 13.8                      | 10.0           |  |  |  |  |
| Released by 1 N HCl           | 3.6              | 1.7               |           |                           |                |  |  |  |  |
| Released by 1 N KOH           | 15.7             | 5.1               |           |                           |                |  |  |  |  |
| Overall                       |                  |                   |           |                           |                |  |  |  |  |
| Extracted d                   | 100 <sup>D</sup> | 83.5 <sup>D</sup> | 97.1      | 86.2                      | 90.0           |  |  |  |  |
| identified                    | 13.5             | 44.1              | < 70.5    | 55.1                      | 50.0           |  |  |  |  |
| characterized                 | 86.0             | 42.5              | < 17.5    | 20.7                      | 40.0           |  |  |  |  |
| Unextracted d                 | 0.0              | 13.6              | 2.9       | 13.8                      | 10.0           |  |  |  |  |

<sup>&</sup>lt;sup>a</sup> Solvent systems: CH<sub>3</sub>CN/H<sub>2</sub>O for liver, kidney, skim milk and muscle; acetone/hexane for fat and milk fat

For the carbinol-label, liver contained M2 (1.7% TRR), hydroxyl flutriafol glucuronide (M3, 4.3% TRR), dihydroxy flutriafol (M3e, 0.9% TRR), hydroxy methoxy flutriafol (M5 11.1% TRR) and flutriafol (0.9% TRR). The total identified residues in the liver accounted for 17.2% of TRR. A number of unidentified compounds (6.9% TRR) were observed that were individually present at  $\leq$  3% TRR ( $\leq$  0.007 mg equiv/kg). Hydrolysis of the liver PES under mild acid and alkaline conditions released all of the remaining  $^{14}\text{C}$  residues which was able to be resolved into multiple peaks by chromatography. Subsequent treatment of the hydrolysis extracts with enzymes to release conjugates did not result in additional compounds being identified; largest individual component 9.0% TRR.

In kidneys the main <sup>14</sup>C residue components were M2 (9.7% TRR), hydroxyl flutriafol glucuronide (M3, 22.6% TRR) and dihydroxy flutriafol (M3e, 6.5% TRR). No other single metabolite comprised more than 6.5% of TRR (0.002 mg equiv/kg).

Residues in skim milk were extracted with acetonitrile and water. Main components identified were M2 (10.8% TRR, hydroxyl flutriafol glucuronide (M3, 27% TRR) and dihydroxy flutriafol (M3e, 29.7% TRR). No other single metabolite comprised more than 11% of TRR (0.004 mg equiv/kg).

<sup>&</sup>lt;sup>b</sup> Represents free residues from partition of initial extracts with ethyl acetate. (Aqueous is CH<sub>3</sub>CN phase and organic is hexane phase for milk fat)

<sup>&</sup>lt;sup>c</sup> Extraction and analysis data represent composite of flank and loin muscle

<sup>&</sup>lt;sup>d</sup> M3 is combination of M3 (major component), M4 and M7. Levels were too low to accurately quantify

M1 = 1,2,4-triazole, M3= hydroxyl flutriafol glucuronide, M4 = flutriafol glucuronide, M7 = methoxy flutriafol glucuronide, M3e = di-hydroxy flutriafol, M5= hydroxy methoxy flutriafol

Residues in milk fat were extracted with acetone/hexane. Main components identified were dihydroxy flutriafol (M3e, 42.3%TRR) and flutriafol (3.8% TRR). No other single metabolite comprised more than 11.5% of TRR (0.003 mg equiv/kg).

Table 3 Characterisation and identification of <sup>14</sup>C residues in tissues and milk of a goat dosed at 12 ppm with carbinol-label

| Matrix                        | Liver   | Kidney   | Skim milk | Milk fat                  | Flank muscle c |
|-------------------------------|---------|----------|-----------|---------------------------|----------------|
| TRR (mg equiv/kg)             | 0.234   | 0.031    | 0.037     | 0.026                     | 0.004*         |
|                               |         |          | %TRR      |                           |                |
| Solvent extracts <sup>a</sup> | 27.8    | 67.7     | 54.1      | 76.9                      |                |
| Aqueous soluble b             | 9.4     | 54.8     | 54.1      | 76.9 (CH <sub>3</sub> CN) |                |
| M2                            | 1.7     | 9.7      | 10.8      |                           |                |
| M3 <sup>d</sup>               | 4.3     | 22.6     | 27.0      |                           |                |
| M3e                           |         |          |           | 42.3                      |                |
| M10                           |         |          |           | 3.8                       |                |
| Flutriafol                    |         |          |           | 3.8                       |                |
| Unknowns                      | 2.2 (2) | 12.9 (3) | 13.5 (3)  | 15.3 (2)                  |                |
| Organic soluble b             | 18.4    | 12.9     | 40.5      | < 3.8% (hexane)           |                |
| M3e                           | 0.9     | 6.5      | 29.7      |                           |                |
| M5                            | 11.1    |          | 2.7       |                           |                |
| Flutriafol                    | 0.9     |          | < 2.7     |                           |                |
| Unknowns                      | 4.7 (2) | <3.2 (1) | 8.1 (2)   |                           |                |
| PES                           | 72.2    | 32.3     | 5.4       | 23.1                      |                |
| Released by 1 N HCl           | 4.3     | 3.2      |           |                           |                |
| Released by 1 N KOH           | 16.2    | 9.7      |           |                           |                |
| Overall                       |         |          |           |                           |                |
| Extracted d                   | 100.0   | 80.6     | 94.6      | 76.9                      |                |
| identified                    | 17.2    | 32.3     | 62.1      | 49.9                      |                |
| characterized                 | 80.8    | 38.7     | 32.4      | 15.3                      |                |
| Unextracted d                 | 0.0     | 19.4     | 5.4       | 23.1                      |                |

<sup>&</sup>lt;sup>a</sup> Solvent systems: CH<sub>3</sub>CN/H<sub>2</sub>O for liver, kidney, skim milk and muscle; acetone/hexane for fat and milk fat

In an additional study on the metabolism of flutriafol in lactating goats La Mar (2012 2438) used a higher dose rate to allow for better identification of metabolites. Two lactating goats (crossbreeds, 2–4 yrs old, 38 and 58 kg bw) were administered either [triazole-3(5)-<sup>14</sup>C]-flutriafol or [carbinol-<sup>14</sup>C]-flutriafol once daily for five consecutive days at a rate equivalent to 30 ppm (triazole) or 30.7 ppm (carbinol) in the feed. Animals consumed 1.8 and 1.3 kg feed/d respectively for the 30 and 31 ppm dose goats. Milk production was 1.6 L/d and 1.5 L/d respectively for the two goats. Excreta were collected once a day (in the morning, before dose administration). Milk was collected twice daily (morning and evening). The goats were sacrificed approximately 20–22 h after the last dose was administered and the following tissues were collected at necropsy—liver, kidney, muscle (loin and flank), fat (subcutaneous, omental and renal), bile, blood and gastrointestinal tract with contents. Analytical work was completed within 30 days after sacrifice.

The majority of the administered dose was recovered in the faeces (35–55%) with 30–54% excreted in urine and 0.09–0.1% in milk. The amount of administered radioactivity found in tissues was 0.27–0.29% while the gastrointestinal tract and contents contained 2.1–6.8% giving a total recovery of administered radioactivity of 88–96%. TRR in edible tissues were generally low

<sup>&</sup>lt;sup>b</sup> Represents free residues from partition of initial extracts with ethyl acetate. (Aqueous is CH<sub>3</sub>CN phase and organic is hexane phase for milk fat)

<sup>&</sup>lt;sup>c</sup> Extraction and analysis data represent composite of flank and loin muscle

<sup>&</sup>lt;sup>d</sup> M3 is combination of M3 (major component), M4 and M7. Levels were too low to accurately quantify

M1 = 1,2,4-triazole, M2 = possible amino acid conjugate, M3 = hydroxyl flutriafol glucuronide, M3 = di-hydroxyl flutriafol, M4 = flutriafol glucuronide, M5 = hydroxyl methoxyl flutriafol, M7 = methoxyl flutriafol glucuronide, M10 = flutriafol sulfate

<sup>\*</sup>Residues too low for further characterisation / identification

(0.008-0.024 mg equiv/kg) with the exception of liver (0.68-0.70 mg equiv/kg) and kidney (0.11-0.31 mg equiv/kg).

Table 4 Distribution of TRR following dosing of [14C]flutriafol at 30 ppm for 5 days

|                       | Triazole-label |             | Carbinol-label |             |
|-----------------------|----------------|-------------|----------------|-------------|
|                       | %AD            | mg equiv/kg | %AD            | mg equiv/kg |
| Tissues               |                |             |                |             |
| Liver                 | 0.22           | 0.698       | 0.22           | 0.676       |
| Kidney                | 0.01           | 0.107       | 0.02           | 0.309       |
| Omental fat           | < 0.01         | 0.008       | < 0.01         | 0.018       |
| Subcutaneous fat      | < 0.01         | 0.011       | < 0.01         | 0.018       |
| Renal fat             | < 0.01         | 0.009       | < 0.01         | 0.014       |
| Flank muscle          | < 0.01         | 0.02        | < 0.01         | 0.024       |
| Loin muscle           | 0.01           | 0.02        | 0.01           | 0.017       |
| Blood                 | _              | 0.047       | _              | 0.044       |
| Excreta/secretions    |                |             |                |             |
| Faeces                | 55.32          |             | 34.67          |             |
| GI tract and contents | 2.15           |             | 6.84           |             |
| Urine                 | 30.03          |             | 53.77          |             |
| Whole milk            | 0.1            | _           | 0.09           | _           |
| Bile                  | 0.03           | 4.684       | 0.05           | 13.541      |
| Cage wash             | 0.04           |             | 0              |             |
| Total                 | 87.91          |             | 95.63          |             |

Residues in milk appeared to reach plateau levels by Day 3 of dosing with significant differences in <sup>14</sup>C levels between milk collected in the morning (low levels), compared to evening milk (higher levels), suggesting flutriafol residues are rapidly eliminated following dosing (Figure 2).



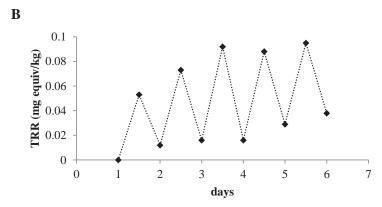



Figure 2 TRR in milk for goats dosed at the equivalent of 30 ppm in the feed with flutriafol (A) triazole label, (B) carbinol label

Acetonitrile and water extraction of liver, kidney, muscle, fat, skim milk and milk fat resulted in extraction efficiencies of 28.7–38.7% (liver), 66.7–86.5% (kidney), > 82% (muscle), > 72% fat, 98% (skim milk) and 82–87% (milk fat) (Tables 5 and 6).

For the TZ label, extraction of liver with CH<sub>3</sub>CN/H<sub>2</sub>O released 1,2,4-triazole (M1, 2.5% TRR), M2 (1.3% TRR), hydroxy flutriafol glucuronide (M3, 1.8% TRR), dihydroxy flutriafol (M3e, 0.7% TRR), flutriafol glucuronide (M4, 1.6% TRR), hydroxy methoxy flutriafol (M5, 6.9% TRR) and flutriafol (1.0% TRR). The total identified residues in the liver accounted for 16.9% of TRR. A number of unidentified compounds (7.9% TRR) were observed that were individually present at  $\leq$  2.5% TRR ( $\leq$  0.015 mg equiv/kg). Hydrolysis of the liver PES under mild acid and alkaline conditions released all of the remaining <sup>14</sup>C residues which was able to be resolved into more than eight peaks by chromatography. Subsequent treatment of the hydrolysis extracts with enzymes to release conjugates did not result in additional compounds being identified.

In kidneys the main <sup>14</sup>C residue components were 1,2,4-triazole (M1, 8.9% TRR), M2 (1.3% TRR), hydroxy flutriafol glucuronide (M3, 9.8% TRR) and dihydroxy flutriafol (M3e, 3.3% TRR), hydroxy methoxy flutriafol (M5, 1.6% TRR), methoxy flutriafol glucuronide (M7, 5.7% TRR) and M8 (4.1% TRR). No other single metabolite comprised more than 4.9% of TRR (0.006 mg equiv/kg).

Muscle and fat contained low levels of  $^{14}$ C. Major metabolites identified were 1,2,4-triazole (M1, 21–42% TRR), M2 (< 5–5.3% TRR), hydroxy flutriafol glucuronide (M3, 5.3–10% TRR). No other single metabolite comprised more than 0.003 mg equiv/kg.

Main components identified in skim milk were 1,2,4-triazole (M1, 14.9% TRR), M2 (3.2% TRR), hydroxy flutriafol glucuronide (M3, 23.4% TRR) and dihydroxy flutriafol (M3e, 35.1% TRR). No other single metabolite comprised more than 0.004 mg equiv/kg.

In milk fat components identified were 1,2,4-triazole (M1, 10.6% TRR), M2 (2.1% TRR), dihydroxy flutriafol (M3e, 43.6% TRR) and M8 (10.6% TRR). No other single metabolite comprised more than 0.005 mg equiv/kg.

Table 5 Characterisation and identification of <sup>14</sup>C residues in tissues and milk of a goat dosed with 30 ppm triazole label

| Matrix           | Liver   | Kidney  | Skim<br>Milk | Milk Fat                     | Flank<br>Muscle | Loin<br>Muscle | Omental<br>Fat               | Subcut.<br>Fat               | Renal Fat                    |
|------------------|---------|---------|--------------|------------------------------|-----------------|----------------|------------------------------|------------------------------|------------------------------|
| TRR (ppm)        | 0.607   | 0.123   | 0.094        | 0.094                        | 0.02            | 0.019          | 0.014                        | 0.011                        | 0.008                        |
|                  |         |         | %TRR         |                              |                 |                |                              |                              |                              |
| Solvent extracts | 28.7    | 66.7    | 97.9         | 87.2                         | 90.0            | 89.5           | 92.9                         | 72.7                         | 75.0                         |
| Aqueous soluble  | 14.3    | 57.7    | 54.3         | 87.2<br>(CH <sub>3</sub> CN) | 65.0            | 63.2           | 92.9<br>(CH <sub>3</sub> CN) | 72.7<br>(CH <sub>3</sub> CN) | 75.0<br>(CH <sub>3</sub> CN) |
| M1               | 2.5     | 8.9     | 14.9         | 10.6                         | 40.0            | 42.1           | 21.4                         | 27.3                         | 25.0                         |
| M2               | 1.3     | 4.1     | 3.2          | 2.1                          | < 5.0           | 5.3            |                              |                              |                              |
| M3               | 1.8     | 9.8     | 23.4         | 43.6                         | 10.0            | 5.3            |                              | 9.1                          |                              |
| M4               | 1.6     | 13.0    |              |                              |                 |                |                              |                              |                              |
| M5               |         |         |              | 1.1                          |                 |                |                              |                              |                              |
| M7               | 1.6     | 5.7     | 2.1          |                              |                 |                |                              |                              |                              |
| M8               | 0.8     | 4.1     | 3.2          | 10.6                         |                 |                |                              |                              |                              |
| Flutriafol       |         |         |              | 3.2                          |                 |                | 7.1                          | 9.1                          |                              |
| Unknowns         | 3.6 (4) | 7.3 (2) | 5.3 (2)      | 12.8 (3)                     |                 | < 10.3<br>(2)  | 21.4 (2)                     |                              | < 50 (2)                     |
| Organic soluble  | 14.3    | 8.9     | 43.6         | < 1.1 °                      | 25.0            | 26.3           | < 7.1 °                      | < 9.1 °                      | < 12.5 °                     |
| M3e              | 0.7     | 3.3     | 35.1         |                              |                 |                |                              |                              |                              |
| M5               | 6.9     | 1.6     | 1.1          |                              |                 |                |                              |                              |                              |
| Flutriafol       | 1.0     |         | < 1.1        |                              |                 |                |                              |                              |                              |
| Unknowns         | 4.3 (4) | 3.2 (3) | 6.5 (3)      |                              |                 |                |                              |                              |                              |
| PES              | 71.3    | 33.3    | 2.1          | 12.8                         | 10.0            | 10.5           | 7.1                          | 27.3                         | 25                           |
| 1 N HCl          | 2.3     | 1.6     |              |                              |                 |                |                              |                              |                              |
| 1 N KOH          | 16.0    | 21.1    |              |                              |                 |                |                              |                              |                              |
| Overall          |         |         |              |                              |                 |                |                              |                              |                              |
| extracted        | 99.9    | 89.3    | 97.9         | 87.2                         | 90              | 89.3           | 92.9                         | 81.8                         | 75                           |
| identified       | 16.9    | 46.4    | 80.9         | 69.1                         | 50.0            | 47.4           | 28.5                         | 45.5                         | 25                           |
| characterized    | 78.1    | 37.3    | 15.0         | 11.7                         | 35.0            | 36.9           | 21.4                         | 18.2                         | 50                           |
| unextracted      | 0.0     | 10.6    | 2.1          | 12.8                         | 10.0            | 10.5           | 7.4                          | 27.3                         | 25                           |

<sup>&</sup>lt;sup>a</sup> Solvent systems: CH<sub>3</sub>CN/H<sub>2</sub>O for liver, kidney, skim milk and muscle; acetone/hexane for fat and milk fat

For the carbinol-label the metabolites identified were M2 (2.5% TRR), hydroxyl flutriafol glucuronide (M3, 2.2% TRR), dihydroxy flutriafol (M3e, 1.1% TRR), flutriafol glucuronide (M4, 4.3% TRR), hydroxy methoxy flutriafol (M5, 7.3% TRR), methoxy flutriafol glucuronide (M7, 3.3% TRR), M8 (2.2% TRR) and flutriafol (2.5% TRR). The total identified residues in the liver accounted for 22.9% of TRR. A number of unidentified compounds (7.9% TRR) were observed that were individually present at  $\leq$  3.6% TRR ( $\leq$  0.023 mg equiv/kg). As with the earlier study and the triazole-label, hydrolysis of the liver PES under mild acid and alkaline conditions released all of the remaining  $^{14}$ C residues. In the case of the carbinol label the released

<sup>&</sup>lt;sup>b</sup> Represents free residues from partition of initial extracts with ethyl acetate. (Aqueous is CH<sub>3</sub>CN phase and organic is hexane phase for fat matrices)

 $<sup>^{\</sup>rm c}$  up to five components each  $<\!0.007$  mg equiv/kg and  $<\!14\%$  TRR in tissue with the exception of renal fat =0.03 mg equiv/kg and 38% TRR

M1 = 1,2,4-triazole, M2 = possible amino acid conjugate, M3 = hydroxyl flutriafol glucuronide, M3 = di-hydroxyl flutriafol, M4 = flutriafol glucuronide, M5 = hydroxyl methoxyl flutriafol, M7 = methoxyl flutriafol glucuronide, M10 = flutriafol sulfate

<sup>14</sup>C was able to be resolved into more than seven peaks by chromatography. Subsequent treatment of the hydrolysis extracts with enzymes to release conjugates did not result in additional compounds being identified.

In kidneys, the main <sup>14</sup>C residue components were M2 (8.6% TRR), hydroxyl flutriafol glucuronide (M3, 12.8% TRR) and dihydroxy flutriafol (M3e, 1.6% TRR), flutriafol glucuronide (M4, 24% TRR), hydroxy methoxy flutriafol (M5, 1.0% TRR), methoxy flutriafol glucuronide (M7, 10.5% TRR), M8 (5.3% TRR) and flutriafol (0.7% TRR). No other single metabolite comprised more than 4.3% of TRR (0.013 mg equiv/kg).

Muscle and fat contained low levels of <sup>14</sup>C. Major components identified in muscle were hydroxyl flutriafol glucuronide (M3, 4.3–5.9% TRR) and flutriafol glucuronide (M4, 5.9–17.4% TRR). No other single metabolite comprised more than 0.004 mg equiv/kg. In fat, the major component identified was flutriafol (21–59% TRR).

Main components identified in skim milk were M2 (4.7% TRR), hydroxyl flutriafol glucuronide (M3, 17.6% TRR), dihydroxy flutriafol (M3e, 27.1% TRR), methoxy flutriafol glucuronide (M7, 3.5% TRR), M8 (5.9% TRR) and flutriafol sulfate (M10, 8.2% TRR). Flutriafol was present at 1.2% TRR. No other single metabolite comprised more than 0.005 mg equiv/kg.

In milk fat components identified were M2 (4.3% TRR), hydroxyl flutriafol glucuronide (M3, 30.5% TRR), hydroxy methoxy flutriafol (M5, 2.1% TRR), M8 (7.8% TRR), flutriafol sulfate (M10, 17% TRR) and flutriafol (4.3% TRR). No other single metabolite comprised more than 0.01 mg equiv/kg.

Table 6 Characterisation and identification of <sup>14</sup>C residues in tissues and milk of a goat dosed with 30 ppm carbinol label

| Matrix                        | Liver   | Kidney  | Skim     | Milk                       | Flank    | Loin     | Omental                    | Subcut.                    | Renal                      |
|-------------------------------|---------|---------|----------|----------------------------|----------|----------|----------------------------|----------------------------|----------------------------|
|                               |         |         | Milk     | Fat                        | Muscle   | Muscle   | fat                        | fat                        | Fat                        |
| TRR (mg<br>equiv/kg)          | 0.631   | 0.304   | 0.085    | 0.141                      | 0.023    | 0.017    | 0.017                      | 0.017                      | 0.014                      |
|                               |         |         |          | %TRR                       |          |          |                            |                            |                            |
| Solvent extracts <sup>a</sup> | 38.7    | 86.5    | 97.6     | 82.3                       | 87.0     | 82.4     | 82.4                       | 88.2                       | 78.6                       |
| Aqueous soluble b             | 21.4    | 80.3    | 54.1     | 82.3<br>CH <sub>3</sub> CN | 52.2     | 47.1     | 76.5<br>CH <sub>3</sub> CN | 88.2<br>CH <sub>3</sub> CN | 78.6<br>CH <sub>3</sub> CN |
| M2                            | 2.5     | 8.6     | 4.7      | 4.3                        |          |          |                            |                            |                            |
| M3                            | 2.2     | 12.8    | 17.6     | 30.5                       | 4.3      | 5.9      |                            |                            |                            |
| M4                            | 4.3     | 25.0    |          |                            | 17.4     | 5.9      |                            |                            |                            |
| M5                            |         |         |          | 2.1                        |          |          |                            |                            |                            |
| M7                            | 3.3     | 10.5    | 3.5      |                            |          | 5.9      |                            |                            |                            |
| M8                            | 2.2     | 5.3     | 5.9      | 7.8                        |          |          |                            |                            |                            |
| M10                           |         |         | 8.2      | 17.0                       |          |          |                            |                            |                            |
| Flutriafol                    |         |         |          | 4.3                        |          |          | 23.5                       | 58.8                       | 21.4                       |
| Unknowns                      | 3.4 (4) | 8.6 (3) | 7.1 (3)  | 10.6(2)                    | 21.7 (2) | 29.4 (2) | 47 (3)                     | 17.7 (2)                   | 50 (3)                     |
| Organic soluble b             | 17.3    | 6.3     | 43.5     | < 0.7<br>(h)               | 34.8     | 35.3     | 5.9                        | < 5.9                      | < 7.1                      |
| M3e                           | 1.1     | 1.6     | 27.1     |                            |          |          |                            |                            |                            |
| M5                            | 7.3     | 1.0     | 1.2      |                            |          |          |                            |                            |                            |
| Flutriafol                    | 2.5     | 0.7     | 1.2      |                            |          |          |                            |                            |                            |
| Unknowns                      | 5.2 (3) | 1.0(1)  | 11.8 (3) |                            |          |          |                            |                            |                            |
| PES                           | 47.4    | 6.3     | 2.4      | 17.7                       | 13.0     | 17.6     | 17.6                       | 11.8                       | 21.4                       |
| 1 N HCl                       | 2.4     | 2.3     |          |                            |          |          |                            |                            |                            |
| 1 N KOH                       | 11.6    | 4.9     |          |                            |          |          |                            |                            |                            |
| Overall                       |         |         |          |                            |          |          |                            |                            |                            |
| extracted                     | 100.0   | 93.8    | 97.6     | 82.3                       | 87.0     | 82.4     | 82.4                       | 88.2                       | 78.6                       |
| identified                    | 22.9    | 56.9    | 64.7     | 61.7                       | 21.7     | 17.7     | 23.5                       | 58.8                       | 21.4                       |
| characterized                 | 71.7    | 25.4    | 23.9     | 25.5                       | 56.5     | 64.7     | 52.9                       | 17.7                       | 50.0                       |
| unextracted                   | 0.0     | 6.3     | 2.4      | 17.7                       | 13.0     | 17.6     | 17.6                       | 11.8                       | 21.4                       |

<sup>&</sup>lt;sup>a</sup> Solvent systems: CH<sub>3</sub>CN/H<sub>2</sub>O for liver, kidney, skim milk and muscle; acetone/hexane for fat and milk fat

<sup>b</sup> Represents free residues from partition of initial extracts with ethyl acetate. (Aqueous is CH<sub>3</sub>CN phase and organic is hexane phase for fat matrices)

M1 = 1,2,4-triazole, M2 = possible amino acid conjugate, M3 = hydroxyl flutriafol glucuronide, M3 = di-hydroxyl flutriafol, M4 = flutriafol glucuronide, M5 = hydroxyl methoxyl flutriafol, M7 = methoxyl flutriafol glucuronide, M10 = flutriafol sulfate

Residues in goat milk and edible tissues resulted from extensive metabolism of flutriafol. In the major metabolic pathway, one of the phenyl rings is oxidised and then conjugated with glucuronic acid to form flutriafol glucuronide (M4), or is further oxidised to form dihydroxy flutriafol (M3e), of which there are a number of possible isomers. M3e is then further transformed via methylation to hydroxyl methyl flutriafol (M5) which can in turn be conjugated with glucuronic acid to form methoxy flutriafol glucuronide (M7). M3e was also conjugated with glucuronic acid to form hydroxyl flutriafol glucuronide (M3). A minor pathway is the cleavage of flutriafol at the 1-nitrogen of the triazole ring to give free triazole. One unique carbinol metabolite designated as M10 was identified as flutriafol sulfate.

Figure 3 Possible metabolic pathway for flutriafol in goats

#### RESIDUE ANALYSIS

## Analytical method

Stability of pesticide residues in stored analytical samples

The 2011 JMPR evaluated data on the storage stability of flutriafol residues in plant commodities that included apples, grapes, cabbages, sugar beet roots, pea seeds, soybeans, barley grains, wheat and oilseed rape, processed commodities (apple juice, soybean meal and refined oil) and animal commodities (milk, eggs, muscle and fat).

The 2011 JMPR also received information on the freezer storage stability of triazole metabolites in apple (fruit and juice), milk, eggs, muscle and fat.

Storage stability results indicate that flutriafol residues were stable for at least 4 months in animal commodities, for at least 5 months in soybean seeds, for at least 12 months in apples, barley grains and coffee beans, for at least 23 months in grapes, for at least 24 months in cabbages and oilseed rape, and for at least 25 months in wheat (grains and straw), pea seeds, and sugar beet roots. The results also indicate that triazole metabolite residues were stable for at least 4 months in apple fruits and juice, and for at least 5 months in animal commodities.

Mason (2012 2649) studies the freezer storage stability of residues in bovine matrices. The deep freeze storage stability of flutriafol and triazole metabolites 1,2,4-triazole (T), triazole alanine (TA) and triazole acetic acid (TAA) in muscle, fat, liver and kidney was conducted by fortifying separate control samples of homogeneous matrix with flutriafol, T, TA and TAA at levels of 0.1 mg/kg. These samples were placed in freezer storage and analysed after 0, 1, 3, 6, 9 and 12 months frozen storage. All samples were analysed in duplicate. Unfortified control samples were analysed at the same time alongside duplicate freshly fortified samples of control matrix at 0.1 mg/kg.

Residues of flutriafol, and T, TA and TAA in ruminant tissues (muscle, fat, liver and kidney) remain stable for at least 12 months for flutriafol, TA and TAA and at least 6 months for T when samples are stored under deep frozen conditions.

Table 7 Recovery of flutriafol and metabolite residues on frozen storage of animal commodity samples separately fortified with flutriafol, T, TA or TAA

| Analyte    | Storage time (days) | Amount recovered from stored sample (mg/kg) | Mean procedural recovery (%) |
|------------|---------------------|---------------------------------------------|------------------------------|
| Muscle     |                     |                                             |                              |
| Flutriafol | 0                   | 0.077, 0.072                                | 75                           |
|            | 182                 | 0.100, 0.096                                | 79                           |
|            | 275                 | 0.122, 0.104                                | 102                          |
|            | 372                 | 0.118, 0.108                                | 97                           |
| T          | 0                   | 0.093, 0.094                                | 94                           |
|            | 183                 | 0.096, 0.090                                | 90, 97                       |
|            | 322                 | 0.086, 0.091                                | 90                           |
|            | 366                 | 0.078, 0.076                                | 80                           |
| TA         | 0                   | 0.109, 0.106                                | 108                          |
|            | 183                 | 0.108, 0.109                                | 101                          |
|            | 322                 | 0.098, 0.094                                | 88                           |
|            | 366                 | 0.114, 0.101                                | 98                           |
| TAA        | 0                   | 0.104, 0.100                                | 102                          |
|            | 183                 | 0.097, 0.091                                | 103                          |
|            | 322                 | 0.096, 0.092                                | 95                           |
|            | 366                 | 0.108, 0.108                                | 109                          |
| Fat        |                     |                                             |                              |
| Flutriafol | 0                   | 0.080, 0.078                                | 79                           |
|            | 183                 | 0.069, 0.074                                | 71                           |
|            | 279                 | 0.070, 0.082                                | 86                           |

| Analyte    | Storage time (days) | Amount recovered from stored sample (mg/kg) | Mean procedural recovery (%) |
|------------|---------------------|---------------------------------------------|------------------------------|
|            | 370                 | 0.095, 0.106                                | 86                           |
| T          | 0                   | 0.088, 0.087                                | 88                           |
|            | 189                 | 0.066, 0.066                                | 92                           |
|            | 321                 | 0.081, 0.083                                | 94                           |
|            | 367                 | 0.056, 0.065                                | 90                           |
| TA         | 0                   | 0.110, 0.110                                | 110                          |
|            | 189                 | 0.101, 0.104                                | 101                          |
|            | 321                 | 0.106, 0.080                                | 107                          |
|            | 367                 | 0.100, 0.097                                | 105                          |
| TAA        | 0                   | 0.099, 0.099                                | 99                           |
|            | 189                 | 0.094, 0.090                                | 110                          |
|            | 321                 | 0.108, 0.097                                | 105                          |
|            | 367                 | 0.097, 0.089                                | 111                          |
| Liver      |                     |                                             |                              |
| Flutriafol | 0                   | 0.104, 0.104                                | 104                          |
| Tiumunoi   | 32                  | 0.063, 0.067                                | 74                           |
|            | 152                 | 0.093, 0.103                                | 99                           |
|            | 185                 | 0.100, 0.095                                | 76                           |
|            | 276                 | 0.115, 0.114                                | 89                           |
|            | 369                 | 0.113, 0.114                                | 108                          |
| T          | 0                   | 0.089, 0.09                                 | 90                           |
| 1          | 35                  |                                             | 77                           |
|            | 117                 | 0.075, 0.075                                |                              |
|            |                     | 0.087, 0.089                                | 90                           |
|            | 186                 | 0.087, 0.086                                | 94                           |
|            | 313                 | 0.081, 0.079                                | 92                           |
|            | 370                 | 0.082, 0.071                                | 90                           |
| TA         | 0                   | 0.102, 0.102                                | 102                          |
|            | 35                  | 0.103, 0.097                                | 107                          |
|            | 117                 | 0.103, 0.105                                | 92                           |
|            | 186                 | 0.107, 0.109                                | 99                           |
|            | 313                 | 0.096, 0.093                                | 89                           |
|            | 370                 | 0.108, 0.116                                | 103                          |
| TAA        | 0                   | 0.083, 0.082                                | 83                           |
|            | 35                  | 0.109, 0.109                                | 110                          |
|            | 117                 | 0.110, 0.110                                | 110                          |
|            | 186                 | 0.092, 0.087                                | 101                          |
|            | 313                 | 0.104, 0.107                                | 108                          |
|            | 370                 | 0.113, 0.117                                | 109                          |
| Kidney     |                     |                                             |                              |
| Flutriafol | 0                   | 0.096, 0.094                                | 95                           |
|            | 37                  | 0.085, 0.080                                | 91                           |
|            | 92                  | 0.092, 0.093                                | 99                           |
|            | 184                 | 0.112, 0.120                                | 110                          |
|            | 365                 | 0.107, 0.109                                | 95                           |
| T          | 0                   | 0.092, 0.095                                | 94                           |
|            | 30                  | 0.095, 0.098                                | 101                          |
|            | 91                  | 0.087, 0.082                                | 90                           |
|            | 198                 | 0.093, 0.093                                | 106                          |
|            | 365                 | 0.061, 0.061                                | 75                           |
| TA         | 0                   | 0.105, 0.107                                | 106                          |
|            | 30                  | 0.099, 0.102                                | 106                          |
|            | 91                  | 0.102, 0.100                                | 102                          |
|            | 198                 | 0.078, 0.080                                | 86                           |
|            | 365                 | 0.078, 0.080                                | 101                          |
| ТАА        | _                   |                                             | 107                          |
| TAA        | 0                   | 0.107, 0.107                                |                              |
|            | 30                  | 0.100, 0.100                                | 103                          |
|            | 91                  | 0.110, 0.112                                | 104                          |
|            | 198                 | 0.111, 0.109                                | 110                          |
|            | 365                 | 0.107, 0.099                                | 96                           |

Analytical method flutriafol: muscle, liver, kidney, fat—Method No. ICIA AM00306 Analytical method T, TA, TAA—Meth-160 rev 2.

# **USE PATTERN**

Table 8 Registered uses of flutriafol on crops relevant to this submission

| Crop                                                      | Country     | GS                                           | Rate (g ai/ha)                                    | Water<br>(L/ha)          | N | Interval (days) | PHI (days)                    |
|-----------------------------------------------------------|-------------|----------------------------------------------|---------------------------------------------------|--------------------------|---|-----------------|-------------------------------|
| Almond<br>walnut                                          | USA         |                                              | 128<br>Max single<br>128<br>Max/year 511          | > 93.5<br>grd/air        | 4 | 7               | 14                            |
| Apple                                                     | Belarus     |                                              | 25–37.5                                           | 1000-<br>1200            | 4 | 10–14           | 40                            |
| Apple                                                     | Italy       |                                              | 20–30 (or 2–<br>3 g ai/hL)                        |                          | 2 | 10–14           | 21                            |
| Apple                                                     | Kazakhastan |                                              | 25-37.5                                           |                          | 2 |                 | 20                            |
| Brassica<br>(Cole) leafy<br>vegetables                    | USA         |                                              | 91–128<br>Max single<br>128<br>Max/year 511       | > 93.5 grd<br>> 46.8 air | 4 | 7               | 7                             |
| Celery and<br>Chinese celery                              | USA         |                                              | 91–128<br>Max single<br>128<br>Max/year 511       | > 93.5 grd<br>> 46.8 air | 4 | 7               | 7                             |
| Corn (field, pop, seed)                                   | USA         | apply no later than R4<br>(early dough stage | 128<br>Max single<br>128<br>Max/year 256          | > 93.5 grd<br>> 18.7 air | 2 | 7               | 7, except<br>forage 0<br>days |
| Cotton                                                    | USA         |                                              | Max one 146–290 (soil appl. at planting) +        | 56–93                    | 1 | n/a             |                               |
|                                                           |             |                                              | 64–128 (foliar appl.) max total soil + foliar 547 | 92–187                   | 2 | 7               | 30                            |
| Cucurbit<br>vegetables<br>(except<br>muskmelon)           | USA         | -                                            | 91–128<br>Max single<br>128<br>Max/year 511       | > 93.5 grd<br>> 46.8 air | 4 | 7               | 0                             |
| Fruiting<br>vegetables<br>group 8–10                      | USA         | Onset of fruit up to harvest                 | 128<br>Max single<br>128<br>Max/year 511          | > 93.5 grd<br>> 46.8 air | 4 | 7               | 0                             |
| Leafy<br>vegetables<br>(except<br>Brassica<br>vegetables) | USA         |                                              | 91–128<br>Max single<br>128<br>Max/year 511       | > 93.5 grd<br>> 46.8 air | 4 | 7               | 7                             |
| Muskmelons                                                | USA         | -                                            | 91–128<br>Max single<br>128<br>Max/year 511       | > 93.5 grd<br>> 46.8 air | 4 | 7               | 0                             |
| Pecan and other tree nuts                                 | USA         |                                              | 64–128<br>Max single<br>128<br>Max/year 511       | > 93.5<br>grd/air        | 4 | 7               | 14                            |
| Pome fruit                                                | USA         | -                                            | 73–119<br>Max single<br>119<br>Max/year 475       | > 93.5 grd<br>> 46.8 air | 4 | 7–10            | 14                            |
| Rapeseed                                                  | Belarus     | End of flowering/<br>beginning of pod        | 125                                               |                          | 1 |                 | 30                            |

| Crop                              | Country     | GS                                                                                | Rate (g ai/ha)                              | Water (L/ha)             | N       | Interval (days) | PHI (days)             |
|-----------------------------------|-------------|-----------------------------------------------------------------------------------|---------------------------------------------|--------------------------|---------|-----------------|------------------------|
|                                   |             | formation                                                                         |                                             |                          |         |                 |                        |
| Rapeseed                          | Kazakhastan |                                                                                   | 125                                         | 200                      | 1       |                 | 30                     |
| Rapeseed                          | Russia      | n/a                                                                               | 125                                         | 200–300                  | 1-<br>2 | 10–14           | 30                     |
| Rice                              | Italy       | onset of the 1 <sup>st</sup> symptoms of disease, repeating on appearance panicle | 125–187.5                                   |                          | 2       |                 | 28                     |
| Rice                              | Kazakhastan |                                                                                   | 187.5-250                                   | 200 L/ha                 | 1       |                 | 30                     |
| Rice                              | Russia      |                                                                                   | 250                                         | 50–<br>100 L/ha          | 1       |                 | 27                     |
| Sorghum                           | USA         | _                                                                                 | 64–128<br>Max single<br>128<br>Max/year 256 | > 93.5 grd<br>> 46.8 air | 4       | 7               | 30 stover forage grain |
| Stone fruit<br>(except<br>cherry) | USA         | _                                                                                 | 128<br>Max single<br>128<br>Max/year 511    | > 93.5 grd<br>> 46.8 air | 4       | 7               | 7                      |
| Stone fruit<br>(inc cherry)       | USA         | -                                                                                 | 128<br>Max single<br>128<br>Max/year 511    | > 93.5 grd<br>> 46.8 air | 4       | 7               | 7                      |
| Strawberry                        | USA         | Onset of fruit up to harvest                                                      | 91–128<br>Max single<br>128<br>Max/year 511 | > 93.5 grd<br>> 46.8 air | 4       | 7               | 0                      |
| Sugar beet                        | Belarus     |                                                                                   | 62.5–125                                    | 300                      | 1       |                 | 30                     |
| Sugar beet                        | Russia      |                                                                                   | 62.5                                        | 300                      | 1-<br>2 |                 | 30                     |
| Sugar beet                        | USA         | -                                                                                 | 91–128<br>Max single<br>128<br>Max/year 256 | > 93.5 grd<br>> 46.8 air | 2       | 14              | 21                     |
| Tomato                            | USA         | Onset of fruit up to harvest                                                      | 64–128<br>Max single<br>128<br>Max/year 511 | > 93.5 grd<br>> 46.8 air | 4       | 7               | 0                      |

Stone Fruit: Apricot, Nectarine, Peach, Plum, Cherries (Sweet and Tart), Chickshaw plum, Damson plum, Japanese plum, Plumcot, Prune

Muskmelons: True Cantaloupe, Casaba, Crenshaw Melon, Golden Pershaw Melon, Honeydew Melon, Honey Balls, Mango Melon, Persian Melon, Pineapple Melon, Santa Claus Melon, and Snake Melon

<u>Cucurbits:</u> Chayote (Fruit), Chinese Waxgourd, Citron Melon, Cucumber, Gherkin, Gourd Edible (Lagenaria spp.) (Includes Hyotan, Cucuzza, Hechima, Chinese Okra), Momordica spp. (Includes Balsam Apple, Balsam Pear, Bittermelon, Chinese Cucumber), Pumpkin, Squash (Summer), Squash (Winter—Includes Butternut Squash, Calabaza, Hubbard Squash, Acorn Squash, Spaghetti Squash), Watermelon

<u>Brassica (Cole) Leafy Vegetables</u>: Broccoli, Broccoli (Chinese and Raab), Brussels Sprouts, Cabbage, Cabbage (Chinese, Bok Choy, Chinese Mustard/Gai Choy), Cauliflower, Cavalo Broccolo, Collards, Kale, Kohlrabi, Mizuna, Mustard Greens, Mustard Spinach, Rape Greens. Including all cultivars and/or hybrids of these crops.

<u>Leafy Vegetables (except Brassica):</u> Amaranth, Arugula, Cardoon, Celery, Celery (Chinese), Celtuce, Chervil, Chrysanthemum (Edible and Garland), Corn Salad, Cress (Garden and Upland), Dandelion, Dock, Endive, Fennel (Florence), Lettuce (Head and Leaf), Orach, Parsley, Purslane (Garden and Winter), Radicchio, Rhubarb, Spinach, Spinach (New Zealand and Vine), Swiss Chard. Including cultivars and/or hybrids of these crops.

Pecans and other tree nuts: African Tree Nut, Brazil Nut, Burr Oak, Butternut, Cajou, Cashew, Castanha-Do-Maranhao, Coconut, Coquito Nut, Dika nut, Guiana Chestnut, Hazelnut, Heartnut, Hickory Nut, Japanese Horse-Chestnut, Macadamia Nut, Monogongo Nut, Monkey-Pot, Pachira Nut, Pecan, Sapucaia Nut

Fruiting Vegetables (group 8-10): African Eggplant, Bell Pepper, Eggplant, Martynia, Non-Bell Pepper, Okra, Pea Eggplant, Pepino, Roselle, Scarlet Eggplant. Including cultivars, varieties and/or hybrids of these crops.

<u>Crop Rotation:</u> Fields treated with an application rate of greater than 252 g ai/ha/season may be planted to crops that have tolerances established for residues of flutriafol including: field corn, popcorn, cucurbits, fruiting vegetables, grapes, peanuts, pome fruits, soybeans, stone fruits, strawberries, sugar beets, tree nuts, triticale, or wheat immediately after last application.

Fields treated with application rates less than or equal to 252 g ai/ha/season may be planted to the crops listed above, and may also be planted to cotton or sweet corn 180 days after the last application. Rotation to any other crop is prohibited.

## RESIDUES RESULTING FROM SUPERVISED TRIALS ON CROPS

The Meeting received information on supervised residue trials of foliar treatments of flutriafol for apples, pears, peaches/nectarines, plums, cherries, strawberries, Brassica vegetables (cabbage and broccoli), cucurbits (cucumbers, summer squash and muskmelons), tomatoes, peppers, leafy vegetables (lettuce, spinach, celery and mustard greens), sugar beets, maize, rice, sorghum, almonds, pecans, cotton, and rape.

Residues, application rates and spray concentrations have been rounded to two figures. Residue data are recorded unadjusted for percentage recoveries or for residue values in control samples. Where multiple analyses were conducted on a single sample, the average value is reported. Residues from the trials conducted according to critical GAP have been used for the estimation of maximum residue levels, STMR and HR values. Those results are underlined.

Table 9 Summary of sprayers, plot sizes and field sample sizes in the supervised trials

| Location | Year | Crop            | Sprayer                                                                        | Plot size              | Sample size                                                                                                                                | SAI (days)                                                |
|----------|------|-----------------|--------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Europe   | 2004 | Sugar beet      | Boom sprayer,<br>knapsack sprayer                                              | 60–120 m <sup>2</sup>  | Plants $\geq$ 0.6 kg<br>Leaves $\geq$ 0.5 kg<br>Roots $\geq$ 1.0 kg<br>Leaves with<br>tops $\geq$ 1.0 kg                                   | < 80                                                      |
| Europe   | 2005 | Tomato          | CO <sub>2</sub> sprayer                                                        | 14–33 m <sup>2</sup>   | ≥ 2.0 kg                                                                                                                                   | < 52                                                      |
| Europe   | 2005 | Rape            | Boom sprayer                                                                   | 60–90 m <sup>2</sup>   | Shoots no roots $\geq 1.1 \text{ kg}$<br>Pods $\geq 0.6 \text{ kg}$<br>Shoots no pods $\geq 1.0 \text{ kg}$<br>Seeds $\geq 0.5 \text{ kg}$ | < 30                                                      |
| Europe   | 2005 | Sugar beet      | Boom sprayer                                                                   | 30–90 m <sup>2</sup>   | Leaves with tops $\geq 1.0 \text{ kg}$<br>Roots $\geq 1.0 \text{ kg}$                                                                      | < 80                                                      |
| Europe   | 2006 | Rape            | Boom sprayer                                                                   | 30–60 m <sup>2</sup>   | Seeds $\geq 0.5 \text{ kg}$                                                                                                                | < 20                                                      |
| Spain    | 2006 | Sugar beet      | Boom sprayer                                                                   | 30 m <sup>2</sup>      | Leaves with tops $\geq$ 2.8 kg Roots $\geq$ 4.8 kg                                                                                         | < 20                                                      |
| France   | 2007 | Rape            | Boom sprayer                                                                   | 120 m <sup>2</sup>     | Seeds $\geq$ 0.5 kg                                                                                                                        | < 38                                                      |
| Spain    | 2005 | Rice            | Boom sprayer                                                                   | 25–50 m <sup>2</sup>   | Seeds $\geq 1.0 \text{ kg}$                                                                                                                | < 130                                                     |
| USA      | 2009 | Cherry<br>sweet | Tractor-mounted<br>Airblast Sprayer                                            | 6–16 trees             | Fruit ≥ 1.1 kg                                                                                                                             | 79 F<br>84 T                                              |
| USA      | 2009 | Cherry tart     | Tractor-mounted<br>Airblast Sprayer                                            | 6–16 trees             | Fruit ≥ 1.1 kg                                                                                                                             | 64–107 F<br>58–127 T                                      |
| USA      | 2009 | Peach           | Tractor-mounted<br>Airblast Sprayer                                            | 6–8 trees              | Fruit ≥ 2.0 kg                                                                                                                             | 45–135 F<br>40–114 T                                      |
| USA      | 2009 | Plum            | Tractor-mounted<br>Airblast Sprayer                                            | 6–8 trees              | Fruit ≥ 2.0 kg                                                                                                                             | 9–154 F<br>13–149 T                                       |
| USA      | 2009 | Pear            | Tractor-mounted<br>Airblast Sprayer                                            | 6–7 trees              | Fruit ≥ 2.3 kg                                                                                                                             | 24–188 F<br>23–192 T                                      |
| USA      | 2009 | Maize           | CO <sub>2</sub> backpack<br>sprayer, Tractor<br>mounted side-<br>mount sprayer | 56–1110 m <sup>2</sup> | Forage $\geq$ 1.6 kg<br>Grain $\geq$ 1.0 kg<br>Stover $\geq$ 0.4 kg                                                                        | Forage 64–211 F<br>67–211 T<br>Grain 84–186 F<br>72–201 T |
| USA      | 2009 | Sugar beet      |                                                                                | 46–372 m <sup>2</sup>  | Leaves with tops ≥ 1.0 kg Roots 12 roots                                                                                                   | 183 F<br>194 T                                            |
| USA      | 2010 | Strawberry      | CO <sub>2</sub> backpack<br>sprayer, Hand-<br>held boom<br>sprayer             | 31–186 m <sup>2</sup>  | Fruit ≥ 0.6 kg                                                                                                                             | 12–90 F<br>31–88 T                                        |

| Location | Year | Crop                      | Sprayer                                                          | Plot size                           | Sample size                                                                                                                                                                                                    | SAI (days)                          |
|----------|------|---------------------------|------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| USA      | 2010 | Apple                     | Tractor-mounted<br>Airblast Sprayer                              | 6–8 trees                           | Fruit ≥ 3.0 kg                                                                                                                                                                                                 | 33–60 F<br>64–89 T                  |
| USA      | 2010 | Tree nuts (Almond, Pecan) | Tractor-mounted<br>Airblast Sprayer                              | 6–8 trees                           | ≥ 1.2 kg                                                                                                                                                                                                       | Pecan 162<br>Almond 230<br>Hulls 92 |
| Spain    | 2006 | Peach                     | Boom + knapsack<br>sprayer                                       | 3–4 trees                           | ≥ 2.0 kg                                                                                                                                                                                                       | < 139                               |
| USA      | 2011 | Cucurbits                 | CO <sub>2</sub> backpack +<br>tractor mounted<br>sprayers        | 48–180 m <sup>2</sup>               | ≥ 1.5 kg<br>(melon: each<br>fruit quartered<br>opposing 2<br>quarters<br>selected 24<br>quarters)                                                                                                              | 16–104 F<br>16–176 T                |
| USA      | 2011 | Tomato                    | CO <sub>2</sub> backpack +<br>boom + tractor<br>mounted sprayers | 48–180 m <sup>2</sup>               | ≥ 2.0 kg                                                                                                                                                                                                       | 18–134                              |
| USA      | 2011 | Pepper                    | CO <sub>2</sub> backpack +<br>boom + tractor<br>mounted sprayers | 45–140 m <sup>2</sup>               | ≥ 2.0 kg                                                                                                                                                                                                       | 18–134                              |
| Spain    | 2004 | Strawberry                | Backpack + knapsack sprayer                                      | 16.5–44 m <sup>2</sup> macrotunnels | ≥ 1.0 kg                                                                                                                                                                                                       | 212                                 |
| USA      | 2012 | Brassica<br>vegetables    | CO <sub>2</sub> backpack +<br>tractor mounted<br>sprayers        | 45–167 m <sup>2</sup>               | ≥ 1.0 kg<br>(cabbage:<br>Heads were<br>quartered and<br>one quarter of<br>12 heads<br>collected for<br>each sample<br>OR **Heads<br>were halved<br>and one half of<br>12 heads<br>collected for<br>each sample | 7–195 F<br>24–178 T                 |
| USA      | 2011 | Leafy<br>vegetables       | CO <sub>2</sub> backpack +<br>tractor mounted<br>sprayers        | 43–206 m <sup>2</sup>               | ≥ 1.0 kg                                                                                                                                                                                                       | 18–184 F<br>11–212 T                |
| USA      | 2012 | Sorghum                   | CO <sub>2</sub> backpack +<br>tractor mounted<br>sprayers        | 93–1490 m <sup>2</sup>              | ≥ 1.0 kg                                                                                                                                                                                                       | 27–196 F<br>56–189 T                |
| USA      | 2012 | Cotton                    | CO <sub>2</sub> backpack +<br>tractor mounted<br>sprayers        | 93–696 m <sup>2</sup>               | ≥ 1.0 kg                                                                                                                                                                                                       | 15–110 F<br>21–141 T                |

Residues of the triazoles, TA and TAA were frequently observed in both untreated control and samples from treated plots, however, the source of the residues is unknown. That residues were detected in untreated controls suggests a natural origin. Triazole-related compounds are also common metabolites of a number of fungicides which contain the 1,2,4-triazole moiety.

Table 10 Residues of flutriafol in apples following application of an SC formulation in the USA (Carringer 2011 2159) (duplicate samples)

| Location,     |        | g     |      | g     | GS     |      | Residue (mg/l | cg)    |        |        |
|---------------|--------|-------|------|-------|--------|------|---------------|--------|--------|--------|
| year, variety | No     | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol    | T      | TA     | TAA    |
| Cambridge,    | 6 (14  | 120   | 889  | 13    | 71–73  | 14   | 0.02 0.02     | < 0.01 | < 0.01 | < 0.01 |
| ON, Canada    | 14 14  | 120   | 898  |       | 75     |      |               | < 0.01 | 0.01   | < 0.01 |
| 2010          | 13 14) | 120   | 879  |       | 76–77  | Mean | 0.02          | < 0.01 | < 0.01 | < 0.01 |
| McIntosh      |        | 120   | 879  |       | 77–78  |      |               |        |        |        |
|               |        | 122   | 889  |       | 79     |      |               |        |        |        |
|               |        | 119   | 926  |       | 81–85  |      |               |        |        |        |
| St George,    | 6 (14  | 119   | 739  | 16    | 74–76  | 14   | 0.02 0.01     | < 0.01 | 0.04   | < 0.01 |

| Location,     |        | g     |      | g     | GS     |      | Residue (mg/l | kg)    |       |           |
|---------------|--------|-------|------|-------|--------|------|---------------|--------|-------|-----------|
| year, variety | No     | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol    | T      | TA    | TAA       |
| ON, Canada    | 14 14  | 117   | 730  |       | 77     |      |               | < 0.01 | 0.03  | < 0.01    |
| 2010          | 14 13) | 120   | 730  |       | 78     |      |               |        | c0.04 |           |
| Northern spy  |        | 119   | 702  |       | 79     | Mean | 0.02          | < 0.01 | 0.04  | < 0.01    |
|               |        | 119   | 730  |       | 81     |      |               |        |       |           |
|               |        | 119   | 720  |       | 81–85  |      |               |        |       |           |
| Conklin, MI,  | 6 (14  | 120   | 804  | 15    | 75     | 14   | 0.07 0.05     | < 0.01 | 0.02  | < 0.01    |
| USA 2010 Ida  | 14 14  | 120   | 776  |       | 76     |      |               | < 0.01 | 0.02  | < 0.01    |
| Red           | 14 14) | 120   | 795  |       | 77     | Mean | 0.06          | < 0.01 | 002   | < 0.01    |
|               |        | 120   | 776  |       | 78     |      |               |        |       |           |
|               |        | 121   | 795  |       | 79     |      |               |        |       |           |
|               |        | 120   | 776  |       | 85     |      |               |        |       |           |
| Marengo, IL,  | 6 (14  | 122   | 758  | 16    | 75     | 14   | 0.10 0.12     | < 0.01 | 0.07  | 0.01 0.01 |
| USA 2010      | 15 13  | 119   | 730  |       | 76     |      |               | < 0.01 | 0.08  |           |
| Gala          | 14 14) | 122   | 730  |       | 77     |      |               |        | c0.05 |           |
|               |        | 121   | 748  |       | 80     | Mean | 0.11          | < 0.01 | 0.08  | 0.01      |
|               |        | 119   | 758  |       | 82     |      |               |        |       |           |
|               |        | 122   | 758  |       | 85     |      |               |        |       |           |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Table 11 Flutriafol and triazole metabolites residues on apple fruits from supervised trials in USA reported by the 2011 JMPR (Willard, 2007 1471)

| Country, year      | Applic | ation    |                |     | DALA |            | Residue (mg/kg)                         |                           |
|--------------------|--------|----------|----------------|-----|------|------------|-----------------------------------------|---------------------------|
| (variety) APPLE    | Form   | kg ai/ha | water,<br>L/ha | no. |      | Flutriafol | TA                                      | TAA                       |
| USA/CA, 2006       | SC     | 0.12     | 798–936        | 6   | 14   | 0.07, 0.05 | 0.02, 0.02                              | < 0.01, < 0.0             |
| (Granny smith)     |        |          |                |     | Mean | 0.06       |                                         |                           |
| USA/ ID, 2006      | SC     | 0.12     | 759–931        | 6   | 15   | 0.07, 0.09 | < 0.01, < 0.01                          | < 0.01, < 0.0             |
| (Macintosh)        |        |          |                |     | Mean | 0.08       |                                         |                           |
| USA/IL, 2006       | SC     | 0.12     | 795–840        | 6   | 14   | 0.06, 0.06 | 0.02, 0.02                              | < 0.01, < 0.0             |
| (Golden Supreme)   |        |          |                |     | Mean | 0.06       |                                         |                           |
| USA/MI, 2006       | SC     | 0.12     | 801-843        | 6   | 14   | 0.09, 0.09 | 0.04, 0.04 c0.06                        | < 0.01, < 0.0             |
| (Golden Delicious) |        |          |                |     | Mean | 0.09       | ,                                       |                           |
| USA/MI, 2006       | SC     | 0.12     | 807-827        | 6   | 0    | 0.07, 0.07 | 0.06, 0.06                              | < 0.01, < 0.0             |
| (Ida Red)          |        |          |                |     | Mean | 0.07       |                                         |                           |
| ,                  |        |          |                |     | 7    | 0.05 0.04  | 0.07 0.06                               | < 0.01, < 0.0             |
|                    |        |          |                |     | Mean | 0.05       |                                         | ĺ                         |
|                    |        |          |                |     | 13   | 0.05 0.04  | 0.05 0.05 c0.03                         | < 0.01, < 0.0             |
|                    |        |          |                |     | Mean | 0.05       |                                         | Ĺ                         |
|                    |        |          |                |     | 21   | 0.04 0.04  | 0.07 0.07                               | < 0.01, < 0.0             |
|                    |        |          |                |     | Mean | 0.04       |                                         | ĺ                         |
|                    |        |          |                |     | 27   | 0.05 0.04  | 0.06 0.05                               | < 0.01, < 0.0             |
|                    |        |          |                |     | Mean | 0.05       |                                         | , , , , , , , , , , , , , |
|                    | SC     | 0.12     | 804-838        | 5   | 0    | 0.06, 0.06 | 0.08, 0.05                              | < 0.01, < 0.0             |
|                    |        |          |                |     | Mean | 0.06       |                                         | , , , , , , , , , , , ,   |
|                    |        |          |                |     | 7    | 0.04 0.04  | 0.07 0.08                               | < 0.01, < 0.0             |
|                    |        |          |                |     | Mean | 0.04       |                                         | , , , , , , , , , , , ,   |
|                    |        |          |                |     | 13   | 0.04 0.04  | 0.07 0.07                               | < 0.01, < 0.0             |
|                    |        |          |                |     | Mean | 0.04       |                                         | , , , , , , , , , , , ,   |
|                    |        |          |                |     | 21   | 0.04 0.04  | 0.08 0.09                               | < 0.01, < 0.0             |
|                    |        |          |                |     | Mean | 0.04       |                                         | 1                         |
|                    |        |          |                |     | 27   | 0.03 0.03  | 0.07 0.07                               | < 0.01, < 0.0             |
|                    |        |          |                | 1   | Mean | 0.03       |                                         | 1                         |
| USA/NY, 2006       | SC     | 0.12     | 924–981        | 6   | 15   | 0.05, 0.03 | 0.02, 0.01 c0.03                        | < 0.01, < 0.0             |
| (Cortland)         |        |          | . =            |     | Mean | 0.04       | , , , , , , , , , , , , , , , , , , , , | 1                         |
| USA/NY, 2006       | SC     | 0.12     | 939–953        | 6   | 14   | 0.05, 0.07 | 0.03, 0.02 c0.01                        | < 0.01, < 0.0             |
| (Ida Red)          |        |          |                |     | Mean | 0.06       | ,                                       | 1                         |
|                    |        | 0.12-    | 933–942        | 6   | 14   | 0.10, 0.12 | 0.03, 0.03                              | < 0.01, < 0.0             |
|                    |        | 0.24     |                | Ť   | Mean | 0.11       |                                         | 1 2122, 1 010             |

| Country, year   | Applic | ation    |                |     | DALA       |                    | Residue (mg/kg)  |                |
|-----------------|--------|----------|----------------|-----|------------|--------------------|------------------|----------------|
| (variety) APPLE | Form   | kg ai/ha | water,<br>L/ha | no. |            | Flutriafol         | TA               | TAA            |
| USA/OR, 2006    | SC     | 0.12     | 830-849        | 6   | 14         | 0.09, 0.12         | 0.03, 0.02 c0.03 | < 0.01, < 0.01 |
| (Pacific Gala)  |        |          |                |     | Mean       | 0.10               |                  |                |
| USA/OR, 2006    | SC     | 0.12     | 815-840        | 6   | 14         | 0.05, 0.05         | 0.03, 0.03       | < 0.01, < 0.01 |
| (Jonagold)      |        |          |                |     | Mean       | 0.05               |                  |                |
| USA/PA, 2006    | SC     | 0.12     | 895–903        | 6   | 14         | 0.11, 0.14         | 0.02, 0.02 c0.03 | < 0.01, < 0.01 |
| (Royal Gala)    |        |          |                |     | Mean       | 0.12               |                  |                |
| USA/PA, 2006    | SC     | 0.12     | 789–808        | 6   | 0          | 0.14, 0.19         | 0.05, 0.05       | 0.01, 0.02     |
| (Loe Rome)      |        |          |                |     | Mean       | 0.17               |                  |                |
|                 |        |          |                |     | 7          | 0.09 0.08          | 0.05 0.05        | 0.01 0.01      |
|                 |        |          |                |     | Mean       | 0.09               |                  |                |
|                 |        |          |                |     | 14         | 0.05 0.06          | 0.05 0.05        | 0.01 0.01      |
|                 |        |          |                |     | Mean       | 0.05               |                  |                |
|                 |        |          |                |     | 21         | 0.07 0.09          | 0.06 0.06 c0.05  | 0.01 0.01      |
|                 |        |          |                |     | Mean       | 0.08               |                  |                |
|                 |        |          |                |     | 28         | 0.06 0.05          | 0.05 0.05        | 0.01 0.01      |
|                 |        |          |                |     | Mean       | 0.06               |                  |                |
|                 | SC     | 0.12     | 800–815        | 5   | 0          | 0.14, 0.17         | 0.03, 0.04       | 0.01, 0.01     |
|                 |        |          |                |     | Mean       | 0.16               |                  |                |
|                 |        |          |                |     | 7          | 0.05 0.05          | 0.04 0.04        | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.05               |                  |                |
|                 |        |          |                |     | 14         | 0.05 0.06          | 0.04 0.04        | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.06               |                  |                |
|                 |        |          |                |     | 21         | 0.07 0.07          | 0.04 0.04        | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.07               |                  |                |
|                 |        |          |                |     | 28         | 0.08 0.05          | 0.03 0.03        | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.07               |                  |                |
| USA/UT, 2006    | SC     | 0.12     | 748–804        | 6   | 14         | 0.03, 0.03         | < 0.01, < 0.01   | < 0.01, < 0.01 |
| (Empire)        |        |          |                |     | Mean       | 0.03               |                  |                |
| USA/VA, 2006    | SC     | 0.12     | 706–748        | 6   | 13         | 0.06, 0.04         | 0.03, 0.02 c0.06 | < 0.01, < 0.01 |
| (Rome)          |        |          |                |     | Mean       | 0.05               |                  |                |
| USA/VA, 2006    | SC     | 0.12     | 805–817        | 6   | 13         | 0.12, 0.09         | 0.03, 0.02 c0.03 | < 0.01, < 0.01 |
| (York)          |        |          |                |     | Mean       | 0.10               |                  |                |
| USA/WA, 2006    | SC     | 0.12     | 861–879        | 6   | 0          | 0.09 0.10          | < 0.01, < 0.01   | < 0.01, < 0.01 |
| (Braeburn)      |        |          |                |     | Mean       | 0.10               |                  |                |
|                 |        |          |                |     | 7          | 0.10 0.12          | < 0.01, < 0.01   | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.11               |                  |                |
|                 |        |          |                |     | 14         | 0.09 0.12          | 0.01, 0.01       | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.11               |                  |                |
|                 |        |          |                |     | 21         | 0.13 0.13          | < 0.01, 0.01     | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.13               |                  |                |
|                 |        |          |                |     | 27         | 0.07 0.11          | 0.01, < 0.01     | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.09               |                  |                |
|                 | SC     | 0.12     | 864–871        | 5   | 0          | 0.16 0.13          | 0.02 0.02        | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.14               |                  |                |
|                 |        |          |                |     | 7          | 0.15 0.13          | 0.02 0.02        | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.14               |                  |                |
|                 |        |          |                |     | 14         | 0.14 0.11          | 0.02 0.02        | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.13               |                  |                |
|                 |        |          |                |     | 21         | 0.15 0.16          | 0.02 0.02        | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.16               |                  |                |
|                 |        |          |                |     | 27         | 0.09 0.16          | 0.02 0.02        | < 0.01, < 0.01 |
|                 |        |          |                |     | Mean       | 0.13               |                  |                |
| USA/WA, 2006    | SC     | 0.12     | 861–872        | 6   | 14         | 0.13, 0.11         | 0.04 0.03 c0.02  | < 0.01 < 0.01  |
|                 | bC     |          |                |     |            |                    |                  |                |
| (Red Delicious) | БС     |          |                |     | Mean       | 0.12               |                  |                |
|                 | be     | 0.12-    | 859–877        | 6   | Mean<br>14 | 0.12<br>0.17, 0.21 | 0.04 0.04        | < 0.01 < 0.01  |

Flutriafol Flutriafol

Table 12 Residues of flutriafol in pears following application of an SC formulation in the USA (Carringer 2010 1809) (duplicate samples)

| Location,     |        | g     |      | g        | GS               |      | Residue (m | g/kg)            |                |                  |
|---------------|--------|-------|------|----------|------------------|------|------------|------------------|----------------|------------------|
| year, variety | No     | ai/ha | L/ha | ai/hL    | (BBCH)           | DALA | Flutriafol | T                | TA             | TAA              |
| Alton, NY,    | 6 (14  | 122   | 1141 | 11       | 71               | 0    | 0.02 0.03  | < 0.01           | < 0.01         | < 0.01           |
| 2009 Clapp's  | 14 14  | 118   | 1094 |          | 72               |      |            | < 0.01           | < 0.01         | < 0.01           |
| Favorite      | 14 14) | 119   | 1113 |          | 74               | Mean | 0.02       | < 0.01           | < 0.01         | < 0.01           |
|               |        | 120   | 1122 |          | 75               | 14   | 0.03 0.04  | < 0.01           | < 0.01         | < 0.01           |
|               |        | 120   | 1122 |          | 76               |      |            | < 0.01           | < 0.01         | < 0.01           |
|               |        | 120   | 1122 |          | 81               |      |            |                  |                |                  |
|               |        |       |      |          |                  | Mean | 0.04       | < 0.01           | < 0.01         | < 0.01           |
| Poplar, CA,   | 6 (14  | 120   | 561  | 21       | 76               | 0    | 0.15 0.11  | < 0.01           | 0.01           | < 0.01           |
| 2009 Olympic  | 14 14  | 121   | 589  |          | 77               |      |            | < 0.01           | < 0.01         | < 0.01           |
|               | 14 14) | 122   | 571  |          | 78               | Mean | 0.13       | < 0.01           | < 0.01         | < 0.01           |
|               |        | 121   | 571  |          | 79<br><b>7</b> 9 | 14   | 0.09 0.26  | < 0.01           | < 0.01         | < 0.01           |
|               |        | 121   | 561  |          | 79               |      |            | < 0.01           | 0.01           | < 0.01           |
|               |        | 121   | 561  |          | 85               | 3.5  | 0.10       | 0.04             | 0.04           | 0.01             |
|               |        | 446   | 2150 |          |                  | Mean | 0.18       | < 0.01           | < 0.01         | < 0.01           |
| Lindsay, CA,  | 6 (14  | 119   | 2170 | 5.5      | 74               | 0    | 0.07 0.08  | < 0.01           | 0.02           | < 0.01           |
| 2009 Olympic  | 14 14  | 121   | 2170 |          | 75               | 3.6  | 0.00       | < 0.01           | 0.03           | < 0.01           |
|               | 14 14) | 119   | 2142 | -        | 76               | Mean | 0.08       | < 0.01           | 0.02           | < 0.01           |
|               |        | 122   | 2170 |          | 77               | 0    | 0.14 0.09  | < 0.01           | 0.02           | < 0.01           |
|               |        | 120   | 2151 |          | 78               | М    | 0.12       | < 0.01           | 0.06           | < 0.01           |
|               |        | 120   | 2198 |          | 87               | Mean | 0.12       | < 0.01           | 0.04           | < 0.01           |
|               |        |       |      |          |                  | 7    | 0.10 0.09  | < 0.01           | 0.03           | < 0.01           |
|               |        |       | -    | -        |                  | Maar | 0.10       | < 0.01           | 0.02           | < 0.01           |
|               |        |       |      |          |                  | Mean | 0.10       | < 0.01           | 0.02           | < 0.01           |
|               |        |       |      |          |                  | 14   | 0.13 0.07  | < 0.01           | < 0.01         | < 0.01           |
|               |        |       |      |          |                  | Mann | 0.10       | < 0.01           | < 0.01         | < 0.01           |
|               |        |       |      |          |                  | Mean |            | < 0.01           | < 0.01         | < 0.01           |
|               |        |       |      |          |                  | 21   | 0.18 0.21  | < 0.01<br>< 0.01 | < 0.01<br>0.01 | < 0.01<br>< 0.01 |
|               |        |       |      |          |                  | Mean | 0.20       | < 0.01           | < 0.01         | < 0.01           |
|               |        |       |      |          |                  | 29   | 0.20       | < 0.01           | 0.01           | < 0.01           |
|               |        |       |      |          |                  | 29   | 0.17 0.23  | < 0.01           | 0.01           | < 0.01           |
|               |        |       |      |          |                  | Mean | 0.21       | < 0.01           | 0.01           | < 0.01           |
| Ephrata, WA,  | 6 (14  | 120   | 571  | 21       | 74               | 0    | 0.28 0.29  | < 0.01           | < 0.01         | < 0.01           |
| 2009 Concord  | 14 14  | 119   | 561  |          | 75               |      | 0.20 0.29  | < 0.01           | < 0.01         | < 0.01           |
|               | 14 14) | 120   | 571  |          | 76               | Mean | 0.28       | < 0.01           | < 0.01         | < 0.01           |
|               | ,      | 120   | 571  |          | 78               | 14   | 0.22 0.25  | < 0.01           | < 0.01         | < 0.01           |
|               |        | 120   | 571  |          | 81               |      |            | < 0.01           | < 0.01         | < 0.01           |
|               |        | 119   | 561  |          | 85               | Mean | 0.24       | < 0.01           | < 0.01         | < 0.01           |
| Payette, ID,  | 6 (13  | 119   | 1384 | 8.6      | 74               | 0    | 0.12 0.13  | < 0.01           | 0.05           | < 0.01           |
| 2009 Bartlett | 15 13  | 120   | 1403 |          | 75               |      |            | < 0.01           | 0.05           | < 0.01           |
|               | 16 13) | 120   | 1403 |          | 76               | Mean | 0.12       | < 0.01           | 0.05           | < 0.01           |
|               |        | 119   | 1384 |          | 77               | 0    | 0.24 0.20  | < 0.01           | 0.04           | < 0.01           |
|               |        | 122   | 1431 |          | 78               |      |            | < 0.01           | 0.05           | < 0.01           |
|               |        | 123   | 1440 |          | 79               | Mean | 0.22       | < 0.01           | 0.04           | < 0.01           |
|               |        |       |      |          |                  | 7    | 0.14 0.17  | < 0.01           | 0.04           | < 0.01           |
|               |        |       |      |          |                  |      |            | < 0.01           | 0.04           | < 0.01           |
|               |        |       |      |          |                  | Mean | 0.16       | < 0.01           | 0.04           | < 0.01           |
|               |        |       |      |          |                  | 14   | 0.14 0.12  | < 0.01           | 0.06           | < 0.01           |
|               |        |       |      |          |                  |      |            | < 0.01           | 0.05           | < 0.01           |
|               |        |       |      |          |                  |      |            |                  | c0.05          |                  |
|               |        |       |      |          |                  | Mean | 0.13       | < 0.01           | 0.06           | < 0.01           |
|               |        |       |      |          |                  | 21   | 0.13 0.10  | < 0.01           | 0.04           | < 0.01           |
|               |        |       |      |          |                  | 3.5  | 0.10       | < 0.01           | 0.04           | < 0.01           |
|               | 1      |       | ļ    | ļ        |                  | Mean | 0.12       | < 0.01           | 0.04           | < 0.01           |
|               |        |       |      |          |                  | 28   | 0.08 0.08  | < 0.01           | 0.04           | < 0.01           |
|               |        |       |      |          |                  | 3.6  | 0.00       | < 0.01           | 0.03           | < 0.01           |
| D 11 T        | 6.41   | 100   | 500  | 20       | 70               | Mean | 0.08       | < 0.01           | 0.04           | < 0.01           |
| Buhl, ID,     | 6 (16  | 120   | 599  | 20       | 72               | 0    | 0.08 0.09  | < 0.01           | < 0.01         | < 0.01           |
| 2009 Bartlett | 13 13  | 120   | 543  | <u> </u> | 73               |      |            | < 0.01           | < 0.01         | < 0.01           |

| Location,     |        | g     |      | g     | GS     |      | Residue (m | ng/kg) |        |        |  |
|---------------|--------|-------|------|-------|--------|------|------------|--------|--------|--------|--|
| year, variety | No     | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol | T      | TA     | TAA    |  |
|               | 14 14) | 120   | 589  |       | 74     | Mean | 0.08       | < 0.01 | < 0.01 | < 0.01 |  |
|               |        | 121   | 580  |       | 76     | 14   | 0.08 0.10  | < 0.01 | < 0.01 | < 0.01 |  |
|               |        | 121   | 552  |       | 78     |      |            | < 0.01 | < 0.01 | < 0.01 |  |
|               |        | 119   | 617  |       | 83     | Mean | 0.09       | < 0.01 | < 0.01 | < 0.01 |  |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Table 13 Residues of flutriafol in sweet cherry following application of an SC formulation in the USA (Carringer 2010 1805) (duplicate samples, fruit without pit)

| Location,     |      |                                              |      | g     | GS       |      | Residue (m | g/kg)  |        |        |
|---------------|------|----------------------------------------------|------|-------|----------|------|------------|--------|--------|--------|
| year, variety | No   | g ai/ha                                      | L/ha | ai/hL | (BBCH)   | DALA | Flutriafol | T      | TA     | TAA    |
| Conklin, MI,  | 4 (7 | 128                                          | 1777 | 7     | 75       | 7    | 0.31 0.32  | < 0.01 | 0.35   | 0.03   |
| USA, 2009     | 77)  | 127                                          | 1777 |       | 78       |      |            | < 0.01 | 0.32   | 0.03   |
| Napoleon      |      | 128                                          | 1805 |       | 81       |      |            |        | c0.26  | c0.02  |
| (sweet)       |      | 129                                          | 1833 |       | 83-85    |      |            |        |        |        |
|               |      |                                              |      |       |          | Mean | 0.32       | < 0.01 | 0.34   | 0.03   |
| Mears, MI,    | 4 (7 | 128                                          | 580  | 22    | 75       | 7    | 0.26 0.25  | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009     | 7 7) | 128                                          | 580  |       | 78       |      |            | < 0.01 | < 0.01 | < 0.01 |
| Golds (sweet) |      | 128<br>129                                   | 580  |       | 81<br>85 |      |            |        |        |        |
|               |      | 129                                          | 599  |       | 0.5      | Mean | 0.26       | < 0.01 | < 0.01 | < 0.01 |
| Plainview,    | 4 (7 | 128                                          | 1843 | 7     | 72       | 7    | 0.29 0.21  | < 0.01 | 0.92   | 0.03   |
| CA, USA,      | 77)  | 128                                          | 1861 | /     | 76       | /    | 0.29 0.21  | < 0.01 | 0.92   | 0.03   |
| 2009 Tulare   | ' ') | 128                                          | 1805 |       | 78       |      |            | < 0.01 | c0.60  | c0.02  |
| (sweet)       |      | 128                                          | 1833 |       | 89       |      |            |        | 0.00   | 0.02   |
| (3,11,000)    |      | 120                                          | 1033 |       |          | Mean | 0.25       | < 0.01 | 0.88   | 0.03   |
| Poplar, CA,   | 4 (7 | 128                                          | 571  | 22    | 71       | 7    | 0.14 0.19  | < 0.01 | 0.11   | < 0.01 |
| USA, 2009     | 77)  | 127                                          | 617  |       | 75       | '    |            | < 0.01 | 0.13   | < 0.01 |
| Brooks        | ,    | 128                                          | 608  |       | 79       |      |            |        | c0.14  |        |
| (sweet)       |      | 127                                          | 599  |       | 87       |      |            |        |        |        |
|               |      |                                              |      |       |          | Mean | 0.16       | < 0.01 | 0.12   | < 0.01 |
| Marsing, ID,  | 4 (7 | 127                                          | 1945 | 7     | 78       | 7    | 0.66 0.52  | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009     | 7 7) | 126                                          | 2020 |       | 81       |      |            | < 0.01 | < 0.01 | < 0.01 |
| Sweet heart   |      | 126                                          | 1927 |       | 83       |      |            |        | c0.12  | c0.01  |
| (sweet)       |      | 130                                          | 1917 |       | 86       |      |            |        |        |        |
|               |      |                                              |      |       |          | Mean | 0.59       | < 0.01 | < 0.01 | < 0.01 |
| Ephrata, WA,  | 4 (6 | 129                                          | 561  | 23    | 75       | 7    | 0.40 0.40  | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009     | 7 7) | 130                                          | 561  |       | 78       |      |            | < 0.01 | < 0.01 | < 0.01 |
| Bing (sweet)  |      | 130                                          | 561  |       | 85       |      |            |        |        |        |
|               |      | 130                                          | 571  |       | 87       | Mean | 0.40       | < 0.01 | < 0.01 | < 0.01 |
| Weiser, ID,   | 4 (7 | 128                                          | 1422 | 9     | 75       | 0    | 0.40       | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009     | 77)  | 128                                          | 1422 | 9     | 13       | U    | 0.41 0.37  | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009     | 1 1) |                                              |      |       |          | Mean | 0.49       | < 0.01 | < 0.01 | < 0.01 |
| Benton        |      | 131                                          | 1431 |       | 77       | 1    | 0.51 0.45  | < 0.01 | < 0.01 | < 0.01 |
| (sweet)       |      | 131                                          | 1431 |       | ' '      | 1    | 0.51 0.45  | < 0.01 | < 0.01 | < 0.01 |
| (3.1.000)     |      |                                              |      |       | <u> </u> | Mean | 0.48       | < 0.01 | < 0.01 | < 0.01 |
|               |      | 131                                          | 1431 | †     | 83       | 3    | 0.45 0.52  | < 0.01 | < 0.01 | < 0.01 |
|               |      |                                              |      |       |          |      |            | < 0.01 | < 0.01 | < 0.01 |
|               |      | Ì                                            | İ    | İ     |          | Mean | 0.48       | < 0.01 | < 0.01 | < 0.01 |
|               |      | 131                                          | 1431 |       | 85       | 7    | 0.46 0.45  | < 0.01 | < 0.01 | < 0.01 |
|               |      | <u>                                     </u> |      |       |          |      |            | < 0.01 | < 0.01 | < 0.01 |
|               |      |                                              |      |       |          | Mean | 0.46       | < 0.01 | < 0.01 | < 0.01 |
|               |      |                                              |      |       |          | 14   | 0.39 0.49  | < 0.01 | < 0.01 | < 0.01 |
|               |      |                                              |      |       |          |      |            | < 0.01 | < 0.01 | < 0.01 |
|               |      |                                              |      |       |          | Mean | 0.44       | < 0.01 | < 0.01 | < 0.01 |
|               |      |                                              |      |       |          | 19   | 0.36 0.38  | < 0.01 | < 0.01 | < 0.01 |
|               | ļ    |                                              | 1    | 1     |          |      | 1          | < 0.01 | < 0.01 | < 0.01 |
|               |      |                                              |      |       |          | Mean | 0.37       | < 0.01 | < 0.01 | < 0.01 |
| Dallas, OR,   | 4 (7 | 128                                          | 589  | 22    | 75       | 7    | 0.35 0.31  | < 0.01 | < 0.01 | < 0.01 |

| Location,     |      |         |      | g     | GS     |      | Residue (mg | g/kg)  |        |        |
|---------------|------|---------|------|-------|--------|------|-------------|--------|--------|--------|
| year, variety | No   | g ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol  | T      | TA     | TAA    |
| USA, 2009     | 7 7) | 128     | 589  |       | 78     |      |             | < 0.01 | < 0.01 | < 0.01 |
| Lambert       |      | 128     | 608  |       | 81     |      |             |        |        |        |
| (sweet)       |      | 129     | 608  |       | 85     |      |             |        |        |        |
|               |      |         |      |       |        | Mean | 0.33        | < 0.01 | < 0.01 | < 0.01 |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2 LOQ 0.01 mg/kg for flutriafol T and TAA and 0.08 mg/kg for TA, however this was based on lowest fortification level and background found in the untreated sample used for spiking. Subsequent work with tart cherries shows an LOQ of 0.01 mg/kg id more appropriate.

Table 14 Residues of flutriafol in tart cherry following application of an SC formulation in the USA (Carringer 2010 1806) (duplicate samples, fruit without pit)

| Location,                                |          | g     |      |         | GS     |         | Residue (m  | g/kg)  |        |        |
|------------------------------------------|----------|-------|------|---------|--------|---------|-------------|--------|--------|--------|
| year, variety                            | No       | ai/ha | L/ha | g ai/hL | (BBCH) | DALA    | Flutriafol  | T      | TA     | TAA    |
| Alton, NY,                               | 4 (7 7   | 128   | 1122 | 11      | 75     | 7       | 0.45 0.31   | < 0.01 | 0.08   | < 0.01 |
| USA, 2009                                | 7)       | 129   | 1132 |         | 77     |         |             | < 0.01 | 0.07   | < 0.01 |
| Montmorency                              | <u> </u> | 128   | 1122 |         | 79     |         |             |        | c0.13  |        |
| ,                                        |          | 130   | 1141 |         | 85     |         |             |        |        |        |
|                                          |          |       |      |         |        | Mean    | 0.38        | < 0.01 | 0.08   | < 0.01 |
| Conklin, MI,                             | 4 (7 7   | 128   | 580  | 22      | 75     | 0       | 0.35 0.33   | < 0.01 | 0.12   | < 0.01 |
| USA, 2009                                | 7)       | 128   | 589  |         | 78     |         |             | < 0.01 | 0.11   | < 0.01 |
| Montmorency                              |          | 128   | 589  |         | 81     |         |             |        | c0.04  |        |
|                                          |          | 128   | 589  |         | 85–87  | Mean    | 0.34        | < 0.01 | 0.12   | < 0.01 |
|                                          |          |       |      |         |        | 1       | 0.35 0.35   | < 0.01 | 0.12   | 0.01   |
|                                          |          |       |      |         |        |         |             | < 0.01 | 0.12   | < 0.01 |
|                                          |          |       |      |         |        | Mean    | 0.35        | < 0.01 | 0.12   | < 0.01 |
|                                          |          |       |      |         |        | 3       | 0.36 0.31   | < 0.01 | 0.12   | < 0.01 |
|                                          |          |       |      |         |        |         |             | < 0.01 | 0.12   | < 0.01 |
|                                          |          |       |      |         |        | Mean    | 0.34        | < 0.01 | 0.12   | < 0.01 |
|                                          |          |       |      |         |        | 7       | 0.29 0.30   | < 0.01 | 0.11   | < 0.01 |
|                                          |          |       |      |         |        |         |             | < 0.01 | 0.11   | < 0.01 |
|                                          |          |       |      |         |        | Mean    | 0.30        | < 0.01 | 0.11   | < 0.01 |
|                                          |          |       |      |         |        | 14      | 0.23 0.24   | < 0.01 | 0.11   | < 0.01 |
|                                          |          |       |      |         |        | 1.      | 0.23 0.21   | < 0.01 | 0.15   | 0.01   |
|                                          |          |       |      |         |        | Mean    | 0.24        | < 0.01 | 0.13   | < 0.01 |
|                                          |          |       |      |         |        | 21      | 0.17 0.20   | < 0.01 | 0.22   | 0.02   |
|                                          |          |       |      |         |        | 21      | 0.17 0.20   | < 0.01 | 0.10   | 0.01   |
|                                          |          |       |      |         |        | Mean    | 0.18        | < 0.01 | 0.16   | 0.02   |
| Fremont, MI,                             | 4 (6 7   | 128   | 1665 | 8       | 75     | 7       | 0.43 0.35   | < 0.01 | 0.45   | 0.02   |
| USA, 2009                                | 7)       | 128   | 1646 |         | 78     | '       | 01.15 0.155 | < 0.01 | 0.46   | 0.03   |
| Montmorency                              | ' /      | 128   | 1665 |         | 81     |         |             | . 0.01 | c0.29  | c0.02  |
|                                          |          | 128   | 1655 |         | 85     | Mean    | 0.39        | < 0.01 | 0.46   | 0.02   |
| Casnovia,                                | 4 (7 7   | 129   | 645  | 20      | 75     | 7       | 0.33 0.35   | < 0.01 | 0.12   | < 0.01 |
| MI, USA,                                 | 7)       | 128   | 655  | 20      | 78     | '       | 0.55 0.55   | < 0.01 | 0.15   | 0.01   |
| 2009                                     | ' /      | 128   | 655  |         | 81     |         |             | . 0.01 | c0.13  | 0.01   |
| Montmorency                              |          | 127   | 664  |         | 85     | Mean    | 0.34        | < 0.01 | 0.14   | < 0.01 |
| Sturgeon                                 | 4 (7 7   | 128   | 2750 | 5       | 77     | 7       | 0.30 0.29   | < 0.01 | 0.04   | < 0.01 |
| Bay, WI,                                 | 7)       | 128   | 2965 |         | 81     | '       | 3.20 3.27   | < 0.01 | 0.04   | < 0.01 |
| USA, 2009                                | '        | 128   | 3049 |         | 84     |         |             |        | c0.02  |        |
| Montmorency                              | <u> </u> | 128   | 2750 |         | 86     | Mean    | 0.30        | < 0.01 | 0.04   | < 0.01 |
| Marengo, IL,                             | 4 (7 7   | 128   | 636  | 23      | 80     | 7       | 0.25 0.23   | < 0.01 | 0.12   | 0.01   |
| USA, 2009                                | 7)       | 128   | 673  |         | 82     | '       | 3.20 3.20   | < 0.01 | 0.12   | 0.01   |
| Northstar                                | '        | 129   | 645  |         | 85     |         |             |        | c0.48  | c0.05  |
|                                          |          | 130   | 599  |         | 87     | Mean    | 0.24        | < 0.01 | 0.12   | 0.01   |
| Perry UT,                                | 4 (8 6   | 127   | 2011 | 6       | 75     | 7       | 0.42 0.41   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009                                | 7)       | 128   | 2048 |         | 79     | '       | 0.12 0.41   | < 0.01 | < 0.01 | < 0.01 |
| Montmorency                              | .,       | 126   | 2002 |         | 81–85  | Mean    | 0.42        | < 0.01 | < 0.01 | < 0.01 |
| 1/10/10/10/10/10/10/10/10/10/10/10/10/10 |          | 128   | 1917 |         | 85     | IVICUII | 0.42        | \ 0.01 | \ 0.01 | \ 0.01 |
| Royal City,                              | 4 (7 7   | 131   | 571  | 22      | 78     | 7       | 0.49 0.45   | < 0.01 | 0.01   | < 0.01 |
| WA, USA,                                 | 7)       | 129   | 561  |         | 79     | '       | 0.47 0.43   | < 0.01 | 0.01   | < 0.01 |
| 2009                                     | ''       | 129   | 561  |         | 81     | Mean    | 0.47        | < 0.01 | 0.01   | < 0.01 |
| 2007                                     | I        | 127   | 501  | I       | J1     | Micuii  | 0.77        | \ U.U1 | 0.01   | \ 0.01 |

| Location,     |    | g     |      |         | GS     |      | Residue (mg/kg) |   |    |     |
|---------------|----|-------|------|---------|--------|------|-----------------|---|----|-----|
| year, variety | No | ai/ha | L/ha | g ai/hL | (BBCH) | DALA | Flutriafol      | T | TA | TAA |
| Montmorency   |    | 130   | 561  |         | 85     |      |                 |   |    |     |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Table 15 Residues of flutriafol in peach following application of an SC formulation in Spain (López Benet 2005 2186) (whole fruit basis)

| Location, year,        | No    | g ai/ha | L/ha | g ai/hL | GS     | DALA | Crop      | Flutriafol | % flesh |
|------------------------|-------|---------|------|---------|--------|------|-----------|------------|---------|
| variety PEACH          |       |         |      |         | (BBCH) |      | part      | (mg/kg)    |         |
| Bugarra, Valencia,     | 3 (10 | 31      | 998  | 3.125   | 77     | 0    | Fruit     | 0.06       | 90.7    |
| Spain, 2005 San        | 11)   | 32      | 1004 | 3.125   | 78     | 3    |           | 0.06       | 91      |
| Lorenzo                |       | 31      | 998  | 3.125   | 80     | 7    |           | 0.04       | 92.3    |
|                        |       |         |      |         |        | 10   |           | 0.06       | 91.3    |
|                        |       |         |      |         |        | 14   |           | 0.03       | 91.4    |
| Jumilla, Murcia,       | 3 (9  | 32      | 1002 | 3.125   | 78     | 0    | Fruit     | 0.11       | 92.1    |
| Spain, 2005            | 11)   | 31      | 1000 | 3.125   | 80     | 3    |           | 0.09       | 94.0    |
| Kandros                |       | 31      | 1002 | 3.125   | 87     | 7    |           | 0.08       | 92.8    |
|                        |       |         |      |         |        | 10   |           | 0.05       | 95.0    |
|                        |       |         |      |         |        | 14   |           | 0.03       | 93.2    |
| Sun Late               | 3 (9  | 31      | 1005 | 3.125   | 78     | 0    | Fruit     | 0.11       | 92.4    |
|                        | 11)   | 32      | 1008 | 3.125   | 80     | 3    |           | 0.06       | 95.5    |
|                        |       | 32      | 1009 | 3.125   | 87     | 7    |           | 0.07       | 94.7    |
|                        |       |         |      |         |        | 10   |           | 0.04       | 93.4    |
|                        |       |         |      |         |        | 14   |           | 0.03       | 93.5    |
| Jalance, Valencia,     | 3 (10 | 31      | 1006 | 3.125   | 74     | 0    | Fruit     | 0.07       | 95.4    |
| Spain, 2005            | 11)   | 33      | 1036 | 3.125   | 77     | 3    |           | 0.06       | 90.3    |
| Cofrentes              |       | 31      | 976  | 3.125   | 81     | 7    |           | 0.05       | 92.2    |
|                        |       |         |      |         |        | 10   |           | 0.03       | 93.4    |
|                        |       |         |      |         |        | 14   |           | 0.04       | 92.6    |
| Jumilla, Murcia,       | 3 (10 | 34      | 1068 | 3.13    | 77     | 0    | Fruit     | 0.06       | 93.7    |
| Spain, 2006 Amiga      | 10)   | 36      | 1146 | 3.13    | 78     | 7    | Fruit     | 0.03       | 94.4    |
|                        |       | 34      | 1094 | 3.13    | 80     |      | Juice     | 0.05       | 94.2    |
|                        |       |         |      |         |        |      | Marmalade | 0.02       | 94.9    |
| Blanca, Murcia,        | 3 (11 | 30      | 958  | 3.13    | 77     | 0    | Fruit     | 0.04       | 92.5    |
| Spain, 2006<br>Elegant | 10)   | 32      | 1021 | 3.13    | 78     | 7    | Fruit     | 0.05       | 91.5    |
| Lady                   |       | 31      | 1000 | 3.13    | 80     |      | Juice     | 0.04       | 93.2    |
| •                      |       |         |      |         |        |      | Marmalade | 0.05       | 92.6    |
| Summer Lady            | 3 (10 | 32      | 1030 | 3.13    | 77     | 0    | Fruit     | 0.09       | 91.4    |
| •                      | 10)   | 30      | 958  | 3.13    | 78     | 7    |           | 0.05       | 91.9    |
|                        |       | 31      | 993  | 3.13    | 80     |      |           |            |         |
| Jalance, Valencia,     | 3 (11 | 31      | 975  | 3.13    | 77     | 0    | Fruit     | 0.12       | 93.0    |
| Spain, 2006 Andru      | 10)   | 30      | 978  | 3.13    | 81     | 7    |           | 0.08       | 94.3    |
| <u> </u>               | Ĺ     | 30      | 961  | 3.13    | 85     |      |           |            |         |

Analytical method flutriafol: LARP SOP E050/1  $\,$ 

Table 16 Residues of flutriafol in peaches following application of an SC formulation in the USA (Carringer 2010 1807) (duplicate samples, fruit without stone)

| Location,      |        | g     |      |         | GS     |      | Residue (mg | g/kg)  |        |        |
|----------------|--------|-------|------|---------|--------|------|-------------|--------|--------|--------|
| year, variety  | No     | ai/ha | L/ha | g ai/hL | (BBCH) | DALA | Flutriafol  | T      | TA     | TAA    |
| Alton, NY,     | 4 (8 7 | 128   | 1122 | 11      | 75     | 7    | 0.17 0.21   | < 0.01 | 0.45   | 0.02   |
| USA, 2009      | 6)     | 128   | 1122 |         | 76     |      |             | < 0.01 | 0.36   | 0.02   |
| Red Haven      |        | 128   | 1122 |         | 77     |      |             |        | c0.24  | c0.01  |
|                |        | 128   | 1122 |         | 79     | Mean | 0.19        | < 0.01 | 0.40   | 0.02   |
| Montezuma,     | 4 (7 7 | 128   | 599  | 21      | 77     | 7    | 0.16 0.17   | < 0.01 | 0.33   | 0.03   |
| GA, USA,       | 7)     | 127   | 608  |         | 79     |      |             | < 0.01 | 0.31   | 0.02   |
| 2009           |        | 128   | 599  |         | 81     |      |             |        | c0.26  | c0.02  |
| Summer Gold    |        | 129   | 589  |         | 85     | Mean | 0.16        | < 0.01 | 0.32   | 0.02   |
| Chula, GA,     | 4 (7 7 | 128   | 982  | 13      | 76     | 7    | 0.26 0.21   | < 0.01 | 0.15   | 0.01   |
| USA, 2009      | 7)     | 128   | 963  |         | 77     |      |             | < 0.01 | 0.18   | 0.02   |
| Hawthorne a    |        | 128   | 982  |         | 81     |      |             |        | c0.09  |        |
|                |        | 127   | 982  |         | 85     | Mean | 0.24        | < 0.01 | 0.16   | 0.02   |
| Chula, GA,     | 4 (7 8 | 127   | 664  | 19      | 74     | 0    | 0.37 0.37   | < 0.01 | 0.17   | 0.01   |
| USA, 2009      | 7)     | 127   | 664  |         | 74     |      |             | < 0.01 | 0.16   | 0.01   |
| June Gold b    |        | 127   | 673  |         | 75     | Mean | 0.37        | < 0.01 | 0.16   | 0.01   |
|                |        | 127   | 673  |         | 77     | 1    | 0.31 0.26   | < 0.01 | 0.16   | 0.01   |
|                |        |       |      |         |        |      |             | < 0.01 | 0.14   | 0.01   |
|                |        |       |      |         |        | Mean | 0.28        | < 0.01 | 0.15   | 0.01   |
|                | 1      |       |      | İ       |        | 3    | 0.24 0.20   | < 0.01 | 0.14   | 0.01   |
|                |        |       |      |         |        |      |             | < 0.01 | 0.15   | 0.01   |
|                |        |       |      |         |        | Mean | 0.22        | < 0.01 | 0.14   | 0.01   |
|                |        |       |      |         |        | 7    | 0.13 0.16   | < 0.01 | 0.14   | 0.01   |
|                |        |       |      |         |        |      |             | < 0.01 | 0.13   | 0.01   |
|                |        |       |      |         |        |      |             |        | c0.13  | c0.01  |
|                |        |       |      |         |        | Mean | 0.14        | < 0.01 | 0.14   | 0.01   |
|                |        |       |      |         |        | 14   | 0.08 0.08   | < 0.01 | 0.09   | < 0.01 |
|                |        |       |      |         |        |      |             | < 0.01 | 0.12   | < 0.01 |
|                |        |       |      |         |        | Mean | 0.08        | < 0.01 | 0.10   | < 0.01 |
|                |        |       |      |         |        | 21   | 0.07 0.06   | < 0.01 | 0.13   | < 0.01 |
|                |        |       |      |         |        |      |             | < 0.01 | 0.13   | < 0.01 |
|                |        |       |      |         |        | Mean | 0.06        | < 0.01 | 0.13   | < 0.01 |
| Pikeville, NC, | 4 (6 7 | 128   | 1178 | 11      | 75     | 6    | 0.40 0.42   | < 0.01 | 0.05   | < 0.01 |
| USA, 2009      | 6)     | 129   | 1160 |         | 75     |      |             | < 0.01 | 0.06   | < 0.01 |
| New            |        | 129   | 1178 |         | 78     |      |             |        | c0.04  |        |
| Haven          |        | 130   | 1207 |         | 81     | Mean | 0.41        | < 0.01 | 0.06   | < 0.01 |
| Deville, LA,   | 4 (7 8 | 131   | 673  | 19      | 77     | 6    | 0.24 0.23   | < 0.01 | 0.02   | < 0.01 |
| USA,           | 8)     | 129   | 673  |         | 81     |      |             | < 0.01 | 0.02   | < 0.01 |
| 2009 Regal     |        | 127   | 673  |         | 81     | Mean | 0.24        | < 0.01 | 0.02   | < 0.01 |
|                |        | 127   | 655  |         | 85     |      |             |        |        |        |
| Conklin, MI,   | 4 (7 7 | 127   | 2020 | 6       | 76     | 7    | 0.13 0.11   | < 0.01 | 0.16   | < 0.01 |
| USA, 2009      | 7)     | 128   | 2011 |         | 77     |      |             | < 0.01 | 0.16   | < 0.01 |
|                |        | 128   | 1973 |         | 78     |      |             |        | c0.15  |        |
| Bellaire       |        | 128   | 1936 |         | 79-81  | Mean | 0.12        | < 0.01 | 0.16   | < 0.01 |
| Blanco, TX,    | 4 (7 7 | 128   | 486  | 26      | 78     | 7    | 0.13 0.13   | < 0.01 | < 0.01 | < 0.01 |
| USA,           | 7)     | 129   | 580  |         | 81     |      |             | < 0.01 | < 0.01 | < 0.01 |
| 2009 Dixieland |        | 130   | 599  |         | 81     | Mean | 0.13        | < 0.01 | < 0.01 | < 0.01 |
|                |        | 129   | 514  |         | 85     |      |             |        |        |        |
| Fresno, CA,    | 4 (7 7 | 130   | 1880 | 7       | 81     | 7    | 0.20 0.16   | < 0.01 | 0.01   | < 0.01 |
| USA, 2009      | 7)     | 131   | 1889 |         | 81     |      |             | < 0.01 | 0.02   | < 0.01 |
| Kaweah         |        | 130   | 1880 | 1       | 85     | Mean | 0.18        | < 0.01 | 0.02   | < 0.01 |
|                |        | 130   | 1889 |         | 87     | ļ    |             |        |        |        |
| Kingsburg,     | 4 (7 7 | 124   | 627  | 20      | 77     | 7    | 0.12 0.18   | < 0.01 | 0.05   | < 0.01 |
| CA, USA,       | 7)     | 128   | 645  |         | 78     |      |             | < 0.01 | 0.04   | < 0.01 |
| 2009           |        | 129   | 655  |         | 79     | ļ    |             |        | c0.06  |        |
| Fayette        |        | 131   | 636  |         | 81     | Mean | 0.15        | < 0.01 | 0.04   | < 0.01 |
| Dinuba, CA,    | 4 (7 7 | 127   | 1814 | 7       | 78     | 7    | 0.05 0.05   | < 0.01 | 0.01   | < 0.01 |
| USA, 2009      | 7)     | 128   | 1833 |         | 79     |      |             | < 0.01 | 0.01   | < 0.01 |
|                |        | 128   | 1852 |         | 81     |      |             |        | c0.02  |        |
| Duchess        |        | 129   | 1861 |         | 87     | Mean | 0.05        | < 0.01 | 0.01   | < 0.01 |

| Location,      |        | g     |      |         | GS     |      | Residue (mg. | /kg)   |        |        |
|----------------|--------|-------|------|---------|--------|------|--------------|--------|--------|--------|
| year, variety  | No     | ai/ha | L/ha | g ai/hL | (BBCH) | DALA | Flutriafol   | T      | TA     | TAA    |
| Portville, CA, | 4 (7 6 | 128   | 673  | 19      | 81     | 7    | 0.16 0.20    | < 0.01 | < 0.01 | < 0.01 |
| USA,           | 8)     | 129   | 673  |         | 85     |      |              | < 0.01 | < 0.01 | < 0.01 |
| 2009 Alberta   |        | 129   | 683  |         | 85     | Mean | 0.18         | < 0.01 | < 0.01 | < 0.01 |
|                |        | 128   | 664  |         | 87     |      |              |        |        |        |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Table 17 Residues of flutriafol in plum following application of an SC formulation in the USA (Carringer 2010 1808) (duplicate samples, fruit without stone)

| Location,      |           |         |      |         | GS     |      | Residue (mg | g/kg)  |        |        |
|----------------|-----------|---------|------|---------|--------|------|-------------|--------|--------|--------|
| year, variety  | No        | g ai/ha | L/ha | g ai/hL | (BBCH) | DALA | Flutriafol  | T      | TA     | TAA    |
| Conklin, MI,   | 4 (7 7 7) | 129     | 2002 | 6       | 77     | 7    | 0.20 0.25   | < 0.01 | 0.34   | < 0.01 |
| USA, 2009      |           | 128     | 2002 |         | 78     |      |             | < 0.01 | 0.31   | < 0.01 |
| Stanley        |           | 128     | 2011 |         | 79     |      |             |        | c0.67  | c0.02  |
|                |           | 128     | 2039 |         | 85     | Mean | 0.22        | < 0.01 | 0.32   | < 0.01 |
| Fresno, CA,    | 4 (7 7 7) | 129     | 561  | 23      | 81     | 7    | 0.02 0.02   | < 0.01 | 0.05   | < 0.01 |
| USA, 2009      |           | 129     | 561  |         | 81     |      |             | < 0.01 | 0.05   | < 0.01 |
| Flavor Rich    |           | 130     | 561  |         | 85     |      |             |        | c0.04  |        |
|                |           | 130     | 561  |         | 87     | Mean | 0.02        | < 0.01 | 0.05   | < 0.01 |
| Dinuba, CA,    | 4 (7 7 7) | 127     | 1777 | 7       | 81     | 0    | 0.05 0.05   | < 0.01 | 0.04   | < 0.01 |
| USA, 2009      |           | 127     | 1861 |         | 81     |      |             | < 0.01 | 0.04   | < 0.01 |
| Fryer's        |           | 128     | 1861 |         | 85     |      |             |        | c0.04  |        |
|                |           | 128     | 1814 |         | 87     | Mean | 0.05        | < 0.01 | 0.04   | < 0.01 |
|                |           |         |      |         |        | 1    | 0.03 0.04   | < 0.01 | 0.04   | < 0.01 |
|                |           |         |      |         |        |      |             | < 0.01 | 0.03   | < 0.01 |
|                |           |         |      |         |        | Mean | 0.04        | < 0.01 | 0.04   | < 0.01 |
|                |           |         |      |         |        | 3    | 0.04 0.05   | < 0.01 | 0.04   | < 0.01 |
|                |           |         |      |         |        |      |             | < 0.01 | 0.04   | < 0.01 |
|                |           |         |      |         |        | Mean | 0.04        | < 0.01 | 0.04   | < 0.01 |
|                |           |         |      |         |        | 7    | 0.03 0.02   | < 0.01 | 0.04   | < 0.01 |
|                |           |         |      |         |        |      |             | < 0.01 | 0.05   | < 0.01 |
|                |           |         |      |         |        | Mean | 0.02        | < 0.01 | 0.04   | < 0.01 |
|                |           |         |      |         |        | 14   | 0.03 0.04   | < 0.01 | 0.06   | < 0.01 |
|                |           |         |      |         |        |      |             | < 0.01 | 0.05   | < 0.01 |
|                |           |         |      |         |        | Mean | 0.04        | < 0.01 | 0.06   | < 0.01 |
|                |           |         |      |         |        | 21   | 0.03 0.03   | < 0.01 | 0.08   | < 0.01 |
|                |           |         |      |         |        |      |             | < 0.01 | 0.08   | < 0.01 |
|                |           |         |      |         |        | Mean | 0.03        | < 0.01 | 0.08   | < 0.01 |
| Poplar, CA,    | 4 (7 7 7) | 127     | 683  | 19      | 81     | 7    | 0.10 0.11   | < 0.01 | 0.04   | < 0.01 |
| USA, 2009      |           | 128     | 617  |         | 81     |      |             | < 0.01 | 0.05   | < 0.01 |
| French prunes  |           | 128     | 683  |         | 85     | Mean | 0.10        | < 0.01 | 0.04   | < 0.01 |
|                |           | 129     | 692  |         | 87     |      |             |        |        |        |
| Plainview, CA, | 4 (7 7 7) | 129     | 1637 | 8       | 81     | 7    | 0.09 0.09   | < 0.01 | 0.05   | < 0.01 |
| USA, 2009      |           | 129     | 1655 |         | 85     |      |             | < 0.01 | 0.05   | < 0.01 |
| prunes         |           | 129     | 1655 |         | 85     |      |             |        | c0.04  |        |
| (French plum)  |           | 128     | 1637 |         | 85     | Mean | 0.09        | < 0.01 | 0.05   | < 0.01 |
| Hughson, CA,   | 4 (7 7 7) | 127     | 608  | 21      | 81     | 7    | 0.12 0.12   | < 0.01 | 0.05   | < 0.01 |
| USA, 2009      |           | 127     | 608  |         | 81     |      |             | < 0.01 | 0.05   | < 0.01 |
| French plum    |           | 128     | 608  |         | 81     |      |             |        | c0.02  |        |
|                |           | 127     | 608  |         | 85     | Mean | 0.12        | < 0.01 | 0.05   | < 0.01 |
| Ephrata, WA,   | 4 (7 7 7) |         | 1871 | 7       | 77     | 7    | 0.03 0.03   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009      |           | 128     | 1880 |         | 79     |      |             | < 0.01 | < 0.01 | < 0.01 |
| Italian        |           | 128     | 1871 |         | 81     | Mean | 0.03        | < 0.01 | < 0.01 | < 0.01 |
|                |           | 129     | 1880 |         | 85     |      |             |        |        |        |
| Monmouth, OR,  | 4 (7 7 7) | 130     | 599  | 22      | 79     | 7    | 0.07 0.06   | < 0.01 | 0.13   | < 0.01 |
| USA, 2009      |           | 130     | 599  |         | 81     |      |             | < 0.01 | 0.12   | < 0.01 |
| Moyer          |           | 129     | 599  |         | 81     |      |             |        | c0.02  |        |

<sup>&</sup>lt;sup>a</sup> Last application 15/09/2009

<sup>&</sup>lt;sup>b</sup> Last application 12/05/2009

| Location,     |    |         |      |         | GS     |      | Residue (mg/ | /kg)   |      |        |
|---------------|----|---------|------|---------|--------|------|--------------|--------|------|--------|
| year, variety | No | g ai/ha | L/ha | g ai/hL | (BBCH) | DALA | Flutriafol   | T      | TA   | TAA    |
|               |    | 128     | 589  |         | 85     | Mean | 0.06         | < 0.01 | 0.12 | < 0.01 |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Table 18 Residues of flutriafol in strawberries (macro- and micro-tunnels) following application of an SC formulation in Spain (López Benet 2005 2582 Partington 2006 2583)

| Location, year, variety | No    | g ai/ha | L/ha | g ai/hL | GS     | DALA | Sample | Flutriafol |
|-------------------------|-------|---------|------|---------|--------|------|--------|------------|
|                         |       |         |      |         | (BBCH) |      |        | (mg/kg)    |
| Villanueva de los       | 3 (10 | 210     | 1136 | 18.5    | 85     | 0    | Fruit  | 0.44       |
| Castillejos, Huelva,    | 10)   | 170     | 909  | 18.7    | 87     | 3    |        | 0.27       |
| Spain, 2004 Ventana     |       | 170     | 909  | 18.7    | 87     | 5    |        | 0.33       |
|                         |       |         |      |         |        | 7    |        | 0.22       |
|                         |       |         |      |         |        | 10   |        | 0.05       |
| Finca La Nina,          | 3 (11 | 232     | 1236 | 18.8    | 85     | 0    | Fruit  | 0.14       |
| Almonte, Huelva,        | 10)   | 170     | 909  | 18.7    | 87     | 3    |        | 0.07       |
| Spain, 2004 Camarosa    |       | 168     | 897  | 18.7    | 87     | 5    |        | 0.09       |
|                         |       |         |      |         |        | 7    |        | 0.05       |
|                         |       |         |      |         |        | 10   |        | 0.04       |
| Finca El Lote,          | 3 (11 | 250     | 1327 | 18.8    | 85     | 0    | Fruit  | 0.23       |
| Almonte, Huelva,        | 10)   | 175     | 939  | 18.6    | 87     | 3    |        | 0.15       |
| Spain, 2004 Camarosa    |       | 170     | 909  | 18.7    | 87     | 5    |        | 0.17       |
|                         |       |         |      |         |        | 7    |        | 0.09       |
|                         |       |         |      |         |        | 10   |        | 0.06       |
| Finca Amanto,           | 3 (11 | 238     | 1255 | 18.9    | 85     | 0    | Fruit  | 0.49       |
| Almonte, Huelva,        | 10)   | 172     | 915  | 18.9    | 87     | 3    |        | 0.22       |
| Spain, 2004 Camarosa    |       | 165     | 885  | 18.6    | 87     | 5    |        | 0.25       |
|                         |       |         |      |         |        | 7    |        | 0.14       |
|                         |       |         |      |         |        | 10   |        | 0.13       |
| Almonte, Spain, 2005    | 3 (10 | 191     | 1018 | 18.75   | 61     | 0    | Fruit  | 0.31       |
| Camarosa                | 10)   | 189     | 1009 | 18.75   | 87     | 1    | Fruit  | 0.37       |
|                         |       | 199     | 1059 | 18.75   | 88     | 3    | Fruit  | 0.24 0.32  |
| Bonares, Spain, 2005    | 3 (10 | 195     | 1041 | 18.75   | 61     | 0    | Fruit  | 0.29       |
| Camarosa                | 10)   | 191     | 1018 | 18.75   | 87     | 1    | Fruit  | 0.23       |
|                         |       | 194     | 1036 | 18.75   | 88     | 3    | Fruit  | 0.18 0.23  |
| Huelva, Spain, 2005     | 3 (10 | 197     | 1050 | 18.75   | 61     | 0    | Fruit  | 0.18       |
| Ventana <sup>a</sup>    | 10)   | 178     | 950  | 18.75   | 87     | 1    | Fruit  | 0.16       |
|                         |       | 194     | 1032 | 18.75   | 88     | 3    | Fruit  | 0.15 0.13  |
| Ventana <sup>a</sup>    | 3 (10 | 194     | 1034 | 18.75   | 61     | 0    | Fruit  | 0.37       |
|                         | 10)   | 192     | 1023 | 18.75   | 87     | 1    | Fruit  | 0.33       |
|                         | /     | 195     | 1041 | 18.75   | 88     | 3    | Fruit  | 0.24 0.31  |

Analytical method flutriafol: LARP SOP E033/1

Table 19 Residues of flutriafol in strawberries following application of an SC formulation in the USA and Canada (Carringer 2011 2158) (duplicate samples, applications include non-ionic surfactant)

| Location, year,  |      |         |      |         | GS     |      | Residue (mg | g/kg)  |        |        |
|------------------|------|---------|------|---------|--------|------|-------------|--------|--------|--------|
| variety          | No   | g ai/ha | L/ha | g ai/hL | (BBCH) | DALA | Flutriafol  | T      | TA     | TAA    |
| East Williamson, | 4 (4 | 129     | 281  | 46      | 73     | 0    | 0.19 0.09   | < 0.01 | < 0.01 | < 0.01 |
|                  | 7 7) | 128     | 281  |         | 74     |      |             | < 0.01 | < 0.01 | < 0.01 |
| NY, USA, 2010    |      | 129     | 281  |         | 75     | Mean | 0.14        | < 0.01 | < 0.01 | < 0.01 |
| Idea             |      | 126     | 281  |         | 87     |      |             |        |        |        |
| Seven Springs,   | 4 (7 | 129     | 430  | 30      | 86     | 0    | 0.19 0.30   | < 0.01 | 0.01   | < 0.01 |
| NC, USA, 2010    | 8 6) | 123     | 412  |         | 86     |      |             | < 0.01 | 0.01   | < 0.01 |
| Camino Real      |      | 131     | 421  |         | 87     | Mean | 0.24        | < 0.01 | 0.01   | < 0.01 |
|                  |      | 126     | 402  |         | 88     |      |             |        |        |        |
| Lawtly, FL,      | 4 (7 | 128     | 262  | 49      | 71–73  | 0    | 0.42 0.31   | < 0.01 | 0.07   | < 0.01 |

<sup>&</sup>lt;sup>a</sup> Similar location, same date for last application

| Location, year,       |      |         |      |         | GS     |                   | Residue (mg | g/kg)  |      |        |
|-----------------------|------|---------|------|---------|--------|-------------------|-------------|--------|------|--------|
| variety               | No   | g ai/ha | L/ha | g ai/hL | (BBCH) | DALA              | Flutriafol  | T      | TA   | TAA    |
| USA, 2010             | 7 8) | 128     | 253  |         | 81     |                   |             | < 0.01 | 0.07 | < 0.01 |
| Camarosa              |      | 127     | 262  |         | 85     | Mean              | 0.36        | < 0.01 | 0.07 | < 0.01 |
|                       |      | 130     | 262  |         | 87     |                   |             |        |      |        |
| Richland, IA,         | 4 (8 | 130     | 262  | 50      | 65     | 0                 | 0.41 0.42   | < 0.01 | 0.02 | < 0.01 |
| USA, 2010             | 67)  | 123     | 243  |         | 81     |                   |             | < 0.01 | 0.02 | < 0.01 |
| Extra sweet           |      | 126     | 253  |         | 81     | Mean              | 0.42        | < 0.01 | 0.02 | < 0.01 |
|                       |      | 127     | 243  |         | 87     |                   |             |        |      |        |
| Brantford ON,         | 4 (7 | 131     | 355  | 37      | 59–65  | 0                 | 0.58 0.52   | < 0.01 | 0.01 | < 0.01 |
| CAN, 2010             | 8 7) | 131     | 355  |         | 61–71  |                   |             | < 0.01 | 0.01 | < 0.01 |
| Sapphire              |      | 136     | 365  |         | 67–73  | Mean              | 0.55        | < 0.01 | 0.01 | < 0.01 |
|                       |      | 127     | 337  |         | 81-87  |                   |             |        |      |        |
| Brampton, ON,         | 5 (7 | 137     | 365  | 38      | 59–65  | 0 (after          | 0.58 0.73   | < 0.01 | 0.01 | < 0.01 |
| CAN, 2010             | 7    | 130     | 346  |         | 65–67  | 4 <sup>th</sup> ) |             | < 0.01 | 0.01 | < 0.01 |
| Mira                  | 8 8) | 128     | 346  |         | 65–73  | Mean              | 0.66        | < 0.01 | 0.01 | < 0.01 |
|                       |      | 136     | 365  |         | 67–73  |                   |             |        |      |        |
|                       |      | 135     | 355  | 38      | 85–87  | 0 (after          | 0.43 0.47   | < 0.01 | 0.01 | < 0.01 |
|                       |      |         |      |         |        | 5 <sup>th</sup> ) |             | < 0.01 | 0.01 | < 0.01 |
|                       |      |         |      |         |        | Mean              | 0.45        | < 0.01 | 0.01 | < 0.01 |
| Salinas, CA,          | 4 (6 | 126     | 449  | 28      | 71–81  | 0                 | 0.73 0.53   | < 0.01 | 0.08 | < 0.01 |
| USA, 2010             | 8    | 121     | 430  |         | 83     |                   |             | < 0.01 | 0.07 | < 0.01 |
| Albion                | 7)   | 129     | 468  |         | 73–85  | Mean              | 0.63        | < 0.01 | 0.08 | < 0.01 |
|                       |      | 132     | 486  |         | 89     |                   |             |        |      |        |
| Porterville, CA,      | 4 (6 | 129     | 327  | 39      | 71–83  | 0                 | 0.31 0.29   | < 0.01 | 0.02 | < 0.01 |
| USA, 2010             | 8 7) | 127     | 327  |         | 73–83  |                   |             | < 0.01 | 0.02 | < 0.01 |
| Diamante <sup>a</sup> |      | 129     | 327  |         | 71–83  | Mean              | 0.30        | < 0.01 | 0.02 | < 0.01 |
|                       |      | 128     | 327  |         | 85–87  |                   |             |        |      |        |
| Porterville, CA,      | 4 (7 | 127     | 290  | 44      | 73–81  | 0                 | 0.67 0.78   | < 0.01 | 0.07 | < 0.01 |
| USA, 2010             | 7 6) | 127     | 290  |         | 73–81  |                   |             | < 0.01 | 0.06 | < 0.01 |
| Diamante <sup>b</sup> |      | 128     | 327  |         | 73–85  | Mean              | 0.72        | < 0.01 | 0.06 | < 0.01 |
|                       |      | 128     | 327  |         | 85–87  | 1                 | 0.63 0.47   | < 0.01 | 0.09 | < 0.01 |
|                       |      |         |      |         |        |                   |             | < 0.01 | 0.06 | < 0.01 |
|                       |      |         |      |         |        | Mean              | 0.55        | < 0.01 | 0.08 | < 0.01 |
|                       |      |         |      |         |        | 3                 | 0.69 0.52   | NA     | NA   | NA     |
|                       |      |         |      |         |        | Mean              | 0.60        |        |      |        |
|                       |      |         |      |         |        | 5                 | 0.42 0.54   | < 0.01 | 0.09 | < 0.01 |
|                       |      |         |      |         |        |                   |             | < 0.01 | 0.08 | < 0.01 |
|                       |      |         |      |         |        | Mean              | 0.48        | < 0.01 | 0.08 | < 0.01 |
|                       |      |         |      |         |        | 7                 | 0.13 0.15   | < 0.01 | 0.03 | < 0.01 |
|                       |      |         |      |         |        |                   |             | < 0.01 | 0.02 | < 0.01 |
|                       |      |         |      |         |        | Mean              | 0.14        | < 0.01 | 0.02 | < 0.01 |
|                       |      |         |      |         |        | 10                | 0.08 0.08   | < 0.01 | 0.02 | < 0.01 |
|                       |      |         |      |         |        |                   |             | < 0.01 | 0.03 | < 0.01 |
|                       |      |         |      |         |        | Mean              | 0.08        | < 0.01 | 0.02 | < 0.01 |
| Elmira, OR,           | 4 (7 | 129     | 290  | 20      | 73–85  | 0                 | 0.44 0.45   | < 0.01 | 0.01 | < 0.01 |
| USA, 2010             | 7 6) | 127     | 281  |         | 73–85  |                   |             | < 0.01 | 0.01 | < 0.01 |
| Benton                |      | 131     | 299  |         | 73–85  | Mean              | 0.44        | < 0.01 | 0.01 | < 0.01 |
|                       |      | 127     | 281  |         | 87     |                   |             |        |      |        |

 $\begin{array}{l} \text{Induce 0.25\% \ v/v, Induce 0.14-0.28\% \ v/v, Induce 0.25\% \ v/v, Activator 90\ 0.25\% \ v/v, Agral 90\ 0.5\% \ v/v, Agral 90\ 0.5\% \ v/v, Pro 90\ 0.25\% \ v/v, Pro 90\ 0.25\% \ v/v, Dyne-Amic 0.25\% \ v/v.} \end{array}$ 

NA=not analysed

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Table 20 Residues of flutriafol in cabbage and broccoli following application of an SC formulation in the USA (Carringer 2013 2697) (duplicate samples, applications include non-ionic surfactant)

| Location, year, |    |         |      | GS     |      | Residue (mg/kg) |            |   |    |     |
|-----------------|----|---------|------|--------|------|-----------------|------------|---|----|-----|
| variety         | No | g ai/ha | L/ha | (BBCH) | DALA | Sample          | Flutriafol | T | TA | TAA |

<sup>&</sup>lt;sup>a</sup> Last application 16/06/2010

<sup>&</sup>lt;sup>b</sup> Last application 02/06/2010, different location to other Porterville trial <sup>a</sup>

| Location, year,                 |                                                  |            |            | GS       |      |        | Residue (mg | g/kg)            |               |                  |
|---------------------------------|--------------------------------------------------|------------|------------|----------|------|--------|-------------|------------------|---------------|------------------|
| variety                         | No                                               | g ai/ha    | L/ha       | (BBCH)   | DALA | Sample | Flutriafol  | T                | TA            | TAA              |
| CABBAGE                         |                                                  | 8          |            | ,        |      | I      |             |                  |               |                  |
| Alton, NY,                      | 4                                                | 128        | 281        | 18       | 0    | Heads  | 2.64 2.68   | < 0.01           | 0.12          | < 0.01           |
| USA, 2012 Blue                  | (7                                               | 127        | 281        | 41       |      | Ticads | 2.04 2.00   | < 0.01           | 0.13          | 0.01             |
| lagoon                          | 7                                                | 127        | 281        | 42       |      |        |             | 0.01             | c0.08         | 0.01             |
| iugoon                          | 7)                                               | 128        | 281        | 46       | Mean |        | 2.66        | < 0.01           | 0.12          | < 0.01           |
|                                 | 1,,                                              | 120        | 201        | 10       | 3    | Heads  | 0.62 0.79   | < 0.01           | 0.14          | < 0.01           |
|                                 |                                                  |            |            |          | 3    | Ticaus | 0.02 0.77   | < 0.01           | 0.14          | < 0.01           |
|                                 | <u> </u>                                         |            |            |          | Mean |        | 0.70        | < 0.01           | 0.12          | < 0.01           |
|                                 |                                                  |            |            |          | 7    | Heads  | 0.46 0.43   | < 0.01           | 0.13          | < 0.01           |
|                                 |                                                  |            |            |          | /    | Tieaus | 0.40 0.43   | < 0.01           | 0.12          | < 0.01           |
|                                 |                                                  |            |            |          | Mean |        | 0.44        | < 0.01           | 0.13          | < 0.01           |
|                                 | 1                                                |            |            |          | 10   | Heads  | 0.33 0.33   | < 0.01           | 0.12          | < 0.01           |
|                                 |                                                  |            |            |          | 10   | Tieaus | 0.55 0.55   | < 0.01           | 0.08          | < 0.01           |
|                                 | 1                                                |            |            |          | Mean |        | 0.33        | < 0.01           | 0.11          | < 0.01           |
|                                 | <del>                                     </del> |            |            |          | 14   | Heads  | 0.30 0.27   | +                | 0.10          | < 0.01           |
|                                 |                                                  |            |            |          | 14   | neads  | 0.30 0.27   | < 0.01<br>< 0.01 | 0.10          | < 0.01           |
|                                 |                                                  |            |            |          | Maan |        | 0.28        | < 0.01           | 0.12          | < 0.01           |
| g g ;                           | 4                                                | 120        | 200        | 4.1      | Mean | TT 1   |             | -                |               | ļ                |
| Seven Springs,<br>NC, USA, 2011 | 4                                                | 129        | 290        | 41       | 7    | Heads  | 0.80 0.68   | < 0.01           | 0.04          | < 0.01<br>< 0.01 |
|                                 | (7<br>7                                          | 129<br>131 | 299<br>299 | 41<br>42 |      |        |             | < 0.01           | 0.04          | < 0.01           |
| Bravo                           | 7)                                               |            |            |          | M    |        | 0.74        | c 0 01           | c0.02         | . O O1           |
| O : 1 EI                        |                                                  | 127        | 290        | 44       | Mean | TT 1   |             | < 0.01           | 0.04          | < 0.01           |
| Oviedo, FL                      | 4                                                | 128        | 281        | 42       | 8    | Heads  | 0.22 0.18   | < 0.01           | 0.05          | < 0.01           |
| USA, 2011                       | (6                                               | 127<br>128 | 281<br>281 | 44<br>46 |      |        |             | < 0.01           | 0.05<br>c0.02 | < 0.01           |
| Cheers                          | 6                                                |            |            |          | M    |        | 0.20        | c 0.01           |               | . O O1           |
| C III M                         | 7)                                               | 128        | 281        | 48       | Mean | 77 1   | 0.20        | < 0.01           | 0.05          | < 0.01           |
| Conklin, MI,                    | 4                                                | 129        | 48         | 41–42    | 7    | Heads  | 0.13 0.08   | < 0.01           | 0.07          | < 0.01           |
| USA, 2012                       | (7                                               | 129<br>128 | 49         | 42–43    |      |        |             | < 0.01           | 0.07          | < 0.01           |
| Megaton                         | 7                                                |            | 47         | 43–44    | 3.4  |        | 0.10        | . 0.01           | c0.02         | . 0.01           |
| T. 11 ///                       | 7)                                               | 128        |            | 46–47    | Mean | 77 1   | 0.10        | < 0.01           | 0.07          | < 0.01           |
| Uvalde, TX,                     | 4                                                | 128        | 187        | 46       | 7    | Heads  | 0.07 0.08   | < 0.01           | 0.01          | < 0.01           |
| USA, 2011                       | (7                                               | 127        | 178        | 47       | 3.6  |        | 0.00        | < 0.01           | 0.01          | < 0.01           |
| Pennant                         | 7                                                | 131        | 168        | 48       | Mean |        | 0.08        | < 0.01           | 0.01          | < 0.01           |
| D : 21 G.                       | 7)                                               | 128        | 206        | 49       | -    | ** 1   | 0.12.0.05   | 0.01             | 0.02          | 0.01             |
| Porterville, CA,                | 4                                                | 127        | 45         | 45       | 7    | Heads  | 0.13 0.05   | < 0.01           | 0.03          | < 0.01           |
| USA, 2011                       | (7                                               | 130        | 50         | 47       | 3.6  |        | 0.00        | < 0.01           | 0.04          | < 0.01           |
| Supreme                         | 7                                                | 128        | 48         | 48       | Mean |        | 0.09        | < 0.01           | 0.04          | < 0.01           |
| Vantage                         | 7)                                               | 129        | 49         | 49       |      |        |             |                  |               |                  |
| BROCCOLI                        |                                                  |            |            |          | _    | 1      |             |                  |               |                  |
| Uvalde, TX,                     | 4                                                | 128        | 47         | 41       | 6    | Heads  | 0.18 0.10   | < 0.01           | 0.04          | < 0.01           |
| USA, 2011                       | (7                                               | 128        | 47         | 43       |      |        |             | < 0.01           | 0.03          | < 0.01           |
| Green Magic                     | 7                                                | 128        | 47         | 43       | Mean |        | 0.14        | < 0.01           | 0.04          | < 0.01           |
|                                 | 7)                                               | 128        | 47         | 48       |      |        |             |                  |               |                  |
| Porterville, CA,                | 4                                                | 128        | 365        | 42       | 0    | Heads  | 0.24 0.24   | < 0.01           | 0.04          | < 0.01           |
| USA, 2012                       | (7                                               | 128        | 365        | 45       |      |        |             | < 0.01           | 0.04          | < 0.01           |
| Heritage <sup>a</sup>           | 7                                                | 128        | 365        | 45       | Mean |        | 0.24        | < 0.01           | 0.04          | < 0.01           |
|                                 | 7)                                               | 129        | 365        | 49       | 3    | Heads  | 0.11 0.07   | < 0.01           | 0.04          | < 0.01           |
|                                 |                                                  |            |            |          |      | ļ      |             | < 0.01           | 0.04          | < 0.01           |
|                                 |                                                  |            |            |          | Mean |        | 0.09        | < 0.01           | 0.04          | < 0.01           |
|                                 |                                                  |            |            |          | 7    | Heads  | 0.07 0.08   | < 0.01           | 0.04          | < 0.01           |
|                                 |                                                  |            |            |          |      |        |             | < 0.01           | 0.05          | < 0.01           |
|                                 |                                                  |            |            |          | Mean |        | 0.08        | < 0.01           | 0.04          | < 0.01           |
|                                 |                                                  |            |            |          | 10   | Heads  | 0.12 0.08   | < 0.01           | 0.04          | < 0.01           |
|                                 |                                                  |            |            |          |      |        |             | < 0.01           | 0.04          | < 0.01           |
|                                 |                                                  |            |            |          | Mean |        | 0.10        | < 0.01           | 0.04          | < 0.01           |
|                                 |                                                  |            |            |          | 14   | Heads  | 0.07 0.07   | < 0.01           | 0.04          | < 0.01           |
|                                 |                                                  |            |            |          |      |        |             | < 0.01           | 0.04          | < 0.01           |
|                                 |                                                  |            |            |          | Mean |        | 0.07        | < 0.01           | 0.04          | < 0.01           |
| King City, CA,                  | 4                                                | 128        | 299        | 46       | 7    | Heads  | 0.20 0.17   | < 0.01           | 0.02          | < 0.01           |
| USA, 2011                       | (7                                               | 131        | 309        | 47       |      |        |             | < 0.01           | 0.02          | < 0.01           |
| Legacy                          | 7                                                | 130        | 309        | 47       |      |        |             |                  | c0.01         |                  |
|                                 | 6)                                               | 128        | 299        | 49       | Mean |        | 0.18        | < 0.01           | 0.02          | < 0.01           |
| Porterville, CA,                | 4                                                | 129        | 48         | 47       | 7    | Heads  | 0.21 0.27   | < 0.01           | 0.10          | < 0.01           |
| <u> </u>                        | •                                                |            | •          | •        |      | •      | *           | •                |               |                  |

| Location, year,       |    |         |      | GS     |      |        | Residue (mg | /kg)   |       |        |
|-----------------------|----|---------|------|--------|------|--------|-------------|--------|-------|--------|
| variety               | No | g ai/ha | L/ha | (BBCH) | DALA | Sample | Flutriafol  | T      | TA    | TAA    |
| USA, 2011             | (6 | 129     | 47   | 47     |      |        |             | < 0.01 | 0.09  | < 0.01 |
| Heritage <sup>b</sup> | 7  | 129     | 49   | 47     |      |        |             |        | c0.02 |        |
|                       | 7) | 129     | 48   | 49     | Mean |        | 0.24        | < 0.01 | 0.10  | < 0.01 |
| Santa Maria,          | 4  | 128     | 281  | 41     | 7    | Heads  | 0.36 0.34   | < 0.01 | 0.02  | < 0.01 |
| CA, USA, 2011         | (8 | 128     | 281  | 43     |      |        |             | < 0.01 | 0.02  | < 0.01 |
| Heritage              | 7  | 130     | 281  | 43     | Mean |        | 0.35        | < 0.01 | 0.02  | < 0.01 |
|                       | 6) | 128     | 281  | 46     |      |        |             |        |       |        |
| Hilsboro, OR,         | 4  | 162     | 187  | 18–19  | 7    | Heads  | 0.05 0.08   | < 0.01 | 0.51  | < 0.01 |
| USA, 2011 Bay         | (8 | 123     | 187  | 21     |      |        |             | < 0.01 | 0.52  | < 0.01 |
| Meadows               | 7  | 127     | 187  | 42-43  |      |        |             |        | c0.20 |        |
|                       | 7) | 127     | 187  | 42     | Mean |        | 0.06        | < 0.01 | 0.52  | < 0.01 |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Induce~0.5%~v/v, Induce~0.29-0.41%~v/v, Triangle~D-W~Surfactant~0.25%~v/v, R11~0.06%~v/v, Induce~0.25%~v/v, Pro~90~0.25%~v/v, Induce~0.25%~v/v, Pro~90~0.5%~v/v, Pro~90~0.5%~v/v, DyneAmic~0.38%~v/v, Induce~0.13%~v/v, Induce~0.1

Table 21 Residues of flutriafol in cucumber application of an SC formulation in the USA (Carringer 2012 2439) (duplicate samples, applications include non-ionic surfactant)

| Location, year, |      | g     |      | g     | GS     |      | Residue (mg |        |       |        |
|-----------------|------|-------|------|-------|--------|------|-------------|--------|-------|--------|
| variety         | N    | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol  | T      | TA    | TAA    |
| Seven Springs,  | 4 (7 | 129   | 150  | 82    | 14     | 0    | 0.05 0.07   | < 0.01 | 0.10  | < 0.01 |
| NC, USA, 2011   | 77)  | 131   | 159  |       | 51     |      |             | < 0.01 | 0.12  | < 0.01 |
| Lancer 152      |      | 129   | 159  |       | 61     |      |             |        | c0.03 |        |
|                 |      | 128   | 159  |       | 71     | Mean | 0.06        | < 0.01 | 0.11  | < 0.01 |
|                 |      |       |      |       |        | 3    | 0.05 0.07   | < 0.01 | 0.15  | < 0.01 |
|                 |      |       |      |       |        |      |             | < 0.01 | 0.15  | < 0.01 |
|                 |      |       |      |       |        | Mean | 0.06        | < 0.01 | 0.15  | < 0.01 |
|                 |      |       |      |       |        | 7    | 0.02 0.04   | < 0.01 | 0.14  | < 0.01 |
|                 |      |       |      |       |        |      |             | < 0.01 | 0.14  | < 0.01 |
|                 |      |       |      |       |        | Mean | 0.03        | < 0.01 | 0.14  | < 0.01 |
|                 |      |       |      |       |        | 10   | 0.03 0.02   | < 0.01 | 0.15  | < 0.01 |
|                 |      |       |      |       |        |      |             | < 0.01 | 0.18  | < 0.01 |
|                 |      |       |      |       |        | Mean | 0.02        | < 0.01 | 0.16  | < 0.01 |
|                 |      |       |      |       |        | 14   | 0.02 0.02   | < 0.01 | 0.32  | < 0.01 |
|                 |      |       |      |       |        |      |             | < 0.01 | 0.24  | < 0.01 |
|                 |      |       |      |       |        | Mean | 0.02        | < 0.01 | 0.28  | < 0.01 |
| Chula, GA,      | 4 (7 | 128   | 46   | 278   | 54     | 0    | 0.02 0.03   | < 0.01 | 0.06  | < 0.01 |
| USA, 2011       | 77)  | 127   | 47   |       | 68     |      |             | < 0.01 | 0.06  | < 0.01 |
| Thunder         |      | 129   | 46   |       | 75     |      |             |        | c0.02 |        |
|                 |      | 127   | 46   |       | 78     | Mean | 0.02        | < 0.01 | 0.06  | < 0.01 |
| Newberry, FL,   | 4 (7 | 128   | 225  | 57    | 54     | 0    | 0.04 0.04   | < 0.01 | 0.05  | < 0.01 |
| USA, 2011       | 77)  | 124   | 253  |       | 67     |      |             | < 0.01 | 0.05  | < 0.01 |
| Thunder         |      | 131   | 234  |       | 72     |      |             |        | c0.01 |        |
|                 |      | 126   | 234  |       | 77     | Mean | 0.04        | < 0.01 | 0.05  | < 0.01 |
| Conklin, MI,    | 4 (7 | 129   | 215  | 60    | 63     | 0    | 0.03 0.04   | < 0.01 | 0.09  | < 0.01 |
| USA, 2011       | 7 7) | 127   | 215  |       | 69     |      |             | < 0.01 | 0.09  | < 0.01 |
| Impact          |      | 128   | 206  |       | 70     | Mean | 0.04        | < 0.01 | 0.09  | < 0.01 |
|                 |      | 128   | 206  |       | 73     |      |             |        |       |        |
| Delavan, WI,    | 4 (7 | 129   | 196  | 66    | 82     | 0    | 0.02 0.01   | < 0.01 | 0.02  | < 0.01 |
| USA, 2011       | 7 7) | 128   | 206  |       | 83     |      |             | < 0.01 | 0.02  | < 0.01 |
| Marketmore 76   |      | 129   | 196  |       | 84     | Mean | 0.02        | < 0.01 | 0.02  | < 0.01 |
|                 |      | 130   | 206  |       | 89     |      |             |        |       |        |
| Richland, IA,   | 4 (7 | 129   | 150  | 86    | 65     | 0    | 0.04 0.03   | < 0.01 | 0.05  | < 0.01 |
| USA, 2011       | 67)  | 129   | 150  |       | 67     |      |             | < 0.01 | 0.04  | < 0.01 |
| Straight Eight  |      | 128   | 150  |       | 75     |      |             |        | c0.03 |        |
|                 |      | 129   | 140  |       | 88     | Mean | 0.04        | < 0.01 | 0.04  | < 0.01 |
| Branchton, ON,  | 4 (7 | 114   | 43   | 265   | 71     | 0    | 0.06 0.05   | < 0.01 | 0.06  | < 0.01 |

<sup>&</sup>lt;sup>a</sup> Last application 29/05/2012

<sup>&</sup>lt;sup>b</sup> Last application 29/11/2011, different location to other Porterville trial <sup>a</sup>

| Location, year, |      | g     |      | g     | GS     |      | Residue (mg | /kg)   |       |        |
|-----------------|------|-------|------|-------|--------|------|-------------|--------|-------|--------|
| variety         | N    | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol  | T      | TA    | TAA    |
| CAN, 2011       | 77)  | 117   | 41   |       | 85     |      |             | < 0.01 | 0.06  | < 0.01 |
| Talladega       |      | 129   | 49   |       | 87-89  |      |             |        | c0.03 |        |
|                 |      | 126   | 47   |       | 89     | Mean | 0.06        | < 0.01 | 0.06  | < 0.01 |
| Uvalde, TX,     | 4 (7 | 130   | 187  | 51    | 71     | 0    | 0.05 0.04   | < 0.01 | 0.03  | < 0.01 |
| USA, 2011       | 77)  | 129   | 253  |       | 75     |      |             | < 0.01 | 0.03  | < 0.01 |
| Stonewall       |      | 127   | 243  |       | 77     | Mean | 0.04        | < 0.01 | 0.03  | < 0.01 |
|                 |      | 132   | 234  |       | 79     |      |             |        |       |        |
| Hillsboro, OR,  | 4 (7 | 127   | 234  | 54    | 51-71  | 0    | 0.03 0.03   | < 0.01 | 0.05  | < 0.01 |
| USA, 2011       | 77)  | 131   | 243  |       | 61-83  |      |             | < 0.01 | 0.05  | < 0.01 |
| Raider F1       |      | 129   | 234  |       | 61-83  |      |             |        | c0.07 |        |
|                 |      | 129   | 234  |       | 61-85  | Mean | 0.03        | < 0.01 | 0.05  | < 0.01 |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Induce~0.4-0.5%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~R-11~0.06%~v/v,~Preference~0.5%~v/v,~Preference~0.25%~v/v,~Agral~90~0.25%~v/v,~Induce~0.25-0.26%~v/v,~Induce~0.5%~v/v

Table 22 Residues of flutriafol in summer squash application of an SC formulation in the USA (Carringer 2012 2439) (duplicate samples, applications include non-ionic surfactant)

| Location, year,  |      | g     |      | g     | GS     |          | Residue (m | g/kg)  |        |        |
|------------------|------|-------|------|-------|--------|----------|------------|--------|--------|--------|
| variety          | N    | ai/ha | L/ha | ai/hL | (BBCH) | DALA     | Flutriafol | T      | TA     | TAA    |
| Alton, NY, USA,  | 4 (7 | 127   | 281  | 45    | 63     | 0        | 0.05 0.05  | < 0.01 | 0.04   | < 0.01 |
| 2011Superpik F1  | 77)  | 129   | 290  | 44    | 65     |          |            | < 0.01 | 0.06   | < 0.01 |
|                  |      | 128   | 281  | 46    | 71     |          |            |        |        |        |
|                  |      | 129   | 290  | 44    | 75     |          |            |        |        |        |
|                  |      |       |      |       |        | Mean     | 0.05       | < 0.01 | 0.05   | < 0.01 |
| Chula, GA, USA,  | 4 (7 | 127   | 234  | 54    | 15     | 0        | 0.04 0.05  | < 0.01 | 0.08   | < 0.01 |
| 2011 Dixie       | 77)  | 129   | 234  | 55    | 62     |          |            | < 0.01 | 0.07   | < 0.01 |
|                  |      | 130   | 243  | 53    | 81     |          |            |        | c0.04  |        |
|                  |      | 131   | 243  | 53    | 89     |          |            |        |        |        |
|                  |      |       |      |       |        | Mean     | 0.04       | < 0.01 | 0.08   | < 001  |
| Newberry, FL,    | 4 (7 | 128   | 234  | 55    | 16     | 0        | 0.05 0.05  | < 0.01 | 0.07   | < 0.01 |
| USA, 2011 Dixie  | 77)  | 128   | 234  | 55    | 61     |          |            | < 0.01 | 0.11   | < 0.01 |
|                  |      | 124   | 225  | 55    | 71     |          |            |        |        |        |
|                  |      | 127   | 234  | 54    | 89     |          |            |        |        |        |
|                  |      |       |      |       |        | Mean     | 0.05       | < 0.01 | 0.09   | < 0.01 |
| Conklin, MI,     | 4 (7 | 129   | 225  | 57    | 12     | 0        | 0.04 0.03  | < 0.01 | 0.06   | < 0.01 |
| CAN, 2011 Black  | 77)  | 128   | 215  | 60    | 63     |          |            | < 0.01 | 0.06   | < 0.01 |
| Beauty           |      | 128   | 215  | 60    | 70     |          |            |        |        |        |
|                  |      | 128   | 206  | 62    | 71     |          |            |        |        |        |
|                  |      |       |      |       |        | Mean     | 0.04       | < 0.01 | 0.06   | < 0.01 |
| Richland, IA,    | 4 (8 | 128   | 159  | 81    | 51     | 0        | 0.06 0.06  | < 0.01 | < 0.03 | < 0.01 |
| USA, 2011 Black  | 77)  | 131   | 168  | 78    | 54     |          |            | < 0.01 | 0.03   | < 0.01 |
| Beauty           |      | 129   | 206  | 63    | 73     |          |            |        |        |        |
|                  |      | 129   | 206  | 63    | 86     |          |            |        |        |        |
|                  |      |       |      |       |        | Mean     | 0.06       | < 001  | < 0.03 | < 0.01 |
| Branchton, ON,   | 4 (7 | 126   | 49   | 257   | 69–72  | 0        | 0.06 0.07  | < 0.01 | 0.04   | < 0.01 |
| CAN, 2011        | 77)  | 130   | 49   | 265   | 84–89  |          |            | < 0.01 | 0.05   | < 0.01 |
| Senator          |      | 130   | 48   | 265   | 85–89  |          |            |        |        |        |
|                  |      | 123   | 45   | 273   | 70–89  |          |            |        |        |        |
|                  |      |       |      |       |        | Mean     | 0.06       | < 0.01 | 0.04   | < 0.01 |
| Porterville, CA, | 4 (6 | 127   | 49   | 259   | 62     | 0        | 0.05 0.05  | < 0.01 | 0.03   | < 0.01 |
| USA, 2011        | 8 7) |       |      |       |        | <u> </u> |            | < 0.01 | < 0.03 | < 0.01 |
|                  |      |       |      |       |        | Mean     | 0.05       | < 0.01 | < 0.03 | < 0.01 |
| Black Beauty     |      | 129   | 49   | 263   | 65     | 3        | 0.05 0.06  | < 0.01 | 0.05   | < 0.01 |
|                  |      |       |      |       |        |          | <u> </u>   | < 0.01 | 0.04   | < 0.01 |
|                  |      |       |      |       |        | Mean     | 0.06       | < 0.01 | 0.04   | < 0.01 |
|                  |      | 126   | 48   | 263   | 72     | 7        | 0.03 0.03  | < 0.01 | 0.04   | < 0.01 |
|                  |      |       |      |       |        |          |            | < 0.01 | 0.05   | < 0.01 |
|                  |      |       |      |       |        | Mean     | 0.03       | < 0.01 | 0.04   | < 001  |
|                  | Ì    | 128   | 49   | 261   | 74     | 10       | 0.03 0.03  | < 0.01 | 0.04   | < 0.01 |

| Location, year, |      | g     |      | g     | GS     |      | Residue (mg/kg) |        |        |        |
|-----------------|------|-------|------|-------|--------|------|-----------------|--------|--------|--------|
| variety         | N    | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol      | T      | TA     | TAA    |
|                 |      |       |      |       |        |      |                 | < 0.01 | 0.04   | < 0.01 |
|                 |      |       |      |       |        | Mean | 0.03            | < 001  | 0.04   | < 0.01 |
|                 |      |       |      |       |        | 14   | 0.03 0.03       | < 0.01 | 0.04   | < 0.01 |
|                 |      |       |      |       |        |      |                 | < 0.01 | 0.04   | < 0.01 |
|                 |      |       |      |       |        | Mean | 003             | < 001  | 0.04   | < 0.01 |
| Hillsboro, OR,  | 4 (7 | 128   | 234  | 55    | 51–71  | 0    | 0.04 0.04       | < 0.01 | 0.03   | < 0.01 |
| USA, 2011       | 77)  | 131   | 243  | 54    | 61–83  |      |                 | < 0.01 | < 0.03 | < 0.01 |
| Zucchini        |      | 128   | 234  | 55    | 61-83  |      |                 |        |        |        |
| RSQ5119         |      | 128   | 234  | 55    | 61–85  |      |                 |        |        |        |
|                 |      |       |      |       |        | Mean | 0.04            | < 0.01 | < 0.03 | < 0.01 |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Induce~0.5%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~R-11~0.06%~v/v,~Preference~0.25-0.26%~v/v,~Agral~90~0.24-0.25%~v/v,~Pro~90~0.25%~v/v,~Induce~0.5%~v/v

Table 23 Residues of flutriafol in muskmelon application of an SC formulation in the USA (Carringer 2012 2439) (duplicate samples, applications include non-ionic surfactant)

| Location, year,  |      | g     |       | g     | GS       |      |        | Residue (m | g/kg)  |        |        |
|------------------|------|-------|-------|-------|----------|------|--------|------------|--------|--------|--------|
| variety          | N    | ai/ha | L/ha  | ai/hL | (BBCH)   | DALA | Sample | Flutriafol | T      | TA     | TAA    |
| Chula, GA,       | 4 (7 | 127   | 234   | 54    | 73       | 0    | Fruit  | 0.06 0.08  | < 0.01 | 0.02   | < 0.01 |
| USA, 2011        | 6 6) | 131   | 159   | 82    | 76       |      |        |            | < 0.01 | 0.02   | < 0.01 |
| Athena           |      | 129   | 150   | 86    | 83       | Mean |        | 0.07       | < 0.01 | 0.02   | < 0.01 |
|                  |      | 128   | 150   | 86    | 89       | 0    | Pulp   | 0.01       | < 0.01 | 0.03   | < 0.01 |
|                  |      |       |       |       |          |      |        | < 0.01     | < 0.01 | 0.03   | < 0.01 |
|                  |      |       |       |       |          | Mean |        | < 0.01     | < 0.01 | 0.03   | < 0.01 |
|                  |      |       |       |       |          | 0    | Peel   | 0.17 0.13  | < 0.01 | 0.02   | < 0.01 |
|                  |      |       |       |       |          |      |        |            | < 0.01 | 0.01   | < 0.01 |
|                  |      |       |       |       |          | Mean |        | 0.15       | < 0.01 | 0.02   | < 0.01 |
| Conklin, MI,     | 4 (7 | 128   | 206   | 62    | 70       | 0    | Fruit  | 0.04 0.05  | < 0.01 | 0.07   | < 0.01 |
| USA, 2011        | 77)  | 128   | 206   | 62    | 70       |      |        |            | < 0.01 | 0.07   | < 0.01 |
| Minerva          |      | 127   | 215   | 59    | 70       | Mean |        | 0.04       | < 0.01 | 0.07   | < 0.01 |
|                  |      | 127   | 206   | 62    | 87–89    | 0    | Pulp   | 0.01 0.02  | < 0.01 | 0.06   | < 0.01 |
|                  |      |       |       |       |          |      |        |            | < 0.01 | 0.06   | < 0.01 |
|                  |      |       |       |       |          | Mean |        | 0.02       | < 0.01 | 0.06   | < 0.01 |
|                  |      |       |       |       |          | 0    | Peel   | 0.12 0.13  | < 0.01 | 0.06   | < 0.01 |
|                  |      |       |       |       |          |      |        |            | < 0.01 | 0.07   | < 0.01 |
|                  |      |       |       |       |          | Mean |        | 0.12       | < 0.01 | 0.06   | < 0.01 |
| Richland, IA,    | 4 (7 | 129   | 159   | 81    | 71       | 0    | Fruit  | 0.10 0.10  | < 0.01 | 0.03   | < 0.01 |
| USA, 2011        | 77)  | 129   | 196   | 66    | 74       |      |        |            | < 0.01 | 0.03   | < 0.01 |
| Delicious 51     |      | 129   | 196   | 66    | 82       | Mean |        | 0.10       | < 0.01 | 0.03   | < 0.01 |
|                  |      | 131   | 196   | 67    | 89       |      |        |            |        |        |        |
| Branchton, ON,   | 4 (7 | 129   | 46    | 280   | 79–82    | 0    | Fruit  | 0.13 0.11  | < 0.01 | 0.06   | < 0.01 |
| CAN, 2011        | 77)  | 118   | 43    | 274   | 71–81    |      |        |            | < 0.01 | 0.05   | < 0.01 |
| Primo            |      | 141   | 52    | 271   | 86–88    | Mean |        | 0.12       | < 0.01 | 0.06   | < 0.01 |
|                  |      | 124   | 44    | 282   | 89       |      |        |            |        |        |        |
| Uvalde, TX,      | 4 (7 | 129   | 253   | 51    | 69       | 0    | Fruit  | 0.09 0.12  | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011        | 77)  | 130   | 253   | 51    | 71       |      |        |            | < 0.01 | < 0.01 | < 0.01 |
| Rocket F1        |      | 127   | 225   | 56    | 72       | Mean |        | 0.10       | < 0.01 | < 0.01 | < 0.01 |
|                  |      | 129   | 225   | 56    | 82       | 0    | Pulp   | < 0.01     | < 0.01 | 0.01   | < 0.01 |
|                  |      |       |       |       |          |      |        | < 0.01     | < 0.01 | 0.01   | < 0.01 |
|                  |      |       |       |       |          | Mean |        | < 0.01     | < 0.01 | 0.01   | < 0.01 |
|                  |      |       |       |       |          | 0    | Peel   | 0.15 0.22  | < 0.01 | < 0.01 | < 0.01 |
|                  |      |       |       |       |          | 1.5  |        | 0.10       | < 0.01 | < 0.01 | < 0.01 |
|                  |      | 100   | 2 - 2 | 40    |          | Mean |        | 0.18       | < 0.01 | < 0.01 | < 0.01 |
| Porterville, CA, | 4 (7 | 129   | 262   | 49    | 71       | 0    | Fruit  | 0.01 0.01  | < 0.01 | 0.01   | < 0.01 |
| USA, 2011        | 77)  | 128   | 262   | 49    | 79       | 1.5  |        | 0.01       | < 0.01 | 0.01   | < 0.01 |
| Green Flesh      |      | 129   | 262   | 49    | 82       | Mean |        | 0.01       | < 0.01 | 0.01   | < 0.01 |
|                  |      | 128   | 262   | 49    | 88       | 3    | Fruit  | 0.01 0.02  | < 0.01 | 0.01   | < 0.01 |
|                  |      |       |       |       | <u> </u> |      |        | <u> </u>   | < 0.01 | 0.01   | < 0.01 |

| Location, year, |      | g     |      | g     | GS     |      |        | Residue (m         | g/kg)  |      |        |
|-----------------|------|-------|------|-------|--------|------|--------|--------------------|--------|------|--------|
| variety         | N    | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Sample | Flutriafol         | T      | TA   | TAA    |
|                 |      |       |      |       |        | Mean |        | 0.02               | < 0.01 | 0.01 | < 0.01 |
|                 |      |       |      |       |        | 7    | Fruit  | < 0.01             | < 0.01 | 0.02 | < 0.01 |
|                 |      |       |      |       |        |      |        | < 0.01             | < 0.01 | 0.02 | < 0.01 |
|                 |      |       |      |       |        | Mean |        | < 0.01             | < 0.01 | 0.02 | < 0.01 |
|                 |      |       |      |       |        | 10   | Fruit  | < 0.01             | < 0.01 | 0.02 | < 0.01 |
|                 |      |       |      |       |        |      |        | < 0.01             | < 0.01 | 0.02 | < 0.01 |
|                 |      |       |      |       |        | Mean |        | < 0.01             | < 0.01 | 0.02 | < 0.01 |
|                 |      |       |      |       |        | 14   | Fruit  | < 0.01             | < 0.01 | 0.02 | < 0.01 |
|                 |      |       |      |       |        |      |        | 0.03 <sup>AB</sup> | < 0.01 | 0.02 | < 0.01 |
|                 |      |       |      |       |        |      |        | [0.03              |        |      |        |
|                 |      |       |      |       |        |      |        | 0.03               |        |      |        |
|                 |      |       |      |       |        |      |        | 0.02]              |        |      |        |
|                 |      |       |      |       |        | Mean |        | 0.02               | < 0.01 | 0.02 | < 0.01 |
| Visalia, CA,    | 4 (7 | 128   | 51   | 251   | 86     | 0    | Fruit  | 0.08 0.09          | < 0.01 | 0.05 | < 0.01 |
| USA, 2011       | 77)  | 129   | 51   | 253   | 87     |      |        |                    | < 0.01 | 0.05 | < 0.01 |
| Hale's Best     |      | 128   | 51   | 251   | 88     | Mean |        | 0.08               | < 0.01 | 0.05 | < 0.01 |
| Jumbo           |      | 131   | 53   | 247   | 89     |      |        |                    |        |      |        |
| Porterville;    | 4 (7 | 127   | 262  | 48    | 86     | 0    | Fruit  | 0.10 0.15          | < 0.01 | 0.02 | < 0.01 |
| CA, USA,        | 77)  | 128   | 262  | 49    | 87     |      |        |                    | < 0.01 | 0.02 | < 0.01 |
| 2011            |      |       |      |       |        |      |        |                    |        |      |        |
| Hale's Best     |      | 128   | 262  | 49    | 88     | Mean |        | 0.12               | < 0.01 | 0.02 | < 0.01 |
| Jumbo           |      | 128   | 262  | 49    | 89     | 0    | Pulp   | 0.02 0.02          | < 0.01 | 0.02 | < 0.01 |
|                 |      |       |      |       |        |      |        |                    | < 0.01 | 0.01 | < 0.01 |
|                 |      |       |      |       |        | Mean |        | 0.02               | < 0.01 | 0.02 | < 0.01 |
|                 |      |       |      |       |        | 0    | Peel   | 0.23 0.20          | < 0.01 | 0.02 | < 0.01 |
|                 |      |       |      |       |        |      |        |                    | < 0.01 | 0.01 | < 0.01 |
|                 |      |       |      |       |        | Mean |        | 0.22               | < 0.01 | 0.02 | < 0.01 |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Induce~0.25%~v/v,~R-11~0.06%~v/v,~Preference~0.25%~v/v,~Agral~90~0.25%~v/v,~Induce~0.25-0.26%~v/v,~Pro~90~0.25%~v/v,~Pro~90~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~I

Table 24 Residues of flutriafol in greenhouse tomato from trials in Spain using an SC formulation (Gimeno 2004a 1263; Gimeno 2004b 1267; Lópaz Benet 2004 1262, Lópaz Benet 2004 1266)

| Location, year, variety | No  | g ai/ha | L/ha | g ai/hL | GS<br>(BBCH) | DALA | Sample | Flutriafol (mg/kg) |
|-------------------------|-----|---------|------|---------|--------------|------|--------|--------------------|
| Picasent, Valencia,     | 3   | 179     | 1017 | 18.75   | 83           | 0    | Fruit  | 0.07               |
| Spain, 2003 Bou         | (10 | 179     | 1017 | 18.75   | 85           | 3    |        | 0.11               |
|                         | 10) | 174     | 989  | 18.75   | 87           | 7    |        | 0.15               |
|                         |     |         |      |         |              | 14   |        | 0.16               |
|                         |     |         |      |         |              | 21   |        | 0.09               |
| Meliana, Valencia,      | 3   | 176     | 1000 | 18.75   | 83           | 0    | Fruit  | 0.16               |
| Spain, 2003 Gardel      | (10 | 176     | 1000 | 18.75   | 85           | 3    |        | 0.23               |
|                         | 10) | 175     | 1000 | 18.75   | 87           | 7    |        | 0.24               |
|                         |     |         |      |         |              | 14   |        | 0.18               |
|                         |     |         |      |         |              | 21   |        | 0.18               |
| El Ejido, Almeria,      | 3   | 178     | 1014 | 18.75   | 82           | 0    | Fruit  | 0.16               |
| Spain, 2003 Brillante   | (10 | 178     | 1014 | 18.75   | 84           | 3    |        | 0.14               |
|                         | 10) | 175     | 993  | 18.75   | 87           | 7    |        | 0.06               |
|                         |     |         |      |         |              | 14   |        | 0.1                |
|                         |     |         |      |         |              | 21   |        | 0.1                |
| El Ejido, Almeria,      | 3   | 180     | 1029 | 18.75   | 82           | 0    | Fruit  | 0.24               |
| Spain, 2003 Zinal       | (10 | 176     | 1000 | 18.75   | 84           | 3    |        | 0.15               |
|                         | 10) | 180     | 1029 | 18.75   | 87           | 7    |        | 0.15               |

<sup>&</sup>lt;sup>a</sup> Mean of triplicate analysis, individual results in brackets

<sup>&</sup>lt;sup>b</sup> Last application 19/08/2011

 $<sup>^{</sup>c}$  Last application 21/09/2011, same location as other Porterville trial  $^{b}$  but considered independent as one month between crops and different varieties involved

| Location, year, variety | No             | g ai/ha | L/ha | g ai/hL | GS<br>(BBCH) | DALA | Sample    | Flutriafol<br>(mg/kg) |
|-------------------------|----------------|---------|------|---------|--------------|------|-----------|-----------------------|
|                         |                |         |      |         |              | 14   |           | 0.14                  |
|                         |                |         |      |         |              | 21   |           | 0.09                  |
| Picasent, Valencia,     | 3              | 188     | 1004 | 18.75   | 87           | 0    | Fruit     | 0.15                  |
| Spain, 2004             | (10            | 187     | 996  | 18.75   | 88           | 3    | Fruit     | 0.19                  |
| Marmande Raf            | 10)            | 190     | 1019 | 18.75   | 89           | 3    | Preserved | 0.05                  |
|                         |                |         |      |         |              | 3    | Juice     | 0.07                  |
|                         |                |         |      |         |              | 7    | Fruit     | 0.17                  |
|                         |                |         |      |         |              | 7    | Preserved | 0.06                  |
|                         |                |         |      |         |              | 7    | Juice     | 0.06                  |
| Meliana, Valencia,      | 3              | 185     | 989  | 18.75   | 87           | 0    | Fruit     | 0.12                  |
| Spain, 2004 Gardel      | (10            | 183     | 976  | 18.75   | 88           | 3    | Fruit     | 0.09                  |
|                         | 10)            | 184     | 979  | 18.75   | 89           | 3    | Preserved | 0.05                  |
|                         |                |         |      |         |              | 3    | Juice     | 0.05                  |
|                         |                |         |      |         |              | 7    | Fruit     | 0.13                  |
|                         |                |         |      |         |              | 7    | Preserved | 0.05                  |
|                         |                |         |      |         |              | 7    | Juice     | 0.04                  |
| Almeria, Spain, 2004    | 3              | 183     | 975  | 18.75   | 81           | 0    | Fruit     | 0.18                  |
| Durintia                | (10            | 188     | 1000 | 18.75   | 83           | 3    | Fruit     | 0.14                  |
|                         | 11)            | 184     | 980  | 18.75   | 85           | 3    | Preserved | 0.08                  |
|                         |                |         |      |         |              | 3    | Juice     | 0.08                  |
|                         |                |         |      |         |              | 7    | Fruit     | 0.15                  |
|                         |                |         |      |         |              | 7    | Preserved | 0.06                  |
|                         |                |         |      |         |              | 7    | Juice     | 0.07                  |
| Almeria, Spain, 2004    | 3 <sup>a</sup> | 225     | 1200 | 18.75   | 81           | 0    | Fruit     | 0.15                  |
| Tirade                  |                | 228     | 1220 | 18.75   | 82           | 3    | Fruit     | 0.16                  |
|                         |                | 224     | 1200 | 18.75   | 82           | 3    | Preserved | 0.11                  |
|                         |                |         |      |         |              | 3    | Juice     | 0.12                  |
|                         |                |         |      |         |              | 7    | Fruit     | 0.15                  |
|                         |                |         |      |         |              | 7    | Preserved | 0.13                  |
|                         |                |         |      |         |              | 7    | Juice     | 0.1                   |

Table 25 Residues of flutriafol in tomato following application of an SC formulation in the USA (Carringer 2012 2440) (duplicate samples, applications include non-ionic surfactant)

| Location, year,   |    | g     |      | g     | GS     |      | Residue (mg | g/kg)  |        |        |
|-------------------|----|-------|------|-------|--------|------|-------------|--------|--------|--------|
| variety           | No | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol  | T      | TA     | TAA    |
| Germansville, PA, | 4  | 131   | 48   | 273   | 81     | 0    | 0.08 0.06   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011         | (7 | 132   | 48   |       | 83     |      |             | < 0.01 | < 0.01 | < 0.01 |
| Mountain Spring   | 7  | 135   | 49   |       | 85     | Mean | 0.07        | < 0.01 | < 0.01 | < 0.01 |
|                   | 7) | 132   | 49   |       | 87     |      |             |        |        |        |
| Seven Springs,    | 4  | 131   | 159  | 82    | 61     | 0    | 0.10 0.13   | < 0.01 | 0.06   | < 0.01 |
| NC, USA, 2011     | (7 | 129   | 159  |       | 71     |      |             | < 0.01 | 0.06   | < 0.01 |
| Homestead         | 7  | 127   | 159  |       | 72     |      |             |        | c0.02  |        |
|                   | 7) | 129   | 159  |       | 82     | Mean | 0.12        | < 0.01 | 0.06   | < 0.01 |
| Greenville, FL,   | 4  | 128   | 234  | 55    | 71     | 0    | 0.17 0.13   | < 0.01 | 0.01   | < 0.01 |
| USA, 2011 Amelia  | (7 | 127   | 225  |       | 74     |      |             | < 0.01 | 0.02   | < 0.01 |
|                   | 7  | 128   | 225  |       | 79     |      |             |        | c0.03  |        |
|                   | 7) | 127   | 225  |       | 79     | Mean | 0.15        | < 0.01 | 0.02   | < 0.01 |
| Greenville, FL,   | 4  | 128   | 243  | 53    | 73     | 0    | 0.12 0.12   | < 0.01 | 0.02   | < 0.01 |
| USA, 2011 6-02    | (7 | 128   | 253  |       | 75     |      |             | < 0.01 | 0.02   | < 0.01 |
|                   | 7  | 128   | 253  |       | 77     |      |             |        | c0.01  |        |
|                   | 7) | 128   | 262  |       | 81     | Mean | 0.12        | < 0.01 | 0.02   | < 0.01 |
| Richland, IA,     | 4  | 129   | 140  | 92    | 72     | 0    | 0.07 0.04   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011         | (7 | 128   | 206  |       | 75     |      |             | < 0.01 | 0.01   | < 0.01 |
| Rutgers           | 7  | 130   | 140  |       | 81     |      |             |        | c0.01  |        |
|                   | 7) | 131   | 140  |       | 87     | Mean | 0.06        | < 0.01 | < 0.01 | < 0.01 |
| Carlyle, IL, USA, | 4  | 127   | 243  | 52    | 71     | 0    | 0.06 0.06   | < 0.01 | 0.04   | < 0.01 |
| 2011 La Roma      | (7 | 128   | 253  |       | 76     |      |             | < 0.01 | 0.05   | < 0.01 |
|                   | 7  | 129   | 253  |       | 79     |      |             |        | c0.03  |        |
|                   | 7) | 129   | 262  |       | 81     | Mean | 0.06        | < 0.01 | 0.04   | < 0.01 |

| Location, year,   |    | g          | 1          | g        | GS             |         | Residue (mg | /kg)   |        |        |
|-------------------|----|------------|------------|----------|----------------|---------|-------------|--------|--------|--------|
| variety           | No | ai/ha      | L/ha       | ai/hL    | (BBCH)         | DALA    | Flutriafol  | T      | TA     | TAA    |
| Wyoming, IL,      | 4  | 127        | 178        | 71       | 78–79          | 0       | 0.07 0.05   | < 0.01 | 0.02   | < 0.01 |
| USA, 2011 Better  | (7 | 129        | 187        |          | 81             |         |             | < 0.01 | 0.02   | < 0.01 |
| Boy               | 7  | 127        | 187        |          | 82–83          |         |             |        | c0.01  |        |
|                   | 7) | 130        | 187        |          | 85             | Mean    | 0.06        | < 0.01 | 0.02   | < 0.01 |
| Delavan, WI,      | 4  | 129        | 225        | 57       | 74             | 0       | 0.12 0.08   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011 Sweet   | (7 | 129        | 206        |          | 79             |         |             | < 0.01 | < 0.01 | < 0.01 |
| Treat (cherry)    | 7  | 128        | 196        |          | 83             | Mean    | 0.10        | < 0.01 | < 0.01 | < 0.01 |
|                   | 7) | 129        | 196        |          | 89             |         |             |        |        |        |
| Sparta, MI, USA,  | 4  | 128        | 206        | 62       | 71             | 0       | 0.05 0.05   | < 0.01 | < 0.01 | < 0.01 |
| 2011 Sunoma       | (7 | 128        | 206        |          | 80             | 3.6     | 0.05        | < 0.01 | < 0.01 | < 0.01 |
| (Red Roma)        | 7  | 128        | 206        |          | 81–82          | Mean    | 0.05        | < 0.01 | < 0.01 | < 0.01 |
| C 11. M HGA       | 7) | 127        | 206        | 60       | 83             | 0       | 0.04.0.05   | 0.01   | 0.01   | 0.01   |
| Conklin, MI, USA, | 4  | 128        | 215<br>206 | 60       | 71<br>80       | 0       | 0.04 0.05   | < 0.01 | < 0.01 | < 0.01 |
| 2011 Big          | 7  | 127        |            |          |                | M       | 0.04        | < 0.01 | < 0.01 | < 0.01 |
| Beef              | 7) | 128<br>127 | 215<br>215 |          | 81–82<br>82–83 | Mean    | 0.04        | < 0.01 | < 0.01 | < 0.01 |
| Branchton, ON,    | 4  | 127        | 46         | 265      | 69             | 0       | 0.06 0.07   | < 0.01 | 0.03   | < 0.01 |
| CAN, 2011         | (7 | 132        | 47         | 203      | 69             | U       | 0.06 0.07   | < 0.01 | 0.05   | < 0.01 |
| Biltmore          | 7  | 131        | 47         |          | 79–81          |         |             | < 0.01 | c0.05  | < 0.01 |
| Dittillore        | 7) | 123        | 46         |          | 73–79          | Mean    | 0.06        | < 0.01 | 0.04   | < 0.01 |
| Burford, ON,      | 4  | 128        | 290        | 44       | 79–80          | 0       | 0.32 0.34   | < 0.01 | 0.04   | < 0.01 |
| CAN, 2011 Sweet   | (7 | 123        | 281        | 44       | 81–82          | 0       | 0.32 0.34   | < 0.01 | 0.02   | < 0.01 |
| Million           | 7  | 121        | 290        |          | 85–86          |         |             | < 0.01 | c0.01  | < 0.01 |
| (cherry)          | 7) | 119        | 290        |          | 87             | Mean    | 0.33        | < 0.01 | 0.02   | < 0.01 |
| Porterville, CA,  | 4  | 130        | 299        | 43       | 87             | 0       | 0.14 0.15   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011 Roma    | (7 | 130        | 299        | 43       | 88             |         | 0.14 0.15   | < 0.01 | < 0.01 | < 0.01 |
| VF a              | 8  | 131        | 290        |          | 89             | Mean    | 0.14        | < 0.01 | < 0.01 | < 0.01 |
| 1.2               | 6) | 129        | 299        |          | 89             | 1,10411 | 0.11        | ( 0.01 | ( 0.01 | . 0.01 |
|                   | 4  | 637        | 299        | 213      | 87             | 0       | 0.63 0.47   | < 0.01 | < 0.01 | < 0.01 |
|                   | (7 | 642        | 290        |          | 88             |         |             | < 0.01 | < 0.01 | < 0.01 |
|                   | 8  | 641        | 290        |          | 89             | Mean    | 0.55        | < 0.01 | < 0.01 | < 0.01 |
|                   | 6) | 644        | 299        |          | 89             |         |             |        |        |        |
| Champion a        | 4  | 129        | 262        | 49       | 83             | 0       | 0.09 0.12   | < 0.01 | < 0.01 | < 0.01 |
| •                 | (7 | 128        | 262        |          | 85             |         |             | < 0.01 | < 0.01 | < 0.01 |
| (Fresh Market)    | 7  | 128        | 262        |          | 87             | Mean    | 0.10        | < 0.01 | < 0.01 | < 0.01 |
|                   | 7) | 128        | 262        |          | 88             | 3       | 0.08 0.13   | < 0.01 | < 0.01 | < 0.01 |
|                   | 1) |            |            |          |                |         |             | < 0.01 | < 0.01 | < 0.01 |
|                   |    |            |            |          |                | Mean    | 0.10        | < 0.01 | < 0.01 | < 0.01 |
|                   |    |            |            |          |                | 7       | 0.08 0.09   | < 0.01 | < 0.01 | < 0.01 |
|                   |    |            |            |          |                |         |             | < 0.01 | < 0.01 | < 0.01 |
|                   |    |            |            |          |                | Mean    | 0.08        | < 0.01 | < 0.01 | < 0.01 |
|                   |    |            |            |          |                | 14      | 0.05 0.05   | < 0.01 | < 0.01 | < 0.01 |
|                   |    |            |            |          |                |         |             | < 0.01 | 0.02   | < 0.01 |
|                   |    |            |            |          |                | Mean    | 0.05        | < 0.01 | < 0.02 | < 0.01 |
|                   |    |            |            |          |                | 21      | 0.08 0.09   | < 0.01 | 0.01   | < 0.01 |
|                   |    |            |            |          |                |         |             | < 0.01 | 0.01   | < 0.01 |
|                   |    |            |            |          |                | Mean    | 0.08        | < 0.01 | 0.01   | < 0.01 |
| Visalia, CA, USA, | 4  | 127        | 51         | 249      | 86             | 0       | 0.09 0.16   | < 0.01 | 0.01   | < 0.01 |
| 2011 AB2          | (7 | 128        | 51         |          | 87             | 1       |             | < 0.01 | 0.01   | < 0.01 |
| (Roma Processing) | 7  | 127        | 51         |          | 88             | Mean    | 0.12        | < 0.01 | 0.01   | < 0.01 |
|                   | 7) | 129        | 51         |          | 89             |         |             |        |        |        |
| King City, CA,    | 4  | 128        | 281        | 46       | 85             | 0       | 0.07 0.10   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011         | (7 | 129        | 290        |          | 86             | 3.7     | 0.00        | < 0.01 | < 0.01 | < 0.01 |
| Champion (Fresh   | 7  | 129        | 290        |          | 88             | Mean    | 0.08        | < 0.01 | < 0.01 | < 0.01 |
| Market)           | 7) | 129        | 281        | 41       | 89             | 0       | 0.17.0.10   | .0.01  | .0.01  | .0.01  |
| Porterville, CA,  | 4  | 128        | 309        | 41       | 79             | 0       | 0.17 0.18   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011 AB2     | (7 | 128        | 309        | 1        | 86             | 3.6     | 0.16        | < 0.01 | < 0.01 | < 0.01 |
| (Roma Processing) | 7  | 128        | 309        |          | 87             | Mean    | 0.18        | < 0.01 | < 0.01 | < 0.01 |
|                   | 7) | 129        | 309        | 71       | 89             | 0       | 0.20.0.42   | z 0.01 | 0.02   | .0.01  |
| Corning, CA,      | 4  | 132        | 187        | 71       | 81             | 0       | 0.38 0.43   | < 0.01 | 0.02   | < 0.01 |
| USA, 2011 Sun     | (7 | 132        | 187        | -        | 83             | Maar    | 0.40        | < 0.01 | 0.02   | < 0.01 |
| 6366              | 7  | 132        | 187        | <u> </u> | 87             | Mean    | 0.40        | < 0.01 | 0.02   | < 0.01 |

| Location, year,   |    | g     |      | g     | GS     |      | Residue (mg | /kg)   |        |        |
|-------------------|----|-------|------|-------|--------|------|-------------|--------|--------|--------|
| variety           | No | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol  | T      | TA     | TAA    |
|                   | 7) | 131   | 187  |       | 89     |      |             |        |        |        |
| Paso Robles, CA,  | 4  | 130   | 384  | 34    | 84     | 0    | 0.42 0.42   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011         | (6 | 128   | 374  |       | 85     |      |             | < 0.01 | < 0.01 | < 0.01 |
| Washington cherry | 7  | 129   | 374  |       | 87     | Mean | 0.42        | < 0.01 | < 0.01 | < 0.01 |
|                   | 7) | 128   | 374  |       | 88     |      |             |        |        |        |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Induce 0.125% v/v, Induce 0.3-0.48% v/v, Induce 0.25% v/v, Induce 0.25% v/v, Preference 0.25% v/v, NIS 0.25% v/v, Aquagene 90~0.05% v/v, preference 0.5% v/v, R-11 0.065% v/v, R-11 0.064% v/v, Agral 90~0.25% v/v, Agral 90~0.25% v/v, Agral 90~0.25% v/v, Pro 90~0.5% v/v, Pro 90~0.25% v/v, Pro 90~

Table 26 Residues of flutriafol in pepper following application of an SC formulation in the USA (Carringer 2012 2440) (duplicate samples, applications include non-ionic surfactant)

| Location, year,    |    | g     |      | g     | GS     |      | Residue (mg |        |         |        |
|--------------------|----|-------|------|-------|--------|------|-------------|--------|---------|--------|
| variety            | No | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol  | T      | TA      | TAA    |
| Seven Springs,     | 4  | 130   | 159  |       | 53     | 0    | 0.16 0.14   | < 0.01 | 0.07    | < 0.01 |
| NC, USA, 2011      | (7 | 129   | 159  |       | 71     |      |             | < 0.01 | 0.07    | < 0.01 |
| California         | 7  | 131   | 168  |       | 81     |      |             |        | c0.02   |        |
| Wonder (Bell)      | 7) | 129   | 159  |       | 89     | Mean | 0.15        | < 0.01 | 0.07    | < 0.01 |
| Greenville, FL,    | 4  | 128   | 196  |       | 71     | 0    | 0.09 0.10   | < 0.01 | 0.03    | < 0.01 |
| USA, 2011          | (7 | 127   | 187  |       | 73     |      |             | < 0.01 | 0.03    | < 0.01 |
| Aristotle (Bell)   | 7  | 128   | 196  |       | 75     | Mean | 0.10        | < 0.01 | 0.03    | < 0.01 |
|                    | 7) | 126   | 196  |       | 77     |      |             |        |         |        |
| Delavan, WI,       | 4  | 129   | 225  |       | 74     | 0    | 0.03 0.03   | < 0.01 | 0.02    | < 0.01 |
| USA, 2011          | (7 | 129   | 206  |       | 79     |      |             | < 0.01 | 0.02    | < 0.01 |
| California         | 7  | 128   | 196  |       | 83     |      |             |        | c0.01   |        |
| Wonder (Bell)      | 7) | 128   | 196  |       | 89     | Mean | 0.03        | < 0.01 | 0.02    | < 0.01 |
| Conklin, MI, USA,  | 4  | 127   | 206  |       | 71     | 0    | 0.07 0.06   | < 0.01 | 0.03    | < 0.01 |
| 2011 Aristotle     | (7 | 127   | 206  |       | 72     |      |             | < 0.01 | 0.03    | < 0.01 |
| (Bell)             | 7  | 127   | 206  |       | 73     |      |             |        | c0.01   |        |
|                    | 7) | 128   | 206  |       | 74     | Mean | 0.06        | < 0.01 | 0.03    | < 0.01 |
| Sparta, MI, USA,   | 4  | 128   | 206  |       | 71     | 0    | 0.08 0.08   | < 0.01 | < 0.01, | < 0.01 |
| 2011 Sopron        | (7 | 128   | 206  |       | 72     |      |             | < 0.01 | < 0.01  | < 0.01 |
| (non-bell, large   | 7  | 128   | 206  |       | 73     | Mean | 0.08        | < 0.01 | < 0.01  | < 0.01 |
| banana)            | 7) | 128   | 206  |       | 74–75  |      |             |        |         |        |
| Burford OR         | 4  | 127   | 47   |       | 69–73  | 0    | 0.05 0.07   | < 0.01 | 0.03    | < 0.01 |
| Canada, 2011       | (7 | 123   | 45   |       | 79–85  |      |             | < 0.01 | 0.03    | < 0.01 |
| Aristotle (Bell) a | 7  | 124   | 47   |       | 82-84  |      |             |        | c0.01   |        |
|                    | 7) | 123   | 46   |       | 83-84  | Mean | 0.06        | < 0.01 | 0.03    | < 0.01 |
| Burford OR         | 4  | 133   | 299  |       | 65-71  | 0    | 0.08 0.15   | < 0.01 | 0.07    | < 0.01 |
| Canada, 2011       | (7 | 135   | 318  |       | 73–82  |      |             | < 0.01 | 0.06    | < 0.01 |
| Crimson hot        | 7  | 129   | 299  |       | 81–87  |      |             |        | c0.02   |        |
| (chilli) b         | 7) | 132   | 309  |       | 85–87  | Mean | 0.12        | < 0.01 | 0.06    | < 0.01 |
| Uvalde TX, USA,    | 4  | 128   | 159  |       | Mature | 0    | 0.14 0.14   | < 0.01 | < 0.01, | < 0.01 |
| 2011 Tauras        | (7 | 131   | 150  |       | 82     |      |             | < 0.01 | < 0.01  | < 0.01 |
| (Bell)             | 7  | 129   | 150  |       | 83     | Mean | 0.14        | < 0.01 | < 0.01  | < 0.01 |
|                    | 7) | 131   | 140  |       | 85     | 2    | 0.14 0.10   | < 0.01 | < 0.01, | < 0.01 |
|                    |    |       |      |       |        |      |             | < 0.01 | < 0.01  | < 0.01 |
|                    |    |       |      |       |        | Mean | 0.12        | < 0.01 | < 0.01  | < 0.01 |
|                    |    |       |      |       |        | 7    | 0.08 0.09   | < 0.01 | 0.01    | < 0.01 |
|                    |    |       |      |       |        |      |             | < 0.01 | < 0.01  | < 0.01 |
|                    |    |       |      |       |        | Mean | 0.08        | < 0.01 | < 0.01  | < 0.01 |
|                    |    |       |      |       |        | 14   | 0.04 0.05   | < 0.01 | 0.02    | < 0.01 |
|                    |    |       |      |       |        |      |             | < 0.01 | 0.02    | < 0.01 |
|                    |    |       |      |       |        | Mean | 0.04        | < 0.01 | 0.02    | < 0.01 |

<sup>&</sup>lt;sup>a</sup> Last application 12/09/2011 for Roma VF and 14/09/2011 for Champion

<sup>&</sup>lt;sup>b</sup> Last application 08/08/2011, also different location to other Porterville trial <sup>a</sup>

| Location, year,       |    | g     |      | g     | GS        |      | Residue (mg | g/kg)  |      |        |
|-----------------------|----|-------|------|-------|-----------|------|-------------|--------|------|--------|
| variety               | No | ai/ha | L/ha | ai/hL | (BBCH)    | DALA | Flutriafol  | T      | TA   | TAA    |
|                       |    |       |      |       |           | 21   | 0.04 0.05   | < 0.01 | 0.02 | < 0.01 |
|                       |    |       |      |       |           |      |             | < 0.01 | 0.02 | < 0.01 |
|                       |    |       |      |       |           | Mean | 0.04        | < 0.01 | 0.02 | < 0.01 |
| Levelland TX,         | 4  | 129   | 187  |       | Start frt | 0    | 0.31 0.31   | < 0.01 | 0.03 | < 0.01 |
| USA, 2011             | (7 | 129   | 187  |       | Fruiting  |      |             | < 0.01 | 0.03 | < 0.01 |
| Jalapeno M (chilli)   | 7  | 128   | 187  |       | Most      | Mean | 0.31        | < 0.01 | 0.03 | < 0.01 |
|                       | 7) | 130   | 187  |       | mat       |      |             |        |      |        |
| Porterville, CA,      | 4  | 129   | 49   |       | 48        | 0    | 0.18 0.14   | < 0.01 | 0.01 | < 0.01 |
| USA, 2011 P33R        | (7 | 133   | 50   |       | 48        |      |             | < 0.01 | 0.01 | < 0.01 |
| (Bell) <sup>c</sup>   | 7  | 129   | 48   |       | 49        | Mean | 0.16        | < 0.01 | 0.01 | < 0.01 |
|                       | 7) | 129   | 49   |       | 49        |      |             |        |      |        |
| King City, USA,       | 4  | 128   | 299  |       | 48        | 0    | 0.11 0.11   | < 0.01 | 0.01 | < 0.01 |
| 2011 P33R             | (7 | 128   | 290  |       | 48        |      |             | < 0.01 | 0.01 | < 0.01 |
| (Bell) e              | 7  | 128   | 290  |       | 48        | Mean | 0.11        | < 0.01 | 0.01 | < 0.01 |
|                       | 7) | 129   | 299  |       | 49        |      |             |        |      |        |
| Porterville, CA,      | 4  | 131   | 290  |       | 47        | 0    | 0.22 0.19   | < 0.01 | 0.02 | < 0.01 |
| USA, 2011             | (7 | 128   | 290  |       | 48        |      |             | < 0.01 | 0.03 | < 0.01 |
| Fresno (chilli) d     | 7  | 130   | 299  |       | 48        | Mean | 0.20        | < 0.01 | 0.02 | < 0.01 |
|                       | 7) | 133   | 318  |       | 49        |      |             |        |      |        |
| King City, USA,       | 4  | 131   | 299  |       | 47        | 0    | 0.26 0.26   | < 0.01 | 0.02 | < 0.01 |
| 2011 Serrano          | (7 | 128   | 299  |       | 49        |      |             | < 0.01 | 0.02 | < 0.01 |
| (chilli) <sup>f</sup> | 7  | 127   | 290  |       | 49        | Mean | 0.26        | < 0.01 | 0.02 | < 0.01 |
|                       | 7) | 128   | 299  |       | 49        |      |             |        |      |        |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

 $\begin{array}{l} \text{Induce 0.3-0.48\% \ v/v, Induce 0.25\% \ v/v, Preference 0.5\% \ v/v, R-11\ 0.063\% \ v/v, R-11\ 0.063\% \ v/v, Agral\ 90\ 0.25\% \ v/v, Agral\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.$ 

Table 27 Residues of flutriafol in lettuce (head and leaf) following application of an SC formulation in the USA (Carringer 2013 2698) (duplicate samples, applications include non-ionic surfactant)

| Location, year, variety | No | g<br>ai/ha | L/ha | GS<br>(BBCH)          | DALA | Crop<br>part | Flutriafol | Т      | TA     | TAA    |
|-------------------------|----|------------|------|-----------------------|------|--------------|------------|--------|--------|--------|
| HEAD LETTUCE            |    |            |      |                       |      |              |            |        |        |        |
| Germansville, PA,       | 4  | 131        | 48   | Vegetative            | 7    | Heads        | 0.05 0.05  | < 0.01 | 0.01   | < 0.01 |
| USA, 2012               | (6 | 132        | 49   | Early                 |      |              |            | < 0.01 | 0.01   | < 0.01 |
| Ithaca (head)           | 6  | 130        | 48   | head                  | Mean |              | 0.05       | < 0.01 | 0.01   | < 0.01 |
|                         | 7) | 136        | 50   | formation<br>Heads 5– |      |              |            |        |        |        |
|                         |    |            |      | 10 cm dia             |      |              |            |        |        |        |
|                         |    |            |      | Heads 15-             |      |              |            |        |        |        |
|                         |    |            |      | 20 cm dia             |      |              |            |        |        |        |
| Oviedo, FL, USA,        | 4  | 127        | 281  | 41                    | 7    | Heads        | 0.15 0.14  | 0.04,  | < 0.01 | < 0.01 |
| 2011 Great              | (7 | 127        | 281  | 42                    |      |              |            | 0.03   | < 0.01 | < 0.01 |
| Lakes (head)            | 7  | 128        | 281  | 45                    | Mean |              | 0.14       | 0.04   | < 0.01 | < 0.01 |
|                         | 7) | 127        | 281  | 48                    |      |              |            |        |        |        |
| Porterville, CA,        | 4  | 128        | 309  | 41                    | 0    | Heads        | 0 82 1.17  | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011               | (7 | 129        | 318  | 43                    |      |              |            | < 0.01 | < 0.01 | < 0.01 |
| Vandenberg              | 7  | 128        | 309  | 46                    | Mean |              | 1.00       | < 0.01 | < 0.01 | < 0.01 |
| (head) <sup>a</sup>     | 7) | 128        | 309  | 47                    | 2    | Heads        | 0.12 0.20  | < 0.01 | < 0.01 | < 0.01 |
|                         | 1) |            |      |                       |      |              |            | < 0.01 | < 0.01 | < 0.01 |
|                         |    |            |      |                       | Mean |              | 0.16       | < 0.01 | < 0.01 | < 0.01 |
|                         |    |            |      |                       | 7    | Heads        | 0.28 0.17  | < 0.01 | < 0.01 | < 0.01 |
|                         |    |            |      |                       |      |              |            | < 0.01 | < 0.01 | < 0.01 |

<sup>&</sup>lt;sup>a</sup> Last application 02/09/2011

<sup>&</sup>lt;sup>b</sup> Last application 26/08/2011, same location but different varieties with significantly different residues potential

<sup>&</sup>lt;sup>c</sup> Last application 11/08/2011

<sup>&</sup>lt;sup>d</sup> Last application 10/08/2011, different location and different varieties with significantly different residues potential

<sup>&</sup>lt;sup>e</sup> Last application 09/09/2011

<sup>&</sup>lt;sup>f</sup> Last application 30/09/2011, location close but different varieties with significantly different residues potential and different application times

| Location, year, variety                                                                                                 |                                                                              |                                               |                                                                                  |                                                                      |                                                                           |                                    |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| variety                                                                                                                 | No                                                                           | g                                             | L/ha                                                                             | GS                                                                   | DALA                                                                      | Crop                               | Flutriafol                                                                                            | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TA                                                                                                                                                   | TAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| rancey                                                                                                                  |                                                                              | ai/ha                                         |                                                                                  | (BBCH)                                                               |                                                                           | part                               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                         |                                                                              |                                               |                                                                                  |                                                                      | Mean                                                                      |                                    | 0.22                                                                                                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         |                                                                              |                                               |                                                                                  |                                                                      | 10                                                                        | Heads                              | 0.19 0.30                                                                                             | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         |                                                                              |                                               |                                                                                  |                                                                      | 10                                                                        | Ticads                             | 0.17 0.50                                                                                             | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         | 1                                                                            |                                               | 1                                                                                | +                                                                    | Mean                                                                      |                                    | 0.20                                                                                                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         |                                                                              | -                                             | 1                                                                                | +                                                                    | 14                                                                        | IIJ.                               | 0.20                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                         |                                                                              |                                               |                                                                                  |                                                                      | 14                                                                        | Heads                              | 0.07 0.06                                                                                             | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         | -                                                                            |                                               |                                                                                  | -                                                                    |                                                                           |                                    |                                                                                                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         |                                                                              |                                               |                                                                                  |                                                                      | Mean                                                                      |                                    | 0.06                                                                                                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| King City, CA,                                                                                                          | 4                                                                            | 128                                           | 281                                                                              | 44                                                                   | 7                                                                         | Heads                              | 0.46 0.46                                                                                             | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| USA, 2011                                                                                                               | (8                                                                           | 128                                           | 281                                                                              | 45                                                                   |                                                                           |                                    |                                                                                                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Venus (head)                                                                                                            | 7                                                                            | 128                                           | 281                                                                              | 47                                                                   | Mean                                                                      |                                    | 0.46                                                                                                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         | 7)                                                                           | 127                                           | 281                                                                              | 48                                                                   |                                                                           |                                    |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Porterville, CA,                                                                                                        | 4                                                                            | 126                                           | 49                                                                               | 44                                                                   | 7                                                                         | Heads                              | 0.08 0.08                                                                                             | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| USA, 2011                                                                                                               | (7                                                                           | 126                                           | 50                                                                               | 45                                                                   |                                                                           |                                    |                                                                                                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vandenberg                                                                                                              | 7                                                                            | 130                                           | 50                                                                               | 47                                                                   | Mean                                                                      |                                    | 0.08                                                                                                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (head) b                                                                                                                | 7)                                                                           | 128                                           | 48                                                                               | 48                                                                   | ivican                                                                    |                                    | 0.00                                                                                                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Arroyo Grande,                                                                                                          | 4                                                                            |                                               | 384                                                                              | +                                                                    | 7                                                                         | IIJ.                               | 0.66.0.67                                                                                             | c 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                 | c 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         | 1                                                                            | 130                                           |                                                                                  | 19                                                                   | /                                                                         | Heads                              | 0.66 0.67                                                                                             | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                 | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CA, USA, 2012                                                                                                           | (7                                                                           | 129                                           | 371                                                                              | 24                                                                   |                                                                           |                                    |                                                                                                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                 | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vandenberg                                                                                                              | 6                                                                            | 128                                           | 374                                                                              | 47                                                                   | Mean                                                                      |                                    | 0.66                                                                                                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.02                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (head)                                                                                                                  | 7)                                                                           | 129                                           | 374                                                                              | 48                                                                   |                                                                           |                                    |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Visalia, CA, USA,                                                                                                       | 4                                                                            | 129                                           | 318                                                                              | 45                                                                   | 7                                                                         | Heads                              | 0.47 0.57                                                                                             | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                 | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2012                                                                                                                    | (7                                                                           | 129                                           | 309                                                                              | 46                                                                   |                                                                           |                                    |                                                                                                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Regency (head)                                                                                                          | 7                                                                            | 128                                           | 309                                                                              | 47                                                                   | Mean                                                                      |                                    | 0.52                                                                                                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         | 7)                                                                           | 128                                           | 309                                                                              | 48                                                                   |                                                                           |                                    |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Greenfield, CA,                                                                                                         | 4                                                                            | 129                                           | 299                                                                              | 46                                                                   | 7                                                                         | Heads                              | 0.03 0.05                                                                                             | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| USA, 2012 Delta                                                                                                         | (6                                                                           | 128                                           | 309                                                                              | 46                                                                   | ,                                                                         | Ticads                             | 0.03 0.03                                                                                             | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| John (head)                                                                                                             | 7                                                                            | 129                                           | 309                                                                              | 46                                                                   | Mean                                                                      |                                    | 0.04                                                                                                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| John (nead)                                                                                                             | 1                                                                            | 129                                           | 309                                                                              | 49                                                                   | Mean                                                                      |                                    | 0.04                                                                                                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| I D A D I DOWNLOOD                                                                                                      | 7)                                                                           | 129                                           | 309                                                                              | 49                                                                   |                                                                           |                                    |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| LEAF LETTUCE                                                                                                            |                                                                              |                                               |                                                                                  |                                                                      |                                                                           |                                    |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Germansville, PA,                                                                                                       | 4                                                                            | 135                                           | 50                                                                               | 15                                                                   | 7                                                                         | Leaves                             | 0.39 0.33                                                                                             | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| USA, 2011 Red                                                                                                           | (6                                                                           | 127                                           | 46                                                                               | 7.6–10 cm                                                            |                                                                           |                                    |                                                                                                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sails (leaf)                                                                                                            | 7                                                                            | 129                                           | 47                                                                               | diameter                                                             |                                                                           |                                    |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c0.04                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                         | 7)                                                                           | 129                                           | 47                                                                               | 10–15 cm                                                             | Mean                                                                      |                                    | 0.36                                                                                                  | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.01                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         | . ,                                                                          |                                               |                                                                                  |                                                                      |                                                                           |                                    |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                         |                                                                              |                                               |                                                                                  | diameter                                                             |                                                                           |                                    |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                         |                                                                              |                                               |                                                                                  | diameter<br>15–20 cm                                                 |                                                                           |                                    |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                         |                                                                              |                                               |                                                                                  |                                                                      |                                                                           |                                    |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Oviedo, FL, USA.                                                                                                        |                                                                              |                                               | 281                                                                              | 15–20 cm<br>diameter                                                 | 7                                                                         | Leaves                             | 0.34 0.27                                                                                             | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                 | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Oviedo, FL, USA,<br>2011 Butter                                                                                         | 4                                                                            | 128                                           | 281<br>281                                                                       | 15–20 cm<br>diameter                                                 | 7                                                                         | Leaves                             | 0.34 0.27                                                                                             | < 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                                 | < 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2011 Butter                                                                                                             | 4 (7                                                                         | 128<br>126                                    | 281                                                                              | 15–20 cm<br>diameter<br>43<br>43                                     |                                                                           | Leaves                             |                                                                                                       | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                 | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                         | 4 (7 7                                                                       | 128<br>126<br>124                             | 281<br>271                                                                       | 15–20 cm<br>diameter<br>43<br>43<br>47                               | 7<br>Mean                                                                 | Leaves                             | 0.34 0.27                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2011 Butter<br>Crunch (leaf)                                                                                            | 4<br>(7<br>7<br>7)                                                           | 128<br>126<br>124<br>128                      | 281<br>271<br>281                                                                | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49                         | Mean                                                                      |                                    | 0.30                                                                                                  | < 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                                 | < 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2011 Butter Crunch (leaf) Porterville, CA,                                                                              | 4<br>(7<br>7<br>7)<br>4                                                      | 128<br>126<br>124<br>128<br>128               | 281<br>271<br>281<br>281                                                         | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49                         |                                                                           | Leaves                             |                                                                                                       | < 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02<br>0.02<br>< 0.01                                                                                                                               | < 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7                                                | 128<br>126<br>124<br>128<br>128<br>130        | 281<br>271<br>281<br>281<br>281                                                  | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42             | Mean 0                                                                    |                                    | 0.30<br>3.71 4.06                                                                                     | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02<br>0.02<br>< 0.01<br>< 0.01                                                                                                                     | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2011 Butter Crunch (leaf) Porterville, CA,                                                                              | 4<br>(7<br>7<br>7)<br>4                                                      | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281                                           | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44       | Mean  0  Mean                                                             | Leaves                             | 0.30<br>3.71 4.06<br>3.88                                                                             | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02<br>0.02<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                           | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7<br>6                                           | 128<br>126<br>124<br>128<br>128<br>130        | 281<br>271<br>281<br>281<br>281                                                  | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42             | Mean 0                                                                    |                                    | 0.30<br>3.71 4.06                                                                                     | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02<br>0.02<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7                                                | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281                                           | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44       | Mean  0  Mean 3                                                           | Leaves                             | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53                                                                | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02<br>0.02<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                       | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7<br>6                                           | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281                                           | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44       | Mean  0  Mean                                                             | Leaves                             | 0.30<br>3.71 4.06<br>3.88                                                                             | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02<br>0.02<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7<br>6                                           | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281                                           | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44       | Mean  0  Mean 3                                                           | Leaves                             | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53                                                                | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02<br>0.02<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                       | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7<br>6                                           | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281                                           | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44       | Mean  0  Mean  3  Mean                                                    | Leaves                             | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53                                                                | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02<br>0.02<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                   | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7<br>6                                           | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281                                           | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44       | Mean  0  Mean  3  Mean  7                                                 | Leaves                             | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53<br>1.56<br>1.47 1.43                                           | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02<br>0.02<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                         | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7<br>6                                           | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281                                           | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44       | Mean  0  Mean  3  Mean                                                    | Leaves Leaves                      | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53<br>1.56<br>1.47 1.43                                           | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02<br>0.02<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                               | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7<br>6                                           | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281                                           | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44       | Mean  O  Mean  3  Mean  7  Mean                                           | Leaves                             | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53<br>1.56<br>1.47 1.43                                           | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02<br>0.02<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                     | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7<br>6                                           | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281                                           | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44       | Mean  O  Mean  3  Mean  7  Mean  9                                        | Leaves Leaves                      | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53<br>1.56<br>1.47 1.43<br>1.45<br>1.22 1.41                      | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                 | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7<br>6                                           | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281                                           | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44       | Mean  O  Mean  3  Mean  7  Mean  9  Mean                                  | Leaves Leaves Leaves               | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53<br>1.56<br>1.47 1.43<br>1.45<br>1.22 1.41                      | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                         | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7<br>6                                           | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281                                           | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44       | Mean  O  Mean  3  Mean  7  Mean  9                                        | Leaves Leaves                      | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53<br>1.56<br>1.47 1.43<br>1.45<br>1.22 1.41                      | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                 | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7<br>6                                           | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281                                           | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44       | Mean  O  Mean  3  Mean  7  Mean  9  Mean  14                              | Leaves Leaves Leaves               | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53<br>1.56<br>1.47 1.43<br>1.45<br>1.22 1.41<br>1.32<br>0.55 0.59 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                         | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter Crunch (leaf) c                                            | 4<br>(7<br>7<br>7<br>7)<br>4<br>(7<br>6<br>7)                                | 128<br>126<br>124<br>128<br>128<br>130<br>130 | 281<br>271<br>281<br>281<br>281<br>281<br>281                                    | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44<br>49 | Mean  O  Mean  3  Mean  7  Mean  9  Mean  14  Mean                        | Leaves Leaves Leaves Leaves        | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53<br>1.47 1.43<br>1.45<br>1.22 1.41<br>1.32<br>0.55 0.59         | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                         | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter                                                            | 4<br>(7<br>7<br>7)<br>4<br>(7<br>6                                           | 128<br>126<br>124<br>128<br>130<br>130<br>129 | 281<br>271<br>281<br>281<br>281<br>281<br>281<br>281                             | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44<br>49 | Mean  O  Mean  3  Mean  7  Mean  9  Mean  14                              | Leaves Leaves Leaves               | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53<br>1.56<br>1.47 1.43<br>1.45<br>1.22 1.41<br>1.32<br>0.55 0.59 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                               | 0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter Crunch (leaf) c                                            | 4<br>(7<br>7<br>7<br>7)<br>4<br>(7<br>6<br>7)                                | 128<br>126<br>124<br>128<br>130<br>130<br>129 | 281<br>271<br>281<br>281<br>281<br>281<br>281<br>281                             | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44<br>49 | Mean  O  Mean  3  Mean  7  Mean  9  Mean  14  Mean                        | Leaves Leaves Leaves Leaves        | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53<br>1.47 1.43<br>1.45<br>1.22 1.41<br>1.32<br>0.55 0.59         | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                         | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter Crunch (leaf) c                                            | 4<br>(7<br>7<br>7<br>7)<br>4<br>(7<br>6<br>7)                                | 128<br>126<br>124<br>128<br>130<br>130<br>129 | 281<br>271<br>281<br>281<br>281<br>281<br>281<br>281                             | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44<br>49 | Mean  O  Mean  3  Mean  7  Mean  9  Mean  14  Mean                        | Leaves Leaves Leaves Leaves        | 0.30<br>3.71 4.06<br>3.88<br>1.58 1.53<br>1.47 1.43<br>1.45<br>1.22 1.41<br>1.32<br>0.55 0.59         | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                               | 0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter Crunch (leaf) c                                            | 4 (7 7 7) 4 (7 6 7) 6 7) 4 (7 6 7) 4 (7 7) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 128<br>126<br>124<br>128<br>130<br>130<br>129 | 281<br>271<br>281<br>281<br>281<br>281<br>281<br>281                             | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44<br>49 | Mean  O  Mean  A  Mean  Mean  Mean  Mean  Mean  Mean  Mean  Mean  Mean  T | Leaves Leaves Leaves Leaves        | 0.30 3.71 4.06 3.88 1.58 1.53 1.56 1.47 1.43 1.45 1.22 1.41 1.32 0.55 0.59 0.57 0.63 0.68             | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                 | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter Crunch (leaf) c  Butter Crunch (leaf) d                    | 4 (7 7 7) 4 (7 6 7) 4 (7 7 7) 4 (7 7 7)                                      | 128<br>126<br>124<br>128<br>130<br>130<br>129 | 281<br>271<br>281<br>281<br>281<br>281<br>281<br>281<br>271<br>281<br>281<br>290 | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44<br>49 | Mean  O  Mean  3  Mean  7  Mean  9  Mean  14  Mean  7  Mean  Mean         | Leaves Leaves Leaves Leaves Leaves | 0.30 3.71 4.06 3.88 1.58 1.53 1.56 1.47 1.43 1.45 1.22 1.41 1.32 0.55 0.59 0.63 0.68 0.66             | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | 0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01 |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter Crunch (leaf) c  Butter Crunch (leaf) d  Visalia, CA, USA, | 4 (7 7 7) 4 (7 6 7) 4 (7 7 7) 4 (7 7 7) 4                                    | 128<br>126<br>124<br>128<br>130<br>130<br>129 | 281<br>271<br>281<br>281<br>281<br>281<br>281<br>271<br>281<br>281<br>290<br>318 | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44<br>49 | Mean  O  Mean  A  Mean  Mean  Mean  Mean  Mean  Mean  Mean  Mean  Mean  T | Leaves Leaves Leaves Leaves        | 0.30 3.71 4.06 3.88 1.58 1.53 1.56 1.47 1.43 1.45 1.22 1.41 1.32 0.55 0.59 0.57 0.63 0.68             | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01 | 0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                         | < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2011 Butter Crunch (leaf)  Porterville, CA, USA, 2011 Butter Crunch (leaf) c  Butter Crunch (leaf) d                    | 4 (7 7 7) 4 (7 6 7) 4 (7 7 7) 4 (7 7 7)                                      | 128<br>126<br>124<br>128<br>130<br>130<br>129 | 281<br>271<br>281<br>281<br>281<br>281<br>281<br>281<br>271<br>281<br>281<br>290 | 15–20 cm<br>diameter<br>43<br>43<br>47<br>49<br>16<br>42<br>44<br>49 | Mean  O  Mean  3  Mean  7  Mean  9  Mean  14  Mean  7  Mean  Mean         | Leaves Leaves Leaves Leaves Leaves | 0.30 3.71 4.06 3.88 1.58 1.53 1.56 1.47 1.43 1.45 1.22 1.41 1.32 0.55 0.59 0.63 0.68 0.66             | < 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01<br>< 0.01           | 0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01     < 0.01 |

| Location, year, variety | No | g<br>ai/ha | L/ha | GS<br>(BBCH) | DALA | Crop<br>part | Flutriafol | T      | TA     | TAA    |
|-------------------------|----|------------|------|--------------|------|--------------|------------|--------|--------|--------|
| San Ardo, CA,           | 4  | 129        | 309  | 45           | 7    | Leaves       | 0.24 0.39  | < 0.01 | < 0.01 | < 0.01 |
| USA, 2012               | (7 | 130        | 309  | 45           |      |              |            | < 0.01 | < 0.01 | < 0.01 |
| Salvius (leaf)          | 7  | 132        | 327  | 45           | Mean |              | 0.32       | < 0.01 | < 0.01 | < 0.01 |
|                         | 7) | 129        | 318  | 49           |      |              |            |        |        |        |
| COS LETTUCE             |    |            |      |              |      |              |            |        |        |        |
| King City, CA,          | 4  | 123        | 47   | 45           | 7    | Leaves       | 0.26 0.30  | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011               | (6 | 129        | 48   | 46           |      |              |            | < 0.01 | < 0.01 | < 0.01 |
| Romaine (leaf) e        | 7  | 126        | 47   | 49           | Mean |              | 0.28       | < 0.01 | < 0.01 | < 0.01 |
|                         | 6) | 131        | 49   | 49           |      |              |            |        |        |        |
| King City, CA,          | 4  | 129        | 281  | 19           | 8    | Leaves       | 0.21 0.19  | < 0.01 | < 0.01 | < 0.01 |
| USA, 2012               | (7 | 128        | 281  | 19           |      |              |            | < 0.01 | < 0.01 | < 0.01 |
| Paragon                 | 7  | 130        | 290  | 41           | Mean |              | 0.20       | < 0.01 | < 0.01 | < 0.01 |
| (Romaine) (leaf) f      | 7) | 128        | 281  | 47           |      |              |            |        |        |        |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

 $\begin{array}{l} Induce~0.25-0.33\%~v/v,~D-W~0.25\%~v/v,~Pro~90~0.25\%~v/v,~Pro~90~0.25\%~v/v,~Pro~90~0.25\%~v/v,~Fro~90~0.25\%~v/v,~Pro~90~0.25\%~v/v,~Pro~90~0.25\%~v/v,~Pro~90~0.25\%~v/v,~Pro~90~0.25\%~v/v,~Pro~90~0.25\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pro~90~0.5\%~v/v,~Pr$ 

Table 28 Residues of flutriafol in celery following application of an SC formulation in the USA (Carringer 2013 2698) (duplicate samples, applications include non-ionic surfactant)

| Location, year,  |      | g     |      | GS     |      |        | Residue (mg | g/kg)  |        |        |
|------------------|------|-------|------|--------|------|--------|-------------|--------|--------|--------|
| Variety          | No   | ai/ha | L/ha | (BBCH) | DALA | Sample | Flutriafol  | T      | TA     | TAA    |
| Oviedo, FL,      | 4 (7 | 128   | 281  | 37     | 7    | Plant  | 0.87 0.97   | < 0.01 | 0.02   | < 0.01 |
| USA, 2011        | 77)  | 129   | 281  | 38     |      |        |             | < 0.01 | 0.02   | < 0.01 |
| Tango            |      | 126   | 281  | 40     | Mean |        | 0.92        | < 0.01 | 0.02   | < 0.01 |
|                  |      | 128   | 281  | 48     |      |        |             |        |        |        |
| Sparta, MI,      | 4 (7 | 129   | 46   | 45     | 7    | Plant  | 0.74 0.72   | 0.06   | < 0.01 | < 0.01 |
| USA, 2012        | 6 8) | 128   | 47   | 46     |      |        |             | 0.06   | < 0.01 | < 0.01 |
| Greenbay         | 6 8) | 128   | 46   | 47     | Mean |        | 0.73        | 0.06   | < 0.01 | < 0.01 |
|                  |      | 128   | 46   | 48     |      | SPCF   | 0.56 0.51   | 0.04   | < 0.01 | < 0.01 |
|                  |      |       |      |        |      |        |             | 0.05   | < 0.01 | < 0.01 |
|                  |      |       |      |        | Mean |        | 0.54        | 0.04   | < 0.01 | < 0.01 |
| King City, CA,   | 4 (7 | 128   | 299  | 4747   | 0    | Plant  | 0.99 0.81   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011        | 7 6) | 133   | 318  |        |      |        |             | < 0.01 | < 0.01 | < 0.01 |
| SSCI             |      | 129   | 309  | 48     | Mean |        | 0.90        | < 0.01 | < 0.01 | < 0.01 |
|                  |      | 127   | 299  | 49     | 2    | Plant  | 0.54 0.46   | < 0.01 | < 0.01 | < 0.01 |
|                  |      |       |      |        |      |        |             | < 0.01 | < 0.01 | < 0.01 |
|                  |      |       |      |        | Mean |        | 0.50        | < 0.01 | < 0.01 | < 0.01 |
|                  |      |       |      |        | 7    | Plant  | 0.41 0.47   | < 0.01 | < 0.01 | < 0.01 |
|                  |      |       |      |        |      |        |             | < 0.01 | < 0.01 | < 0.01 |
|                  |      |       |      |        | Mean |        | 0.44        | < 0.01 | < 0.01 | < 0.01 |
|                  |      |       |      |        | 10   | Plant  | 0.32 0.42   | < 0.01 | < 0.01 | < 0.01 |
|                  |      |       |      |        |      |        |             | < 0.01 | < 0.01 | < 0.01 |
|                  |      |       |      |        | Mean |        | 0.37        | < 0.01 | < 0.01 | < 0.01 |
|                  |      |       |      |        | 14   | Plant  | 0.43 0.38   | < 0.01 | < 0.01 | < 0.01 |
|                  |      |       |      |        |      |        |             | < 0.01 | < 0.01 | < 0.01 |
|                  |      |       |      |        | Mean |        | 0.40        | < 0.01 | < 0.01 | < 0.01 |
| Porterville, CA, | 4 (8 | 130   | 47   | 45     | 7    | Plant  | 1.40 1.41   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011        | 77)  | 128   | 47   | 46     |      |        |             | < 0.01 | < 0.01 | < 0.01 |
| Command          |      | 133   | 133  | 48     | Mean |        | 1.40        | < 0.01 | < 0.01 | < 0.01 |
|                  |      | 131   | 131  | 49     |      |        |             |        |        |        |

<sup>&</sup>lt;sup>a</sup> Last application 01/11/2011

<sup>&</sup>lt;sup>b</sup> Last application 10/11/2011, related location, same varieties as other Porterville trial<sup>A</sup>

<sup>&</sup>lt;sup>c</sup> Last application 01/11/2011

<sup>&</sup>lt;sup>d</sup> Last application 03/11/2011, related location, same varieties as other Porterville trial<sup>C</sup>

<sup>&</sup>lt;sup>e</sup> Last application 16/11/2011

 $<sup>^{\</sup>mathrm{f}}$  Last application 06/04/2011, same location but application dates significantly different

| Location, year,  |      | g     |      | GS     |      |        | Residue (mg | g/kg)  |        |        |
|------------------|------|-------|------|--------|------|--------|-------------|--------|--------|--------|
| Variety          | No   | ai/ha | L/ha | (BBCH) | DALA | Sample | Flutriafol  | T      | TA     | TAA    |
| Porterville, CA, | 4 (7 | 129   | 365  | 44     | 7    | Plant  | 0.96 1.20   | < 0.01 | 0.02   | < 0.01 |
| USA, 2012        | 7 6) | 128   | 365  | 46     |      |        |             | < 0.01 | 0.02   | < 0.01 |
| Mission          |      | 129   | 365  | 46     | Mean |        | 1.08        | < 0.01 | 0.02   | < 0.01 |
|                  |      | 127   | 365  | 48     |      | SPCF   | 1.4 1.3     | < 0.01 | 0.02   | < 0.01 |
|                  |      |       |      |        |      |        |             | < 0.01 | 0.01   | < 001  |
|                  |      |       |      |        | Mean |        | 1.35        | < 0.01 | 0.02   | < 0.01 |
| Guadalupe, CA,   | 4 (6 | 128   | 271  | 45     | 8    | Plant  | 0.79 0.76   | 0.04,  | 0.06   | < 0.01 |
| USA, 2011        | 7 6) | 129   | 262  | 46     |      |        |             | 0.04   | 0.05   | < 0.01 |
| Conquistador     |      | 129   | 271  | 47     |      |        |             |        | c0.03  |        |
|                  |      | 128   | 271  | 48     | Mean |        | 0.78        | 0.04   | 0.06   | < 0.01 |
|                  |      |       |      |        |      | SPCF   | 0.64 0.50   | 0.04   | 0.05   | < 0.01 |
|                  |      |       |      |        |      |        |             | 0.02   | 0.05   | < 0.01 |
|                  |      |       |      |        | Mean |        | 0.57        | 0.03   | 0.05   | < 0.01 |
| Oviedo, FL,      | 4 (7 | 127   | 281  | 45     | 7    | Plant  | 0.48 0.49   | < 0.01 | 0.03   | < 0.01 |
| USA, 2012        | 77)  | 130   | 290  | 45-49  |      |        |             | < 0.01 | 0.03   | < 0.01 |
| Tango            |      | 127   | 281  | 47     | Mean |        | 0.48        | < 0.01 | 0.03   | < 0.01 |
|                  |      | 129   | 281  | 49     |      |        |             |        |        |        |
| King City, CA,   | 4 (8 | 130   | 309  | 46     | 7    | Plant  | 0.32 0.36   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2012        | 77)  | 130   | 309  | 46     |      |        |             | < 0.01 | < 0.01 | < 0.01 |
| Conquistador     |      | 129   | 309  | 46     | Mean |        | 0.34        | < 0.01 | < 0.01 | < 0.01 |
| _                |      | 130   | 309  | 48     |      |        |             |        |        |        |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

 $Triangle \ D-W \ 0.25\% \ v/v, \ R-11 \ 0.07\% \ v/v, \ Pro \ 90 \ 0.5\% \ v/v, \ Pro \ 90 \ 0.25\% \ v/v, \ FC \ Spreader \ Sticker \ 0.065\% \ v/v, \ Triangle \ D-W \ 0.25\% \ v/v, \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\% \ v/v \ Pro \ 90 \ 0.5\%$ 

Table 29 Residues of flutriafol in spinach following application of an SC formulation in the USA (Carringer 2013 2698) (duplicate samples, applications include non-ionic surfactant)

| Location, year,   |        | g     |      | GS     |      | Residue (m | g/kg)  |        |        |
|-------------------|--------|-------|------|--------|------|------------|--------|--------|--------|
| variety           | No     | ai/ha | L/ha | (BBCH) | DALA | Flutriafol | T      | TA     | TAA    |
| Alton NY, USA,    | 4 (7 7 | 127   | 281  | 15     | 7    | 2.3 1.9    | < 0.01 | 0.03   | < 0.01 |
| 2011 Space        | 7)     | 127   | 281  | 17     |      |            | < 0.01 | 0.03   | < 0.01 |
| -                 |        | 127   | 281  | 17     |      |            |        | c0.07  |        |
|                   |        | 127   | 281  | 18     | Mean | 2.1        | < 0.01 | 0.03   | < 0.01 |
| Chula GA USA 2011 | 4 (7 6 | 128   | 47   | 12     | 7    | 1.25 1.4   | < 0.01 | 0.03   | < 0.01 |
| Vancouver         | 8)     | 128   | 47   | 14     |      |            | < 0.01 | 0.03   | < 0.01 |
|                   |        | 128   | 47   | 17     | Mean | 1.32       | < 0.01 | 0.03   | < 0.01 |
|                   |        | 128   | 47   | 37     |      |            |        |        |        |
| Uvalde TX USA,    | 4 (7 7 | 126   | 168  | 45     | 7    | 0.96 0.93  | < 0.01 | < 0.01 | < 0.01 |
| 2011 DMC 66-07    | 6)     | 128   | 168  | 45     |      |            | < 0.01 | < 0.01 | < 0.01 |
|                   |        | 129   | 206  | 46     | Mean | 0.94       | < 0.01 | < 0.01 | < 0.01 |
|                   |        | 128   | 196  | 46     |      |            |        |        |        |
| Jerome ID, USA,   | 4 (8 7 | 129   | 215  | 15     | 6    | 1.6 1.5    | < 0.01 | 0.01   | < 0.01 |
| 2011 Unipack 151  | 7)     | 131   | 206  | 19     |      |            | < 0.01 | 0.01   | < 0.01 |
|                   |        | 128   | 206  | 35     | Mean | 1.55       | < 0.01 | < 0.01 | < 0.01 |
|                   |        | 129   | 206  | 45     |      |            |        |        |        |
| Porterville, CA,  | 4 (7 7 | 128   | 365  | 10     | 7    | 0.59 0.51  | < 0.01 | 0.04   | < 0.01 |
| USA, 2011 Shasta  | 6)     | 132   | 365  | 11     |      |            | < 0.01 | 0.04   | < 0.01 |
|                   |        | 132   | 365  | 14     | Mean | 0.55       | < 0.01 | 0.04   | < 0.01 |
|                   |        | 130   | 365  | 17     |      |            |        |        |        |
| Arroyo Grande CA, | 4 (6 7 | 128   | 196  | 45     | 7    | 5.2 4.9    | < 0.01 | 0.03   | < 0.01 |
| USA, 2011 Falcon  | 6)     | 127   | 196  | 45     |      |            | < 0.01 | 0.02   | < 0.01 |
|                   |        | 128   | 196  | 46     | Mean | 5.05       | < 0.01 | 0.02   | < 0.01 |
|                   |        | 128   | 196  | 47     |      |            |        |        |        |
| Blackville SC USA | 4 (8 6 | 129   | 140  | 12     | 7    | 1.7 1.85   | < 0.01 | 0.02   | < 0.01 |
| 2012              | 7)     | 128   | 140  | 13     |      |            | < 0.01 | 0.02   | < 0.01 |
|                   |        | 129   | 140  | 15     | Mean | 1.78       | < 0.01 | 0.02   | < 0.01 |
|                   |        | 128   | 140  | 17     |      |            |        |        |        |
| Raymondville TX   | 4 (6 7 | 132   | 196  | 17–18  | 0    | 8.0 7.8    | < 0.01 | 0.01   | < 0.01 |
| USA 2012          | 7)     | 132   | 196  | 19     |      |            | < 0.01 | 0.01   | < 0.01 |

| Location, year, |    | g     |      | GS     |      | Residue (mg | /kg)   |      |        |
|-----------------|----|-------|------|--------|------|-------------|--------|------|--------|
| variety         | No | ai/ha | L/ha | (BBCH) | DALA | Flutriafol  | T      | TA   | TAA    |
|                 |    | 132   | 196  | 38     | Mean | 7.9         | < 0.01 | 0.01 | < 0.01 |
|                 |    | 131   | 196  | 47–49  | 3    | 6.1 6.3     | < 0.01 | 0.02 | < 0.01 |
|                 |    |       |      |        |      |             | < 0.01 | 0.01 | < 0.01 |
|                 |    |       |      |        | Mean | 6.2         | < 0.01 | 0.02 | < 0.01 |
|                 |    |       |      |        | 6    | 5.4 5.5     | < 0.01 | 0.01 | < 0.01 |
|                 |    |       |      |        |      |             | < 0.01 | 0.02 | < 0.01 |
|                 |    |       |      |        | Mean | 5.45        | < 0.01 | 0.02 | < 0.01 |
|                 |    |       |      |        | 10   | 3.4 3.1     | < 0.01 | 0.02 | < 0.01 |
|                 |    |       |      |        |      |             | < 0.01 | 0.02 | < 0.01 |
|                 |    |       |      |        | Mean | 3.25        | < 0.01 | 0.02 | < 0.01 |
|                 |    |       |      |        | 13   | 2.3 3.0     | < 0.01 | 0.02 | < 0.01 |
|                 |    |       |      |        |      |             | < 0.01 | 0.02 | < 0.01 |
|                 |    |       |      |        | Mean | 2.65        | < 0.01 | 0.02 | < 0.01 |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.25%~v/v,~Induce~0.5%~v/v,~Induce~0.5%~v/v,~Pro~90~0.5%~v/v,~First~Choice~0.03%~v/v,~Scanner~0.25-0.26%~v/v,~R11~0.25%~v/v

Table 30 Residues of flutriafol in mustard greens following application of an SC formulation in the USA (Carringer 2013 2697) (duplicate samples, applications include non-ionic surfactant)

| Location, year,   |      |         |      | GS     |      | Residue (mg/ | /kg)   |        |        |
|-------------------|------|---------|------|--------|------|--------------|--------|--------|--------|
| variety           | No   | g ai/ha | L/ha | (BBCH) | DALA | Flutriafol   | T      | TA     | TAA    |
| Seven Springs,    | 4 (7 | 128     | 290  | 35     | 7    | 2.37 1.88    | < 0.01 | 0.05   | < 0.01 |
| NC, USA, 2011     | 7    | 127     | 290  | 39     |      |              | < 0.01 | 0.05   | < 0.01 |
| Southern          |      | 131     | 299  | 42     |      |              |        | c0.02  |        |
| Curly Giant       | 7)   | 131     | 299  | 45     | Mean | 2.12         | < 0.01 | 0.05   | < 0.01 |
| Proctor AR USA,   | 4 (7 | 128     | 150  | 2–4 lf | 7    | 2.53 3.03    | < 0.01 | 0.01   | < 0.01 |
| 2011              |      | 128     | 150  | 3–4 lf |      |              | < 0.01 | 0.02   | < 0.01 |
| Florida Broadleaf | 77)  | 128     | 150  | 4–6 lf | Mean | 2.78         | < 0.01 | 0.02   | < 0.01 |
|                   |      | 128     | 150  | 4–6 lf |      |              |        |        |        |
| Conklin, MI,      | 4 (7 | 130     | 50   | 12–16  | 7    | 2.0 2.24     | < 0.01 | 0.06   | < 0.01 |
| USA, 2012 Green   | 7    | 129     | 49   | 13–17  |      |              | < 0.01 | 0.06   | < 0.01 |
| Wave              |      | 129     | 49   | 16–20  |      |              |        | c0.02  |        |
|                   | 7)   | 128     | 48   | 46–48  | Mean | 2.12         | < 0.01 | 0.06   | < 0.01 |
| Uvalde, TX, USA,  | 4 (7 | 126     | 150  | 45     | 7    | 2.24 2.06    | < 0.01 | 0.03   | < 0.01 |
| 2011              |      | 129     | 140  | 46     |      |              | < 0.01 | 0.03   | < 0.01 |
| India Mustard     | 7 7) | 128     | 159  | 47     | Mean | 2.15         | < 0.01 | 0.03   | < 0.01 |
|                   |      | 128     | 159  | 48     |      |              |        |        |        |
| Porterville, CA,  | 4 (6 | 124     | 46   | 13     | 0    | 3.4 3.41     | < 0.01 | < 0.01 | < 0.01 |
| USA, 2011         |      | 132     | 49   | 14     |      |              | < 0.01 | < 0.01 | < 0.01 |
| Florida           | 8    | 122     | 45   | 17     | Mean | 3.40         | < 0.01 | < 0.01 | < 0.01 |
| Broadleaf         | 7)   | 124     | 46   | 49     | 3    | 1.97 1.84    | < 0.01 | 0.01   | < 0.01 |
|                   | /)   |         |      |        |      |              | < 0.01 | 0.01   | < 0.01 |
|                   |      |         |      |        | Mean | 1.90         | < 0.01 | 0.01   | < 0.01 |
|                   |      |         |      |        | 7    | 1.59 0.80    | < 0.01 | 0.01   | < 0.01 |
|                   |      |         |      |        |      |              | < 0.01 | 0.01   | < 0.01 |
|                   |      |         |      |        | Mean | 1.20         | < 0.01 | 0.01   | < 0.01 |
|                   |      |         |      |        | 10   | 0.66 0.84    | < 0.01 | 0.02   | < 0.01 |
|                   |      |         |      |        |      |              | < 0.01 | 0.02   | < 0.01 |
|                   |      |         |      |        | Mean | 0.75         | < 0.01 | 0.02   | < 0.01 |
|                   |      |         |      |        | 14   | 0.55 0.45    | < 0.01 | 0.02   | < 0.01 |
|                   |      |         |      |        |      |              | < 0.01 | 0.02   | < 0.01 |
|                   |      |         |      |        | Mean | 0.50         | < 0.01 | 0.02   | < 0.01 |
| Elko SC, USA      | 4 (7 | 128     | 140  | 13     | 7    | 3.53 3.32    | < 0.01 | 0.04   | < 0.01 |
| 2011 Florida      | `    | 128     | 140  | 17     |      |              | < 0.01 | 0.05   | < 0.01 |
|                   | 7.7  | 129     | 140  | 18     | Mean | 3.42         | < 0.01 | 0.04   | < 0.01 |
|                   | 7 7) | 127     | 140  | 19     |      |              |        |        |        |
| Oveido FL USA     | 4 (7 | 128     | 281  | 19     | 7    | 1.45 1.53    | < 0.01 | 0.18   | < 0.01 |
| 2011 Florida      | 7    | 130     | 290  | 43     |      |              | < 0.01 | 0.13   | < 0.01 |

| Location, year, |      |         |      | GS     |      | Residue (mg/l | (g)    |       |        |
|-----------------|------|---------|------|--------|------|---------------|--------|-------|--------|
| variety         | No   | g ai/ha | L/ha | (BBCH) | DALA | Flutriafol    | T      | TA    | TAA    |
|                 |      | 126     | 281  | 46     |      |               |        | c0.01 |        |
| Broadleaf       | 7)   | 128     | 281  | 48     | Mean | 1.49          | < 0.01 | 0.16  | < 0.01 |
| Visalia CA USA  | 4 (7 | 128     | 309  | 19     | 7    | 1.92 2.12     | < 0.01 | 0.04  | < 0.01 |
| 2011 Florida    | 7    | 129     | 318  | 33     |      |               | < 0.01 | 0.04  | < 0.01 |
|                 | ,    | 128     | 309  | 35     |      |               |        | c0.02 |        |
| Broadleaf       | 7)   | 128     | 318  | 47     | Mean | 2.02          | < 0.01 | 0.04  | < 0.01 |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

 $\begin{array}{l} \textbf{Induce 0.3-0.4\% \ v/v, DyneAmic 0.5\% \ v/v, R11\ 0.06\% \ v/v, Induce 0.25\% \ v/v, Pro\ 90\ 0.5-1\% \ v/v, Scanner\ 0.24-0.25\% \ v/v, Triangle\ D-W\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 90\ 0.25\% \ v/v, Pro\ 9$ 

Table 31 Residues of flutriafol in sugar beet (roots) in Europe following application of an SC formulation (Pollmann 2005a 1235; 2005b 1236; 2006a 1368; 2006b 1335; 2007b 1381)

| Location, year, variety<br>SUGAR BEET | No                | g<br>ai/ha | L/ha     | GS<br>(BBCH) | DALA | Flutriafol (mg/kg) |
|---------------------------------------|-------------------|------------|----------|--------------|------|--------------------|
| Northern Europe (1235)                |                   | ai/IIa     |          | (высп)       | 1    |                    |
| Scherwiller, Alsace, Northern         | 2                 | 120        | 290      | 39           | 15   | 0.01               |
| France 2004 Guepard                   | (21)              | 135        | 327      | 39           | 22   | < 0.01             |
| France 2004 Gueparu                   | (21)              | 133        | 321      | 39           | 29   | < 0.01             |
|                                       |                   |            |          |              | 41   | < 0.01             |
| Dollern, Niedersachsen,               | 2                 | 131        | 263      | 45           | 14   | < 0.01             |
| Germany 2004 Famosa                   | (22) a            | 126        | 253      | 43–44        | 22   | < 0.01             |
| Germany 2004 Famosa                   | (22)              | 120        | 233      | 43-44        | 27   | 0.01               |
|                                       |                   |            |          |              | 41   | < 0.01             |
| Haderslev, Jutland, Denmark           | 2                 | 125        | 303      | 39           | 15   | < 0.01             |
| 2004 Verity                           | (21) b            | 111        | 269      | 46           | 21   | < 0.01             |
| 2004 VCIIIy                           | (21)              | 111        | 207      | 40           | 28   | < 0.01             |
|                                       |                   |            | <u> </u> | +            | 42   | < 0.01             |
| Holme, Peterborough, UK 2004          | 2                 | 121        | 293      | 45           | 15   | 0.02               |
| Cinderella                            | (21) °            | 120        | 292      | 47           | 20   | 0.02               |
| Ciliderella                           | (21)              | 120        | 292      | 47           | 29   | < 0.01             |
|                                       |                   |            |          |              | 41   | < 0.01             |
| Dudenbuttel, Lower Saxony,            | 2                 | 126        | 300      | 43           | 22   | < 0.01             |
| Germany 2005 Ricardo                  | (21) <sup>d</sup> | 131        | 311      | 44–46        | 28   | < 0.01             |
| Haderslav, Sonderjylland,             | 2                 | 133        | 316      | 43–44        | 20   | < 0.01             |
| Denmark 2005 Verity                   | (21) e            | 138        | 329      | 46           | 28   | < 0.01             |
| Scherwiller, Alsace, Northern         | 2                 | 123        | 292      | 39           | 21   | 0.02               |
| France 2005 Canyon                    | (20) f            | 138        | 328      | 39           | 27   | 0.02               |
| Bishop's Tachbrook,                   | 2                 | 127        | 302      | 47           | 21   | 0.03               |
| Warwickshire, UK 2005                 | (21) g            | 130        | 310      | 48           | 29   | 0.03               |
| Cinderella                            | (21)              | 130        | 310      | 40           | 29   | 0.02               |
| Southern Europe (1236, 1335)          |                   |            |          |              | +    |                    |
| Castelnuovo della Daunia,             | 3                 | 132        | 320      | 35–37        | 7    | < 0.01             |
| Puglia, Italy, 2004 Monatonno         | (21               | 131        | 317      | 36–38        | 15   | < 0.01             |
| r ugna, mary, 2004 Monatonno          | 22) h             | 127        | 308      | 45–47        | 22   | < 0.01             |
|                                       | 22)               | 14/        | 300      | 43-47        | 29   | < 0.01             |
| Poggio Renatico, Emilia               | 3                 | 127        | 410      | 37           | 6    | < 0.01             |
| Romagna, Italy, 2004 Gea              | (21               | 127        | 402      | 39–41        | 13   | < 0.01             |
| Romagna, mary, 2004 Oca               | 21)               | 123        | 402      | 44           | 20   | < 0.01             |
|                                       | 21)               | 124        | 400      | 44           | 29   | < 0.01             |
| Pozoarmargo, Cuenca, Spain,           | 3                 | 127        | 408      | 39           | 7    | < 0.01             |
| 2004 Vincent                          | (21               | 127        | 410      | 39           | 15   | 0.02               |
| 2004 VIIICEIII                        | 20)               | 124        | 401      | 39           | 22   | 0.02               |
|                                       | 20)               | 124        | 401      | 37           | 30   | < 0.01             |
| Tobarra, Albacete, Spain, 2004        | 3                 | 128        | 412      | 39           | 7    | 0.01               |
|                                       | (21               | 132        | 412      | 39           | 14   | < 0.01             |
| Brigitta                              | 21)               | 132        | 427      | 39           | 21   | < 0.01             |
|                                       | 21)               | 120        | 403      | 39           | 29   | < 0.01             |

| Location, year, variety<br>SUGAR BEET | No               | g<br>ai/ha | L/ha | GS<br>(BBCH) | DALA | Flutriafol (mg/kg)    |
|---------------------------------------|------------------|------------|------|--------------|------|-----------------------|
| Tobarra, Albacete, Spain, 2005        | 3                | 122        | 390  | 39           | 20   | 0.02                  |
| Heracles                              | (22              | 125        | 401  | 39           | 27   | 0.02                  |
|                                       | 20)              | 117        | 373  | 42           |      |                       |
| Poggio Renatico, Emilia               | 3                | 125        | 397  | 45           | 22   | 0.01, < 0.01 (< 0.01) |
| Romagna, Italy, 2005 Opera            | (21              | 124        | 393  | 47           | 28   | 0.02, 0.01 (0.02)     |
|                                       | 21) i            | 127        | 403  | 47           |      |                       |
| Ponte Pietra, Cesena, Emilia          | 3                | 128        | 407  | 42           | 22   | 0.02                  |
| Romagna, Italy, 2005 Gea              | (20              | 123        | 390  | 44           | 28   | < 0.01                |
|                                       | 20) <sup>j</sup> | 124        | 393  | 46           |      |                       |
| Arevalo, Avila, Spain, 2006           | 3                | 131        | 312  | 39           | 22   | 0.04                  |
| Brigitta                              | (20              | 138        | 328  | 39           | 29   | 0.03                  |
|                                       | 21)              | 126        | 299  | 39           |      |                       |

<sup>&</sup>lt;sup>a</sup> 6 mm rainfall within 24 h of 1<sup>st</sup> application

Table 32 Residues of flutriafol in sugar beet (roots) in the USA following application of an SC formulation (Jones 2009 1812) (duplicate samples)

| Location, year,   |            |         |      | GS         |      | Residue (mg | /kg)   |        |        |
|-------------------|------------|---------|------|------------|------|-------------|--------|--------|--------|
| variety           | No         | g ai/ha | L/ha | (BBCH)     | DALA | Flutriafol  | T      | TA     | TAA    |
| Porterville, CA,  | 3          | 129     | 306  | 81         | 14   | 0.05        | < 0.01 | 0.02   |        |
|                   |            |         |      |            |      | 0.05        | < 0.01 | 0.01   |        |
| USA, 2009 Pheonix | (14 14)    | 127     | 307  | 81-83      | Mean | 0.05        | < 0.01 | 0.02   | < 0.01 |
|                   |            | 124     | 292  | 87         |      |             |        |        |        |
| Fresno, CA,       | 3          | 125     | 325  | 48         | 14   | 0.02        | < 0.01 | 0.04   |        |
|                   |            |         |      |            |      | 0.02        | < 0.01 | 0.03   |        |
|                   |            |         |      |            |      |             |        | c0.02  |        |
| USA, 2009 HH142   | $(14\ 14)$ | 128     | 329  | 48         | Mean | 0.02        | < 0.01 | 0.04   | < 0.01 |
|                   |            | 128     | 329  | 49         |      |             |        |        |        |
| American Falls,   | 3          | 123     | 279  | 49         | 14   | 0.01        | < 0.01 | < 0.01 |        |
|                   |            |         |      |            |      | 0.02        | < 0.01 | < 0.01 |        |
| ID, USA, 2009     | $(14\ 15)$ | 129     | 295  | 49         | Mean | 0.02        | < 0.01 | < 0.01 | < 0.01 |
| Hillshog 9026     |            | 123     | 318  | 49         |      |             |        |        |        |
| Jerome, ID,       | 3          | 128     | 345  | 49         | 14   | 0.01        | < 0.01 | 0.01   |        |
|                   |            |         |      |            |      | 0.02        | < 0.01 | 0.01   |        |
| USA, 2009         | $(14\ 14)$ | 128     | 332  | 49         | Mean | 0.02        | < 0.01 | 0.01   | < 0.01 |
| BTSCT01RR07       |            | 124     | 339  | 49         |      |             |        |        |        |
| Geneva, MN,       | 3          | 129     | 288  | Vegetative | 14   | < 0.01      | < 0.01 | < 0.01 |        |
|                   |            |         |      |            |      | < 0.01      | < 0.01 | < 0.01 |        |
| USA, 2009 Beta    | $(15\ 13)$ | 128     | 280  | Vegetative | Mean | < 0.01      | < 0.01 | < 0.01 | < 0.01 |
| 130R              |            | 129     | 289  | Vegetative |      |             |        |        |        |
| Campbell, MN,     | 3 (13 14)  |         | 328  | 33         | 0    | < 0.01      | < 0.01 | < 0.01 |        |
| USA, 2009         |            | 128     | 328  | 35         |      | 0.01        | < 0.01 | < 0.01 |        |
| 4012RR            |            | 129     | 330  | 49         | Mean | < 0.01      | < 0.01 | < 0.01 | < 0.01 |
|                   |            |         |      |            | 7    | 0.01        | < 0.01 | < 0.01 |        |
|                   |            |         |      |            |      | 0.02        | < 0.01 | < 0.01 |        |
|                   |            |         |      |            | Mean | 0.02        | < 0.01 | < 0.01 | < 0.01 |
|                   |            |         |      |            | 14   | < 0.01      | < 0.01 | < 0.01 |        |
|                   |            |         |      |            |      | < 0.01      | < 0.01 | < 0.01 |        |
|                   |            |         |      |            | Mean | < 0.01      | < 0.01 | < 0.01 | < 0.01 |
|                   |            |         |      |            | 21   | 0.01        | < 0.01 | < 0.01 |        |

<sup>&</sup>lt;sup>b</sup> 2 mm and 3 mm rain within 24 h 1<sup>st</sup> and 2<sup>nd</sup> spray

 $<sup>^{</sup>c}$  10.2 mm after  $2^{nd}$  spray

<sup>&</sup>lt;sup>d</sup> 7 mm after 2<sup>nd</sup> spray

 $<sup>^{\</sup>rm e}$  3 and 9 mm rain within 24 h  $1^{\rm st}$  and  $2^{\rm nd}$  spray

 $<sup>^{\</sup>rm f}$  3 and 3 mm rain within 24 h  $1^{\rm st}$  and  $2^{\rm nd}$  spray

g 5 mm rainfall within 24 h of 1st application

<sup>&</sup>lt;sup>h</sup> 0.4 mm rain within 24 h 1<sup>st</sup> spray

 $<sup>^{\</sup>mathrm{i}}$  3.6 mm rain within 24 h  $2^{\mathrm{nd}}$  spray

<sup>&</sup>lt;sup>j</sup> 0.6 mm rain within 24 h 3<sup>rd</sup> spray

| Location, year,          |            |            |            | GS                                |      | Residue (mg/ | /kg)   |        |          |
|--------------------------|------------|------------|------------|-----------------------------------|------|--------------|--------|--------|----------|
| variety                  | No         | g ai/ha    | L/ha       | (BBCH)                            | DALA | Flutriafol   | T      | TA     | TAA      |
|                          |            |            |            |                                   |      | < 0.01       | < 0.01 | < 0.01 |          |
|                          |            |            |            |                                   | Mean | < 0.01       | < 0.01 | < 0.01 | < 0.01   |
|                          |            |            |            |                                   | 28   | < 0.01       | < 0.01 | < 0.01 |          |
|                          |            |            |            |                                   |      | < 0.01       | < 0.01 | < 0.01 |          |
|                          |            |            |            |                                   | Mean | < 0.01       | < 0.01 | < 0.01 | < 0.01   |
| Paynesville, MN,         | 3 (13 14)  | 130        | 283        | 45                                | 14   | < 0.01       | < 0.01 | < 0.01 |          |
| USA,                     |            | 131        | 285        | 45                                |      | < 0.01       | < 0.01 | < 0.01 |          |
| 2009 Crystal<br>RR202    |            | 130        | 281        | 47                                | Mean | < 0.01       | < 0.01 | < 0.01 | < 0.01   |
| Pavillion, WY,           | 3          | 128        | 304        | 49                                | 14   | 0.04         | < 0.01 | < 0.01 |          |
|                          |            |            |            |                                   |      | 0.06         | < 0.01 | < 0.01 |          |
| USA, 2009 Beta<br>36RR11 | (14 14)    | 130<br>130 | 302<br>318 | 49<br>49                          | Mean | 0.05         | < 0.01 | < 0.01 | < 0.01   |
| Northwood,               | 3          | 127        | 325        | 39                                | 14   | < 0.01       | < 0.01 | < 0.01 | 1        |
|                          |            |            |            |                                   |      | 0.01         | < 0.01 | < 0.01 |          |
| ND, USA, 2009            | $(15\ 13)$ | 129        | 329        | 39                                | Mean | < 0.01       | < 0.01 | < 0.01 | < 0.01   |
| Beta 1305R               |            | 127        | 324        | 39                                | Mean |              |        |        |          |
| Velva, ND,               | 3          | 130        | 284        | 37                                | 14   | 0.02         | < 0.01 | < 0.01 |          |
|                          |            |            |            |                                   |      | 0.02         | < 0.01 | < 0.01 |          |
| USA, 2009 R308           | (14 14)    | 131<br>127 | 286<br>284 | 39<br>39                          | Mean | 0.02         | < 0.01 | < 0.01 | < 0.01   |
| York, NE, USA,           | 3 (14 14)  | 129        | 329        | 42d before                        | 14   | 0.01         | < 0.01 | < 0.01 |          |
| 2009 Beta 734IR          |            |            |            | harvest                           |      | < 0.01       | < 0.01 | < 0.01 |          |
|                          |            | 130<br>129 | 329<br>325 | 39<br>49                          | Mean | < 0.01       | < 0.01 | < 0.01 | < 0.01   |
| Levelland, TX,           | 3 (14 15)  | 130        | 324        | Roots starting                    | 14   | 0.01         | < 0.01 | < 0.01 |          |
| USA, 2009 Phoenix        |            |            |            | to enlarge                        |      | < 0.01       | < 0.01 | < 0.01 | <u> </u> |
|                          |            | 124        | 322        | roots enlarging<br>maturing roots |      | < 0.01       | < 0.01 | < 0.01 | < 0.01   |
|                          |            | 127        | 325        |                                   |      |              |        |        |          |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Table 33 Residues of flutriafol in maize (grain) following application of an SC formulation in the USA (Carringer 2010 1810) (duplicate samples) A non-ionic surfactant was added to the tank mix at all sites except for decline trials where plots were sprayed with and without surfactant.

| •                                    |       |            |            | *        | 1 5      |      |                  |                  |              |                  |
|--------------------------------------|-------|------------|------------|----------|----------|------|------------------|------------------|--------------|------------------|
| Location, year,                      |       | g          |            | g        | GS       |      | Residue (mg      | g/kg)            |              |                  |
| variety                              | No    | ai/ha      | L/ha       | ai/hL    | (BBCH)   | DALA | Flutriafol       | T                | TA           | TAA              |
| Germansville,                        | 2 (6) | 129        | 140        | 77       | 87       | 6    | < 0.01           | < 0.01           | < 0.01       | < 0.01           |
| PA, USA,                             |       | 132        | 140        | 79       | 89       |      | < 0.01           | < 0.01           | < 0.01       | < 0.01           |
| 2009 Hybrid<br>2D324 Mycogen<br>Seed |       |            |            |          |          | Mean | < 0.01           | < 001            | < 0.01       | < 0.01           |
| Seven Springs,<br>NC,                | 2 (7) | 129<br>131 | 131<br>131 | 82<br>84 | 86<br>89 | 6    | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | 0.05<br>0.06 | < 0.01<br>< 0.01 |
| USA, 2009 N77-<br>P5                 |       | -          |            |          |          | Mean | < 0.01           | < 0.01           | 0.06         | < 0.01           |
| Wyoming, IL,                         | 2 (7) | 129        | 112        | 96       | 89       | 0    | < 0.01           | < 0.01           | 0.06         | < 0.01           |
| USA, 2009                            |       |            |            |          |          |      | < 0.01           | < 0.01           | 0.07         | < 0.01           |
|                                      |       |            |            |          |          | Mean | < 0.01           | < 0.01           | 0.06         | < 0.01           |
| DKC 61-69                            |       | 128        | 112        | 95       | 89       | 1    | < 0.01           | < 0.01           | 0.08         | < 0.01           |
|                                      |       |            |            |          |          |      | < 0.01           | < 0.01           | 0.06         | < 0.01           |
|                                      |       |            |            |          |          | Mean | < 0.01           | < 0.01           | 0.07         | < 0.01           |
|                                      |       |            |            |          |          | 7    | < 0.01           | < 0.01           | 0.07         | < 0.01           |
|                                      |       |            |            |          |          |      | < 0.01           | < 0.01           | 0.07         | < 0.01           |
|                                      |       |            |            |          |          | Mean | < 0.01           | < 0.01           | 0.07         | < 0.01           |
|                                      |       |            |            |          |          | 15   | < 0.01           | < 0.01           | 0.08         | < 0.01           |
|                                      |       |            |            |          |          |      | < 0.01           | < 0.01           | 0.07         | < 0.01           |
|                                      |       |            |            |          |          | Mean | < 0.01           | < 0.01           | 0.08         | < 0.01           |
|                                      |       |            |            |          |          | 21   | < 0.01           | < 0.01           | 0.06         | < 0.01           |

Flutriafol Flutriafol

| Location, year, |          | g        |      | g     | GS       |          | Residue (mg | g/kg)  |        |        |
|-----------------|----------|----------|------|-------|----------|----------|-------------|--------|--------|--------|
| variety         | No       | ai/ha    | L/ha | ai/hL | (BBCH)   | DALA     | Flutriafol  | T      | TA     | TAA    |
|                 |          |          |      |       |          |          | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.06   | < 0.01 |
| No surfactant   | 2 (7)    | 128      | 112  | 96    | 89       | 0        | < 0.01      | < 0.01 | 0.07   | < 0.01 |
|                 |          |          |      |       |          |          | < 0.01      | < 0.01 | 0.07   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.07   | < 0.01 |
|                 |          | 128      | 112  | 95    | 89       | 1        | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          |          | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          | 7        | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          |          | < 0.01      | < 0.01 | 0.07   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          | 15       | < 0.01      | < 0.01 | 0.08   | < 0.01 |
|                 |          |          |      |       |          |          | < 0.01      | < 0.01 | 0.10   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.09   | < 0.01 |
|                 |          |          |      |       |          | 21       | < 0.01      | < 0.01 | 0.08   | < 0.01 |
|                 |          |          |      |       |          |          | < 0.01      | < 0.01 | 0.09   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.08   | < 0.01 |
| Carlyle, IL,    | 2 (8)    | 127      | 122  | 87    | 87       | 7        | < 0.01      | < 0.01 | 0.08   | < 0.01 |
| USA, 2009       |          | 128      | 140  | 76    | 89       |          | < 0.01      | < 0.01 | 0.08   | < 0.01 |
| 8G23            |          | Ì        | İ    |       |          | Mean     | < 0.01      | < 0.01 | 0.08   | < 0.01 |
| Grantfork, IL,  | 2 (7)    | 130      | 122  | 89    | 89       | 7        | < 0.01      | < 0.01 | 0.03   | < 0.01 |
| USA, 2009       | ( )      | 130      | 112  | 97    | 89       |          | < 0.01      | < 0.01 | < 0.01 | < 0.01 |
| AgriGolg        |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | < 0.02 | < 0.01 |
| AG457           |          |          |      |       |          |          |             |        |        |        |
| Conklin, MI,    | 2 (8)    | 128      | 122  | 88    | 87       | 6        | < 0.01      | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009       |          | 128      | 122  | 88    | 88       |          | < 0.01      | < 0.01 | < 0.01 | < 0.01 |
| A1005113        |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | < 0.01 | < 0.01 |
| Richland, IA,   | 2 (7)    | 129      | 140  | 77    | 89       | 0        | < 0.01      | < 0.01 | 0.05   | < 0.01 |
| USA, 2009       |          |          |      |       |          |          | < 0.01      | < 0.01 | 0.04   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.04   | < 0.01 |
| Pioneer 34R67   |          | 129      | 140  | 77    | 89       | 1        | < 0.01      | < 0.01 | 0.05   | < 0.01 |
|                 |          |          |      |       |          |          | < 0.01      | < 0.01 | 0.04   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.04   | < 0.01 |
|                 |          |          |      |       |          | 7        | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          |          | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          | 13       | < 0.01      | < 0.01 | 0.05   | < 0.01 |
|                 |          |          |      |       |          |          | < 0.01      | < 0.01 | 0.05   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.05   | < 0.01 |
|                 |          |          |      |       |          | 20       | < 0.01      | < 0.01 | 0.04   | < 0.01 |
|                 |          |          |      |       |          |          | < 0.01      | < 0.01 | 0.04   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.04   | < 0.01 |
| No surfactant   | 2(7)     | 128      | 140  | 77    | 89       | 0        | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 | <u> </u> | <u></u>  |      |       | <u> </u> | <u> </u> | < 0.01      | < 0.01 | 0.05   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          | 129      | 140  | 77    | 89       | 1        | < 0.01      | < 0.01 | 0.05   | < 0.01 |
|                 |          | <u> </u> |      |       |          |          | < 0.01      | < 0.01 | 0.05   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.05   | < 0.01 |
|                 |          |          |      |       |          | 7        | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 | <u> </u> |          | 1    |       |          |          | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          | 13       | < 0.01      | < 0.01 | 0.05   | < 0.01 |
|                 | <u></u>  |          | 1_   |       | <u>l</u> |          | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          | 20       | < 0.01      | < 0.01 | 0.07   | < 0.01 |
|                 |          |          |      |       |          |          | < 0.01      | < 0.01 | 0.06   | < 0.01 |
|                 |          |          |      |       |          | Mean     | < 0.01      | < 0.01 | 0.06   | < 0.01 |
| Douds, IA, USA, | 2 (7)    | 126      | 140  | 75    | 87       | 7        | < 0.01      | < 0.01 | < 0.01 | < 0.01 |
| 2009            | ( )      | 127      | 131  | 81    | 87–89    |          | < 0.01      | < 0.01 | < 0.01 | < 0.01 |
| Garst 84N57     |          |          | 1    |       |          | Mean     | < 0.01      | < 0.01 | < 0.01 | < 0.01 |
| Batavia, IA,    | 2 (7)    | 129      | 140  | 77    | 87       | 7        | < 0.01      | < 0.01 | 0.08   | < 0.01 |
|                 | (//      | 1        | 1    | 1 ''  | ı ~.     | 1 '      | < 0.01      | < 0.01 | 1 0.00 | < 0.01 |

| Garst 82K79         Mean         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Location, year, |       | g     |      | g     | GS     |      | Residue (mg | /kg)   |        |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-------|------|-------|--------|------|-------------|--------|--------|--------|
| LaPlata, MO, USA, 2009         2 (7)         130         140         77         87         6         < 0.01         < 0.01         0.03         < 0.01           LG 2614 VT         LG 2614 VT         Mean         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | variety         | No    | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol  | T      | TA     | TAA    |
| USA, 2009         128         140         76         89         < 0.01         < 0.01         0.04         < 0.01           LG 2614 VT         Image: Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of                                                                                                                                 | Garst 82K79     |       |       |      |       |        | Mean | < 0.01      | < 0.01 | 0.08   | < 0.01 |
| LG 2614 VT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LaPlata, MO,    | 2 (7) | 130   | 140  | 77    | 87     | 6    | < 0.01      | < 0.01 | 0.03   | < 0.01 |
| Jefferson, IA, USA, 2009         127         129         112         96         87         7         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | USA, 2009       |       | 128   | 140  | 76    | 89     |      | < 0.01      | < 0.01 | 0.04   | < 0.01 |
| USA, 2009         127         103         103         87         < 0.01         < 0.01         0.04         < 0.04           33H27         Mean         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LG 2614 VT      |       |       |      |       |        | Mean | < 0.01      | < 0.01 | 0.04   | < 0.01 |
| 33H27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Jefferson, IA,  | 2 (7) | 129   | 112  | 96    | 87     | 7    | < 0.01      | < 0.01 | 0.08   | < 0.01 |
| Bagley, IA, USA, 2009         2 (7)         126         103         102         87         7         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | USA, 2009       |       | 127   | 103  | 103   | 87     |      | < 0.01      | < 0.01 | 0.04   | < 0.01 |
| USA, 2009         127         103         103         87         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33H27           |       |       |      |       |        | Mean | < 0.01      | < 0.01 | 0.06   | < 0.01 |
| Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam   Sam | Bagley, IA,     | 2 (7) | 126   | 103  | 102   | 87     | 7    |             |        |        | < 0.01 |
| Bristol, IN, USA, 2009         128         122         88         87         8         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | USA, 2009       |       | 127   | 103  | 103   | 87     |      |             | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009         128         122         88         88         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |       |       |      |       |        | Mean | < 0.01      | < 0.01 | < 0.01 | < 0.01 |
| 34F97         Mean         < 0.01         < 0.01         < 0.01         < 0.01           York, NE, USA, 2 (8)         129         140         77         87         6         < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | 2 (7) |       |      |       |        | 8    |             |        |        | < 0.01 |
| York, NE, USA, 2 (8)     129 140 77 87 6      87 6      6 0.01      0.01 0.08      0.01 0.08        2009     124 140 74 87 6      87 6      0.01 0.01 0.01      0.01 0.11      0.00        7B15RRY GCBP     Mean      0.01 0.10      0.01 0.10      0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |       | 128   | 122  | 88    | 88     |      |             |        | < 0.01 | < 0.01 |
| 2009     124     140     74     87     < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |       |      |       |        | Mean | < 0.01      | < 0.01 | < 0.01 | < 0.01 |
| 7B15RRY<br>GCBP Mean < 0.01 < 0.01 0.10 < 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 2 (8) |       |      |       |        | 6    |             |        |        | < 0.01 |
| GCBP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |       | 124   | 140  | 74    | 87     |      |             |        |        | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       |       |      |       |        | Mean | < 0.01      | < 0.01 | 0.10   | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       |       |      |       |        |      |             |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Osceola, NE,    | 2 (7) | 129   | 140  | 77    | 87     | 7    | < 0.01      | < 0.01 | 0.05   | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       | 129   | 140  | 77    | 87     |      |             |        |        | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       |       |      |       |        | Mean | < 0.01      | < 0.01 | 0.05   | < 0.01 |
| GCBP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |       |       |      |       |        |      |             |        |        |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 2 (7) |       |      |       |        | 6    |             |        |        | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       | 128   | 140  | 76    | 87     |      |             |        |        | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       |       |      |       |        | Mean | < 0.01      | < 0.01 | 0.04   | < 0.01 |
| GCBP ST ST ST ST ST ST ST ST ST ST ST ST ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 | 2 (5) | 400   | 1.10 |       | 0.5    |      | 0.01        | 0.01   | 0.04   | 0.01   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 2 (6) |       |      |       |        | 8    |             |        |        | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       | 129   | 140  | //    | 8/     | 3.6  |             |        |        | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 2 (=) | 400   | 101  | 0.0   | 0.5    |      |             |        |        | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 2(7)  |       |      |       |        | 17   |             |        |        | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       | 130   | 131  | 83    | 89     | 3.6  |             |        |        | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       |       |      |       |        | Mean | < 0.01      | < 0.01 | 0.07   | < 0.01 |
| DKC35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     <td></td> <td>2 (6)</td> <td>120</td> <td>121</td> <td>0.1</td> <td>07</td> <td>0</td> <td>.0.01</td> <td>. 0.01</td> <td>0.02</td> <td>. 0.01</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | 2 (6) | 120   | 121  | 0.1   | 07     | 0    | .0.01       | . 0.01 | 0.02   | . 0.01 |
| 110110418, (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fitchburg, WI,  | 2 (6) |       |      |       |        | 9    |             |        |        | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 1     | 128   | 131  | 81    | 89     | Μ-   |             |        |        | < 0.01 |
| 2009 Pioneer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |       |       |      |       |        | Mean | < 0.01      | < 0.01 | 0.04   | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | 2(7)  | 129   | 131  | 82    | 87     | 7    | < 0.01      | < 0.01 | 0.11   | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       |       |      |       |        |      |             |        |        | < 0.01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       | /     |      |       |        | Mean |             |        |        | < 0.01 |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

 $1 \ X-77 \ @ \ 0.25\% \ v/v; 2 \ Induce \ @ \ 0.34\% \ v/v; 3 \ Aquagene \ 90 \ @ \ 0.05\% \ v/v; 4 \ Surfac \ 820 \ @ \ 0.25\% \ v/v; 5 \ NIS \ @ \ 0.25\% \ v/v; 6 \ R-11 \ @ \ 0.064\% \ v/v; 7 \ Silwet \ L-77 \ @ \ 0.25\% \ v/v; 8 \ X-77 \ @ \ 0.25\% \ v/v; 9 \ X-77 \ @ \ 0.25\% \ v/v; 10 \ X-77 \ @ \ 0.25\% \ v/v; 11 \ Hel-Fire \ 90 \ @ \ 0.25\% \ v/v; 13 \ R11 \ @ \ 0.064\% \ v/v; 14 \ Cornbelt \ Premier \ 90 \ @ \ 0.25\% \ v/v; 15 \ Cornbelt \ Premier \ 90 \ @ \ 0.25\% \ v/v; 17 \ Dyne \ Amic \ NIS \ @ \ 0.375\% \ v/v; 18 \ Preference \ @ \ 0.25\% \ v/v; 19 \ Preference \ @ \ 0.25\% \ v/v; 20 \ Baron \ @ \ 0.076\% \ v/v$ 

Moisture content %: 27.7, 20.8, 34.2 (0 d), 33.7 (1 d), 30.9 (7 d), 25.7 (15 d), 22.8 (21 d), 29.5, 19.4, 33.3, 28.6 (0 d), 29.6 (1 d), 26.7 (7 d), 23.0 (13 d), 21.4 (20 d), 32.6, 37.0, 24.4, 22.8, 26.0, 35.8, 28.1, 31.8, 28.5, 33.8, 14.4, 27.0, 15.2

Table 34 Residues of flutriafol in paddy rice following application of an SC formulation in southern Europe (Gimeno 2006 1629-2, López Benet 2006 1629-1, Gimeno Martos 2007 1630)

| Location, year, variety | No    | g ai/ha | L/ha | g ai/hL | GS<br>(BBCH) | DALA     | Sample        | Flutriafol (mg/kg) |
|-------------------------|-------|---------|------|---------|--------------|----------|---------------|--------------------|
| Amposta, Tarragona,     | 2     | 189     | 404  | 47      | BBCH 83      | 0        | Paddy rice    | 3.4                |
| Spain, 2005 Fonsa       | (14)  | 188     | 400  | 47      | BBCH 89      |          | Husked rice   | 0.25               |
| ~ F,                    | 2     | 183     | 392  | 47      | BBCH 77      | 7        | Paddy rice    | 2.47               |
|                         | (14)  | 182     | 388  | 47      | BBCH 87      | <u>'</u> | 1 uddy 1100   | 2                  |
|                         | 2     | 186     | 396  | 47      | BBCH 65      | 14       | Paddy rice    | 1.25               |
|                         | (14)  | 188     | 400  | 47      | BBCH 83      | 17       | Husked rice   | 0.35               |
|                         | 2     | 182     | 388  | 47      | BBCH 58      | 21       | Paddy rice    | 1.68               |
|                         | (14)  | 186     | 396  | 47      | BBCH 77      | 21       | Husked rice   | 0.47               |
|                         | 2     | 195     | 416  | 47      | BBCH 51      | 28       | Paddy rice    | 0.47               |
|                         | (14)  | 182     | 388  | 47      | BBCH 65      | 26       | 1 addy fice   | 0.74               |
| Sueca, Valencia,        | 2     | 191     | 408  | 47      | BBCH 83      | 0        | Paddy rice    | 2.89               |
|                         | (14)  | 193     | 412  | 47      | BBCH 87–89   | U        | Husked rice   | 0.23               |
| Spain, 2005, Masso      | 2     | 193     | 400  | 48      | BBCH 79      | 7        |               | 1.4                |
|                         |       |         | _    |         |              | /        | Paddy rice    | 1.4                |
|                         | (14)  | 193     | 400  | 48      | BBCH 85      | 1.4      | D 11 '        | 1.70               |
|                         | 2     | 193     | 412  | 47      | BBCH 77      | 14       | Paddy rice    | 1.79               |
|                         | (14)  | 187     | 400  | 47      | BBCH 83      | 01       | Husked rice   | 0.42               |
|                         | 2     | 186     | 396  | 47      | BBCH 57      | 21       | Paddy rice    | 1.28               |
|                         | (14)  | 187     | 400  | 47      | BBCH 79      | 20       | Husked rice   | 0.36               |
|                         | 2     | 191     | 428  | 45      | BBCH 49      | 28       | Paddy rice    | 1.06               |
|                         | (14)  | 193     | 388  | 50      | BBCH 77      |          |               |                    |
| Perello, Valencia,      | 2     | 187     | 400  | 47      | BBCH 85      | 0        | Paddy rice    | 3.23               |
| Spain, 2005 Fonsa       | (14)  | 189     | 404  | 47      | BBCH 89      |          | Husked rice   | 0.36               |
|                         | 2     | 187     | 400  | 47      | BBCH 85      | 7        | Paddy rice    | 1.93               |
|                         | (14)  | 189     | 400  | 47      | BBCH 87      |          |               |                    |
|                         | 2     | 204     | 436  | 47      | BBCH 83      | 14       | Paddy rice    | 1.85               |
|                         | (14)  | 187     | 400  | 47      | BBCH 85      |          | Husked rice   | 0.46               |
|                         | 2     | 182     | 388  | 47      | BBCH 71      | 21       | Paddy rice    | 1.92               |
|                         | (14)  | 186     | 396  | 47      | BBCH 85      |          | Husked rice   | 0.42               |
|                         | 2     | 187     | 372  | 50      | BBCH 57      | 28       | Paddy rice    | 1.51               |
|                         | (14)  | 189     | 396  | 48      | BBCH 83      |          |               |                    |
| Valencia, Valencia,     | 2     | 189     | 404  | 47      | BBCH 83      | 0        | Paddy rice    | 4.07               |
| Spain, 2005             | (14)  | 188     | 400  | 47      | BBCH 89      |          | Husked rice   | 0.15               |
| Montsianell             | 2     | 187     | 380  | 49      | BBCH 77      | 7        | Paddy rice    | 3.07               |
|                         | (14)  | 189     | 406  | 47      | BBCH 85      |          | ,             |                    |
|                         | 2     | 182     | 388  | 47      | BBCH 77      | 14       | Paddy rice    | 2.02               |
|                         | (14)  | 187     | 400  | 47      | BBCH 83      |          | Husked rice   | 0.28               |
|                         | 2     | 186     | 396  | 47      | BBCH 59      | 21       | Paddy rice    | 1.75               |
|                         | (14)  | 182     | 388  | 47      | BBCH 77      |          | Husked rice   | 0.29               |
|                         | 2     | 187     | 386  | 47      | BBCH 55      | 28       | Paddy rice    | 1.32               |
|                         | (14)  | 189     | 400  | 47      | BBCH 77      |          |               | 1                  |
| Mareny de               | 2     | 187     | 400  | 47      | BBCH 80      | 0        | Paddy rice    | 3.19               |
| Barraquetes,            | (14)  | 186     | 396  | 47      | BBCH 89      |          | Husked rice   | 0.16               |
| Valencia, Spain, 2006   | ` ′   |         |      |         |              | 0        | Polished rice | 0.08               |
| Montsianell             | 2     | 187     | 400  | 47      | BBCH 69      | 14       | Paddy rice    | 1.57               |
| ,                       | (14)  | 183     | 390  | 47      | BBCH 89      | 14       | Husked rice   | 0.37               |
|                         | (- 1) |         |      | 1       |              | 14       | Polished rice | 0.26               |
| Sueca, Valencia,        | 2     | 187.5   | 400  | 47      | BBCH 81      | 0        | Paddy rice    | 1.73               |
| Spain, 2006 J. Sendra   | (14)  | 183     | 390  | 47      | BBCH 89      | 0        | Husked rice   | 0.07               |
| Spann, 2000 J. Denata   | (17)  | 100     | 370  | 1.7     | 2201107      | 0        | Polished rice | 0.03               |
|                         | 2     | 187     | 398  | 47      | BBCH 75      | 14       | Paddy rice    | 0.03               |
|                         | (14)  | 186     | 396  | 47      | BBCH 81      | 14       | Husked rice   | 0.19               |
|                         | (14)  | 100     | 370  | 7/      | DDC11 01     | 14       | Polished rice | 0.19               |
| Amposta, Tarragona,     | 2     | 189     | 404  | 47      | BBCH 80      | 0        | Paddy rice    | 2.62               |
| Spain, 2006 Fonsa       |       |         | +    | 47      |              | 0        | Husked rice   |                    |
| spain, 2000 ronsa       | (14)  | 187.5   | 400  | 4/      | BBCH 89      | 0        |               | 0.33               |
|                         | 2     | 105     | 204  | 17      | DDCII.co     | _        | Polished rice | 0.21               |
|                         | 2     | 185     | 394  | 47      | BBCH 69      | 14       | Paddy rice    | 1.74               |
|                         | (14)  | 190     | 406  | 47      | BBCH 80      | 14       | Husked rice   | 0.37               |

| Location, year, variety | No   | g ai/ha | L/ha | g ai/hL | GS<br>(BBCH) | DALA | Sample        | Flutriafol<br>(mg/kg) |
|-------------------------|------|---------|------|---------|--------------|------|---------------|-----------------------|
|                         |      |         |      |         |              | 14   | Polished rice | 0.32                  |
| Sueca, Valencia,        | 2    | 190     | 406  | 47      | BBCH 85      | 0    | Paddy rice    | 2.76                  |
| Spain, 2006 Fonsa       | (14) | 183     | 390  | 47      | BBCH 89      | 0    | Husked rice   | 0.28                  |
|                         |      |         |      |         |              | 0    | Polished rice | 0.14                  |
|                         | 2    | 187.5   | 400  | 47      | BBCH 76      | 14   | Paddy rice    | 1.23                  |
|                         | (14) | 187.5   | 400  | 47      | BBCH 85      | 14   | Husked rice   | 0.38                  |
|                         |      |         |      |         |              | 14   | Polished rice | 0.33                  |

Table 35 Residues of flutriafol in sorghum grain following application of an SC formulation in the USA (Carringer 2013 2699) (duplicate samples, applications include non-ionic surfactant)

|                         |       |         |      | GS     |        | Residue (m | g/kg)  |               |        |
|-------------------------|-------|---------|------|--------|--------|------------|--------|---------------|--------|
| Location, year, variety | No    | g ai/ha | L/ha | (BBCH) | DALA   | Flutriafol | T      | TA            | TAA    |
| Seven Springs, NC,      | 2 (7) | 131     | 168  | 60     | 30     | 0.03 0.03  | < 0.01 | 0.38          | 0.03   |
| USA, 2012 DKS54-00      | . ,   | 127     | 131  | 69     |        |            | < 0.01 | 0.37          | 0.03   |
| , , ,                   |       |         |      |        |        |            |        | c0.04         |        |
|                         |       |         |      |        | Mean   | 0.03       | < 0.01 | 0.38          | 0.03   |
| Proctor, AR, USA, 2012  | 2 (7) | 128     | 140  | Mature | 30     | 0.40 0.35  | < 0.01 | 0.02          | 0.02   |
| GX12564                 | 2 (1) | 129     | 140  | grain  |        | 0.10 0.55  | < 0.01 | 0.03          | 0.02   |
| 37172301                |       | 127     | 110  | gruin  |        |            | 0.01   | c0.01         | c0.01  |
|                         |       |         |      | Mature | Mean   | 0.38       | < 0.01 | 0.02          | 0.02   |
|                         |       |         |      | grain  | Wicuii | 0.50       | 0.01   | 0.02          | 0.02   |
| Richland, IA, USA,      | 2 (7) | 127     | 178  | 85     | 30     | 0.24 0.27  | < 0.01 | 0.06          | < 0.01 |
| 2012 Pioneer 84G62      | 2(1)  | 129     | 178  | 87     | 30     | 0.24 0.27  | < 0.01 | 0.05          | < 0.01 |
| 2012 1 1011001 84-002   |       | 12)     | 170  | 07     |        |            | < 0.01 | c0.05         | < 0.01 |
|                         |       |         |      |        | Mean   | 0.26       | < 0.01 | •             | < 0.01 |
| Kirksville, MO, USA,    | 2 (7) | 120     | 150  | 01 05  | ļ      |            |        | 0.06          | < 0.01 |
|                         | 2 (7) | 128     | 159  | 81–85  | 30     | 0.20 0.19  | < 0.01 | 0.08          | 1      |
| 2012 Pioneer 84G62      |       | 129     | 159  | 85     |        |            | < 0.01 | 0.09<br>c0.07 | < 0.01 |
|                         |       | -       | +    |        | Magn   | 0.20       | < 0.01 |               | < 0.01 |
| G. CC 1 IZG IIGA 2012   | 2 (7) | 120     | 1.60 | 0.5    | Mean   | 0.20       | < 0.01 | 0.08          | < 0.01 |
| Stafford, KS, USA, 2012 | 2 (7) | 128     | 168  | 85     | 29     | 0.26 0.31  | < 0.01 | 0.04          | 0.01   |
| 84G62                   |       | 127     | 168  | 85     |        |            | < 0.01 | 0.03          | 0.01   |
|                         |       |         |      |        |        | 0.20       | 0.01   | c0.03         | c0.01  |
|                         |       |         |      |        | Mean   | 0.28       | < 0.01 | 0.04          | 0.01   |
| York, NE, USA, 2012     | 2 (7) | 127     | 178  | 85     | 31     | 0.33 0.35  | < 0.01 | 0.07          | 0.04   |
| 85G01                   |       | 128     | 178  | 85     |        |            | < 0.01 | 0.06          | 0.03   |
|                         |       |         |      |        |        |            |        | c0.07         | c0.03  |
|                         |       |         |      |        | Mean   | 0.34       | < 0.01 | 0.06          | 0.04   |
| Uvalde, TX USA, 2012    | 2 (7) | 126     | 150  | 73     | 30     | 0.77 0.72  | < 0.01 | < 0.01        | < 0.01 |
| Pioneer 83G19           |       | 128     | 159  | 87     |        |            | < 0.01 | < 0.01        | < 0.01 |
|                         |       |         |      |        | Mean   | 0.74       | < 0.01 | < 0.01        | < 0.01 |
| Hinton, OK, USA, 2012   | 2 (7) | 127     | 159  | 85     | 30     | 0.15 0.16  | < 0.01 | 0.07          | 0.04   |
| DKS29-28                |       | 126     | 168  | 85     |        |            | < 0.01 | 0.07          | 0.03   |
|                         |       |         |      |        |        |            |        | c0.05         | c0.02  |
|                         |       |         |      |        | Mean   | 0.16       | < 0.01 | 0.07          | 0.04   |
| Grand Island, NE, USA,  | 2 (7) | 128     | 187  | 85     | 30     | 0.41 0.38  | < 0.01 | 0.08          | 0.03   |
| 2012 85G01              |       | 128     | 178  | 85     |        |            | < 0.01 | 0.08          | 0.03   |
|                         |       |         |      |        |        |            |        | c0.13         | c0.06  |
|                         |       |         | 1    |        | Mean   | 0.40       | < 0.01 | 0.08          | 0.03   |
| Larned, KS, USA, 2012   | 2 (7) | 129     | 168  | 85     | 23     | 0.24 0.24  | < 0.01 | 0.06          | 0.01   |
| 84G62                   | _ (,, | 128     | 168  | 87     |        |            | < 0.01 | 0.07          | 0.01   |
|                         |       |         |      |        | Mean   | 0.24       | < 0.01 | 0.06          | 0.01   |
|                         |       |         | 1    |        | 29     | 0.25 0.22  | < 0.01 | 0.05          | 0.01   |
|                         |       |         |      |        | 27     | 0.23 0.22  | < 0.01 | 0.05          | 0.01   |
|                         |       |         |      |        |        |            | \ 0.01 | c0.03         | 0.01   |
|                         |       |         | 1    | +      | Mean   | 0.24       | < 0.01 | 0.05          | 0.01   |
|                         |       |         | +    | +      |        |            |        |               | 1      |
|                         |       |         |      |        | 36     | 0.24 0.22  | < 0.01 | 0.05          | < 0.01 |
|                         |       |         | 1    |        | 3.4    | 0.22       | < 0.01 | 0.06          | < 0.01 |
|                         |       |         |      | +      | Mean   | 0.23       | < 0.01 | 0.06          | < 0.01 |
|                         |       |         |      |        | 43     | 0.23 0.17  | < 0.01 | 0.05          | < 0.01 |
|                         |       |         |      |        |        |            | < 0.01 | 0.06          | 0.01   |

Flutriafol Flutriafol

|                         |       |         |      | GS     |      | Residue (mg | g/kg)  |        |        |
|-------------------------|-------|---------|------|--------|------|-------------|--------|--------|--------|
| Location, year, variety | No    | g ai/ha | L/ha | (BBCH) | DALA | Flutriafol  | T      | TA     | TAA    |
|                         |       |         |      |        | Mean | 0.20        | < 0.01 | 0.06   | < 0.01 |
|                         |       |         |      |        | 50   | 0.22 0.22   | < 0.01 | 0.06   | < 0.01 |
|                         |       |         |      |        |      |             | < 0.01 | 0.06   | < 0.01 |
|                         |       |         |      |        | Mean | 0.22        | < 0.01 | 0.06   | < 0.01 |
| Wall, TX, USA, 2012     | 2 (7) | 127     | 140  | 85     | 29   | 0.17 0.16   | < 0.01 | < 0.01 | < 0.01 |
| DKS44-20                |       | 129     | 140  | 87     |      |             | < 0.01 | 0.01   | < 0.01 |
|                         |       |         |      |        | Mean | 0.16        | < 0.01 | < 0.01 | < 0.01 |
| Levelland, TX, USA,     | 2 (7) | 128     | 178  | 85     | 30   | 0.81 0.66   | < 0.01 | < 0.01 | < 0.01 |
| 2012 165310             |       | 127     | 178  | 85–87  |      |             | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        | Mean | 0.74        | < 0.01 | < 0.01 | < 0.01 |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Induce 0.28-0.3% v/v, Dyne-Amic 0.5% v/v, Preference 0.5% v/v, Preference 0.5% v/v, Spreader 90~0.25% v/v, Cornbelt Premier 90~0.03% v/v, Induce 0.2% v/v, Baron 0.25% vv, Cornbelt Premier 0.03% v/v, Spreader 90~0.25% v/v, Induce 0.5% v/v, R-11 0.22% v/v

Table 36 Residues of flutriafol in tree nuts (nutmeat) following application of an SC formulation in the USA (Rice 2011 2161) (duplicate samples)

| Location,                                      |                  | g                                      |                                              | g                                      | GS                                                           |      | Residue (mg      | g/kg)            |                       |                       |
|------------------------------------------------|------------------|----------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------------------------------|------|------------------|------------------|-----------------------|-----------------------|
| year, variety                                  | No               | ai/ha                                  | L/ha                                         | ai/hL                                  | (BBCH)                                                       | DALA | Flutriafol       | T                | TA                    | TAA                   |
| Pecan                                          |                  |                                        |                                              |                                        |                                                              |      |                  |                  |                       |                       |
| Chula, GA,<br>USA, 2010<br>Pecan Sumner        | 6 (7 7<br>7 7 7) | 128<br>128<br>128                      | 1370<br>1505<br>1524                         | 9.3<br>8.5<br>8.4                      | Nut fill<br>Nut fill<br>Nut fill                             | 14   | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | 0.52<br>0.42<br>c0.24 | 0.04<br>0.04<br>c0.01 |
| r court Summer                                 |                  | 128<br>128<br>128<br>128               | 1440<br>1425<br>1340                         | 8.9<br>9.0<br>9.6                      | Nut fill Shuck split Shuck split (falling)                   |      |                  |                  | 60.21                 | 60.01                 |
|                                                |                  |                                        |                                              |                                        | (runnig)                                                     | Mean | < 0.01           | < 0.01           | 0.47                  | 0.04                  |
| Pecan Sumner                                   | 6 (7 7           | 129                                    | 571                                          | 23                                     | Nut fill                                                     | 14   | < 0.01           | < 0.01           | 0.41                  | 0.05                  |
| Steward                                        | 777              | 130<br>128<br>130<br>129<br>129        | 632<br>632<br>612<br>603<br>565              | 21<br>20<br>21<br>21<br>21<br>23       | Nut fill Nut fill Nut fill Shuck split Shuck split (falling) |      | < 0.01           | < 0.01           | 0.40<br>c0.31         | 0.05<br>c0.01         |
|                                                |                  |                                        |                                              |                                        |                                                              | Mean | < 0.01           | < 0.01           | 0.40                  | 0.05                  |
| Bertrand, MO,<br>USA, 2010<br>Pecan Pawnee     | 6 (8 7<br>6 7 7) | 125<br>127<br>128<br>127<br>127<br>127 | 1590<br>1590<br>1590<br>1590<br>1590<br>1590 | 7.9<br>8<br>8<br>8<br>8                | 89<br>89<br>89<br>89<br>89                                   | 14   | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | 0.02<br>0.02<br>c0.02 | < 0.01<br>< 0.01      |
|                                                |                  |                                        |                                              |                                        |                                                              | Mean | < 0.01           | < 0.01           | 0.02                  | < 0.01                |
| D'Haris, TX,<br>USA, 2010<br>Pecan<br>Cheyenne | 6 (6 8<br>7 7 7) | 129<br>125<br>128<br>128<br>127<br>127 | 1549<br>1545<br>1521<br>1545<br>1524<br>1559 | 8.3<br>8.1<br>8.4<br>8.3<br>8.3<br>8.1 | 85<br>85<br>85<br>85<br>87<br>87                             | 14   | 0.01 0.01        | < 0.01<br>< 0.01 | 0.02<br>0.02          | < 0.01<br>< 0.01      |
|                                                |                  |                                        |                                              |                                        |                                                              | Mean | 0.01             | < 0.01           | 0.02                  | < 0.01                |
| Anton, TX,<br>USA, 2010<br>Pecan<br>Western    | 6 (7 7<br>6 8 8) | 132<br>127                             | 560<br>560                                   | 24 23                                  | green shuck<br>green shuck<br>green shuck<br>shuck split     | 11   | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | < 0.01<br>< 0.01      | < 0.01<br>< 0.01      |
| Schley                                         |                  | 125                                    | 560                                          | 22                                     | shuck split<br>shuck split                                   |      |                  |                  |                       |                       |
|                                                |                  | 125<br>131<br>128                      | 560<br>560<br>560                            | 22<br>23<br>23                         |                                                              |      |                  |                  |                       |                       |

| Location,                                              |                  | g                                      |                                              | g                                  | GS                                     |      | Residue (mg/kg)  |                       |                        |                         |  |
|--------------------------------------------------------|------------------|----------------------------------------|----------------------------------------------|------------------------------------|----------------------------------------|------|------------------|-----------------------|------------------------|-------------------------|--|
| year, variety                                          | No               | ai/ha                                  | L/ha                                         | ai/hL                              | (BBCH)                                 | DALA | Flutriafol       | T                     | TA                     | TAA                     |  |
|                                                        |                  |                                        |                                              |                                    |                                        | Mean | < 0.01           | < 0.01                | < 0.01                 | < 0.01                  |  |
| Almond                                                 |                  |                                        |                                              |                                    |                                        |      |                  |                       |                        |                         |  |
| Dinuba, CA,<br>USA, 2010<br>Almond                     | 6 (8 8<br>8 8 8) | 128<br>129<br>128                      | 731<br>750<br>781                            | 17<br>17<br>16                     | 75<br>75<br>78                         | 14   | 0.08<br>0.05     | < 0.01<br>< 0.01      | < 0.2<br>< 0.2<br>c0.2 | < 0.01<br>< 0.01        |  |
| Sonora                                                 |                  | 129<br>128<br>128                      | 788<br>791<br>883                            | 16<br>16<br>14                     | 78<br>81<br>81                         |      |                  |                       |                        |                         |  |
|                                                        |                  |                                        |                                              |                                    |                                        | Mean | 0.06             | < 0.01                | < 0.2                  | < 0.01                  |  |
| Strathmore,<br>CA, USA,<br>2010 Almond<br>Fritz        | 6 (6 7<br>7 7 7) | 128<br>128<br>129<br>128<br>128        | 2759<br>2751<br>2768<br>2761<br>2753         | 4.6<br>4.6<br>4.7<br>4.6<br>4.6    | 79<br>79<br>79<br>80<br>80             | 14   | 0.01<br>0.01     | 0.02<br>0.02<br>c0.11 | 0.91<br>0.92<br>c2.68  | 0.01<br>< 0.01<br>c0.03 |  |
|                                                        |                  | 128                                    | 2773                                         | 4.6                                | 88                                     |      |                  |                       |                        |                         |  |
|                                                        |                  | 120                                    | 2                                            |                                    |                                        | Mean | 0.01             | 0.02                  | 0.92                   | < 0.01                  |  |
| Wasco, CA,<br>USA, 2010                                | 6 (8 6<br>7 7 7) | 128<br>128<br>128<br>128<br>128<br>128 | 809<br>788<br>791<br>786<br>785<br>827       | 16<br>16<br>16<br>16<br>16<br>15   | 79<br>79<br>79<br>79<br>79<br>79<br>85 | 14   | 0.07<br>0.06     | < 0.01<br>< 0.01      | 0.56<br>0.55<br>c0.29  | < 0.01<br>< 0.01        |  |
|                                                        |                  |                                        |                                              |                                    |                                        | Mean | 0.06             | < 0.01                | 0.56                   | < 0.01                  |  |
| Buttonwillow,<br>CA, USA,<br>2010 Almond<br>Monterey's | 6 (7 7<br>7 7 7) | 128<br>127<br>133<br>128<br>128<br>128 | 3301<br>3321<br>3313<br>3304<br>3327<br>3223 | 3.9<br>3.8<br>4<br>3.9<br>3.8<br>4 | 78<br>79<br>79<br>83<br>85<br>87       | 14   | < 0.01<br>< 0.01 | < 0.01<br>< 0.01      | 0.61<br>0.63<br>c0.49  | < 0.01<br>< 0.01        |  |
|                                                        |                  |                                        |                                              |                                    |                                        | Mean | < 0.01           | < 0.01                | 0.62                   | < 0.01                  |  |
| Terra Bella,<br>CA, USA,<br>2010 Almond<br>Non Pareil  | 6 (9 7<br>9 8 8) | 127<br>128<br>127<br>129<br>129<br>128 | 661<br>605<br>627<br>661<br>661              | 19<br>21<br>20<br>19<br>19         | 75<br>72<br>78<br>79<br>79<br>81       | 1    | 0.40 0.42        | < 0.01<br>< 0.01      | 0.67<br>0.61           | < 0.01,<br>< 0.01       |  |
|                                                        |                  |                                        |                                              |                                    |                                        | Mean | 0.41             | < 0.01                | 0.64                   | < 0.01                  |  |
|                                                        |                  |                                        |                                              |                                    |                                        | 7    | 0.27 0.26        | < 0.01<br>< 0.01      | 0.57<br>0.59           | < 0.01<br>< 0.01        |  |
|                                                        |                  |                                        |                                              |                                    |                                        | Mean | 0.27             | < 0.01                | 058                    | < 0.01                  |  |
|                                                        |                  |                                        |                                              |                                    |                                        | 14   | 0.32 0.27        | < 0.01<br>< 0.01      | 0.63<br>0.78<br>c2.08  | < 0.01<br>< 0.01        |  |
|                                                        |                  |                                        |                                              |                                    |                                        | Mean | 0.30             | < 0.01                | 0.71                   | < 0.01                  |  |
|                                                        |                  |                                        |                                              |                                    |                                        | 21   | 0.38 0.45        | 0.01<br>< 0.01        | 1.02<br>0.78           | < 0.01<br>< 0.01        |  |
|                                                        |                  |                                        |                                              |                                    |                                        | Mean | 0.42             | < 0.01                | 0.90                   | < 0.01                  |  |
|                                                        |                  |                                        |                                              |                                    |                                        | 28   | 0.26 0.23        | < 0.01<br>< 0.01      | 0.61<br>0.75           | < 0.01<br>< 0.01        |  |
|                                                        |                  |                                        |                                              |                                    |                                        | Mean | 0.24             | < 0.01                | 0.68                   | < 0.01                  |  |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Table 37 Residues of flutriafol in cotton (undelinted seed) following application of an SC formulation in the USA (Carringer 2013 2700) (duplicate samples, applications include non-ionic surfactant) one soil pre-emergence application and two post-emergence foliar applications

| Location,     |        |         |      | GS     |      | Residue (mg/kg) |        |      |      |  |
|---------------|--------|---------|------|--------|------|-----------------|--------|------|------|--|
| year, variety | No     | g ai/ha | L/ha | (BBCH) | DALA | Flutriafol      | T      | TA   | TAA  |  |
| Elko, SC,     | 3 (131 | 294 PP  | 42   | 0      | 30   | 0.05 0.06       | < 0.01 | 0.94 | 0.02 |  |
| USA, 2012     | 6)     | 129 PO  | 187  | 80     |      |                 | < 0.01 | 0.42 | 0.01 |  |

Flutriafol Flutriafol

| Location,           |           |                  |          | GS     |          | Residue (mg/kg | .)     |       |        |
|---------------------|-----------|------------------|----------|--------|----------|----------------|--------|-------|--------|
| year, variety       | No        | g ai/ha          | L/ha     | (BBCH) | DALA     | Flutriafol     | )<br>T | TA    | TAA    |
| DP 0912             | NO        | 128PO            | 178      | 81     | DALA     | Tiutilaioi     | 1      | c0.04 | IAA    |
| B2RF                |           | 120FU            | 1/0      | 0.1    | Mean     | 0.06           | < 0.01 | 0.68  | 0.02   |
| Proctor, AR,        | 3 (120    | 290 PP           | 44       | 0      | 30       | 0.13 0.15      | < 0.01 | 0.08  | < 0.02 |
| USA, 2012           | 7)        | 128 PO           | 92       | 82     | 30       | 0.15 0.15      | < 0.01 | 0.17  | < 0.01 |
| DP                  | ')        | 128 PO           | 187      | 84     |          |                | < 0.01 | c0.03 | < 0.01 |
| 0912 B2RF           |           | 12010            | 107      | 04     | Mean     | 0.14           | < 0.01 | 0.16  | < 0.01 |
| Fisk, MO,           | 3 (120    | 294 PP           | 47       | 0      | 29       | < 0.01 < 0.01  | < 0.01 | 0.10  | 0.01   |
| USA, 2012           | 7)        | 128 PO           | 187      | 80     | 29       | < 0.01 < 0.01  | < 0.01 | 0.44  | 0.01   |
| PHY 375             | ')        | 128 PO           | 187      | 81     |          |                | < 0.01 | c0.19 | 0.01   |
| 1111 373            |           | 12010            | 107      | 01     | Mean     | < 0.01         | < 0.01 | 0.42  | 0.01   |
| Cheneyville,        | 3 (119    | 304 PP           | 47       | 0      | 30       | 0.08 0.10      | < 0.01 | 0.42  | < 0.01 |
| LA, USA,            | 7)        | 135 PO           | 168      | 82–83  | 30       | 0.08 0.10      | < 0.01 | 0.14  | < 0.01 |
| 2012 DP             | <i>''</i> | 129 PO           | 178      | 84–85  |          |                | < 0.01 | c0.04 | < 0.01 |
| 0912 B2RF           |           | 12710            | 170      | 04-03  | Mean     | 0.09           | < 0.01 | 0.15  | < 0.01 |
| Uvalde, TX,         | 3 (112    | 288 PP           | 30       | 0      | 30       | 0.02 0.03      | < 0.01 | 0.13  | < 0.01 |
| USA,                | 7)        | 127 PO           | 178      | 82     | 30       | 0.02 0.03      | < 0.01 | 0.11  | < 0.01 |
| 2012 DP             | 1)        | 127 PO           | 159      | 86     | Mean     | 0.02           | < 0.01 | 0.11  | < 0.01 |
| 0912 B2RF           |           | 12070            | 139      | 00     | IVICALI  | 0.02           | < 0.01 | 0.11  | < 0.01 |
| Wall, TX,           | 3 (105    | 295 PP           | 41       | 0      | 30       | 0.32 0.19      | < 0.01 | 0.07  | < 0.01 |
| USA, 2012           | 7)        | 124 PO           | 168      | 82     | 30       | 0.32 0.19      | < 0.01 | 0.07  | < 0.01 |
| DP 0912             | 1)        | 124 PO<br>127 PO | 168      | 83     | Mean     | 0.26           | < 0.01 | 0.09  | < 0.01 |
| B2RF                |           | 12/10            | 108      | 0.5    | Mean     | 0.20           | < 0.01 | 0.08  | < 0.01 |
| Edmonson,           | 3 (131    | 294 PP           | 41       | 0      | 30       | 0.08 0.08      | < 0.01 | 0.05  | < 0.01 |
| TX, USA,            | 7)        | 128 PO           | 140      | 81–82  | 30       | 0.00 0.00      | < 0.01 | 0.05  | < 0.01 |
| 2012 DP             | ' '       | 128 PO           | 150      | 82–83  |          |                | (0.01  | c0.04 | 0.01   |
| 0912 B2RF           |           | 12010            | 100      | 02 00  | Mean     | 0.08           | < 0.01 | 0.05  | < 0.01 |
| Hinton, OK,         | 3 (112    | 291 PP           | 41       | 0      | 22       | 0.06 0.05      | < 0.01 | 0.75  | 0.03   |
| USA,                | 8)        | 128 PO           | 112      | 80     |          | 0.00 0.05      | < 0.01 | 0.97  | 0.03   |
| 2012                | 0)        | 128 PO           | 140      | 87     | Mean     | 0.06           | < 0.01 | 0.86  | 0.03   |
| DP 0912             |           | 12010            | 1.0      |        | 29       | 0.06 0.06      | < 0.01 | 0.83  | 0.03   |
| B2RF                |           |                  |          |        |          | 0.00 0.00      | < 0.01 | 0.73  | 0.02   |
| 22.0                |           |                  |          |        |          |                | . 0.01 | c0.05 | 0.02   |
|                     |           |                  |          |        | Mean     | 0.06           | < 0.01 | 0.78  | 0.02   |
|                     |           |                  |          |        | 36       | 0.07 0.07      | < 0.01 | 0.93  | 0.03   |
|                     |           |                  |          |        |          | 0.07 0.07      | < 0.01 | 0.91  | 0.04   |
|                     |           |                  |          |        | Mean     | 0.07           | < 0.01 | 0.92  | 0.04   |
|                     |           |                  |          |        | 44       | 0.08 0.06      | < 0.01 | 0.71  | 0.02   |
|                     |           |                  |          |        |          | 0.00 0.00      | < 0.01 | 0.81  | 0.03   |
|                     |           |                  |          |        | Mean     | 0.07           | < 0.01 | 0.76  | 0.02   |
|                     |           |                  | <u> </u> |        | 51       | 0.06 0.03      | < 0.01 | 0.85  | 0.03   |
|                     |           |                  |          |        |          | 0.00 0.00      | < 0.01 | 0.51  | 0.03   |
|                     |           |                  |          |        | Mean     | 0.04           | < 0.01 | 0.68  | 0.02   |
| Levelland,          | 3 (123    | 299 PP           | 38       | 0      | 30       | 0.04 0.04      | < 0.01 | 0.09  | < 0.01 |
| TX, USA,            | 7)        | 130 PO           | 178      | 80     |          | 0.010.01       | < 0.01 | 0.09  | < 0.01 |
| 2012 DP             | - /       | 129 PO           | 178      | 81     | Mean     | 0.04           | < 0.01 | 0.09  | < 0.01 |
| 0912 B2RF           |           |                  |          |        |          |                |        |       |        |
| Porterville,        | 3 (146    | 291 PP           | 45       | 0      | 30       | 0.13 0.08      | < 0.01 | 0.23  | < 0.01 |
| CA, USA,            | 6)        | 128 PO           | 140      | 84     |          |                | < 0.01 | 0.24  | < 0.01 |
| 2012                | ĺ         | 128 PO           | 140      | 84     | Mean     | 0.10           | < 0.01 | 0.24  | < 0.01 |
| Untreated           |           |                  |          |        |          |                |        |       |        |
| Upland <sup>a</sup> |           |                  |          |        |          |                |        |       |        |
| Porterville,        | 3 (142    | 299 PP           | 46       | 0      | 30       | 0.32 0.21      | < 0.01 | 0.21  | < 0.01 |
| CA, USA,            | 6)        | 128 PO           | 140      | 84     |          | <u> </u>       | < 0.01 | 0.18  | < 0.01 |
| 2012                |           | 128 PO           | 140      | 84     | Mean     | 0.26           | < 0.01 | 0.20  | < 0.01 |
| Untreated           |           |                  |          |        |          |                |        |       |        |
| Upland <sup>b</sup> |           |                  |          |        |          | <u> </u>       |        |       |        |
| Visalia, CA,        | 3 (136    | 295 PP           | 46       | 0      | 30       | 0.17 0.15      | < 0.01 | 0.21  | 0.01   |
| USA, 2012           | 6)        | 128 PO           | 140      | 84     |          |                | < 0.01 | 0.21  | 0.01   |
| Untreated           |           | 128 PO           | 140      | 84     | <u> </u> | <u> </u>       |        | c0.08 |        |
| Upland              |           |                  |          |        | Mean     | 0.16           | < 0.01 | 0.21  | 0.01   |
| 1                   |           |                  |          |        | <u> </u> |                |        |       |        |

 $<sup>1^{\</sup>rm st}$  spray at planting as a band spray (T-band) followed by two foliar sprays closer to harvest Analytical method flutriafol: RAM  $219/\!04$ 

Analytical method T, TA, TAA: Meth-160, revision 2

Scanner 0.25% v/v, Dyne-Amic 0.5% v/v, Induce 0.25% v/v, 80-20 Surfactant 0.25% v/v, Activator 90 0.25% v/v, Activator 90 0.25% v/v, Induce 0.5% v/v, Preference 1% v/v, Baron 0.06% v/v, R-11 0.22% v/v, Pro 90 0.5% v/v, Pro 90 0.5% v/v, Pro 90 0.5% v/v

Undelinted seed % moisture: 9.2, 14.6, 12.0, 11.6, 8.4, 9.8, 8.2, 9.6 (23 d), 7.8 (37 d), 8.9 (44 d), 9.4 (51 d), 7.9, 8.8, 8.8, 10.6

<sup>&</sup>lt;sup>a</sup> Last application 10/10/2012

<sup>&</sup>lt;sup>b</sup> Last application 10/10/2012, related location, same variety as other Porterville trial <sup>a</sup>

Table 38 Residues of flutriafol in rape seed in Europe following application of an SC formulation (Pollmann 2006a 1298; 2006b 1334; 2007a 1542)

| Location, year, variety   | No                  | g ai/ha | L/ha | GS<br>(BBCH) | DALA | Sample | Flutriafol (mg/kg) |
|---------------------------|---------------------|---------|------|--------------|------|--------|--------------------|
| Northern Europe           |                     |         |      |              |      |        |                    |
| Bietigheim, Baden-        | 2                   | 124     | 293  | 62           | 13   | pods   | 0.62               |
| Wurttemberg,              | (26) a              | 131     | 311  | 80           | 20   | pods   | 0.61               |
| Germany, 2005             |                     |         |      |              | 26   | seed   | 0.13               |
| Lisanne                   |                     |         |      |              |      |        |                    |
| Padborg,                  | 2                   | 138     | 329  | 62           | 13   | pods   | 0.08               |
| Sonderjylland,            | (49)                | 127     | 302  | 80           | 20   | pods   | 0.11               |
| Denmark, 2005             |                     |         |      |              | 54   | seed   | 0.03               |
| Trabant                   |                     |         |      |              |      |        |                    |
| Meistratzheim,            | 2                   | 129     | 255  | 62           | 13   | pods   | 0.2                |
| Alsace, Northern          | (28) b              | 125     | 247  | 80           | 21   | pods   | 0.26               |
| France, 2005              |                     |         |      |              | 35   | seed   | 0.07               |
| Hability                  |                     |         |      |              |      |        |                    |
| Charndon, Bicester,       | 2                   | 131     | 313  | 62           | 13   | pods   | 1.61               |
| Oxfordshire, UK,          | (55) <sup>c</sup>   | 129     | 307  | 80           | 20   | pods   | 1.04               |
| 2005 Labrador             |                     |         |      |              | 34   | seed   | 0.31 (0.31 0.30)   |
| Padborg, Sonderjylland,   | 2 (43) <sup>d</sup> | 135     | 320  | 62           | 28   | seed   | 0.04               |
| Denmark, 2006 Excalibur   |                     | 126     | 300  | 80           |      |        |                    |
| Burweg, Niedersachsen,    | 2 (39) e            | 137     | 327  | 62           | 32   | seed   | 0.08               |
| Germany, 2006 Titan       |                     | 137     | 327  | 80           |      |        |                    |
| Wiesloch-Baiertal, Baden  | 2 (38)              | 136     | 323  | 62           | 28   | seed   | 0.15               |
| Wurrtemberg, Germany,     |                     | 121     | 287  | 80           |      |        |                    |
| 2006 Titan                |                     |         |      |              |      |        |                    |
| Drusenheim, Alsace,       | 2 (30) <sup>f</sup> | 127     | 201  | 62           | 17   | seed   | 0.08               |
| Northern France, 2007     |                     | 126     | 200  | 80           |      |        |                    |
| Southern Europe           |                     |         |      |              |      |        |                    |
| Lavaur, Midi-             | 2                   | 133     | 420  | 62           | 13   | pods   | 0.42               |
| Pyrénées, Southern        | (42) g              | 134     | 424  | 80           | 21   | pods   | 0.48               |
| France, 2005 Corail       |                     |         |      |              | 34   | seed   | 0.15               |
| + Cocktail                |                     |         |      |              |      |        |                    |
| St. Paul Trois            | 2                   | 132     | 345  | 62           | 15   | pods   | 0.23 (0.24 0.22)   |
| Chateaux, Rhone-          | (41) h              | 117     | 305  | 80           | 22   | pods   | 0.45 (0.45 0.44)   |
| Alpes, Southern           |                     |         |      |              | 29   | seed   | 0.03               |
| France, 2005 Navajo       |                     |         |      |              |      |        |                    |
| 11420 Plaigne, Languedoc- | 2 (50)              | 130     | 412  | 62           | 27   | seed   | 0.05               |
| Roussillon, Southern      |                     | 131     | 415  | 80           |      |        |                    |
| France, 2006              |                     |         |      |              |      |        |                    |
| Lavaur, Midi-Pyrenees,    | 2 (50) i            | 134     | 425  | 62           | 24   | seed   | 0.13               |
| Southern France, 2006     |                     | 126     | 400  | 80           |      |        |                    |
| Exagone                   |                     |         |      |              |      |        |                    |

 $<sup>^{\</sup>rm a}$  8 and 0.3 mm rain within 24 h  $1^{\rm st}$  and  $2^{\rm nd}$  sprays

<sup>&</sup>lt;sup>b</sup> 6–7 mm rain within 24 h of the 2<sup>nd</sup> spray

<sup>&</sup>lt;sup>c</sup> 2.6 mm rain within 24 h of the 2<sup>nd</sup> spray

<sup>&</sup>lt;sup>d</sup> 1 mm rain within 24 h of the 2<sup>nd</sup> spray

<sup>&</sup>lt;sup>e</sup> 1 mm rain within 24 h of the 2<sup>nd</sup> spray

f 10 mm rain within 24 h of the 2<sup>nd</sup> spray

 $<sup>^{\</sup>rm g}$  14.4 and 0.2 mm rain within 24 h  $1^{\rm st}$  and  $2^{\rm nd}$  sprays

 $<sup>^{\</sup>rm h}$  8.6 mm rain within 24 h of the  $2^{\rm nd}$  spray

i 0.2 mm rain within 24 h of the 2nd spray

# Animal feeds

Table 39 Residues of flutriafol in sugar beet (tops) following application of an SC formulation in the European Union (Pollmann 2006 1298)

| Location, year, variety<br>SUGAR BEET | No     | g ai/ha | L/ha | GS<br>(BBCH) | DALA | Sample | Flutriafol (mg/kg) |
|---------------------------------------|--------|---------|------|--------------|------|--------|--------------------|
| Scherwiller, Alsace, Northern         | 2      | 120     | 290  | 39           | 0    | plant  | 0.45               |
| France 2004 Guepard                   | (21) a | 135     | 327  | 39           | 15   | leaves | 0.24               |
|                                       |        |         |      |              | 22   | leaves | 0.28               |
|                                       |        |         |      |              | 29   | leaves | 0.22               |
|                                       |        |         |      |              | 41   | leaves | 0.13               |
| Dollern, Niedersachsen,               | 2      | 131     | 263  | 45           | 0    | plant  | 0.72               |
| Germany 2004 Famosa                   | (22) b | 126     | 253  | 43–44        | 14   | leaves | 0.45               |
|                                       |        |         |      |              | 22   | leaves | 0.38               |
|                                       |        |         |      |              | 27   | leaves | 0.14               |
|                                       |        |         |      |              | 41   | leaves | 0.11               |
| Haderslev, Jutland, Denmark           | 2      | 125     | 303  | 39           | 0    | plant  | 1.08               |
| 2004 Verity                           | (21) c | 111     | 269  | 46           | 15   | leaves | 0.5                |
|                                       |        |         |      |              | 21   | leaves | 0.27               |
|                                       |        |         |      |              | 28   | leaves | 0.18               |
|                                       |        |         |      |              | 42   | leaves | 0.11               |
| Holme, Peterborough, UK 2004          | 2      | 121     | 293  | 45           | 0    | plant  | 1.02               |
| Cinderella                            | (21) d | 120     | 292  | 47           | 15   | leaves | 0.49               |
|                                       |        |         |      |              | 20   | leaves | 0.32               |
|                                       |        |         |      |              | 29   | leaves | 0.18               |
|                                       |        |         |      |              | 41   | leaves | 0.14               |
| Dudenbuttel, Lower Saxony,            | 2      | 126     | 300  | 43           | 22   | leaves | 0.14               |
| Germany 2005 Ricardo                  | (21) e | 131     | 311  | 44–46        | 28   | leaves | 0.1                |
| Haderslav, Sonderjylland,             | 2      | 133     | 316  | 43-44        | 20   | leaves | 0.15               |
| Denmark 2005 Verity                   | (21) f | 138     | 329  | 46           | 28   | leaves | 0.14               |
| Scherwiller, Alsace, Northern         | 2      | 123     | 292  | 39           | 21   | leaves | 0.64               |
| France 2005 Canyon                    | (20) g | 138     | 328  | 39           | 27   | leaves | 0.75               |
| Bishop's Tachbrook,                   | 2      | 127     | 302  | 47           | 21   | leaves | 0.33               |
| Warwickshire, UK 2005                 | (21)   | 130     | 310  | 48           | 29   | leaves | 0.22               |
| Cinderella                            |        |         |      |              |      |        |                    |

<sup>&</sup>lt;sup>a</sup> 6 mm rainfall within 24 h of 1<sup>st</sup> application

Table 40 Residues of flutriafol in sugar beet (tops) following application of an SC formulation in Spain (Pollmann 2007 1381)

| Location, year, variety       | No    | g ai/ha  | L/ha  | GS     | DALA | Sample | Flutriafol (mg/kg) |
|-------------------------------|-------|----------|-------|--------|------|--------|--------------------|
| SUGAR BEET                    | INO   | g ai/iia | L/IIa | (BBCH) | DALA | Sample | Truttiator (mg/kg) |
| Castelnuovo della Daunia,     | 3     | 132      | 320   | 35-37  | 0    | plant  | 0.13               |
| Puglia, Italy, 2004 Monatonno | (21   | 131      | 317   | 36–38  | 7    | leaves | 0.21               |
|                               | 22) a | 127      | 308   | 45-47  | 15   | leaves | 0.22               |
|                               |       |          |       |        | 22   | leaves | 0.05               |
|                               |       |          |       |        | 29   | leaves | 0.01               |
| Poggio Renatico, Emilia       | 3     | 127      | 410   | 37     | 0    | plant  | 2.35               |
| Romagna, Italy, 2004 Gea      | (21   | 125      | 402   | 39-41  | 6    | leaves | 1.47               |
|                               | 21)   | 124      | 400   | 44     | 13   | leaves | 1.23               |
|                               |       |          |       |        | 20   | leaves | 0.36               |
|                               |       |          |       |        | 29   | leaves | 0.3                |
| Pozoarmargo, Cuenca, Spain,   | 3     | 127      | 408   | 39     | 0    | plant  | 0.51               |
| 2004 Vincent                  | (21   | 127      | 410   | 39     | 7    | leaves | 0.3                |

 $<sup>^{\</sup>rm b}$  2 mm and 3 mm rain within 24 h  $1^{\rm st}$  and  $2^{\rm nd}$  spray

 $<sup>^{</sup>c}$  10.2 mm after  $2^{nd}$  spray

<sup>&</sup>lt;sup>d</sup> 7 mm after 2<sup>nd</sup> spray

 $<sup>^{\</sup>rm e}$  3 and 9 mm rain within 24 h  $1^{\rm st}$  and  $2^{\rm nd}$  spray

 $<sup>^{\</sup>rm f}$  3 and 3 mm rain within 24 h  $1^{\rm st}$  and  $2^{\rm nd}$  spray

g 5 mm rainfall within 24 h of 1st application

Flutriafol Flutriafol

| Location, year, variety<br>SUGAR BEET | No    | g ai/ha | L/ha | GS<br>(BBCH) | DALA | Sample | Flutriafol (mg/kg) |
|---------------------------------------|-------|---------|------|--------------|------|--------|--------------------|
|                                       | 20)   | 124     | 401  | 39           | 15   | leaves | 0.28               |
|                                       |       |         |      |              | 22   | leaves | 0.22               |
|                                       |       |         |      |              | 30   | leaves | 0.29               |
| Tobarra, Albacete, Spain, 2004        | 3     | 128     | 412  | 39           | 0    | plant  | 0.54               |
| Brigitta                              | (21   | 132     | 427  | 39           | 7    | leaves | 0.5                |
|                                       | 21)   | 126     | 405  | 39           | 14   | leaves | 0.19               |
|                                       |       |         |      |              | 21   | leaves | 0.14               |
|                                       |       |         |      |              | 29   | leaves | 0.46               |
| Tobarra, Albacete, Spain, 2005        | 3     | 122     | 390  | 39           | 20   | leaves | 0.26, 0.31         |
| Heracles                              | (22   | 125     | 401  | 39           | 27   | leaves | 0.33, 0.34         |
|                                       | 20)   | 117     | 373  | 42           |      |        |                    |
| Poggio Renatico, Emilia               | 3     | 125     | 397  | 45           | 22   | leaves | 0.15, 0.14         |
| Romagna, Italy, 2005 Opera            | (21   | 124     | 393  | 47           | 28   | leaves | 0.05, 0.04         |
|                                       | 21) b | 127     | 403  | 47           |      |        |                    |
| Ponte Pietra, Cesena, Emilia          | 3     | 128     | 407  | 42           | 22   | leaves | 0.84               |
| Romagna, Italy, 2005 Gea              | (20   | 123     | 390  | 44           | 28   | leaves | 0.74               |
|                                       | 20) c | 124     | 393  | 46           |      |        |                    |
| Arevalo, Avila, Spain, 2006           | 3     | 131     | 312  | 39           | 22   | leaves | 0.33               |
| Brigitta                              | (20   | 138     | 328  | 39           | 29   | leaves | 0.18               |
|                                       | 21)   | 126     | 299  | 39           |      |        |                    |

 $<sup>^{\</sup>rm a}$  0.4 mm rain with 24 h  $1^{\rm st}$  spray

Table 41 Residues of flutriafol in sugar beet (tops) in the USA following application of an SC formulation (Jones 2009 1812) (duplicate samples)

| Location, year,                   |              | g                 |                   | GS                       |            | Residue (mg          | g/kg)                      |                            |                            |
|-----------------------------------|--------------|-------------------|-------------------|--------------------------|------------|----------------------|----------------------------|----------------------------|----------------------------|
| variety                           | No           | ai/ha             | L/ha              | (BBCH)                   | DALA       | Flutriafol           | T                          | TA                         | TAA                        |
| Porterville, CA,<br>USA, 2009     | 3            | 129               | 306               | 81                       | 14         | 1.44<br>1.20         | < 0.01<br>< 0.01           | 0.03<br>0.04               | < 0.01<br>< 0.01           |
| Pheonix                           | (14 14)      | 127<br>124        | 307<br>292        | 81–83<br>87              | Mean       | 1.32                 | < 0.01                     | 0.04                       | < 0.01                     |
| Fresno, CA,<br>USA, 2009<br>HH142 | 3 (14 14)    | 125<br>128<br>128 | 325<br>329<br>329 | 48 48<br>49              | 14         | 0.83<br>0.96         | < 0.01<br>< 0.01           | 0.03<br>0.04<br>c0.01      | < 0.01<br>< 0.01           |
| American Falls,<br>ID, USA, 2009  | 3            | 123               | 279               | 49                       | Mean<br>14 | 0.9<br>0.08<br>0.06  | < 0.01<br>< 0.01<br>< 0.01 | 0.04<br>< 0.01<br>0.01     | < 0.01<br>< 0.01<br>< 0.01 |
| Hillshog 9026                     | (14 15)      | 129<br>123        | 295<br>318        | 49<br>49                 | Mean       | 0.07                 | < 0.01                     | < 0.01                     | < 0.01                     |
| Jerome, ID,<br>USA, 2009          | 3            | 128               | 345               | 49                       | 14         | 0.27<br>0.25         | < 0.01<br>< 0.01           | < 0.01<br>< 0.01           | < 0.01<br>< 0.01           |
| BTSCT01RR07                       | (14 14)      | 128<br>124        | 332<br>339        | 49<br>49                 | Mean       | 0.26                 | < 0.01                     | < 0.01                     | < 0.01                     |
| Geneva, MN,<br>USA, 2009 Beta     | 3            | 129               | 288               | Vegetative               | 14         | 0.65<br>0.61         | < 0.01<br>< 0.01           | 0.01<br>0.01               | < 0.01<br>< 0.01           |
| 130R                              | (15 13)      | 128<br>129        | 280<br>289        | Vegetative<br>Vegetative | Mean       | 0.63                 | < 0.01                     | 0.01                       | < 0.01                     |
| Campbell, MN,<br>USA, 2009        | 3 (13<br>14) | 128<br>128        | 328<br>328        | 33<br>35                 | 0          | 3.75<br>3.11         | < 0.01<br>< 0.01           | < 0.01<br>< 0.01           | < 0.01<br>< 0.01           |
| 4012RR                            |              | 129               | 330               | 49                       | Mean<br>7  | 3.43<br>0.67<br>0.63 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 |
|                                   |              |                   |                   |                          | Mean<br>14 | 0.65<br>0.40<br>0.45 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 |
|                                   |              |                   |                   |                          | Mean<br>21 | 0.43<br>0.21<br>0.28 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>< 0.01 |

<sup>&</sup>lt;sup>b</sup> 3.6 mm rain with 24 h 2<sup>nd</sup> spray

 $<sup>^{\</sup>text{c}}$  0.6 mm rain with 24 h  $3^{\text{rd}}$  spray

| Location, year,       |         | g     |      | GS                    |      | Residue (mg | g/kg)  |        |        |
|-----------------------|---------|-------|------|-----------------------|------|-------------|--------|--------|--------|
| variety               | No      | ai/ha | L/ha | (BBCH)                | DALA | Flutriafol  | T      | TA     | TAA    |
| -                     |         |       |      |                       | Mean | 0.25        | < 0.01 | < 0.01 | < 0.01 |
|                       |         |       |      |                       | 28   | 0.23        | < 0.01 | 0.01   | < 0.01 |
|                       |         |       |      |                       |      | 0.23        | < 0.01 | 0.01   | < 0.01 |
|                       |         |       |      |                       | Mean | 0.23        | < 0.01 | 0.01   | < 0.01 |
| Paynesville, MN,      | 3 (13   | 130   | 283  | 45                    | 14   | 0.02        | < 0.01 | < 0.01 | < 0.01 |
| USA,                  | 14)     | 131   | 285  | 45                    |      | 0.04        | < 0.01 | < 0.01 | < 0.01 |
| 2009 Crystal<br>RR202 |         | 130   | 281  | 47                    | Mean | 0.03        | < 0.01 | < 0.01 | < 0.01 |
| Pavillion, WY,        | 3 (14   | 128   | 304  | 49                    | 14   | 1.72        | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009             | 14)     | 130   | 302  | 49                    |      | 1.83        | < 0.01 | < 0.01 | < 0.01 |
| Beta 36RR11           |         | 130   | 318  | 49                    | Mean | 1.78        | < 0.01 | < 0.01 | < 0.01 |
| Northwood, ND,        | 3       | 127   | 325  | 39                    | 14   | 0.16        | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009             |         |       |      |                       |      | 0.11        | < 0.01 | < 0.01 | < 0.01 |
| Beta 1305R            | (15 13) | 129   | 329  | 39                    | Mean | 0.14        | < 0.01 | < 0.01 | < 0.01 |
|                       |         | 127   | 324  | 39                    | Mean |             |        |        |        |
| Velva, ND,            | 3       | 130   | 284  | 37                    | 14   | 1.22        | < 0.01 | < 0.01 | < 0.01 |
|                       |         |       |      |                       |      | 1.11        | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009 R308        | (14 14) | 131   | 286  | 39                    | Mean | 1.17        | < 0.01 | < 0.01 | < 0.01 |
|                       |         | 127   | 284  | 39                    | Mean |             |        |        |        |
| York, NE, USA,        | 3 (14   | 129   | 329  | 42 d before           | 14   | 0.84        | < 0.01 | < 0.01 | < 0.01 |
| 2009 Beta             | 14)     |       |      | harvest               |      | 0.72        | < 0.01 | < 0.01 | < 0.01 |
| 734IR                 |         | 130   | 329  | 39                    | Mean | 0.78        | < 0.01 | < 0.01 | < 0.01 |
|                       |         | 129   | 325  | 49                    |      |             |        |        |        |
| Levelland, TX,        | 3 (14   | 130   | 324  | Roots                 | 14   | 0.50        | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009             | 15)     |       |      | starting to           |      | 0.64        | < 0.01 | < 0.01 | < 0.01 |
| Phoenix               |         |       |      | enlarge               |      |             |        |        |        |
|                       |         | 124   | 322  | roots                 |      | 0.57        | < 0.01 | < 0.01 | < 0.01 |
|                       |         | 127   | 325  | enlarging<br>maturing | Mean |             |        |        |        |
|                       |         |       |      | roots                 |      |             |        |        |        |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Table 42 Residues of flutriafol in almond hulls following application of an SC formulation in the USA (Rice  $2011\ 2161$ ) (duplicate samples)

| Location,     |        | g     |      | g     | GS     |      | Residue (mg | g/kg)   |       |         |
|---------------|--------|-------|------|-------|--------|------|-------------|---------|-------|---------|
| year, variety | No     | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol  | T       | TA    | TAA     |
| Dinuba, CA,   | 6 (8 8 | 128   | 731  | 17    | 75     | 14   | 2.17, 1.78  | < 0.01  | 0.02  | < 0.01  |
| USA, 2010     | 8 8 8) | 129   | 750  | 17    | 75     |      |             | < 0.01  | 0.02  | < 0.01  |
| Almond        |        | 128   | 781  | 16    | 78     |      |             |         | c0.02 |         |
| Sonora        |        | 129   | 788  | 16    | 78     | Mean | 1.98        | < 0.01  | 0.02  | < 0.01  |
|               |        | 128   | 791  | 16    | 81     |      |             |         |       |         |
|               |        | 128   | 883  | 14    | 81     |      |             |         |       |         |
| Strathmore,   | 6 (6 7 | 128   | 2759 | 4.6   | 79     | 14   | 6.90, 6.47  | < 0.01, | 0.11  | 0.02,   |
| CA, USA,      | 777)   | 128   | 2751 | 4.6   | 79     |      |             | < 0.01  | 0.10  | 0.02    |
| 2010          |        | 129   | 2768 | 4.7   | 79     |      |             |         | c0.16 | c0.04   |
| Almond Fritz  |        | 128   | 2761 | 4.6   | 80     | Mean | 6.54        | < 0.01  | 0.10  | 0.02    |
|               |        | 128   | 2753 | 4.6   | 80     |      |             |         |       |         |
|               |        | 128   | 2773 | 4.6   | 88     |      |             |         |       |         |
| Wasco, CA,    | 6 (8 6 | 128   | 809  | 16    | 79     | 14   | 1.77, 1.84  | ND,     | 0.02  | < 0.01, |
| USA, 2010     | 777)   | 128   | 788  | 16    | 79     |      |             | ND      | 0.02  | < 0.01  |
|               |        | 128   | 791  | 16    | 79     |      |             |         | c0.02 |         |
|               |        | 128   | 786  | 16    | 79     | Mean | 1.80        | < 0.01  | 0.02  | < 0.01  |
|               |        | 128   | 785  | 16    | 79     |      |             |         |       |         |
|               |        | 128   | 827  | 15    | 85     |      |             |         |       |         |
| Buttonwillow, | 6 (7 7 | 128   | 3301 | 3.9   | 78     | 14   | 4.28, 3.67  | < 0.01, | 0.06  | 0.02    |
| CA, USA,      | 777)   | 127   | 3321 | 3.8   | 79     |      |             | < 0.01  | 0.05  | 0.02    |
| 2010          |        | 133   | 3313 | 4     | 79     |      |             |         | c0.03 | c0.02   |
| Almond        |        | 128   | 3304 | 3.9   | 83     | Mean | 3.98        | < 0.01  | 0.06  | 0.02    |
| Monterey's    |        | 128   | 3327 | 3.8   | 85     |      |             |         |       |         |

| Location,     |        | g     |      | g     | GS     |      | Residue (mg | g/kg)  |       |         |
|---------------|--------|-------|------|-------|--------|------|-------------|--------|-------|---------|
| year, variety | No     | ai/ha | L/ha | ai/hL | (BBCH) | DALA | Flutriafol  | T      | TA    | TAA     |
|               |        | 128   | 3223 | 4     | 87     |      |             |        |       |         |
| Terra Bella,  | 6 (9 7 | 127   | 661  | 19    | 75     | 1    | 2.68, 2.52  | ND,    | 0.04  | < 0.01, |
| CA, USA,      | 988)   | 128   | 605  | 21    | 72     |      |             | < 0.01 | 0.06  | < 0.01  |
| 2010          |        | 127   | 627  | 20    | 78     | Mean | 2.60        | < 0.01 | 0.05  | < 0.01  |
| Almond Non    |        | 129   | 661  | 19    | 79     | 7    | 0.99, 1.19  | < 0.01 | 0.03  | < 0.01  |
| Pareil        |        | 129   | 661  | 19    | 79     |      |             | < 0.01 | 0.06  | < 0.01  |
|               |        | 128   | 661  | 20    | 81     | Mean | 1.09        | < 0.01 | 0.04  | < 0.01  |
|               |        |       |      |       |        | 14   | 0.93, 1.21  | < 0.01 | 0.04  | < 0.01  |
|               |        |       |      |       |        |      |             | < 0.01 | 0.05  | < 0.01  |
|               |        |       |      |       |        |      |             |        | c0.11 | c0.02   |
|               |        |       |      |       |        | Mean | 1.07        | < 0.01 | 0.04  | < 0.01  |
|               |        |       |      |       |        | 21   | 1.12, 1.39  | < 0.01 | 0.05  | < 0.01  |
|               |        |       |      |       |        |      |             | < 0.01 | 0.05  | < 0.01  |
|               |        |       |      |       |        | Mean | 1.26        | < 0.01 | 0.05  | < 0.01  |
|               |        |       |      |       |        | 28   | 0.81, 0.70  | < 0.01 | 0.03  | < 0.01  |
|               |        |       |      |       |        | 20   |             | < 0.01 | 0.04  | < 0.01  |
|               |        |       |      |       |        | Mean | 0.76        | < 0.01 | 0.04  | < 0.01  |

Table 43 Residues of flutriafol in maize forage following application of an SC formulation in the USA (Carringer 2010 1810) (duplicate samples). A non-ionic surfactant was added to the tank mix at all sites except for decline trials where plots were sprayed with and without surfactant.

| Location,      |       | g     |      | GS     |      | Residue (mg/ |        |        |        |
|----------------|-------|-------|------|--------|------|--------------|--------|--------|--------|
| year, variety  | No    | ai/ha | L/ha | (BBCH) | DALA | Flutriafol   | T      | TA     | TAA    |
| Germansville,  | 2 (6) | 131   | 140  | 79     | 0    | 2.30 2.57    | < 0.01 | 0.01   | < 0.01 |
| PA, USA, 2009  |       | 130   | 140  | 85     |      |              | < 0.01 | 0.01   | < 0.01 |
| Hybrid         |       |       |      |        |      |              |        | c0.01  |        |
| 2D324          |       |       |      |        | Mean | 2.44         | < 0.01 | 0.01   | < 0.01 |
| Mycogen Seed   |       |       |      |        |      |              |        |        |        |
| Seven Springs, | 2 (7) | 128   | 131  | 83     | 0    | 2.08 2.30    | < 0.01 | 0.02   | < 0.01 |
| NC, USA, 2009  |       | 126   | 131  | 85     |      |              | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        |      |              |        | c0.03  |        |
| N77-P5         |       |       |      |        | Mean | 2.19         | < 0.01 | 0.02   | < 0.01 |
| Wyoming, IL,   | 2 (7) | 129   | 112  | 75–83  | 0    | 1.37 1.22    | < 0.01 | 0.01   | < 0.01 |
| USA, 2009      |       | 129   | 112  | 83–85  |      |              | < 0.01 | < 0.01 | < 0.01 |
|                |       |       |      |        |      |              |        | c0.01  |        |
| DKC 61-69      |       |       |      |        | Mean | 1.30         | < 0.01 | < 0.01 | < 0.01 |
|                |       |       |      |        | 1    | 0.987 0.160  | < 0.01 | 0.01   | < 0.01 |
|                |       |       |      |        |      |              | < 0.01 | < 0.01 | < 0.01 |
|                |       |       |      |        | Mean | 0.57         | < 0.01 | < 0.01 | < 0.01 |
|                |       |       |      |        | 7    | 1.26 1.11    | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        |      |              | < 0.01 | 0.01   | < 0.01 |
|                |       |       |      |        | Mean | 1.18         | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        | 14   | 0.87 1.11    | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        |      |              | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        | Mean | 0.99         | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        | 21   | 0.74 0.87    | < 0.01 | 0.01   | < 0.01 |
|                |       |       |      |        |      |              | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        | Mean | 0.80         | < 0.01 | 0.02   | < 0.01 |
| No surfactant  |       | 128   | 112  | 75–83  | 0    | 2.00 0.94    | < 0.01 | 0.01   | < 0.01 |
|                |       | 129   | 112  | 83-85  |      |              | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        | Mean | 1.47         | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        | 1    | 1.58 0.98    | < 0.01 | 0.01   | < 0.01 |
|                |       |       |      |        |      |              | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        | Mean | 1.28         | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        | 7    | 1.35 1.17    | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        |      |              | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        | Mean | 1.26         | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        | 14   | 0.76 1.01    | < 0.01 | 0.02   | < 0.01 |
|                |       |       |      |        |      |              | < 0.01 | 0.06   | < 0.01 |
|                | İ     |       |      |        | Mean | 0.88         | < 0.01 | 0.04   | < 0.01 |

| Location,         |       | g     |      | GS     |      | Residue (mg | /kg)   |        |        |
|-------------------|-------|-------|------|--------|------|-------------|--------|--------|--------|
| year, variety     | No    | ai/ha | L/ha | (BBCH) | DALA | Flutriafol  | T      | TA     | TAA    |
|                   |       |       |      |        | 21   | 0.64 0.50   | < 0.01 | 0.03   | < 0.01 |
|                   |       |       |      |        |      |             | < 0.01 | 0.03   | < 0.01 |
|                   |       |       |      |        | Mean | 0.57        | < 0.01 | 0.03   | < 0.01 |
| Carlyle, IL,      | 2 (7) | 130   | 112  | 85     | 0    | 0.53 0.53   | < 0.01 | 0.02   | < 0.01 |
| USA, 2009         |       | 133   | 131  | 85     |      |             | < 0.01 | 0.02   | < 0.01 |
| 8G23              |       |       |      |        | 3.6  | 0.72        | 0.01   | c0.02  | 0.01   |
| G C I II          | 0 (7) | 100   | 122  | 0.5    | Mean | 0.53        | < 0.01 | 0.02   | < 0.01 |
| Grantfork, IL,    | 2 (7) | 130   | 122  | 85     | 0    | 1.85 1.93   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009         |       | 128   | 103  | 85     |      |             | < 0.01 | 0.01   | < 0.01 |
| A: C -1           | +     |       | +    |        | M    | 1.89        | < 0.01 | c0.02  | c 0.01 |
| AgriGolg<br>AG457 |       |       |      |        | Mean | 1.89        | < 0.01 | < 0.01 | < 0.01 |
| Conklin, MI,      | 2 (7) | 128   | 122  | 85     | 0    | 1.01 1.27   | < 0.01 | 0.02   | < 0.01 |
| USA, 2009         | 2(1)  | 128   | 122  | 85–86  | 0    | 1.01 1.27   | < 0.01 | 0.02   | < 0.01 |
| A1005113          |       | 120   | 122  | 05-00  |      |             | 0.01   | c0.02  | 0.01   |
| 711003113         | +     |       | +    |        | Mean | 1.14        | < 0.01 | 0.02   | < 0.01 |
| Richland, IA,     | 2 (8) | 129   | 140  | 79     | 0    | 1.83 1.47   | < 0.01 | 0.02   | < 0.01 |
| USA, 2009         | 2 (0) | 129   | 140  | 87     |      | 1.03 1.47   | < 0.01 | 0.02   | < 0.01 |
| Pioneer           |       | 12/   | 110  | 1 57   | Mean | 1.65        | < 0.01 | 0.03   | < 0.01 |
| 34R67             |       |       |      |        | 1    | 1.26 1.20   | < 0.01 | 0.02   | < 0.01 |
| - 12107           |       |       |      |        | 1    | 1.20 1.20   | < 0.01 | 0.03   | < 0.01 |
|                   |       |       |      |        | Mean | 1.23        | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        | 7    | 0.31 0.30   | < 0.01 | 0.03   | < 0.01 |
|                   |       |       |      |        | ,    | 0.01 0.00   | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        | Mean | 0.30        | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        | 13   | 0.32 0.34   | < 0.01 | 0.03   | < 0.01 |
|                   |       |       |      |        |      |             | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        | Mean | 0.33        | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        | 20   | 0.32 0.34   | < 0.01 | 0.03   | < 0.01 |
|                   |       |       |      |        |      |             | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        | Mean | 0.33        | < 0.01 | 0.02   | < 0.01 |
| No surfactant     | 2 (8) | 129   | 140  | 79     | 0    | 1.05 0.99   | < 0.01 | 0.02   | < 0.01 |
|                   |       | 129   | 140  | 87     |      |             | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        | Mean | 1.02        | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        | 1    | 0.68 0.74   | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        |      |             | < 0.01 | 0.03   | < 0.01 |
|                   |       |       |      |        | Mean | 0.71        | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        | 7    | 0.13 0.13   | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        |      |             | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        | Mean | 0.13        | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        | 13   | 0.19 0.21   | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        |      |             | < 0.01 | 0.03   | < 0.01 |
|                   |       |       |      |        | Mean | 0.20        | < 0.01 | 0.02   | < 0.01 |
|                   |       |       |      |        | 20   | 0.19 0.18   | < 0.01 | 0.04   | < 0.01 |
|                   |       |       |      |        | 1    |             | < 0.01 | 0.03   | < 0.01 |
|                   |       |       |      |        | Mean | 0.19        | < 0.01 | 0.04   | < 0.01 |
| Douds, IA,        | 2 (6) | 131   | 150  | 75–78  | 0    | 1.48 1.42   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009         |       | 128   | 140  | 85     | 1    |             | < 0.01 | < 0.01 | < 0.01 |
| Garst 84N57       |       |       | 1    |        | Mean | 1.45        | < 0.01 | < 0.01 | < 0.01 |
| Batavia, IA,      | 2 (6) | 132   | 150  | 75–78  | 0    | 1.56 1.17   | < 0.01 | 0.03   | < 0.01 |
| USA, 2009         |       | 130   | 140  | 85     |      |             | < 0.01 | 0.03   | < 0.01 |
| Garst 82K79       |       |       |      | -      | 3.5  | 1.05        |        | c0.05  | 0.00   |
| T. DI . 2.50      | 2 (5) | 10=   | 1.40 | 75.00  | Mean | 1.36        | < 0.01 | 0.03   | < 0.01 |
| LaPlata, MO,      | 2 (6) | 127   | 140  | 75–80  | 0    | 0.74 1.08   | < 0.01 | < 0.01 | < 0.01 |
| USA, 2009 LG      |       | 129   | 140  | 83–85  |      |             | < 0.01 | 0.01   | < 0.01 |
| 2614 VT           |       |       |      |        | 3.6  | 0.01        | 0.01   | c0.01  | 0.01   |
| T 00              |       |       |      | 105    | Mean | 0.91        | < 0.01 | < 0.01 | < 0.01 |
| Jefferson, IA,    | 2 (7) | 131   | 131  | 85     | 0    | 3.47 1.84   | < 0.01 | 0.02   | < 0.01 |
| USA, 2009         |       | 130   | 122  | 85     |      |             | < 0.01 | 0.01   | < 0.01 |
| 33H27             |       |       | -    |        | 1.6  | 2.65        | .0.01  | c0.02  | .0.01  |
| D 1 7:            | 2 (=) | 101   | 1.10 | 0.5    | Mean | 2.66        | < 0.01 | 0.02   | < 0.01 |
| Bagley, IA,       | 2 (7) | 131   | 140  | 85     | 0    | 1.50 1.76   | < 0.01 | 0.01   | < 0.01 |

| Location,                               |       | g          |            | GS          |      | Residue (mg | g/kg)            |                           |                  |
|-----------------------------------------|-------|------------|------------|-------------|------|-------------|------------------|---------------------------|------------------|
| year, variety                           | No    | ai/ha      | L/ha       | (BBCH)      | DALA | Flutriafol  | T                | TA                        | TAA              |
| USA, 2009<br>33M16                      |       | 130        | 103        | 85          |      |             | < 0.01           | 0.01<br>c0.02             | < 0.01           |
|                                         |       |            |            |             | Mean | 1.63        | < 0.01           | 0.01                      | < 0.01           |
| Bristol, IN,<br>USA, 2009               | 2 (7) | 128<br>128 | 122<br>122 | 83–85<br>86 | 0    | 1.50 1.56   | < 0.01<br>< 0.01 | 0.02<br>0.01              | < 0.01<br>< 0.01 |
| 34F97                                   |       |            |            |             | Mean | 1.53        | < 0.01           | 0.02                      | < 0.01           |
| York, NE,<br>USA, 2009<br>7B15RRY       | 2 (8) | 129<br>129 | 140<br>140 | 83<br>85    | 0    | 2.20 1.50   | < 0.01<br>< 0.01 | 0.02<br>0.02<br>c0.02     | < 0.01<br>< 0.01 |
| GCBP                                    |       |            |            |             | Mean | 1.85        | < 0.01           | 0.02                      | < 0.01           |
| Osceola, NE,<br>USA, 2009<br>7B15RRY    | 2 (7) | 128<br>129 | 140<br>140 | 83<br>85    | 0    | 1.8 1.74    | < 0.01<br>< 0.01 | 0.05<br>0.04<br>c0.02     | < 0.01<br>< 0.01 |
| GCBP                                    |       |            |            |             | Mean | 1.77        | < 0.01           | 0.04                      | < 0.01           |
| Geneva, NE,<br>USA, 2009<br>7B15RRY     | 2 (8) | 129<br>129 | 140<br>140 | 83<br>85    | 0    | 1.07 1.10   | < 0.01<br>< 0.01 | 0.02<br>0.02<br>c0.02     | < 0.01<br>< 0.01 |
| GCBP                                    |       |            |            |             | Mean | 1.08        | < 0.01           | 0.02                      | < 0.01           |
| Geneva, MN,<br>USA, 2009<br>Pioneer     | 2 (7) | 127<br>128 | 140<br>140 | R4<br>86    | 0    | 1.41 1.90   | < 0.01<br>< 0.01 | 0.01<br>0.01<br>c0.01     | < 0.01<br>< 0.01 |
| 38P43                                   |       |            |            |             | Mean | 1.66        | < 0.01           | 0.01                      | < 0.01           |
| Paynesville,<br>MN, USA,<br>2009 Dekalb | 2 (7) | 129<br>129 | 131<br>131 | 85<br>85    | 0    | 1.99 1.51   | < 0.01<br>< 0.01 | < 0.01<br>< 0.01<br>c0.02 | < 0.01<br>< 0.01 |
| DKC35                                   |       |            |            |             | Mean | 1.75        | < 0.01           | < 0.01                    | < 0.01           |
| Fitchburg, WI,<br>USA, 2009<br>Pioneer  | 2 (7) | 127<br>127 | 131<br>131 | 83<br>85–86 | 0    | 2.71 2.77   | < 0.01<br>< 0.01 | 0.01<br>0.01<br>c0.01     | < 0.01<br>< 0.01 |
| 37Y14                                   |       |            |            |             | Mean | 2.74        | < 0.01           | 0.01                      | < 0.01           |
| Hinton, OK,<br>USA, 2009<br>DKC 52–59   | 2 (7) | 128<br>128 | 131<br>131 | 85<br>85    | 0    | 0.77 0.71   | < 0.01<br>< 0.01 | 0.04<br>0.04<br>c0.05     | < 0.01<br>< 0.01 |
|                                         |       |            |            |             | Mean | 0.74        | < 0.01           | 0.04                      | < 0.01           |

 $1\ X-77\ @\ 0.25\%\ v/v;\ 2\ Induce\ @\ 0.34\%\ v/v;\ 3\ Aquagene\ 90\ @\ 0.05\%\ v/v;\ 4\ Surfac\ 820\ @\ 0.25\%\ v/v;\ 5\ NIS\ @\ 0.25\%\ v/v;\ 5\ NIS\ @\ 0.25\%\ v/v;\ 6\ R-11\ @\ 0.064\%\ v/v;\ 7\ Silwet\ L-77\ @\ 0.25\%\ v/v;\ 8\ X-77\ @\ 0.25\%\ v/v;\ 9\ X-77\ @\ 0.25\%\ v/v;\ 10\ X-77\ @\ 0.25\%\ v/v;\ 11\ Hel-Fire\ 90\ @\ 0.25\%\ v/v;\ 13\ R11\ @\ 0.064\%\ v/v;\ 14\ Cornbelt\ Premier\ 90\ @\ 0.25\%\ v/v;\ 15\ Cornbelt\ Premier\ 90\ @\ 0.25\%\ v/v;\ 17\ Dyne\ Amic\ NIS\ @\ 0.375\%\ v/v;\ 18\ Preference\ @\ 0.25\%\ v/v;\ 19\ Preference\ @\ 0.25\%\ v/v;\ 20\ Baron\ @\ 0.076\%\ v/v$ 

<u>Moisture content %:</u> 70.6, 68.2, 69.9 (0 d), 69.8 (1 d), 67.2 (7 d), 57.7 (14 d), 56.3 (21 d), 71.5, 70.4, 72.7, 70.6 (0 d), 66.5 (1 d), 69.0 (7 d), 68.0 (13 d), 67.1 (20 d), 69.8, 70.0, 71.3, 68.6, 71.2, 72.3, 67.7, 65.3, 65.9, 71.3, 54.2, 62.4, 61.4

Table 44 Residues of flutriafol in maize stover following application of an SC formulation in the USA (Carringer 2010 1810) (duplicate samples). A non-ionic surfactant was added to the tank mix at all sites except for decline trials where plots were sprayed with and without surfactant.

| Location,             |       | g          |            | GS       |         | Residue (mg | /kg)             |                  |                  |
|-----------------------|-------|------------|------------|----------|---------|-------------|------------------|------------------|------------------|
| year, variety         | No    | ai/ha      | L/ha       | (BBCH)   | DALA    | Flutriafol  | T                | TA               | TAA              |
| Germansville,         | 2 (6) | 129        | 140        | 87       | 6       | 2.67 3.31   | < 0.01           | < 0.01           | < 0.01           |
| PA, USA,              |       | 132        | 140        | 89       |         |             | < 0.01           | < 0.01           | < 0.01           |
| 2009 Hybrid           |       |            |            |          | Mean    | 2.99        | < 0.01           | < 0.01           | < 0.01           |
| 2D324                 |       |            |            |          |         |             |                  |                  |                  |
| Mycogen Seed          | 2 (7) | 120        | 121        | 0.5      |         | 227100      | 0.01             | 0.01             | 0.01             |
| Seven Springs,        | 2 (7) | 129        | 131        | 86       | 6       | 2.25 1.89   | < 0.01           | < 0.01           | < 0.01           |
| NC, USA, 2009         |       | 131        | 131        | 89       |         |             | < 0.01           | 0.02<br>c0.03    | < 0.01           |
| N77-P5                |       |            |            |          | Mean    | 2.07        | < 0.01           | < 0.02           | < 0.01           |
| Wyoming, IL,          | 2 (7) | 129        | 112        | 89       | 0       | 1.23 0.92   | < 0.01           | < 0.02           | < 0.01           |
| USA,                  | 2(1)  | 128        | 112        | 89       | 0       | 1.23 0.72   | < 0.01           | < 0.01           | < 0.01           |
| 2009                  |       | 120        | 112        | 0,5      | Mean    | 1.08        | < 0.01           | < 0.01           | < 0.01           |
| DKC 61-69             |       |            |            |          | 1       | 1.04 1.76   | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          |         |             | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | Mean    | 1.40        | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | 7       | 0.62 0.93   | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          |         |             | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | Mean    | 0.78        | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | 15      | 0.84 0.71   | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          |         |             | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            | 1          |          | Mean    | 0.78        | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | 21      | 0.90 0.84   | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | 3.5     |             | < 0.01           | < 0.01           | < 0.01           |
| NT 6                  | 2 (7) | 120        | 110        | 00       | Mean    | 0.87        | < 0.01           | < 0.01           | < 0.01           |
| No surfactant         | 2 (7) | 128        | 112        | 89       | 0       | 1.09 1.07   | < 0.01           | < 0.01           | < 0.01           |
|                       |       | 128        | 112        | 89       | Mean    | 1.08        | < 0.01<br>< 0.01 | < 0.01           | < 0.01<br>< 0.01 |
|                       |       |            |            |          | 1       | 1.48 1.40   | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | 1       | 1.46 1.40   | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | Mean    | 1.44        | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | 7       | 0.96 0.74   | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | ,       | 0.50 0.74   | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | Mean    | 0.85        | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | 15      | 0.74 0.72   | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          |         |             | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | Mean    | 0.73        | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | 21      | 0.77 0.58   | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          |         |             | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | Mean    | 0.68        | < 0.01           | < 0.01           | < 0.01           |
| Carlyle, IL,          | 2 (8) | 127        | 122        | 87       | 7       | 1.63 2.24   | < 0.01           | < 0.01           | < 0.01           |
| USA, 2009             |       | 128        | 140        | 89       | 3.6     | 1.04        | < 0.01           | < 0.01           | < 0.01           |
| 8G23                  | 2 (7) | 120        | 100        | 90       | Mean    | 1.94        | < 0.01           | < 0.01           | < 0.01           |
| Grantfork, IL,        | 2 (7) | 130<br>130 | 122<br>112 | 89<br>89 | 7       | 0.87 0.90   | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 | < 0.01<br>< 0.01 |
| USA,<br>2009 AgriGolg |       | 130        | 112        | 07       | Mean    | 0.88        | < 0.01           | < 0.01           | < 0.01           |
| AG457                 |       |            | 1          |          | Ivicali | 0.00        | \ U.U1           | \ U.U1           | \ 0.01           |
| Conklin, MI,          | 2 (8) | 128        | 122        | 87       | 6       | 1.06 1.01   | < 0.01           | < 0.01           | < 0.01           |
| USA, 2009             | - (5) | 128        | 122        | 88       |         |             | < 0.01           | < 0.01           | < 0.01           |
| A1005113              |       |            | İ          |          | Mean    | 1.04        | < 0.01           | < 0.01           | < 0.01           |
| Richland, IA,         | 2 (7) | 129        | 140        | 89       | 0       | 3.30 2.77   | < 0.01           | < 0.01           | < 0.01           |
| USA, 2009             |       | 129        | <u></u>    | 89       |         |             | < 0.01           | < 0.01           | < 0.01           |
| Pioneer               |       |            |            |          | Mean    | 3.04        | < 0.01           | < 0.01           | < 0.01           |
| 34R67                 |       |            | 1          |          | 1       | 0.77 0.89   | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            | 1          |          |         |             | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            | 1          |          | Mean    | 0.83        | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            | 1          |          | 7       | 0.95 1.06   | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            | 1          |          | 1.6     | 1.00        | < 0.01           | < 0.01           | < 0.01           |
|                       |       |            |            |          | Mean    | 1.00        | < 0.01           | < 0.01           | < 0.01           |

Flutriafol Flutriafol

| Location,                |       | g     | 1          | GS     |           | Residue (mg/ | /kg)             |                  |                  |
|--------------------------|-------|-------|------------|--------|-----------|--------------|------------------|------------------|------------------|
| year, variety            | No    | ai/ha | L/ha       | (BBCH) | DALA      | Flutriafol   | T                | TA               | TAA              |
|                          |       |       |            |        | 13        | 0.69 0.71    | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        |           |              | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        | Mean      | 0.70         | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        | 20        | 0.78 1.01    | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        |           |              | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        | Mean      | 0.90         | < 0.01           | < 0.01           | < 0.01           |
| No surfactant            | 2 (7) | 128   | 140        | 89     | 0         | 2.46 2.36    | < 0.01           | < 0.01           | < 0.01           |
|                          |       | 129   | 140        | 89     |           |              | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        | Mean      | 2.41         | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        | 1         | 0.81 0.78    | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        | 3.6       | 0.00         | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        | Mean      | 0.80         | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        | 7         | 0.56 0.64    | < 0.01           | < 0.01           | < 0.01           |
|                          | -     |       |            |        | Mean      | 0.59         | < 0.01           | < 0.01           | < 0.01<br>< 0.01 |
|                          |       |       |            |        | 13        | 0.39         | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        | 15        | 0.49 0.72    | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        | Mean      | 0.60         | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            | +      | 20        | 0.62 0.60    | < 0.01           | < 0.01           | < 0.01           |
|                          |       |       |            |        | 20        | 0.02 0.00    | < 0.01           | < 0.01           | < 0.01           |
|                          | +     |       |            |        | Mean      | 0.61         | < 0.01           | < 0.01           | < 0.01           |
| Douds, IA,               | 2 (7) | 126   | 140        | 87     | 7         | 1.34 1.54    | < 0.01           | < 0.01           | < 0.01           |
| USA, 2009                |       | 127   | 131        | 87–89  |           |              | < 0.01           | < 0.01           | < 0.01           |
| Garst 84N57              |       |       |            |        | Mean      | 1.44         | < 0.01           | < 0.01           | < 0.01           |
| Batavia, IA,             | 2 (7) | 129   | 140        | 87     | 7         | 2.73 2.54    | < 0.01           | < 0.01           | < 0.01           |
| USA, 2009                |       | 126   | 131        | 87–89  |           |              | < 0.01           | < 0.01           | < 0.01           |
| Garst 82K79              |       |       |            |        | Mean      | 2.64         | < 0.01           | < 0.01           | < 0.01           |
| LaPlata, MO,             | 2 (7) | 130   | 140        | 87     | 6         | 1.48 1.45    | < 0.01           | 0.01             | < 0.01           |
| USA, 2009                |       | 128   | 140        | 89     |           |              | < 0.01           | < 0.01           | < 0.01           |
| LG 2614 VT               |       |       |            |        | Mean      | 1.46         | < 0.01           | < 0.01           | < 0.01           |
| Jefferson, IA,           | 2 (7) | 129   | 112        | 87     | 7         | 6.12 4.77    | < 0.01           | < 0.01           | < 0.01           |
| USA,                     |       | 127   | 103        | 87     | 1         | 1            | < 0.01           | < 0.01           | < 0.01           |
| 2009 33H27               | 2 (7) | 126   | 102        | 0.7    | Mean      | 5.44         | < 0.01           | < 0.01           | < 0.01           |
| Bagley, IA,              | 2 (7) | 126   | 103        | 87     | 7         | 2.82 2.15    | < 0.01           | < 0.01           | < 0.01           |
| USA, 2009                |       | 127   | 103        | 87     | M         | 2.48         | < 0.01           | < 0.01           | < 0.01           |
| 33M16<br>Bristol, IN,    | 2 (7) | 128   | 122        | 87     | Mean<br>8 | 0.87 0.56    | < 0.01<br>< 0.01 | < 0.01           | < 0.01<br>< 0.01 |
| USA, 2009                | 2(1)  | 128   | 122        | 88     | 0         | 0.87 0.30    | < 0.01           | < 0.01           | < 0.01           |
| 34F97                    |       | 120   | 122        | 00     | Mean      | 0.72         | < 0.01           | < 0.01           | < 0.01           |
| York, NE,                | 2 (8) | 129   | 140        | 87     | 6         | 2.82 3.27    | < 0.01           | < 0.01           | < 0.01           |
| USA, 2009                | 2 (0) | 124   | 140        | 87     |           | 2.02 3.27    | < 0.01           | < 0.01           | < 0.01           |
| 7B15RRY                  |       |       |            |        | Mean      | 3.04         | < 0.01           | < 0.01           | < 0.01           |
| GCBP                     |       |       |            |        |           |              |                  |                  |                  |
| Osceola, NE,             | 2 (7) | 129   | 140        | 87     | 7         | 3.71 4.25    | < 0.01           | < 0.01           | < 0.01           |
| USA, 2009                |       | 129   | 140        | 87     |           |              | < 0.01           | < 0.01           | < 0.01           |
| 7B15RRY                  |       |       |            |        | Mean      | 3.98         | < 0.01           | < 0.01           | < 0.01           |
| GCBP                     |       |       |            |        |           |              | 1                |                  | 1                |
| Geneva, NE,              | 2 (7) | 128   | 140        | 87     | 6         | 3.25 2.73    | < 0.01           | < 0.01           | < 0.01           |
| USA, 2009                | 1     | 128   | 140        | 87     | 1.6       | 2.00         | < 0.01           | < 0.01           | < 0.01           |
| 7B15RRY                  |       |       |            |        | Mean      | 2.99         | < 0.01           | < 0.01           | < 0.01           |
| GCBP                     | 2(0)  | 129   | 1.40       | 87     | 8         | 2.33 2.43    | < 0.01           | < 0.01           | < 0.01           |
| Geneva, MN,<br>USA, 2009 | 2 (6) | 129   | 140<br>140 | 87     | 0         | 2.33 2.43    | < 0.01           | < 0.01<br>< 0.01 | < 0.01           |
| Pioneer 38P43            |       | 129   | 140        | 0/     | Mean      | 2.38         | < 0.01           | < 0.01           | < 0.01           |
| Paynesville,             | 2 (7) | 129   | 131        | 87     | 7         | 0.02 < 0.01  | < 0.01           | < 0.01           | < 0.01           |
| MN, USA,                 | 2(1)  | 130   | 131        | 89     | '         | 0.02 < 0.01  | < 0.01           | < 0.01           | < 0.01           |
| 2009 Dekalb              |       | 130   | 1.51       | 0,     | Mean      | < 0.02       | < 0.01           | < 0.01           | < 0.01           |
| DKC35                    |       |       |            |        | 1,10011   | 0.02         | 0.01             | \ 0.01           | 0.01             |
| Fitchburg, WI,           | 2 (6) | 128   | 131        | 87     | 9         | 1.23 1.40    | < 0.01           | < 0.01           | < 0.01           |
| USA,                     | _ (0) | 128   | 131        | 89     | ^         | 1.25 1.10    | < 0.01           | < 0.01           | < 0.01           |
| 2009 Pioneer             |       |       | 1          |        | Mean      | 1.32         | < 0.01           | < 0.01           | < 0.01           |
| 37Y14                    |       |       |            |        |           |              |                  |                  |                  |
| <u> </u>                 | 1     |       |            |        | 1         | 1            | 1                | -                | 1                |

| Location,                |       | g          |            | GS       |      | Residue (mg/l | (g)              |                        |                  |
|--------------------------|-------|------------|------------|----------|------|---------------|------------------|------------------------|------------------|
| year, variety            | No    | ai/ha      | L/ha       | (BBCH)   | DALA | Flutriafol    | T                | TA                     | TAA              |
| Hinton, OK,<br>USA, 2009 | 2 (7) | 129<br>129 | 131<br>131 | 87<br>87 | 7    | 2.65 1.89     | < 0.01<br>< 0.01 | 0.03,<br>0.03<br>c0.02 | < 0.01<br>< 0.01 |
| DKC 52-59                |       |            |            |          | Mean | 2.27          | < 0.01           | 0.03                   | < 0.01           |

 $1\ X-77\ @\ 0.25\%\ v/v;\ 2\ Induce\ @\ 0.34\%\ v/v;\ 3\ Aquagene\ 90\ @\ 0.05\%\ v/v;\ 4\ Surfac\ 820\ @\ 0.25\%\ v/v;\ 5\ NIS\ @\ 0.25\%\ v/v;\ 6\ R-11\ @\ 0.064\%\ v/v;\ 7\ Silwet\ L-77\ @\ 0.25\%\ v/v;\ 8\ X-77\ @\ 0.25\%\ v/v;\ 9\ X-77\ @\ 0.25\%\ v/v;\ 10\ X-77\ @\ 0.25\%\ v/v;\ 11\ Hel-Fire\ 90\ @\ 0.25\%\ v/v;\ 13\ R11\ @\ 0.064\%\ v/v;\ 14\ Cornbelt\ Premier\ 90\ @\ 0.25\%\ v/v;\ 15\ Cornbelt\ Premier\ 90\ @\ 0.25\%\ v/v;\ 17\ Dyne\ Amic\ NIS\ @\ 0.375\%\ v/v;\ 18\ Preference\ @\ 0.25\%\ v/v;\ 19\ Preference\ @\ 0.25\%\ v/v;\ 20\ Baron\ @\ 0.076\%\ v/v$ 

<u>Moisture contents %:</u> 57.2, 57.2, 63.2 (0 d), 67.8 (1 d), 57.8 (7 d), 61.2 (15 d), 55.1 (21 d), 61.4, 45.8, 69.6, 63.4 (0 d), 72.3 (1 d), 66.7 (7 d), 61.6 (13 d), 52.1 (20 d), 63.9, 67.7, 60.8, 33.0, 65.6, 62.2, 56.1, 61.9, 61.7, 64.6, 39.2, 65.2, 55.0.

Plots were established for the collection of the forage samples and the applications timed such that the forage samples were collected nominally at soft dough to hard dough stage (BBCH 85-87) 30 days ( $\pm$  1) after the last application (30-day PHI).

Table 45 Residues of flutriafol in sorghum forage following application of an SC formulation in the USA (Carringer 2013 2699) (duplicate samples, applications include non-ionic surfactant, separate plots to those used for grain and stover)

|                         |       |         |      | GS      |            | Residue (mg | g/kg)  |               |        |
|-------------------------|-------|---------|------|---------|------------|-------------|--------|---------------|--------|
| Location, year, variety | No    | g ai/ha | L/ha | (BBCH)  | DALA       | Flutriafol  | T      | TA            | TAA    |
| Seven Springs, NC,      | 2 (7) | 129     | 178  | 37      | 30         | 0.21 0.17   | < 0.01 | 0.10          | 0.04   |
| USA, 2012 DKS54-00      |       | 129     | 168  | 39      |            |             | < 0.01 | 0.08          | 0.03   |
|                         |       |         |      |         | Mean       | 0.19        | < 0.01 | 0.09          | 0.04   |
| Proctor, AR, USA, 2012  | 2 (7) | 128     | 150  | Pre-    | 30         | 0.36 0.21   | < 0.01 | 0.03          | 0.01   |
| GX12564                 |       | 129     | 150  | heading |            |             | < 0.01 | 0.03          | 0.01   |
|                         |       |         |      | Pre-    |            |             |        | c0.01         |        |
|                         |       |         |      | heading | Mean       | 0.28        | < 0.01 | 0.03          | 0.01   |
| Richland, IA, USA,      | 2 (7) | 128     | 178  | 39      | 30         | 0.07 0.10   | < 0.01 | 0.04          | < 0.01 |
| 2012 Pioneer 84G62      |       | 131     | 178  | 51      |            |             | < 0.01 | 0.04          | < 0.01 |
|                         |       |         |      |         |            |             |        | c0.03         |        |
|                         |       |         | 1    | 1       | Mean       | 0.08        | < 0.01 | 0.04          | < 0.01 |
| Kirksville, MO, USA,    | 2 (7) | 123     | 159  | 39      | 30         | 0.26 0.22   | < 0.01 | 0.03          | < 0.01 |
| 2012 Pioneer 84G62      |       | 126     | 159  | 51      |            |             | < 0.01 | 0.03          | < 0.01 |
|                         |       |         |      |         | 3.5        | 0.24        | 0.01   | c0.02         | 0.01   |
|                         |       |         |      | +       | Mean       | 0.24        | < 0.01 | 0.03          | < 0.01 |
| Stafford, KS, USA,      | 2 (7) | 124     | 159  | 47      | 29         | 0.23 0.28   | < 0.01 | 0.05          | < 0.01 |
| 2012 84G62              |       | 130     | 168  | 53      | 3.5        | 0.01        | < 0.01 | 0.04          | < 0.01 |
| 77 1 3777 7791 2012     |       |         | 150  |         | Mean       | 0.26        | < 0.01 | 0.04          | < 0.01 |
| York, NE, USA, 2012     | 2 (7) | 127     | 178  | 65      | 31         | 0.20 0.21   | < 0.01 | 0.05          | 0.02   |
| 85G01                   |       | 128     | 187  | 71      |            |             | < 0.01 | 0.06          | 0.03   |
|                         |       |         |      |         | 3.4        | 0.20        | . 001  | c0.03         | c0.01  |
| II 11 TW IIGA 2012      | 2 (7) | 100     | 140  | 16      | Mean<br>30 | 0.20        | < 001  | 0.06          | 0.02   |
| Uvalde, TX USA, 2012    | 2 (7) | 128     |      |         | 30         | 0.47 0.61   | < 0.01 | < 0.01        | < 0.01 |
| Pioneer 83G19           |       | 128     | 150  | 18      | 3.4        | 0.54        | < 0.01 | < 0.01        | < 0.01 |
| H, CK HGY 3013          | 2 (7) | 100     | 1.00 | 60      | Mean       | 0.54        | < 0.01 | < 001         | < 0.01 |
| Hinton, OK, USA, 2012   | 2 (7) | 128     | 168  | 68      | 30         | 0.82 1.18   | < 0.01 | 0.06          | 0.02   |
| DKS29-28                |       | 128     | 178  | 69      |            |             | < 0.01 | 0.06<br>c0.02 | 0.03   |
|                         |       |         |      |         | Mean       | 1.0         | < 0.01 | 0.06          | 0.02   |
| Grand Island, NE, USA,  | 2 (7) | 128     | 178  | 75      | 30         | 0.61 0.67   | < 0.01 | 0.02          | 0.02   |
| 2012 85G01              | 2(1)  | 128     | 178  | 85      | 30         | 0.01 0.07   | < 0.01 | 0.02          | 0.02   |
| 2012 83001              |       | 120     | 170  | 65      |            |             | < 0.01 | c0.02         | c0.02  |
|                         |       |         |      |         | Mean       | 0.64        | < 0.01 | 0.02          | 0.02   |
| Larned, KS, USA, 2012   | 2 (7) | 131     | 178  | 59      | 22         | 0.61 0.65   | < 0.01 | 0.02          | < 0.02 |
| 84G62                   | 2(1)  | 131     | 178  | 69      |            | 0.01 0.03   | < 0.01 | 0.02          | < 0.01 |
| 01002                   |       | 132     | 170  | 0,      | Mean       | 0.63        | < 0.01 | 0.02          | < 0.01 |
|                         |       |         |      |         | 29         | 0.57 0.48   | < 0.01 | 0.03          | < 0.01 |
|                         |       |         |      |         | -/         | 0.57 0.40   | < 0.01 | 0.03          | < 0.01 |
|                         |       |         |      |         |            |             |        | c0.01         |        |

|                         |       |         |      | GS     |      | Residue (mg | g/kg)  |      |        |
|-------------------------|-------|---------|------|--------|------|-------------|--------|------|--------|
| Location, year, variety | No    | g ai/ha | L/ha | (BBCH) | DALA | Flutriafol  | T      | TA   | TAA    |
|                         |       |         |      |        | Mean | 0.52        | < 0.01 | 0.02 | < 0.01 |
|                         |       |         |      |        | 37   | 0.27 0.28   | < 0.01 | 0.02 | < 0.01 |
|                         |       |         |      |        |      |             | < 0.01 | 0.02 | < 0.01 |
|                         |       |         |      |        | Mean | 0.28        | < 0.01 | 0.02 | < 0.01 |
|                         |       |         |      |        | 44   | 0.21 0.24   | < 0.01 | 0.02 | < 0.01 |
|                         |       |         |      |        |      |             | < 0.01 | 0.03 | < 0.01 |
|                         |       |         |      |        | Mean | 0.22        | < 0.01 | 0.02 | < 0.01 |
|                         |       |         |      |        | 50   | 0.23 0.23   | < 0.01 | 0.04 | < 0.01 |
|                         |       |         |      |        |      |             | < 0.01 | 0.03 | < 0.01 |
|                         |       |         |      |        | Mean | 0.23        | < 0.01 | 0.04 | < 0.01 |
| Wall, TX, USA, 2012     | 2 (7) | 128     | 131  | 38     | 29   | 0.77 0.66   | < 0.01 | 0.02 | < 0.01 |
| DKS44-20                |       | 129     | 140  | 43     |      |             | < 0.01 | 0.02 | < 0.01 |
|                         |       |         |      |        | Mean | 0.72        | < 0.01 | 0.02 | < 0.01 |
| Levelland, TX, USA,     | 2 (7) | 129     | 178  | 55     | 30   | 0.79 0.78   | < 0.01 | 0.02 | < 0.01 |
| 2012 165310             |       | 130     | 178  | 51–59  |      |             | < 0.01 | 0.02 | < 0.01 |
|                         |       |         |      |        | Mean | 0.78        | < 0.01 | 0.02 | < 0.01 |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Induce 0.28-0.3% v/v, Dyne-Amic 0.5% v/v, Preference 0.5% v/v, Preference 0.5% v/v, Spreader 90~0.25% v/v, Combelt Premier 90~0.03% v/v, Induce 0.2% v/v, Baron 0.25% vv, Cornbelt Premier 0.03% v/v, Spreader 90~0.25% v/v, Induce 0.5% v/v, R-11 0.22% v/v

Table 46 Residues of flutriafol in sorghum stover following application of an SC formulation in the USA (Carringer 2013 2699) (duplicate samples, applications include non-ionic surfactant)

|                         |       |         |      | GS      |      | Residue (mg | g/kg)  |        |        |
|-------------------------|-------|---------|------|---------|------|-------------|--------|--------|--------|
| Location, year, variety | No    | g ai/ha | L/ha | (BBCH)  | DALA | Flutriafol  | T      | TA     | TAA    |
| Seven Springs, NC,      | 2 (7) | 129     | 178  | 37      | 30   | 0.44 0.41   | < 0.01 | 0.01   | 0.02   |
| USA, 2012 DKS54-00      |       | 129     | 168  | 39      |      |             | < 0.01 | < 0.01 | 0.02   |
|                         |       |         |      |         | Mean | 0.42        | < 0.01 | < 0.01 | 0.02   |
| Proctor, AR, USA, 2012  | 2 (7) | 128     | 150  | Pre-    | 30   | 0.44 0.46   | < 0.01 | 0.02   | < 0.01 |
| GX12564                 |       | 129     | 150  | heading |      |             | < 0.01 | 0.01   | < 0.01 |
|                         |       |         |      | Pre-    |      |             |        | c0.02  |        |
|                         |       |         |      | heading | Mean | 0.45        | < 0.01 | 0.02   | < 0.01 |
| Richland, IA, USA,      | 2 (7) | 128     | 178  | 39      | 30   | 1.35 0.93   | < 0.01 | 0.01   | < 0.01 |
| 2012 Pioneer 84G62      |       | 131     | 178  | 51      |      |             | < 0.01 | 0.01   | < 0.01 |
|                         |       |         |      |         |      |             |        | c0.02  |        |
|                         |       |         |      |         | Mean | 1.14        | < 0.01 | 0.01   | < 0.01 |
| Kirksville, MO, USA,    | 2 (7) | 123     | 159  | 39      | 30   | 0.86 0.89   | < 0.01 | < 0.01 | < 0.01 |
| 2012 Pioneer 84G62      |       | 126     | 159  | 51      |      |             | < 0.01 | 0.01   | < 0.01 |
|                         |       |         |      |         |      |             |        | c0.02  |        |
|                         |       |         |      |         | Mean | 0.88        | < 0.01 | < 0.01 | < 0.01 |
| Stafford, KS, USA,      | 2 (7) | 124     | 159  | 47      | 29   | 0.80 0.80   | < 0.01 | < 0.01 | < 0.01 |
| 2012 84G62              |       | 130     | 168  | 53      |      |             | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |         | Mean | 0.80        | < 0.01 | < 0.01 | < 0.01 |
| York, NE, USA, 2012     | 2 (7) | 127     | 178  | 65      | 31   | 0.67 0.70   | < 0.01 | 0.02   | < 0.01 |
| 85G01                   |       | 128     | 187  | 71      |      |             | < 0.01 | 0.04   | 0.01   |
|                         |       |         |      |         |      |             |        | c0.01  |        |
|                         |       |         |      |         | Mean | 0.68        | < 0.01 | 0.03   | < 0.01 |
| Uvalde, TX USA, 2012    | 2 (7) | 128     | 140  | 16      | 30   | 1.70 1.21   | < 0.01 | 0.02   | < 0.01 |
| Pioneer 83G19           |       | 128     | 150  | 18      |      |             | < 0.01 | 0.01   | < 0.01 |
|                         |       |         |      |         | Mean | 1.46        | < 0.01 | 0.02   | < 0.01 |
| Hinton, OK, USA, 2012   | 2 (7) | 128     | 168  | 68      | 30   | 0.92 0.92   | < 0.01 | 0.06   | 0.02   |
| DKS29-28                |       | 128     | 178  | 69      |      |             | < 0.01 | 0.06   | 0.02   |
|                         |       |         |      |         | 3.5  | 0.00        | 0.01   | c0.01  | 0.00   |
|                         | 2 (5) | 100     | 150  |         | Mean | 0.92        | < 0.01 | 0.06   | 0.02   |
| Grand Island, NE, USA,  | 2 (7) | 128     | 178  | 75      | 30   | 0.55 0.50   | < 0.01 | 0.01   | < 0.01 |
| 2012 85G01              |       | 128     | 178  | 85      |      |             | < 0.01 | 0.01   | < 0.01 |
|                         |       |         |      |         | 1.6  | 0.52        | .0.01  | c0.01  | .0.01  |
|                         |       |         |      |         | Mean | 0.52        | < 0.01 | 0.01   | < 0.01 |

|                         |       |         |      | GS     |      | Residue (mg/kg) |        |        |        |
|-------------------------|-------|---------|------|--------|------|-----------------|--------|--------|--------|
| Location, year, variety | No    | g ai/ha | L/ha | (BBCH) | DALA | Flutriafol      | T      | TA     | TAA    |
| Larned, KS, USA, 2012   | 2 (7) | 131     | 178  | 59     | 23   | 0.29 0.28       | < 0.01 | < 0.01 | < 0.01 |
| 84G62                   |       | 132     | 178  | 69     |      |                 | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        | Mean | 0.28            | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        | 29   | 0.33 0.26       | < 0.01 | 0.01   | < 0.01 |
|                         |       |         |      |        |      |                 | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        | Mean | 0.30            | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        | 36   | 0.27 0.23       | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        |      |                 | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        | Mean | 0.25            | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        | 43   | 0.22 0.25       | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        |      |                 | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        | Mean | 0.24            | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        | 50   | 0.25 0.27       | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        |      |                 | < 0.01 | 0.01   | < 0.01 |
|                         |       |         |      |        | Mean | 0.26            | < 0.01 | < 0.01 | < 0.01 |
| Wall, TX, USA, 2012     | 2 (7) | 128     | 131  | 38     | 29   | 5.05 [5.78      | < 0.01 | < 0.01 | < 0.01 |
| DKS44-20                |       | 129     | 140  | 43     |      | 4.86 4.52]      | < 0.01 | < 0.01 | < 0.01 |
|                         |       |         |      |        |      | 3.74 [4.30      |        |        |        |
|                         |       |         |      |        |      | 3.28 3.65]      |        |        |        |
|                         |       |         |      |        | Mean | 4.40            | < 0.01 | < 0.01 | < 0.01 |
| Levelland, TX, USA,     | 2 (7) | 129     | 178  | 55     | 30   | 1.72 1.33       | < 0.01 | < 0.01 | < 0.01 |
| 2012 165310             |       | 130     | 178  | 51–59  |      |                 | < 0.01 | < 0.01 | 0.01   |
|                         |       |         |      |        | Mean | 1.52            | < 0.01 | < 0.01 | < 0.01 |

Analytical method flutriafol: RAM 219/04

Analytical method T, TA, TAA: Meth-160, revision 2

Induce 0.28-0.3% v/v, Dyne-Amic 0.5% v/v, Preference 0.5% v/v, Preference 0.5% v/v, Spreader 90 0.25% v/v, Cornbelt Premier 90 0.03% v/v, Induce 0.2% v/v, Baron 0.25% vv, Cornbelt Premier 0.03% v/v, Spreader 90 0.25% v/v, Induce 0.5% v/v, R-11 0.22% v/v

Table 47 Residues of flutriafol in rape plants in Europe following application of an SC formulation (Pollmann 2006a 1298; 2006b 1334; 2007a 1542)

| Location, year, variety | No   | g ai/ha | L/ha | GS<br>(BBCH) | DALA | Sample | Flutriafol residues (mg/kg) |
|-------------------------|------|---------|------|--------------|------|--------|-----------------------------|
| Northern Europe         |      |         |      |              |      |        |                             |
| Bietigheim, Baden-      | 2    | 124     | 293  | 62           | 0    | shoots | 2.2                         |
| Wurttemberg,            | (26) | 131     | 311  | 80           | 7    | shoots | 0.39                        |
| Germany, 2005           | a    |         |      |              | 13   | plant  | 0.22                        |
| Lisanne                 |      |         |      |              | 20   | plant  | 0.12                        |
| Padborg,                | 2    | 138     | 329  | 62           | 0    | shoots | 2.4                         |
| Sonderjylland,          | (49) | 127     | 302  | 80           | 6    | shoots | 0.28                        |
| Denmark, 2005           |      |         |      |              | 13   | plant  | 0.26                        |
| Trabant                 |      |         |      |              | 20   | plant  | 0.17                        |
| Meistratzheim,          | 2    | 129     | 255  | 62           | 0    | shoots | 1.88                        |
| Alsace, Northern        | (28) | 125     | 247  | 80           | 7    | shoots | 0.24                        |
| France, 2005            | b    |         |      |              | 13   | plant  | 0.19                        |
| Hability                |      |         |      |              | 21   | plant  | 0.07                        |
| Charndon, Bicester,     | 2    | 131     | 313  | 62           | 0    | shoots | 3.18                        |
| Oxfordshire, UK,        | (55) | 129     | 307  | 80           | 7    | shoots | 1.75                        |
| 2005 Labrador           | с    |         |      |              | 13   | plant  | 0.62                        |
|                         |      |         |      |              | 20   | plant  | 0.41                        |
| Southern Europe         |      |         |      |              |      |        |                             |
| Lavaur, Midi-           | 2    | 133     | 420  | 62           | 0    | shoots | 2.22                        |
| Pyrénées, Southern      | (42) | 134     | 424  | 80           | 6    | shoots | 0.59                        |
| France, 2005 Corail     | d    |         |      |              | 13   | plant  | 0.42                        |
| + Cocktail              |      |         |      |              | 21   | plant  | 0.23                        |
| St. Paul Trois          | 2    | 132     | 345  | 62           | 0    | shoots | 2.19                        |
| Chateaux, Rhone-        | (41) | 117     | 305  | 80           | 6    | shoots | 0.22                        |
| Alpes, Southern         | e    |         |      |              | 15   | plant  | 0.1                         |
| France, 2005 Navajo     |      |         |      |              | 22   | plant  | 0.06                        |

Table 48 Residues of flutriafol in cotton gin by-products (trash) following application of an SC formulation in the USA (Carringer 2013 2700) (duplicate samples, applications include non-ionic surfactant)

| Location,            |        |         |      | GS     |      | Residue (mg/kg) |        |        |           |
|----------------------|--------|---------|------|--------|------|-----------------|--------|--------|-----------|
| year, variety        | No     | g ai/ha | L/ha | (BBCH) | DALA | Flutriafol      | T      | TA     | TAA       |
| Wall, TX, USA,       | 3 (105 | 295     | 41   | 0      | 30   | 2.25 2.28       | < 0.01 | < 0.01 | 0.02 0.02 |
| 2012                 |        | 124     | 168  | 82     |      |                 | < 0.01 | < 0.01 |           |
| DP 0912 B2RF         | 7)     | 127     | 168  | 83     | Mean | 2.26            | < 0.01 | < 0.01 | 0.02      |
| Hinton, OK,          | 3 (112 | 291     | 41   | 0      | 23   | 0.88 0.94       | < 0.01 | 0.02   | 0.16 0.15 |
| USA,                 |        | 128     | 112  | 80     |      |                 | < 0.01 | 0.03   |           |
| 2012                 | 8)     | 128     | 140  | 87     | Mean | 0.91            | < 0.01 | 0.02   | 0.16      |
| DP 0912 B2RF         |        |         |      |        | 30   | 0.93 0.82       | < 0.01 | 0.03   | 0.22 0.18 |
|                      |        |         |      |        |      |                 | < 0.01 | 0.02   | c0.01     |
|                      |        |         |      |        | Mean | 0.88            | < 0.01 | 0.02   | 0.20      |
|                      |        |         |      |        | 37   | 1.19 1.05       | < 0.01 | 0.01   | 0.18 0.22 |
|                      |        |         |      |        |      |                 | < 0.01 | 0.02   |           |
|                      |        |         |      |        | Mean | 1.12            | < 0.01 | 0.02   | 0.20      |
|                      |        |         |      |        | 44   | 1.02 0.85       | < 0.01 | 0.03   | 0.16 0.16 |
|                      |        |         |      |        |      |                 | < 0.01 | 0.03   |           |
|                      |        |         |      |        | Mean | 0.94            | < 0.01 | 0.03   | 0.16      |
|                      |        |         |      |        | 51   | 0.82 0.97       | < 0.01 | 0.02   | 0.12 0.14 |
|                      |        |         |      |        |      |                 | < 0.01 | 0.03   |           |
|                      |        |         |      |        | Mean | 0.90            | < 0.01 | 0.02   | 0.13      |
| Levelland, TX,       | 3 (123 | 299     | 38   | 0      | 30   | 1.74 1.80       | < 0.01 | 0.01   | 0.02 0.03 |
| USA,                 |        | 130     | 178  | 80     |      |                 | < 0.01 | 0.01   |           |
| 2012 DP 0912<br>B2RF | 7)     | 129     | 178  | 81     | Mean | 1.77            | < 0.01 | 0.01   | 0.02      |

<sup>1&</sup>lt;sup>st</sup> spray at planting as a band spray (T-band) followed by two foliar sprays closer to harvest Gin by-products %moisture: 10.4, 18.0 (23 d), 18.0 (30 d), 9.6 (37 d), 13.6 (44 d), 13.4 (51 d), 10.4

### FATE OF RESIDUES IN STORAGE AND POCESSING

## In processing

The hydrolytic behaviour of [14C] flutriafol was studied under conditions at high temperatures in sterile aqueous buffers at pH 4, 5 and 6 for periods of up to 60 minutes in order to simulate common processing practices (pasteurisation, baking/brewing/boiling, and sterilisation) (Hiler 2012 2441). The concentration of flutriafol was approximately 1 mg/L.

Table 49 Conditions for simulated processing trials (Hiler 2012 2441)

| Simulated process      | pН          | Nominal temperature | Test period |
|------------------------|-------------|---------------------|-------------|
| Pasteurisation         | $4 \pm 0.1$ | 90 ± 5 °C           | 20 minutes  |
| Baking/Brewing/Boiling | $5 \pm 0.1$ | 100 ± 5 °C          | 60 minutes  |
| Sterilisation          | $6 \pm 0.1$ | 120 ± 5 °C          | 20 minutes  |

Recoveries of  $^{14}$ C ranged from 98.6 to 108.1% of that applied. Flutriafol was not degraded under any of the sets of conditions tested. Therefore it is concluded that flutriafol should remain stable in /on processed commodities during common processing practices.

Table 50 Stability of flutriafol during simulations of typical processing conditions (Hiler 2012 2441)

| Flutriafol % of Applied Dose           |                  |                         |
|----------------------------------------|------------------|-------------------------|
| pH 4 Buffer Test System (90 °C ± 5 °C) | pH 5 Buffer Test | pH 6 Buffer Test System |

<sup>&</sup>lt;sup>a</sup> 8 and 0.3 mm rain within 24 h 1<sup>st</sup> and 2<sup>nd</sup> sprays

<sup>&</sup>lt;sup>b</sup> 6-7 mm rain within 24 h of the 2<sup>nd</sup> spray

<sup>&</sup>lt;sup>c</sup> 2.6 mm rain within 24 h of the 2<sup>nd</sup> spray

<sup>&</sup>lt;sup>d</sup> 14.4 and 0.2 mm rain within 24 h 1<sup>st</sup> and 2<sup>nd</sup> sprays

<sup>&</sup>lt;sup>e</sup> 8.6 mm rain within 24 h of the 2<sup>nd</sup> spray

| Sample            |       | System (100 °C ± 5 °C) | (120 °C) |
|-------------------|-------|------------------------|----------|
| Time 0 Rep A      | 99.1  | 98.6                   | 99.1     |
| Time 0 Rep B      | 99.9  | 98.7                   | 99.2     |
| Time 20 min Rep A | 100.7 | 101                    | 108.1    |
| Time 20 min Rep B | 100.4 | 100.4                  | 105.9    |

#### Peach

Two processing trials were conducted on peaches and nectarines in Spain (Martos 2011 2187.2 FLU amdt-1). Three foliar air blast applications were made using an SC formulation of flutriafol at a rate of 30 g ai/ha with a 7 day interval. Mature peaches and nectarines were sampled at a PHI of 7 days and were transported at ambient temperature to the processing facility where they were processed into juice and jam within 24 hours.

The fresh fruit was washed with water sprayed from a constant gas pressure sprayer (approx. 0.75 L water per kg fruit). Thereafter the fruit sample was divided into two portions and a minimum of 10 kg was used for processing into juice and 2 kg was used for processing into jam. Stones were removed and the separated pulp and stones weighed before discarding the stones.

### Processing to Juice

Fruit pulp was then passed through a liquidiser to obtain the juice. Extracted fruit pulp (flesh) and raw juice were both weighed before discarding the extracted fruit pulp (waste). The pH of the juice was checked to be in the region of pH 3.5 before filtration and bottling.

## Processing to jam

The fruit flesh was then cut into small pieces and heated until boiling. The heat was then reduced and the fruit allowed to simmer for approximately 15 minutes to provide raw fruit purée. Sugar was added at a ratio of 1:1 to the purée and the jam heated for 45 minutes until the Brix reached 65–68 °. The pH of the jam was checked to be in the region of pH 3.5 before being filled into glass bottles. The bottles were then tightly sealed and sterilized for 10 minutes (boiling water method).

Samples were stored frozen until analysed using a validated analytical method for residues of flutriafol. The LOQ of the method is 0.01 mg/kg for flutriafol.

Results show no significant difference of residues in processed products compared to the raw agricultural commodity with residues ranging from 0.03 to 0.05 mg/kg in fruit, 0.05 to 0.04 mg/kg in juice and 0.05 to 0.02 mg/kg in jam. The worst case PF was approximately 1.7 for juice and 1.0 for jam.

Table 51 Residues of flutriafol in peach juice and jam following processing of fruit (Martos 2011 2187.2 FLU amdt-1)

| Location            | N         | g ai/ha | g ai/hL | BBCH | Matrix | Residue (mg/kg) | PF  |
|---------------------|-----------|---------|---------|------|--------|-----------------|-----|
| Jumilla, Murcia,    | 3 (10 10) | 34      | 3.13    | 77   | Fruit  | 0.03            | _   |
| Spain, 2006 Amiga   |           | 36      | 3.13    | 78   | Juice  | 0.05            | 1.7 |
|                     |           | 34      | 3.13    | 80   | Jam    | 0.02            | 0.7 |
| Blanca, Murcia,     | 3 (11 10) | 30      | 3.13    | 77   | Fruit  | 0.05            | _   |
| Spain, 2006 Elegant |           | 32      | 3.13    | 78   | Juice  | 0.04            | 0.8 |
| Lady                |           | 31      | 3.13    | 80   | Jam    | 0.05            | 1.0 |

#### Plums

One processing trial has been conducted on plums in the USA in 2009 (Carringer 2010 1808). Four foliar air blast applications were made using flutriafol formulated as a 125 g/L SC. All applications

were made at a rate of 640 g ai/ha. Applications were made with a 7 day interval with the final application being made 7 days before harvest. Mature plums were transported overnight at ambient temperature to the processing facility where they were processed into prunes.

Fruit (18 kg) were inspected, sorted and culls removed. The fresh plums were washed for 5 minutes using a ratio of 2 kg of cold water to each 1 kg of fruit. The washed fruit were placed on drying trays and air-dried at 68–79 °C. The fruit was removed when average moisture contents of 19.3 to 20.0% were achieved which is lower than the target of approximately 21 to 32%. The prunes were allowed to cool for approximately 20 minutes. The cooled prunes were packaged, labelled, and placed in frozen storage for the required prune sample fraction. The LOQ of the method is 0.01 mg/kg for flutriafol, T, TA and TAA in plums but the LOQ was raised to 0.05 mg/kg for TA in prunes due to the presence of endogenous material.

Fresh plums and prunes were analysed for residues of flutriafol and the three triazole metabolites using a validated analytical method. Results show an increase in residues of flutriafol in prunes from 0.64 mg/kg to 1.4 mg/kg. No residues of T or TAA were observed in fresh plums or prunes. Residues of TA were 0.07 mg/kg in plums and 0.10 mg/kg in prunes. It is therefore concluded that flutriafol and TA do concentrate in processed commodities. The PF was approximately 2.2 for flutriafol.

Table 52 Residues of flutriafol in dried prunes following processing of plums (Carringer 2010 1808) (means of duplicate samples)

|                                    |           |                          |         |                      |        | Residue (mg/kg) |      |     |
|------------------------------------|-----------|--------------------------|---------|----------------------|--------|-----------------|------|-----|
| Location                           | N         | g ai/ha                  | g ai/hL | BBCH                 | Sample | Flutriafol      | TA   | PF  |
| Poplar, CA,<br>USA, 2009<br>French | 4 (7 7 7) | 633<br>638<br>643<br>644 | 93      | 81<br>81<br>85<br>87 | Fruit  | 0.64            | 0.07 | -   |
| prunes                             |           |                          |         |                      | Prune  | 1.4             | 0.10 | 2.2 |

PF = for flutriafol residues only

## Grapes

Two trials have been conducted in Germany and Southern France, one trial in white grapes and one in red grapes in each country (Block 2013 2650). Each trial consists of three plots—one untreated and two treated plots. Four applications of an SC formulation of flutriafol were made to grape vines at an exaggerated rate of 450 g ai/ha. The interval between applications and the interval between last application and harvest was 14 days.

At the processing facility a total of eight processing trials were conducted, one for each treated plot. Two of these trials were balance trials, one balance trial in red wine and one in white wine. In the balance trials red grapes were processed into stems, must, alcohol fermented wine (AF wine), wet and dry pomace, malolactic fermented wine (MF wine), lees, sediments and red wine. The white grapes were processed into must, wet and dry pomace, must deposit, AF wine, sediments and white wine. In trials for magnitude of residues, samples were only taken in fresh grapes, must, dry pomace and wine.

For red wine, fresh grapes were crushed and stemmed. Potassium metabisulphite and dry yeast was added to must to initiate the fermentation. During this process sugar was added to enhance the alcohol content. The fermented must was then separated in a liquid (free-run wine) and solid part. The solid part was pressed to produce pressed wine and wet pomace. Pomace was dried at 60 °C to produce dry pomace. Free-run and pressed wine was combined (AF wine) before further processing. Lactic bacteria (*Leuconostoc oenos*) was added to AF wine in air-free conditions. Potassium metabisulphite was added and the clarification process started. The intermediate wine was racked to produce MF wine and lees. Further potassium metabisulphite plus gelatine was added to the MF wine. Clarification proceeds while the wine was stored at

 $10\,^{\circ}$ C. Solid matter was removed before filtration of the red wine. Finally potassium metabisulphite was added to the wine before bottling.

For white wine, fresh grapes were pressed directly into must and wet pomace. Dry pomace was produced as for red wine production. Pectolic enzymes and potassium metabisulphite were added to the must before racking. Then dry yeast was added to initiate the fermentation. During this process sugar was added to enhance the alcohol content. Potassium metabisulphite was added and the clarification process started. Then the fermented must was racked to produce AF wine and lees. Further clarification, removal of solid matter, filtration and bottling was performed as for red wine.

Both samples of fresh grapes and processed samples were stored and shipped at frozen conditions before analysis. All samples were analysed for the content of flutriafol and the three metabolites 1,2,4-triazole, triazole alanine and triazole acetic acid using two separate validated analytical methods. The LOQ and LOD are 0.01 mg/kg and 0.003 mg/kg respectively for both flutriafol and the metabolites.

For flutriafol in the mass balance processing results for red wine gave an increase in flutriafol mass to 300% of that originally present in the starting grapes. The results were recalculated assuming the original mass present is the sum of the mass of must and stems. Following the adjustment the mass balance for red and white wine are in general agreement. Most flutriafol is retained in the must (48–97%) and wet pomace (25–95%). The AF wine contained 32–35% of the flutriafol mass. Lees taken after fermentation contained 5–8% of the initial flutriafol amount. Wine at bottling contained 31–37% of the initial mass of flutriafol.

| Table 53 Red wine balance—mass | balanc | e |
|--------------------------------|--------|---|
|--------------------------------|--------|---|

| Sample                              | Weight | Corrected | Residue    | Mass       | %mass   | % mass (stems  |
|-------------------------------------|--------|-----------|------------|------------|---------|----------------|
|                                     |        | weight    | flutriafol | flutriafol | (grapes | + must 118.51) |
|                                     |        |           | (mg/kg)    | (mg)       | 38.56)  |                |
| Grapes prior to processing          | 56.7   | 56.7      | 0.68       | 38.6       | 100     |                |
| Stems, after crushing and stemming  | 2.1    | 2.2       | 1.8        | 4.0        | 10      | 3              |
| Must, after crushing and stemming   | 53.5   | 54.5      | 2.1        | 114.6      | 97      | 97             |
| AF wine, after pressing             | 38.7   | 40.1      | 0.94       | 37.7       | 98      | 32             |
| Wet pomace, after pressing          | 9.4    | 9.8       | 3          | 29.4       | 76      | 25             |
| Dry pomace, after drying            | 1.7    | 3.3       | 10.2       | 33.2       | 86      | 28             |
| MLF wine, after malolactic          | 29.5   | 37.6      | 0.92       | 34.6       | 90      | 29             |
| fermentation                        |        |           |            |            |         |                |
| Lees, after malolactic fermentation | 1.7    | 2.2       | 2.8        | 6.0        | 16      | 5              |
| Sediments, after clarification      | 0.53   | 1.3       | 1.0        | 1.3        | 3       | 1              |
| Red wine, at bottling               | 14.9   | 35.9      | 1.0        | 37.0       | 96      | 31             |

Table 54 White wine balance—mass balance

| Sample                                | Weight | Corrected weight | Residue<br>flutriafol | Mass flutriafol (mg) | %mass (grapes) |
|---------------------------------------|--------|------------------|-----------------------|----------------------|----------------|
|                                       |        |                  | (mg/kg)               | 8/                   |                |
| grape, prior processing               | 55.0   | 55.0             | 1.2                   | 68.2                 | 100            |
| Must, after pressing                  | 32.9   | 33.9             | 0.97                  | 32.9                 | 48             |
| Wet pomace, after pressing            | 20.5   | 21.1             | 3.1                   | 65.0                 | 95             |
| Dry pomace, after drying              | 1.2    | 4.98             | 6.7                   | 33.6                 | 49             |
| Must deposit, after racking           | 3.0    | 3.2              | 1.2                   | 3.9                  | 6              |
| AF wine, after alcoholic fermentation | 24.4   | 26.8             | 0.90                  | 24.1                 | 35             |
| Lees, after alcoholic fermentation    | 2.6    | 2.9              | 1.8                   | 5.3                  | 8              |
| Sediment, after clarification         | 0.96   | 1.7              | 1.0                   | 1.7                  | 3              |
| White wine, at bottling               | 14.2   | 24.6             | 1.0                   | 25.5                 | 37             |

No residues or very low levels of residues were seen for the metabolites in both fresh grapes and processed fractions. Therefore no PF is calculated for the metabolites. Flutriafol residues levels were higher and increased slightly in must and white wine. The PF is 1.8 for red

Flutriafol Flutriafol

must, 1.6 for white must and 1.7 for white wine. No significant change in residue levels in red wine (PF of 1.1). A significant increase in flutriafol residues in dry pomace was observed with PFs of 10.7 and 6.5 for dry pomace from red and white wine production respectively.

Table 55 Transfer of residues of flutriafol in grape processed commodities (Block 2013 2650)

|                            | kg ai/hL | kg<br>ai/ha | PHI      | GS<br>BBCH | Portion analysed                        | Residue (mg/kg) | PF    |
|----------------------------|----------|-------------|----------|------------|-----------------------------------------|-----------------|-------|
| Nieder-kirchen,            | 0.075    | 0.403       | 14       | 85         | whole grape, prior processing           | 0.68            |       |
| Rheinland-Pfalz,           | 0.075    | 0.47        |          |            | stems, after crushing and stemming      | 1.84            |       |
| Germany 2012               | 0.0749   | 0.436       |          |            | must, after crushing and stemming       | 2.10            | 3.09  |
| Spätbur-gunder             | 0.075    | 0.425       |          |            | AF wine, after pressing                 | 0.94            |       |
| (red grapes)               |          |             |          |            | wet pomace, after pressing              | 3               | 4.4   |
|                            |          |             |          |            | dry pomace, after drying                | 10.22           | 15.0  |
|                            |          |             |          |            | MLF wine, after malolactic fermentation | 0.92            |       |
|                            |          |             |          |            | lees, after malolactic fermentation     | 2.76            |       |
|                            |          |             |          |            | sediments, after clarification          | 1.01            |       |
|                            |          |             |          |            | red wine, at bottling                   | 1.03            | 1.51  |
|                            | 0.0751   | 0.408       | 14       | 85         | whole grape, prior processing           | 0.6             |       |
|                            | 0.075    | 0.456       |          |            | must, after crushing & stemming         | 1.67            | 2.42  |
|                            | 0.0751   | 0.453       |          |            | dry pomace, after drying                | 12.25           | 17.75 |
|                            | 0.075    | 0.415       |          |            | red wine, at bottling                   | 1.09            | 1.58  |
| Saint-Jean-<br>d'Ardières, | 0.0901   | 0.464       | 14       | 85         | whole grape, prior processing           | 0.46            |       |
| Rhône, France 2012         | 0.09     | 0.487       |          |            | must, after crushing and stemming       | 0.39            | 0.85  |
| Gamay                      | 0.0901   | 0.464       |          |            | dry pomace, after drying                | 1.82            | 3.96  |
| (red grapes)               | 0.0898   | 0.406       |          |            | red wine, at bottling                   | 0.26            | 0.57  |
| (red grapes)               | 0.09     | 0.442       | 14       | 85         | whole grape, prior processing           | 0.56            | 0.07  |
|                            | 0.09     | 0.488       | 1.       | 0.5        | must, after crushing and stemming       | 0.54            | 0.98  |
|                            | 0.09     | 0.458       |          |            | dry pomace, after drying                | 3.31            | 6.02  |
|                            | 0.09     | 0.45        |          |            | red wine, at bottling                   | 0.3             | 0.55  |
| Nieder-kirchen,            | 0.075    | 0.44        | 14       | 85         | whole grape, prior processing           | 1.24            | 0.55  |
| Rheinland-Pfalz,           | 0.075    | 0.426       |          | 00         | must, after pressing                    | 0.97            | 0.78  |
| Germany 2012               | 0.075    | 0.422       |          |            | wet pomace, after pressing              | 3.08            |       |
| Riesling (white            | 0.075    | 0.409       |          |            | dry pomace, after drying                | 6.74            | 5.44  |
| grapes)                    | 1        |             |          |            | must deposit, after racking             | 1.2             |       |
| 8P/                        |          |             |          |            | AF wine, after alcoholic fermentation   | 0.9             |       |
|                            |          |             |          |            | lees, after alcoholic fermentation      | 1.85            |       |
|                            |          |             |          |            | sediments, after clarification          | 1.02            |       |
|                            |          |             |          |            | white wine, at bottling                 | 1.04            | 0.84  |
|                            | 0.0751   | 0.437       | 14       | 85         | whole grape, prior processing           | 0.0751          |       |
|                            | 0.075    | 0.441       | <u> </u> |            | must, after pressing                    | 0.075           | 0.73  |
|                            | 0.0749   | 0.463       |          |            | dry pomace, after drying                | 0.0749          | 6.71  |
|                            | 0.0749   | 0.433       |          |            | white wine, at bottling                 | 0.0749          | 0.79  |
| Redessan, Gard,            | 0.0691   | 0.439       | 14       | 85         | whole grape, prior processing           | 0.7             |       |
| France 2012                | 0.0692   | 0.505       |          |            | must, after pressing                    | 1.15            | 1.64  |
| Roussanne Blanc            | 0.0692   | 0.462       |          |            | dry pomace, after drying                | 3.04            | 4.34  |
| (white grapes)             | 0.0693   | 0.488       |          |            | white wine, at bottling                 | 1.22            | 1.74  |
| ( Supos)                   | 0.0693   | 0.419       | 14       | 85         | whole grape, prior processing           | 0.34            | 2.7.1 |
|                            | 0.0692   | 0.465       | <u> </u> |            | must, after pressing                    | 1.13            | 3.32  |
|                            | 0.0692   | 0.463       |          |            | dry pomace, after drying                | 3.27            | 9.62  |
|                            | 0.0692   | 0.476       |          |            | white wine, at bottling                 | 1.14            | 3.35  |

Analytical method flutriafol: AGR/MOA/FLUTRI-1 Analytical method T, TA, TAA: AGR/MOA/TRZ-1

### Strawberry

Four processing trials were conducted on protected strawberries in Spain in 2004 (Clark 2005 2583). Three applications of flutriafol were made, formulated as a 125 g/L SC using a hydraulic knapsack sprayer. All applications were made at a nominal rate of 18.75 g ai/hL using a nominal water volume

of 1000 L/ha. Applications were made with a 10 day interval with the final application being made 3 days before commercial harvest.

Mature fresh strawberries were harvested from the field and transported at cool temperature to the processing facility where they were processed into strawberry jam using processes considered typical of commercial practice.

Whole strawberries were washed with an automatic fruit washer (500–750 mL water per kg fruit) and strained. Strawberries (1.4–1.7 kg) were sorted and crushed and the Brix degree measured. White sugar was added to the crushed strawberries and then the sample was reduced in a double jacketed saucepan in order to reach 62 °Brix. The pH was adjusted with citric acid to approximately pH 3.5 and bottled. Packaged samples were then sterilised at 115 °C for 10 minutes.

Untreated and treated samples of fresh fruit prior to processing and processed jam were stored frozen and shipped under frozen conditions to the analytical laboratory for analysis. Samples were analysed using a validated analytical method. The LOQ of the method is 0.01 mg/kg.

Fresh strawberries and jam were both analysed for residues of flutriafol using a validated analytical method. Results show a decrease in residues in jam. The mean PF was 0.875 (range 0.75 to 0.96).

| Table 56 Residues of flutriafol in | strawberry jam | following household | processing of | berries (Clark |
|------------------------------------|----------------|---------------------|---------------|----------------|
| 2005 2583)                         |                | -                   |               |                |

| Location             | n | g ai/ha | g ai/hL | BBCH | DALA | Sample | Residue           | PF   |
|----------------------|---|---------|---------|------|------|--------|-------------------|------|
|                      |   |         |         |      |      |        | (mg/kg)           |      |
| Almonte, Spain, 2005 | 3 | 191     | 18.75   | 61   | 3    | Fruit  | 0.32              |      |
| Camarosa             |   | 189     | 18.75   | 87   |      | Jam    | 0.24              | 0.75 |
|                      |   | 199     | 18.75   | 88   |      |        |                   |      |
| Huelva, Spain, 2005  | 3 | 197     | 18.75   | 61   | 3    | Fruit  | 0.13              |      |
| Ventana              |   | 178     | 18.75   | 87   |      | Jam    | 0.12              | 0.92 |
|                      |   | 194     | 18.75   | 88   |      |        |                   |      |
| Bonares, Spain, 2005 | 3 | 195     | 18.75   | 61   | 3    | Fruit  | 0.23              |      |
| Camarosa             |   | 191     | 18.75   | 87   |      | Jam    | 0.22              | 0.96 |
|                      |   | 194     | 18.75   | 88   |      |        |                   |      |
| Huelva, Spain, 2005  | 3 | 194     | 18.75   | 61   | 3    | Fruit  | 0.31 <sup>b</sup> |      |
| Ventana              |   | 192     | 18.75   | 87   |      | Jam    | 0.27              | 0.87 |
|                      |   | 195     | 18.75   | 88   |      |        |                   |      |

#### Cabbage

Three processing trials were conducted on cabbage in the USA in 2011 (Carringer 2013 2697). Four applications of an SC flutriafol formulation were made at a nominal rate of 128 g ai/ha. Applications were made with a 7 day interval with the final application being made 7 days before harvest.

The cabbage heads for the Sample Prepared for Consumption (SPFC) samples were visually examined and any damaged or wilted leaves, as well as the wrapper leaves, removed. Each cabbage head was then rinsed under cold running tap water for approximately 15–20 seconds. The heads were turned top side down and allowed to drain for at least two minutes.

The control, RAC and SPFC samples were placed in frozen storage within 2.5 hours after collection from the field and maintained frozen during transportation to the analytical laboratory. Samples were analysed using validated analytical methods. The LOQ of the methods is 0.01 mg/kg for all analytes.

RAC samples and SPFC samples were all analysed for residues of flutriafol and triazole metabolites using a validated analytical method. Results show a decrease in residues of flutriafol in the samples prepared for consumption with PFs ranging from 0.05 to 0.14.

Flutriafol Flutriafol

Table 57 Residues of flutriafol in cabbage following household processing of plants(Carringer 2013 2697) (means of duplicate samples)

|                  |   |         |         |      |        | Residue (mg/k | (g)  |        |
|------------------|---|---------|---------|------|--------|---------------|------|--------|
| Location         | N | g ai/ha | g ai/hL | DALA | Sample | flutriafol    | TA   | PF     |
| Seven Springs,   | 4 | 129     | 41      | 7    | RAC    | 0.74          | 0.04 |        |
| NC, USA, 2011    |   | 129     | 41      |      |        |               |      |        |
| Bravo            |   | 131     | 42      |      |        |               |      |        |
|                  |   | 127     | 44      |      |        |               |      |        |
|                  |   |         |         | 7    | SPFC   | 0.04          | 0.06 | 0.05   |
| Uvalde, TX,      | 4 | 128     | 46      | 7    | RAC    | 0.07          | 0.01 |        |
| USA, 2011        |   | 127     | 47      |      |        |               |      |        |
| Pennant          |   | 131     | 48      |      |        |               |      |        |
|                  |   | 128     | 49      |      |        |               |      |        |
|                  |   |         |         | 7    | SPFC   | 0.01          | 0.01 | 0.14   |
| Porterville, CA, | 4 | 127     | 45      | 7    | RAC    | 0.09          | 0.04 |        |
| USA, 2011        |   | 130     | 47      |      |        |               |      |        |
| Supreme          |   | 128     | 48      |      |        |               |      |        |
| Vantage          |   | 129     | 49      |      |        |               |      |        |
|                  |   |         |         | 7    | SPFC   | < 0.01        | 0.05 | < 0.11 |

PF = for flutriafol residues only

SPFC = samples prepared for consumption

#### **Tomato**

One processing study has been conducted on tomatoes in the USA in 2011 (Carringer 2012 2440). Four applications of flutriafol (SC formulation) were made at five times the nominal rate of 128 g ai/ha with a 7 day interval and the final application being made 0 days before commercial harvest. Mature tomato fruit were transported cool (approximately 4 °C) to the processing facility where they were processed into tomato purée and tomato paste.

For juice, tomatoes were soaked in aqueous NaOH (ca. 0.1 N) at  $52\text{-}60 \,^{\circ}\text{C}$  for 3 minutes and rinsed with warm (68–74  $^{\circ}\text{C}$ ) water before being crushed, rapidly heated to 79–85  $^{\circ}\text{C}$ , held for 30 seconds and separated into pomace and juice. The wet pomace was pressed to recover additional juice which was combined.

For purée, an aliquot of 9 kg juice was evaporated under vacuum and when the required Brix was achieved, 1% salt and distilled water were added to adjust the Brix range to  $12-13^{\circ}$ . The puree was then heated to  $82-88^{\circ}$ C and sealed into cans before being placed into a boiling bath for 15 minutes at  $96-100^{\circ}$ C. Cans were then cooled and stored frozen prior to analysis.

For paste, a 9 kg aliquot of juice was evaporated under vacuum until the desired Brix range was achieved, 0.5% salt and distilled water were added to adjust the Brix range to 24-33°. The paste was then heated 82-88°C and sealed into cans before being placed into a boiling bath for 15 minutes at 96-100°C. Cans were then cooled and stored frozen prior to analysis.

The LOQ of the method is 0.01 mg/kg except for TA in purée (0.02 mg/kg) and paste (0.03 mg/kg).

Fresh tomatoes, purée and paste were analysed for residues of flutriafol and triazole metabolites T, TA and TAA using a validated analytical method. Results showed an increase in flutriafol residues in puree with a PF of 1.2 and an increase in residues in paste with a PF of 3.6. No residues of T, TA or TAA were present above LOQ in any control or treated samples analysed.

Table 58 Residues of flutriafol in tomato processed fractions following processing of fruit (Carringer 2012 2440)

| Location              | n | g ai/ha | g ai/hL | DALA | Sample | Residue (mg/kg) | PF |
|-----------------------|---|---------|---------|------|--------|-----------------|----|
| Porterville, CA, USA, | 5 |         |         | 0    | RAC    | 0.55            |    |
| 2011 Roma VF          |   |         |         |      |        |                 |    |

| Location    | n | g ai/ha | g ai/hL | DALA | Sample | Residue (mg/kg) | PF  |
|-------------|---|---------|---------|------|--------|-----------------|-----|
| 99 kg batch |   |         |         |      | Purée  | 0.64            | 1.2 |
|             |   |         |         |      | Paste  | 1.98            | 3.6 |

#### Head lettuce

Three processing trial have been conducted on head lettuce in the USA in 2011 (Carringer 2013 2698). Four applications of flutriafol were made, formulated as a 125 g/L SC using a backpack or tractor-mounted boom sprayer. All applications were made at a nominal rate of 128 g ai/ha. Applications were made with a 7 day interval with the final application being made 7 days before harvest. Mature head lettuce (RAC) and samples prepared for consumption (SPFC) were transported frozen to the analytical facility for analysis.

The head lettuce for the SPFC samples were visually examined and any damaged or wilted leaves, as well as wrapper leaves, removed. Each head was rinsed under cold running tap water for 15 to 20 seconds and allowed to drain top side down for at least two minutes.

The control, RAC and SPFC samples were placed in frozen storage within 3.17 hours after collection from the field and maintained frozen during transportation to the analytical laboratory. Samples were analysed using validated analytical methods. The LOQ of the methods is 0.01 mg/kg for all analytes.

RAC samples and SPFC samples were all analysed for residues of flutriafol and triazole metabolites using a validated analytical method. PFs for flutriafol range from 0.03 to 0.4 (mean of 0.21). Flutriafol does not concentrate in processed commodities.

Table 59 Residues of flutriafol in head lettuce following household processing of plants(Carringer 2013 2698) (means of duplicate samples)

|                        |      |             | Residue (mg/ | kg)    |      |
|------------------------|------|-------------|--------------|--------|------|
| Location               | DALA | Sample      | Flutriafol   | TA     | PF   |
| Germansville, PA, USA, | 7    | RAC/ Heads  | 0.05         | 0.01   | -    |
| 2011 Ithaca            |      | SPFC/ Heads | 0.02         | 0.01   | 0.4  |
| King City, CA, USA,    | 7    | RAC/ Heads  | 0.05         | < 0.01 | -    |
| 2011 Venus             |      | SPFC/ Heads | < 0.01       | < 0.01 | 0.2  |
| Arroyo Grande, CA,     | 7    | RAC/ Heads  | 0.67         | 0.03   | -    |
| USA, 2011 Vandenberg   |      | SPFC/ Heads | 0.02         | 0.01   | 0.03 |

PF = for flutriafol residues only

SPFC = samples prepared for consumption

### Sugar beet

In a processing study conducted on sugar beet in the USA (Jones 2009 1812) three applications of flutriafol (SC formulation) were made at a nominal rate of 640 g ai/ha with a 14 day interval and the final application 14 days before harvest. Mature sugar beet roots were transported at ambient temperature to the processing facility where they were processed into refined sugar, molasses and dry pulp samples.

Sugar beets (45.4 kg batch) were cleaned prior to processing by washing with a brush and water thereby removing excess soil, loose leaves and other debris. Cleaned beets were then sliced in a Hobart food cutter and the slices (cossettes) were first exposed to 88.5–93 °C water for 30–45 seconds (only) and then diffused in five kettles in a 69–74.5 °C water bath for a minimum of 9 minutes. After diffusion the raw juice was screened with a US#100 standard sieve to remove small pieces of beet from the juice.

Diffused cossettes were then dewatered with a FMC pulper/finisher. Beet pulp was produced by drying the dewatered material in a Steelman Industries oven at 55–72 °C for final moisture of 15% or less. Juice from dewatering was screened with the 100 mesh sieve and combined with juice from diffusion. The resulting fraction from this step is dried beet pulp.

During the first phosphatisation step, raw juice was mixed and the temperature increased to 81–86 °C. 20% calcium oxide solution and if required 3 M phosphoric acid was added until a pH of around 10.5 was achieved resulting in a precipitate. The sample was centrifuged to separate the precipitate from the juice.

During the second phosphatisation step, the juice was mixed and the temperature increased to 81–86 °C and pH reduced using 3 M phosphoric acid to around 9.1–9.3. The juice was then centrifuged and vacuum filtered to separate precipitate from the clear juice (thin juice). The juice was light yellow to light brown in colour. The thin juice was mixed and heated to 81–86 °C and pH reduced to 8.8–9.0 with sodium bisulphite.

The juice was evaporated under vacuum until the juice was 50-60% solids (thick juice) during which time the temperature was maintained below 86 °C). After evaporation the thick juice was filtered through cotton.

Evaporation continued under vacuum until the juice was 70-80% solids (syrup). Commercially available white cane sugar was added to the juice (seeding) after which crystallisation began.

The solution was allowed to cool after which the sugar and molasses were separated by centrifuging in a Western States basket centrifuge with filter basket. Steam was added to remove residual molasses from crystallised sugar. After removing the molasses the refined white sugar could be dried if necessary in a Steelman Industry oven at 55–72 °C to achieve a final moisture content of 10%. Samples did not require drying. The resulting fraction from this step is refined sugar and molasses.

Untreated and treated samples of sugar beet, refined sugar, molasses and beet pulp were stored frozen and shipped under frozen conditions to the analytical laboratory for analysis. Samples were analysed using a validated analytical method. The LOQ of the method is 0.01 mg/kg.

Sugar beet roots, refined sugar, molasses and dry pulp samples were all analysed for residues of flutriafol and triazole metabolites using a validated analytical method. Residues were < 0.01 mg/kg in the RAC and the processed commodities with the exception of TA being observed in both untreated and treated molasses samples at 0.02 mg/kg. It is therefore concluded that flutriafol does not concentrate in refined sugar, molasses or dry pulp.

### Celery

Three processing trial have been conducted on celery in the USA in 2011 (Carringer 2013 2698). Four applications of flutriafol SC formulation were made at a nominal rate of 128 g ai/ha.

The celery heads for the SPFC samples were prepared by removing the inedible portion of the stalk (i.e. the woody part at the base of the stalk) to separate the stems. The leaves were not removed unless discoloured or damaged. The stems were then rinsed under cold running tap water for approximately 15–20 seconds and allowed to drain for at least 2 minutes.

The control, RAC and SPFC samples were placed in frozen storage within 3.17 hours after collection from the field and maintained frozen during transportation to the analytical laboratory. Samples were analysed using validated analytical methods. The LOQ of the methods is 0.01 mg/kg for all analytes.

Mature celery (RAC) and samples prepared for consumption (SPFC) were transported frozen to the analytical facility for analysis.

RAC samples and SPFC samples were all analysed for residues of flutriafol and triazole metabolites using a validated analytical method. PFs for flutriafol ranging from 0.73 to 1.24 (mean of 0.9) indicates that flutriafol does not concentrate significantly in celery processed commodities.

Table 60 Residues of flutriafol in celery following household processing of plants(Carringer 2013 2698) (means of duplicate samples)

|                                             |              | g                        |                          | GS                   | DALA | Crop  | Residue (mg | /kg)   |               |      |
|---------------------------------------------|--------------|--------------------------|--------------------------|----------------------|------|-------|-------------|--------|---------------|------|
| Location, year, variety                     | No           | ai/ha                    | L/ha                     | (BBCH)               |      | part  | Flutriafol  | Т      | TA            | PF   |
| Sparta, MI,<br>USA, 2012<br>Greenbay        | 4 (7 6<br>8) | 129<br>128<br>128<br>128 | 46<br>47<br>46<br>46     | 45<br>46<br>47<br>48 | 7    | Plant | 0.73        | 0.06   | < 0.01        |      |
|                                             |              |                          |                          |                      |      | SPCF  | 0.53        | 0.04   | < 0.01        | 0.73 |
| Porterville, CA,<br>USA, 2012<br>Mission    | 4 (7 7<br>6) | 129<br>128<br>129<br>127 | 365<br>365<br>365<br>365 | 44<br>46<br>46<br>48 | 7    | Plant | 1.08        | < 0.01 | 0.02          |      |
|                                             |              |                          |                          |                      |      | SPCF  | 1.34        | < 0.01 | 0.02          | 1.2  |
| Guadalupe, CA,<br>USA, 2011<br>Conquistador | 4 (6 7 6)    | 128<br>129<br>129<br>128 | 271<br>262<br>271<br>271 | 45<br>46<br>47<br>48 | 8    | Plant | 0.77        | 0.04   | 0.06<br>c0.03 |      |
|                                             |              |                          |                          |                      |      | SPCF  | 0.57        | 0.03   | 0.05          | 0.74 |

PF = for flutriafol residues only

SPFC = samples prepared for consumption

# Maize

Processing trials were conducted on field corn in the USA (Carringer 2010 1810). Two applications of flutriafol, formulated as a SC, were made at 128 g ai/ha and samples of mature field corn grains were used for generation of aspirated grains fractions (AGF). Additionally at one trial, applications were made at an exaggerated rate of 640 g ai/ha/application and samples from this site were processed into grits, meal, flour, starch and refined oil (wet and dry milled). At all sites applications were made with a 7 day interval with the final application being made 7 days before harvest. Mature corn grain were transported frozen to the processing facility and stored frozen until processing. Field corn grains samples were dried at 43–57 °C until the moisture content was 9–15%.

# Generation of aspirated grain fractions (AGF)

To generate AGF, dried field corn grain samples were placed in a dust generation room containing a holding bin, two bucket conveyors and a screw conveyor. As the samples were moved in the system, aspiration was used to remove light impurities (grain dust). The grain dust was sieved for classification before being recombined for analysis.

#### Refined oil, dry milling process.

In preparation for processing field corn grain into refined oil utilising the dry milling process, samples of dried field corn grains were cleaned by aspiration and screening. Light impurities were removed by aspiration after which samples were screened to separate large and small foreign particles (screenings) from the field corn. The dried and cleaned samples were then moisture conditioned to 21% and fed into a mill to crack the kernels. Cornstock from the mill was dried in an oven for 30 minutes at 54–71 °C and screened with a 3.2 mm screen to separate bran, germ and large grits from grits, meal and flour.

Material below 3.2 mm was separated into grits, meal and flour using a sieve fitted with two screens of different sizes. Material greater than 3.2 mm was by means of screening, aspiration and milling (if necessary) separated into grits, meal, flour and germ.

Germ material was heated to 72-80 °C and flaked in a flaking roll. The flakes were then placed in batch extractors and submerged in 49-60 °C hexane. The crude oil/hexane mixture was drained and the extraction process repeated twice more with fresh hexane. After extraction the

spent flakes were air dried to produce solvent extracted germ meal. The crude oil/hexane was passed through an evaporator to separate the crude oil from the hexane and then crude oil was heated to remove residual hexane before being filtered and refined. Crude oil and sodium hydroxide were mixed for 15 minutes at high RPM at approximately 20 °C and then for 12 minutes at low RPM at approximately 63–68 °C. The neutralised oil was centrifuged and the refined oil decanted and filtered.

# Refined oil, wet milling process

A sample of dried and cleaned corn was steeped in 49–54 °C water containing 0.1–0.2% sulphur dioxide for 22–48 hours. The whole corn was then passed through a disc mill and the majority of the germ and hull was removed using a water centrifuge. Germ and hull were dried and separated using aspiration and screening.

Cornstock (without germ and hull) ground in the disc mill was passed over a  $50\mu m$  screen where only bran was retained. The process water passing through the screen was separated into starch and gluten by centrifugation. Starch was dried in a dehydrator oven at 54-71 °C until moisture content was less than 15.0%.

The dried germ samples were moisture conditioned to 12%, heated to 88–104 °C in a mixer, flaked in a flaking roll and pressed in an expeller to liberate part of the crude oil (expelled crude oil). Residual crude oil was extracted from the presscake utilising the batch extractors submerged in hexane at 49–54 °C. The extraction procedure was repeated twice more with fresh hexane. The crude oil/hexane was passed through an evaporator to separate the crude oil from the hexane and then crude oil was heated to remove residual hexane before being filtered and refined. Crude oil and sodium hydroxide were mixed for 15 minutes at high RPM at approximately 20 °C and then for 12 minutes at low RPM at approximately 63–68 °C. The neutralised oil was centrifuged and the refined oil decanted and filtered.

Untreated and treated samples of from the processes were stored frozen and shipped under frozen conditions to the analytical laboratory for analysis. Samples were analysed using validated analytical methods. The LOQ of the methods is 0.01 mg/kg for flutriafol and its metabolites T and TAA. For TA the LOQ was 0.01 mg/kg in all matrices except grits (0.15 mg/kg), field corn grains (0.03 mg/kg), meal 0.034 mg/kg, flour (0.034 mg/kg) and AGF (0.1 mg/kg), where endogenous residues of TA resulted in LOQs higher than the target LOQ of 0.01 mg/kg.

Corn grains, AGF, grits, meal, flour, starch and refined oils were all analysed for residues of flutriafol and the triazole metabolites T, TA and TAA. Results show an increase in residues in meal, flour and oil (wet and dry milled), AGF. PFs range from > 4 for AGF, 3 for meal flour and oil and < 1 for grits and starch.

Table 61 Residues of flutriafol in maize processed fractions following processing of grain (Carringer 2010 1810)

| Location, year,         |    | kg    |      | Crop                      | Residue (mg | /kg)   |        |    |
|-------------------------|----|-------|------|---------------------------|-------------|--------|--------|----|
| variety                 | No | ai/ha | DALA | part                      | Flutriafol  | TA     | TAA    | PF |
| Carlyle Illinois<br>USA |    | 1.28  | 7    | Grain                     | < 0.01      | < 0.01 | 0.07   |    |
| 2009 8G23               |    |       |      | Grits                     | < 0.01      | < 0.01 | < 0.01 |    |
|                         |    |       |      | Meal                      | < 0.01      | < 0.01 | 0.05   |    |
| 232 kg batch            |    |       |      | Flour                     | < 0.01      | < 0.01 | 0.07   |    |
| milling                 |    |       |      | Refined oil (dry milling) | 0.01        | < 0.01 | < 0.01 |    |
|                         |    |       |      | Starch                    | < 0.01      | < 0.01 | < 0.01 |    |
|                         |    |       |      | Refined oil (wet milling) | 0.01        | < 0.01 | < 0.01 |    |
| 299 kg batch            |    |       |      | Grain                     | < 0.01      | 0.07   | < 0.01 |    |
| 306 kg batch            |    |       |      | AGF                       | 0.04        | < 0.1  | < 0.01 |    |

 $\%\,moisture:\,pre-processing\,30\%,\,AGF\,9.8\%,\,grits\,16.6\%,\,meal\,18.0\%,\,flour\,17.6\%,\,starch\,7.0\%$ 

PF = flutriafol only

#### Rice

Four processing trial have been conducted on rice in Spain in 2006 (Gimeno 2007 1630). Two applications of flutriafol were made, formulated as a 125 g/L SC formulation using sprayer equipment typical of broadcast application. Applications were made at nominally 187.5 g ai/ha/application with a 14 day interval with the final application being made 14 days before harvest. Mature paddy rice were used for generation of husked (brown) rice and polished (white) rice.

At harvest plants were cut down and left to dry in a threshing floor, grains were then separated from straw and paddy rice samples obtained. The paddy rice was further dried and was then passed through a machine which removed the husks to obtain husked rice. The husked rice was fed into a mill where a set of huller reels removed the germ, outer bran and the waxy cuticle producing polished rice.

All samples were frozen immediately after processing and transported to the analytical facility. Samples were analysed for residues of flutriafol using a validated analytical method. See earlier table.

#### Sorghum

One processing trial has been conducted on grain sorghum in the USA in 2012 (Carringer 2013 2699). Two applications of flutriafol were made, formulated as a 125 g/L SC using sprayer equipment typical of broadcast application. Applications were made at the maximum use rate of nominally 128 g ai/ha/application with a 7 day interval with the final application being made 30 days before harvest. Mature grain sorghum grains were used for generation of aspirated grains fractions (AGF). Mature grain sorghum grain were transported frozen to the processing facility.

To generate AGF, dried field corn grain samples were placed in a dust generation room containing a holding bin, two bucket conveyors and a screw conveyor. As the samples were moved in the system, aspiration was used to remove light impurities (grain dust). The grain dust was sieved for classification before being recombined for analysis.

Untreated and treated samples from the processes were stored frozen and shipped under frozen conditions to the analytical laboratory for analysis. Samples were analysed using validated analytical methods. The LOQ of the methods is 0.01 mg/kg for flutriafol and its metabolites T, TA and TAA.

Residues are higher in AGF compared to grain with a processing factor of 8. The triazole metabolites T, TA and TAA are not concentrated in during processing into AGF.

Table 62 Residues of flutriafol in sorghum processed commodities following cleaning of grain harvested from a treated crop (Carringer 2013 2699) (duplicate samples)

| Location, year, variety      | No    | g ai/ha | Run | DALA | Crop<br>part | Flutriafol | TA   | TAA  | PF  |
|------------------------------|-------|---------|-----|------|--------------|------------|------|------|-----|
| York, NE, USA,<br>2012 85G01 | 2 (7) |         | 1   | 31   | Grain        | 0.39       | 0.06 | 0.04 |     |
| 308 kg batch 1               |       |         |     |      | AGF          | 2.78       | 0.03 | 0.04 | 7.1 |
| 310 kg batch 2               |       |         | 2   |      | Grain        | 0.38       | 0.06 | 0.04 |     |
|                              |       |         |     |      | AGF          | 3.38       | 0.03 | 0.04 | 8.9 |

PF = flutriafol only

# Cotton

One processing trial has been conducted on cotton in the USA in 2012 (Carringer 2013 2700).

The plot received one T-band application of flutriafol 125 g/L SC formulation at 290 g ai/ha/application at planting applied using a commercial tractor mounted T-band sprayer.

The T-band application was followed by two foliar applications at  $5\times$  rate (640 g ai/ha/application) 37 and 30 days before harvest applied using a  $CO_2$  backpack sprayer. Seed cotton was ginned on the same day as harvest resulting in undelinted seeds with approximately 11-15% remaining lint. Undelinted cotton seeds were transported frozen to the processing facility and processed into meal, hulls and refined oil.

### Delinting (Mechanical)

The undelinted cottonseed samples (41 kg) were saw delinted in a delinter to remove most remaining lint producing delinted cottonseed with approximately 3% lint remaining on the seed.

#### *Hulling and separation*

Delinted cottonseed was mechanically cracked in a roller mill. Kernel and hull material was separated with a careen cleaner.

Kernel material moisture was determined and then adjusted to 13.5% by placing the kernel material in a rotating mixer and adding water.

# Oil and meal production

Kernel material was heated in a steam heated mixer to 79.4-90.6 °C and held for 30 minutes. After heating, kernel material was flaked in a flaking roll. Flaked kernel material was then fed into an expander. As the material moved through the expander, steam was injected directly on the product. Maximum exiting temperature range of the material was 93.3-121.1 °C. Collets were ground, dried in an oven at 65.6-82.2 °C for 30-40 minutes.

Ground collets were placed in batch extractors and submerged in 49–60 °C hexane. After 30 minutes the hexane/crude oil mixture was drained and extraction repeated three more times with fresh hexane.

After extraction the solvent extracted meal was toasted in a steam jacketed paddle mixer with steam injected directly on the material until the temperature of the meal reached 101.7–104.4 °C. Steam injection was stopped and the meal heated to 104.4–115.6 °C and held for 45–60 minutes. After toasting, the meal was cooled to room temperature.

The crude oil/hexane was passed through an evaporator to separate the crude oil from the hexane and then crude oil was heated to remove residual hexane before being filtered and refined.

# Alkali refining, bleaching and deodorisation

Crude oil and sodium hydroxide was mixed for 15 minutes at high RPM at approximately 20 °C and then for 13 minutes at low RPM at approximately 63–68 °C. The neutralised oil was centrifuged and the refined oil decanted and filtered.

The refined oil was bleached by heating it to 40-50 °C and adding an activated bleaching earth. The mixture was placed under vacuum, heated to 85-100 °C and held there for 10-15 minutes. Heating was stopped and the oil was allowed to cool. During the cooling phase vacuum was broken, filter aid added and vacuum resumed. When the mixture reached approximately 60 °C vacuum was broken and the bleached oil filtered.

The blanched oil was then deodorised by steam bathing for approximately 30 minutes under vacuum at  $220-230\,^{\circ}$ C. During the following cooling period 0.5% citric acid solution was added.

Untreated and treated samples from the processes were stored frozen and shipped under frozen conditions to the analytical laboratory for analysis. Samples were analysed using validated analytical methods. The LOQ of the methods is 0.01 mg/kg for flutriafol and its metabolites T and TAA. For TA the LOQ was 0.01 mg/kg in all matrices except for TA in undelinted

cottonseed and cottonseed meal, where the LOQs were 0.03 and 0.04 mg/kg respectively due to endogenous residues in available control samples.

Undelinted cotton seeds, meal, hulls and refined oil were all analysed for residues of flutriafol using a validated analytical method. Residues of flutriafol in undelinted cotton seeds were present at 0.12 mg/kg. Residues were all lower in the processed commodities ranging from < 0.01 mg/kg in refined oil to 0.04 mg/kg in hulls. Results indicates, that flutriafol does not concentrate during processing into refined cottonseed oil.

Table 63 Residues of flutriafol in cotton processed products (meal, hulls, oil) on processing seed from a treated crop (Carringer 2013 2700) (duplicate samples)

|               |   |         |      |                 | Residue (mg/kg) |           |      |
|---------------|---|---------|------|-----------------|-----------------|-----------|------|
| Location      | N | g ai/ha | DALA | Sample          | Flutriafol      | TA        | PF   |
| Uvalde TX,    | 3 |         | 30   | Undelinted Seed | 0.12 0.12       | 0.13 0.10 |      |
| USA, 2012     |   |         |      |                 |                 |           |      |
| DP 0912 B2RF  |   |         |      | Meal            | 0.01 0.01       | 0.14 0.19 | 0.08 |
| 40.9 kg batch |   |         |      | Hulls           | 0.04 0.03       | 0.04 0.07 | 0.33 |
|               |   |         |      | Refined oil     | < 0.01 < 0.01   | < 0.01    | 0.08 |
|               |   |         |      |                 |                 | < 0.01    |      |

Meal 9.4% moisture Hulls 9.4% moisture. PF = flutriafol only

### Livestock feeding

A livestock feeding study has been conducted in Holstein dairy cows to determine the magnitude of residues of flutriafol and three triazole metabolites 1,2,4-triazole (T), triazole alanine (TA) and triazole acetic acid (TAA) in milk, muscle, liver, kidney and fat (Rice 2012 2479). Three groups of three Holstein cows (3–7 years old, 450–690 kg bw) cows (three additional cows used for depuration phase) plus two concurrent control cows were dosed at 0, 5, 16 and 50 ppm (equivalent to 0, 0.15, 0.45 and 1.59 mg/kg bw of flutriafol) once daily for 28 consecutive days. Average feed consumption for the 5, 16 and 50 ppm groups were 18.5, 17.7 and 17.9 kg/day. Average milk production was 25.6, 22.0 and 21.3 L/d respectively for the 5, 16 and 50 ppm dose groups. Milk was collected twice daily and samples at 0, 3, 7, 10, 14, 17, 21, 24, 26 and 28 days were pooled and mixed before analysis. All cows were sacrificed within 24 hours after final dosing and samples of muscle (composite of round and loin), liver, kidneys, fat (renal, omental and subcutaneous fat deposits) were collected for analysis. Residues of flutriafol and triazole metabolites were analysed using validated analytical methods with an LOQ of 0.01 mg/kg for each analyte/matrix combination.

Highest average residues of flutriafol were found in liver and ranged from 0.33 mg/kg for the 5 ppm group, 0.59 mg/kg for the 16 ppm group and 1.83 mg/kg for the 50 ppm group. No residues were observed in liver samples taken from the depuration phase at 31, 35 and 42 days. For remaining matrices, highest average flutriafol residues ranged from < 0.01 mg/kg in milk, 0.01 mg/kg (50 ppm group) in cream at day 21, < 0.01 mg/kg in skimmed milk, 0.096 mg/kg (50 ppm group), 0.01 mg/kg (16 ppm group) in kidney, 0.04 mg/kg (50 ppm group) in muscle and 0.07–0.195 mg/kg (50 ppm group), 0.01 mg/kg (16 ppm group) in fat. All other residues of flutriafol from all dose groups were < 0.01 mg/kg. No residues were observed above LOQ in tissue or milk samples taken from the depuration phase at 31, 35 and 42 days.

Highest average residues of triazole metabolite residues were found in liver and ranged from < 0.01–0.02 mg/kg for 1,2,4-triazole, 0.03 to 0.157 mg/kg for triazole alanine and < 0.01 mg/kg for triazole acetic acid. Only triazole alanine residues were found during the depuration phase and ranged from 0.093 to 0.135 mg/kg. For remaining matrices, highest average residues ranged from 0.020 mg/kg 1,2,4-triazole in milk (50 ppm group), 0.015 mg/kg 1,2,4-triazole (50 ppm group) in cream at day 14/21, 0.021 mg/kg 1,2,4-triazole in skimmed milk (50 ppm group), 0.029 mg/kg 1,2,4-triazole and 0.058 mg/kg triazole alanine (50 ppm group) in kidney, 0.020 mg/kg 1,2,4-triazole and 0.086 mg/kg triazole alanine (50 ppm group) in muscle

and 0.02 mg/kg triazole alanine (50 ppm group) in fat. No average residues of triazole acetic acid were observed in tissue or milk samples. Only triazole alanine was observed above LOQ in tissues during the depuration phase

Table 64 Recovery data

| Tissue matrix  | Analyte    | Fortification range | Recovery (%) |      | n  |
|----------------|------------|---------------------|--------------|------|----|
|                |            | (mg/kg)             | Range        | Mean |    |
| Milk           | Flutriafol | 0.01-0.1            | 68–115       | 92   | 26 |
|                | T          | 0.01-0.1            | 70–103       | 90   | 32 |
|                | TA         | 0.01-0.1            | 86–119       | 101  | 30 |
|                | TAA        | 0.01-0.1            | 70–119       | 106  | 30 |
| Cream          | Flutriafol | 0.01-0.1            | 72–95        | 81   | 8  |
|                | T          | 0.01-0.1            | 89–104       | 96   | 10 |
|                | TA         | 0.01-0.1            | 89–105       | 98   | 8  |
|                | TAA        | 0.01-0.1            | 73–124       | 105  | 8  |
| Skim milk      | Flutriafol | 0.01-0.1            | 74–93        | 84   | 6  |
|                | T          | 0.01-0.1            | 86-101       | 93   | 12 |
|                | TA         | 0.01-0.1            | 91–109       | 100  | 8  |
|                | TAA        | 0.01-0.1            | 78–120       | 100  | 8  |
| Liver          | Flutriafol | 0.01-2.0            | 99–120       | 110  | 6  |
|                | T          | 0.01-0.1            | 70–98        | 85   | 6  |
|                | TA         | 0.01-0.3            | 95–105       | 99   | 6  |
|                | TAA        | 0.01-0.1            | 96–114       | 106  | 6  |
| Kidney         | Flutriafol | 0.01-0.3            | 91–120       | 98   | 8  |
| •              | T          | 0.01-0.1            | 91–109       | 97   | 8  |
|                | TA         | 0.01-0.1            | 87–113       | 99   | 8  |
|                | TAA        | 0.01-0.1            | 95–118       | 108  | 8  |
| Muscle         | Flutriafol | 0.01-0.1            | 83–120       | 99   | 6  |
| (Round)        | T          | 0.01-0.1            | 76–119       | 92   | 8  |
|                | TA         | 0.01-0.3            | 94–104       | 97   | 6  |
|                | TAA        | 0.01-0.1            | 97–118       | 106  | 6  |
| Muscle         | Flutriafol | 0.01-0.3            | 75–116       | 98   | 6  |
| (Loin)         | T          | 0.01-0.1            | 75–102       | 90   | 8  |
|                | TA         | 0.01-0.3            | 84–98        | 92   | 8  |
|                | TAA        | 0.01-0.1            | 75–108       | 95   | 8  |
| Fat            | Flutriafol | 0.01-3.0            | 66–120       | 95   | 6  |
| (Omental)      | T          | 0.01-0.1            | 71–107       | 91   | 8  |
|                | TA         | 0.01-0.1            | 93–99        | 96   | 6  |
|                | TAA        | 0.01-0.1            | 98–108       | 103  | 6  |
| Fat            | Flutriafol | 0.01-3.0            | 72–89        | 80   | 6  |
| (Renal)        | T          | 0.01-0.1            | 86–100       | 94   | 6  |
|                | TA         | 0.01-0.1            | 93–107       | 99   | 6  |
|                | TAA        | 0.01-0.1            | 87–117       | 104  | 6  |
| Fat            | Flutriafol | 0.01-3.0            | 76–103       | 87   | 6  |
| (Subcutaneous) | T          | 0.01-0.1            | 83–108       | 96   | 6  |
|                | TA         | 0.01-0.1            | 96–116       | 108  | 6  |
|                | TAA        | 0.01-0.1            | 89–111       | 103  | 6  |

Table 65 Residues of flutriafol and triazine metabolites in milk

|       | Flutriafol |         | 1,2,4 Triazole |         | Triazole Alanine |         |
|-------|------------|---------|----------------|---------|------------------|---------|
|       | Range      | Average | Range          | Average | Range            | Average |
| 5 ppm |            |         |                |         |                  |         |
| -1    | n/a        | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 3     | n/a        | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 7     | n/a        | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 10    | n/a        | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 14    | n/a        | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 17    | n/a        | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 21    | n/a        | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 24    | n/a        | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |

|        | Flutriafol    |         | 1,2,4 Triazole |         | Triazole Alanine |         |
|--------|---------------|---------|----------------|---------|------------------|---------|
|        | Range         | Average | Range          | Average | Range            | Average |
| 26     | n/a           | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 28     | n/a           | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 16 ppm |               |         |                |         |                  |         |
| -1     | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 3      | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 7      | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 10     | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 14     | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 17     | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 21     | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 24     | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 26     | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 28     | < 0.01-< 0.01 | < 0.01  | < 0.01–0.01    | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 50 ppm |               |         |                |         |                  |         |
| -1     | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 3      | < 0.01-< 0.01 | < 0.01  | 0.02-0.02      | 0.02    | < 0.01-< 0.01    | < 0.01  |
| 7      | < 0.01-< 0.01 | < 0.01  | 0.01-0.03      | 0.02    | < 0.01-< 0.01    | < 0.01  |
| 10     | < 0.01-< 0.01 | < 0.01  | 0.01-0.03      | 0.02    | < 0.01-< 0.01    | < 0.01  |
| 14     | < 0.01-< 0.01 | < 0.01  | 0.01-0.02      | 0.02    | < 0.01-< 0.01    | < 0.01  |
| 17     | < 0.01-< 0.01 | < 0.01  | 0.01-0.02      | 0.01    | < 0.01-< 0.01    | < 0.01  |
| 21     | < 0.01-< 0.01 | < 0.01  | 0.01-0.02      | 0.02    | < 0.01-< 0.01    | < 0.01  |
| 24     | < 0.01-< 0.01 | < 0.01  | 0.01-0.02      | 0.02    | < 0.01-< 0.01    | < 0.01  |
| 26     | < 0.01-< 0.01 | < 0.01  | < 0.01-0.02    | 0.02    | < 0.01-< 0.01    | < 0.01  |
| 28     | < 0.01-< 0.01 | < 0.01  | 0.01-0.03      | 0.02    | < 0.01-< 0.01    | < 0.01  |
| 28dep  | < 0.01-< 0.01 | < 0.01  | < 0.01-0.02    | 0.01    | < 0.01-< 0.01    | < 0.01  |
| 31dep  | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 35dep  | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 42dep  | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |

 $n/a = Sample \ not \ analysed$ 

Table 66 Partitioning of residues of flutriafol and triazine metabolites between cream and skim milk

|            | Flutriafol    | ·       | 1,2,4 Triazole | ·       | Triazole Alanine |         |
|------------|---------------|---------|----------------|---------|------------------|---------|
|            | Range         | Average | Range          | Average | Range            | Average |
| 5 ppm      |               |         |                |         |                  |         |
| 14 (Cream) | n/a           | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 21 (Cream) | n/a           | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 14 (Skim)  | n/a           | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 21 (Skim)  | n/a           | n/a     | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 16 ppm     |               |         |                |         |                  |         |
| 14 (Cream) | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 21 (Cream) | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 14 (Skim)  | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 21 (Skim)  | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01  |
| 50 ppm     |               |         |                |         |                  |         |
| 14 (Cream) | < 0.01-0.0155 | < 0.01  | 0.0110-0.0206  | 0.0146  | < 0.01-< 0.01    | < 0.01  |
| 21 (Cream) | < 0.01-0.0144 | 0.0106  | 0.0107-0.0198  | 0.0146  | < 0.01-< 0.01    | < 0.01  |
| 14 (Skim)  | < 0.01-< 0.01 | < 0.01  | 0.0154-0.0245  | 0.0211  | < 0.01-< 0.01    | < 0.01  |
| 21 (Skim)  | < 0.01-< 0.01 | < 0.01  | 0.0156-0.0267  | 0.0216  | < 0.01-< 0.01    | < 0.01  |

Table 67 Residues of flutriafol and triazine metabolites in tissues

|        | Flutriafol    |         | 1,2,4 Triazole |         | Triazole Alanine | <b>;</b> |
|--------|---------------|---------|----------------|---------|------------------|----------|
|        | Range         | Average | Range          | Average | Range            | Average  |
| 5 ppm  |               |         |                |         |                  |          |
| Liver  | 0.27-0.44     | 0.33    | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01   |
| Kidney | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | 0.01-0.02        | 0.01     |
| Round  | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | 0.01-0.02        | 0.02     |
| Loin   | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-0.01      | < 0.01   |

|                    | Flutriafol    |         | 1,2,4 Triazole |         | Triazole Alanine | <u> </u> |
|--------------------|---------------|---------|----------------|---------|------------------|----------|
|                    | Range         | Average | Range          | Average | Range            | Average  |
| Omental            | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01   |
| Renal              | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01   |
| Subcutaneous       | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01   |
| 16 ppm             |               |         |                |         |                  |          |
| Liver              | 0.23-0.77     | 0.59    | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01   |
| Kidney             | < 0.01-0.02   | 0.01    | < 0.01-0.02    | < 0.01  | 0.01-0.03        | 0.02     |
| Round              | < 0.01-< 0.01 | < 0.01  | < 0.01-0.01    | < 0.01  | 0.01-0.03        | 0.02     |
| Loin               | < 0.01-< 0.01 | < 0.01  | < 0.01-0.01    | < 0.01  | < 0.01-0.02      | 0.01     |
| Omental            | < 0.01-0.02   | 0.01    | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01   |
| Renal              | < 0.01-0.02   | 0.01    | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01   |
| Subcutaneous       | < 0.01-0.02   | 0.01    | < 0.01-< 0.01  | < 0.01  | < 0.01-< 0.01    | < 0.01   |
| 50 ppm             |               |         |                |         |                  |          |
| Liver              | 1.64-1.95     | 1.83    | 0.01-0.02      | 0.02    | 0.13-0.19        | 0.16     |
| Kidney             | 0.04-0.15     | 0.10    | 0.02-0.03      | 0.03    | 0.05-0.07        | 0.06     |
| Round              | 0.02-0.06     | 0.04    | 0.01-0.03      | 0.02    | 0.08-0.10        | 0.09     |
| Loin               | 0.02-0.07     | 0.04    | 0.01-0.03      | 0.02    | 0.04-0.06        | 0.05     |
| Omental            | 0.08-0.34     | 0.19    | < 0.01-0.01    | < 0.01  | < 0.01-0.01      | < 0.01   |
| Renal              | 0.07-0.32     | 0.18    | < 0.01-< 0.01  | < 0.01  | < 0.01-0.01      | < 0.01   |
| Subcutaneous       | 0.04-0.11     | 0.07    | < 0.01-0.02    | < 0.01  | 0.01-0.03        | 0.02     |
| Depuration         |               |         |                |         |                  |          |
| 31–42 Liver        | < 0.01-< 0.01 | < 0.01  | 0.02-0.02      | 0.02    | 0.09-0.14        | 0.11     |
| 31–42 Kidney       | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | 0.04-0.05        | 0.04     |
| 31–42 Round        | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | 0.04-0.05        | 0.05     |
| 31–42 Loin         | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | 0.03-0.04        | 0.03     |
| 31–42 Omental      | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-0.01      | < 0.01   |
| 31–42 Renal        | < 0.01-< 0.01 | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-0.01      | < 0.01   |
| 31–42 Subcutaneous | < 0.01-0.01   | < 0.01  | < 0.01-< 0.01  | < 0.01  | < 0.01-0.02      | 0.01     |

Note: residues of triazole analine were detected in muscle (loin and round) samples from control animals: The levels detected were <0.01-0.01, mean <0.01 mg/kg in round and 0.08-0.09 mg/kg, mean 0.09 mg/kg in loin muscle. The large difference between loin and round residues as well as the fact that no residues of TAA were detected in corresponding control liver, kidney or fat samples suggesting this detection is due to a mislabelling of the sample or cross-contamination during processing for analysis.

#### **APPRAISAL**

Flutriafol is a triazole fungicide used in many crops for control of a broad spectrum of leaf and ear cereal diseases, particularly embryo borne diseases e.g., bunts and smuts. It was first evaluated for residues and toxicology by the 2011 JMPR. The ADI of flutriafol was 0–0.01 mg/kg bw and the ARfD was 0.05 mg/kg bw. The compound was listed by the Forty-sixth Session of CCPR for the JMPR to consider additional MRLs. The residue definition for compliance with MRL and for estimation of dietary intake (for animal and plant commodities) is flutriafol.

For the current evaluation the Meeting received new metabolism studies in lactating goats, storage stability data for animal commodities, residue trials on apples, pears, peaches/nectarines, plums, cherries, strawberries, Brassica vegetables (cabbage and broccoli), cucurbits (cucumbers, summer squash and muskmelons), tomatoes, peppers, leafy vegetables (lettuce, spinach, celery and mustard greens), sugar beet, maize, rice, sorghum, almonds, pecans, cotton, and rape, as well as a lactating cow feeding study (residue transfer study).

Metabolites referred to in the appraisal were addressed by their common names

# Animal metabolism

Metabolism of flutriafol in cattle involves hydroxylation of flutriafol to hydroxy flutriafol and a range of polar water soluble metabolites that are present at low levels, presumably additionally hydroxylated flutriafol compounds and their conjugates. The current Meeting received two additional studies on the metabolism of flutriafol in ruminants involving dosing lactating goats with triazole- or carbinol-labelled flutriafol at the equivalent of 12 or 30 ppm in the feed.

The majority of the <sup>14</sup>C residues were recovered in the excreta (urine 30–54% AD, faeces 35–55% AD). For tissues of goats dosed at 30 ppm, <sup>14</sup>C residues were highest in liver, (0.68–0.70 mg equiv/kg), followed by the kidney (0.11–0.31 mg equiv/kg) with only low levels detected in fat (0.011–0.018 mg equiv/kg) and muscle (0.02 mg equiv/kg). Residues in milk appeared to reach plateau levels by day three of dosing with significant differences in <sup>14</sup>C levels between milk collected in the morning (low levels) compared to evening milk (higher levels) suggesting flutriafol residues are rapidly eliminated following dosing. TRR in milk reached a maximum of 0.095 mg equiv/kg.

Acetonitrile and water extraction of liver, kidney, muscle, fat, skim milk and milk fat resulted in extraction efficiencies of 28.7–38.7% (liver), 66.7–86.5% (kidney) and > 82% (muscle), > 72% fat, 98% (skim milk) and 82–87% (milk fat).

Flutriafol was extensively metabolized and accounted for  $\leq 2.5\%$  TRR in liver,  $\leq 0.7\%$  TRR in kidney,  $\leq 4.3\%$  TRR in milk fat, not detected in muscle and  $\leq 0.01$  mg/kg in fat. Significant metabolites and the highest % TRR in tissues are 1,2,4-triazole (M1: 15% skim milk, 11% milk fat, 42% muscle, 27% fat), hydroxy flutriafol glucuronide (M3: 13% kidney, 23%

skim milk, 44% milk fat, 10% muscle), di-hydroxy flutriafol (M3e: 35% skim milk), flutriafol glucuronide (M4: 25% kidney, 17% muscle) and methoxy flutriafol glucuronide (M7: 10% kidney).

The Meeting noted that in the lactating cow evaluated by the 2011 JMPR, animals were dosed orally twice daily at the equivalent of 2 ppm in the diet for seven days and sacrificed at 4 hours after the last dose. In the current studies, goats were dosed once daily at 12 or 30 ppm with sacrifice occurring 20–22 hours after the last dose. The difference in sacrifice times and the higher dose rates have allowed for increased identification of residue components. The major residues in kidney, in both the lactating cow and goat studies, is flutriafol glucuronide (M4) (reported as M1B in the lactating cow study) at 22% TRR in cows and 13–15% TRR in goats at the highest dose. With the longer interval between the last dose and sacrifice, flutriafol is no longer found as the major component of the residue in liver (cow 27% TRR; goat 1.0–2.5% TRR) and no metabolite was individually present at > 10% TRR in liver in the goat studies. The levels of radioactivity in milk from the cow study were too low to allow for adequate characterisation and identification of components. In the goat study, considering the levels found in skim milk and in milk fat, three components are likely to be present at more than 10% TRR in whole milk: hydroxy flutriafol glucuronide (M3), di-hydroxy flutriafol (M3e) and flutriafol sulphate (M10).

The major metabolic pathway involves oxidation of one of the phenyl rings followed by conjugation with glucuronic acid to form flutriafol glucuronide (M4). Further oxidation results in formation of dihydroxy flutriafol (M3e), of which there are a number of possible isomers. M3e is then further transformed via methylation to hydroxyl methyl flutriafol (M5) which can, in turn, be conjugated with glucuronic acid to form methoxy flutriafol glucuronide (M7). M3e was also conjugated with glucuronic acid to form hydroxy flutriafol glucuronide (M3). The lactating goat study extends the knowledge of flutriafol metabolism and is consistent with earlier studies in lactating cow as well as laboratory animals.

The new goat metabolism studies have identified potential marker residues that could be included in the residue definitions for compliance and dietary intake risk assessment. However, the Meeting noted at the current livestock dietary burdens, residues in animal commodities of these components are expected to be at the limit of quantification or below. The Meeting agreed that the residue definitions for animal commodities did not need to be revised although this may change in the future if there are significant increases in the estimated livestock dietary burdens.

# Stability of pesticide residues in stored analytical samples

The 2011 JMPR concluded that when stored, frozen flutriafol residues were stable for at least 5 months in soya bean seed, for at least 12 months in apple, barley grains and coffee beans, for at least 23 months in grapes, for at least 24 months in cabbage and oilseed rape, and for at least 25 months in wheat (grains and straw), pea seed, sugar beet root. Triazole metabolite residues were stable for at least 4 months in apple fruits and juice, and for at least 5 months in animal commodities.

The 2015 Meeting received information on the stability of flutriafol and triazole metabolites T, TA and TAA in samples of animal commodities stored frozen. Residues of flutriafol, TA and TAA in ruminant tissues (muscle, fat, liver and kidney) remain stable for at least 12 months, residues of T remains stable for at least 12 months in muscle and liver, and for a maximum 6.6 months in kidney and 10.7 months in fat when samples are stored under deep frozen conditions.

The periods of demonstrated stability cover the frozen storage intervals used in the residue studies.

# Results of supervised residue trials on crops

Pome fruit

Field trials involving apples and pears conducted in the USA were made available to the Meeting. The cGAP for pome fruit in the USA is four applications at 119 g ai/ha (7–10 day interval between sprays, PHI 14 days). None of the trials on apples and pears submitted matched cGAP. However, the number of sprays in the trials was six and available decline data suggest the additional two sprays do not significantly contribute to the final residues and trials conducted at the maximum application rate but with six sprays were considered to approximate cGAP.

**Apples** 

Residues in trials evaluated by the 2015 JMPR approximating cGAP were (n=4): 0.02, 0.02, 0.06 and 0.11 mg/kg.

The 2011 JMPR reported residues from sixteen trials on apples that also approximated cGAP (n=16): 0.03, 0.04, 0.05 (3), 0.06 (3), 0.08 (2), 0.09, 0.10 (2), 0.12 (2) and 0.16 mg/kg.

Pears

Residues in trials on pears approximating cGAP were: 0.04, 0.09, 0.13, 0.18, 0.21 and 0.24 mg/kg.

The GAP in the USA is for the group Pome fruit. The median residues in apples and pears differed by less than a factor of five and the Meeting decided to recommend a group maximum residue level. In deciding which data set to use for the recommendation, as a Mann Whitney U-test indicated that the residue populations were not different it was decided to combine the data sets.

The combined apple and pear dataset is: 0.02 (2), 0.03, 0.04 (2), 0.05 (3), 0.06 (4), 0.08 (2), 0.09 (2), 0.10 (2), 0.11, 0.12 (2), 0.13, 0.16, 0.18, 0.21 and 0.24 mg/kg

The Meeting estimated a maximum residue level of 0.4 mg/kg for pome fruit together with an STMR of 0.08 mg/kg and an HR 0.26 mg/kg (highest individual analytical result from duplicate samples) and agreed to replace the previous recommendation of 0.3 mg/kg.

Stone fruit

Field trials involving applications to cherries, peaches and plums were made available from the USA.

The cGAP for stone fruit in the USA is four applications at 128 g ai/ha (maximum application per year 511 g ai/ha, 7day interval between sprays, PHI 7 days).

Residues in cherries (sweet and tart) from trials matching GAP were: 0.16, 0.24, 0.25, 0.26, 0.30, 0.30, 0.32, 0.33, 0.34, 0.38, 0.39, 0.40, 0.42, 0.46, 0.47 and 0.59 mg/kg.

Residues in peaches from trials matching cGAP were: 0.05, 0.12, 0.13, 0.14, 0.15, 0.16, 0.18, 0.18, 0.19, 0.24, 0.24 and 0.41 mg/kg

Residues in plums from trials matching cGAP were: 0.02, 0.03, 0.04, 0.06, 0.09, 0.10, 0.12 and 0.22 mg/kg.

The Meeting noted the use in the USA is for the group stone fruit and that a group MRL recommendation might be possible. Although the median residues differed by less than a factor of five, the Meeting decided to recommend maximum residue levels for all the sub-groups of stone fruit as there were sufficient trials available for each sub-group.

The Meeting estimated a maximum residue level of 0.8~mg/kg for the sub-group cherries together with an STMR of 0.335~mg/kg and an HR 0.66 (highest individual analytical result from duplicate samples) mg/kg.

The Meeting estimated a maximum residue level of 0.6 mg/kg for sub-group peaches together with an STMR of 0.17 mg/kg and an HR 0.42 (highest individual analytical result from duplicate samples) mg/kg.

The Meeting estimated a maximum residue level of 0.4 mg/kg for sub-group plums together with an STMR of 0.075 mg/kg and an HR 0.25 (highest individual analytical result from duplicate samples) mg/kg.

# Strawberries

Trials were available from Spain and the USA. The cGAP for strawberries in the USA is four applications at 128 g ai/ha (maximum application per year 511 g ai/ha, 7 day interval between sprays, PHI 0 days).

Residues in strawberries from trials matching cGAP were (n=10): 0.14, 0.24, 0.30, 0.36, 0.42, 0.44, 0.45, 0.55, 0.63 and 0.72 mg/kg.

The Meeting estimated a maximum residue level of 1.5 mg/kg for strawberries together with an STMR of 0.43 mg/kg and an HR 0.78 (highest individual analytical result from duplicate samples) mg/kg.

### Brassica vegetables

Residue trials were available from the USA. The cGAP for Brassica (Cole) leafy vegetables in the USA is four applications 128 g ai/ha (maximum application per year 511 g ai/ha, 7 day interval between sprays, PHI 7 days). Residues in trials matching cGAP were cabbage (n=6) 0.08, 0.09, 0.10, 0.20, 0.44, 0.74 mg/kg and broccoli (n=5) 0.06, 0.08, 0.14, 0.18, 0.35 mg/kg.

The GAP in the USA is for the group Brassica vegetables. The median residues in cabbage and broccoli differed by less than a factor of five and the Meeting decided to recommend a group maximum residue level. In deciding which data set to use for the recommendation, as a Mann Whitney U-test indicated that the residue populations were not different it was decided to combine the data sets.

The combined data set is (n=11): 0.06, 0.08, 0.08, 0.09, 0.10, 0.14, 0.18, 0.20, 0.35, 0.44 and 0.74 mg/kg.

The Meeting estimated a maximum residue level of 1.5 mg/kg for Brassica (Cole or cabbage) vegetables together with an STMR of 0.14 mg/kg and an HR 0.80 mg/kg (highest individual analytical result from duplicate samples).

# Fruiting vegetables, cucurbits

Residue trials were available from the USA. The Meeting noted that there are GAPs in the USA that cover the whole group fruiting vegetables, cucurbits and that the cGAP is the same for all crops that are members of the group. It was agreed to consider the trials on melons and other cucurbits together. The cGAP for the muskmelons and cucurbit vegetables (except muskmelons) in the USA is four applications at 128 g ai/ha (maximum application per year 511 g ai/ha, 7 day interval between sprays, PHI 0 days).

Residues matching cGAP were muskmelons, whole fruit (n=8), 0.02, 0.04, 0.07, 0.08, 0.10, 0.10, 0.12 and 0.12 mg/kg (whole fruit); muskmelons, flesh (n=4), < 0.01, < 0.01, < 0.01, 0.02 and 0.02 mg/kg; cucumbers, (n=8), 0.02, 0.02, 0.03, 0.04, 0.04, 0.04, 0.06 and 0.06 mg/kg; summer squash, (n=7), 0.04, 0.04, 0.04, 0.05, 0.05, 0.06 and 0.06 mg/kg.

The GAP in the USA covers the whole group cucurbit vegetables. The median residues in cucumbers, muskmelons and summer squash datasets differed by less than a factor of five and the Meeting decided to recommend a group maximum residue level. In deciding which data set to use for the recommendation, as a Kruskal-Wallis H-test indicated that the residue populations were different it was decided to use the muskmelon dataset which has the highest residues.

The Meeting estimated a maximum residue level of 0.3 mg/kg for fruiting vegetables, cucurbits, together with an HR 0.13 mg/kg (highest individual analytical result from duplicate samples from muskmelons) and an STMR of 0.09 mg/kg.

#### **Tomatoes**

Flutriafol is approved in the USA for use on tomatoes. The cGAP for tomatoes in the USA is four applications at 128 g ai/ha (maximum application per year 511 g ai/ha, 7 day interval between sprays, PHI 0 days). Residues from trials matching cGAP were (n=18): 0.04, 0.05, 0.06, 0.06, 0.06, 0.06, 0.07, 0.08, 0.10, 0.12, 0.12, 0.12, 0.15, 0.18, 0.33, 0.40, 0.42 and 0.55 mg/kg.

The Meeting estimated a maximum residue level of 0.8 mg/kg for tomatoes together with an STMR of 0.11 mg/kg and an HR 0.63 (highest individual analytical result from duplicate samples) mg/kg.

# Peppers

Residue trials were available from the USA. The cGAP for fruiting vegetables (USA group 8–10) which includes peppers in the USA is four applications at 128 g ai/ha (maximum application per year 511 g ai/ha, 7 day interval between sprays, PHI 0 days).

Residues in trials matching USA GAP were peppers, sweet (n=9), 0.03, 0.06, 0.06, 0.08, 0.10, 0.11, 0.14, 0.15 and 0.16 mg/kg, and chilli, (n=4), 0.12, 0.20, 0.26 and 0.31 mg/kg.

Residues in peppers and chilli, from trials submitted to the 2015 JMPR are covered by maximum residue levels recommended by the 2011 JMPR of 1 mg/kg for peppers, sweet however, the Meeting noted the commodity description from the 2011 JMPR should have been VO 0051 Peppers (subgroup including Peppers, Chilli and Peppers, Sweet) and not VO 0445 Peppers, Sweet (including pimento or pimiento). To resolve this Meeting recommends a maximum residue level of 1 mg/kg, STMR of 0.28 mg/kg and an HR of 0.41 mg/kg for peppers (VO 0051) to replace the previous recommendation of 1 mg/kg for peppers, sweet (VO 0445).

### Leafy vegetables

Residue trials were available from the USA. The cGAP for leafy vegetables (except Brassica leafy vegetables) in the USA is four applications at 128 g ai/ha (maximum application per year 511 g ai/ha, 7 day interval between sprays, PHI 7 days). Brassica (Cole) leafy vegetables in the USA have the same cGAP as for other leafy vegetables and as mustard greens are considered leafy vegetables under Codex, the Meeting agreed to evaluate all leafy vegetables together.

Residues in trials matching cGAP were, head lettuce, (n=7), 0.04, 0.05, 0.14, 0.22, 0.46, 0.52 and 0.66 mg/kg; leaf lettuce, (n=5), 0.30, 0.32, 0.36, 1.45 and 2.64 mg/kg; Cos lettuce (Romaine), (n=2), 0.20 and 0.28 mg/kg; spinach, (n=8), 0.55, 0.94, 1.32, 1.55, 1.78, 2.1, 5.05 and 5.45 mg/kg; and mustard greens, (n=8), 1.20, 1.49, 2.02, 2.12, 2.12, 2.15, 2.78 and 3.42 mg/kg.

GAP in the USA is for leafy vegetables and a group maximum residue level recommendation may be possible. However, as the median residue levels in the datasets differed by more than  $5\times$ , residues in the individual commodities cannot be considered similar and the Meeting decided to recommend levels for the individual leafy vegetables for which data are available.

The Meeting estimated a maximum residue level of 1.5 mg/kg for head lettuce together with an STMR of 0.22 mg/kg and an HR 0.67 mg/kg (highest individual analytical result from duplicate samples).

The Meeting estimated a maximum residue level of 5 mg/kg for leaf lettuce together with an STMR of  $0.36\,\mathrm{mg/kg}$  and an HR  $2.95\,\mathrm{mg/kg}$  (highest individual analytical result from duplicate samples).

The Meeting agreed there were insufficient residue trials to estimate a maximum residue level for Cos lettuce.

The Meeting estimated a maximum residue level of 10 mg/kg for spinach together with an STMR of 1.665 mg/kg and an HR 5.5 mg/kg (highest individual analytical result from duplicate samples).

The Meeting estimated a maximum residue level of 7 mg/kg for mustard greens together with an STMR of 2.12 mg/kg and an HR 3.53 mg/kg (highest individual analytical result from duplicate samples).

The IESTI represented greater than 100% of the ARfD of 0.05 mg/kg bw in the case of leaf lettuce (110% children), mustard greens (350% children; 140% general population) and spinach (460% total or 160% raw spinach only, children; 130% general population). No alternative GAP was available.

#### Sugar beet

Residue trials were available from the countries of the EU and also the USA.

The cGAP for sugar beet in the USA is two applications at 128 g ai/ha (maximum application per year 256 g ai/ha, 14 day interval between sprays, PHI 21 days).

No trials matched cGAP as the number of sprays differed and there is insufficient data to conclude the additional spray does not significantly contribute to the terminal residue (three sprays in trials versus two sprays cGAP, PHI 14 day trials versus 21 days cGAP).

GAP in Russia is for two applications at 62.5 g ai/ha with a 30 day PHI. Residues in trials from northern Europe at approximately double the application rate were (n=8), < 0.01, < 0.01, < 0.01, < 0.01, < 0.01, 0.02 and 0.03 mg/kg. The Meeting decided to apply proportionality to the residue data.

| Trial application rate (2 <sup>nd</sup> spray) g ai/ha | Scaling factor = 62.5/trial application rate | Trial residue (mg/kg) | Scaled residue =scaling factor × trial residue (mg/kg) |
|--------------------------------------------------------|----------------------------------------------|-----------------------|--------------------------------------------------------|
| 135                                                    | 0.463                                        | < 0.01                | < 0.01                                                 |
| 111                                                    | 0.563                                        | < 0.01                | < 0.01                                                 |
| 120                                                    | 0.521                                        | < 0.01                | < 0.01                                                 |
| 131                                                    | 0.477                                        | < 0.01                | < 0.01                                                 |
| 138                                                    | 0.453                                        | < 0.01                | < 0.01                                                 |
| 126                                                    | 0.496                                        | 0.01                  | 0.0050                                                 |
| 130                                                    | 0.481                                        | 0.02                  | 0.0096                                                 |
| 138                                                    | 0.453                                        | 0.03                  | 0.0136                                                 |

Based on the residues from Europe scaled to cGAP for Russia, the Meeting estimated an STMR of 0.01~mg/kg, an HR of 0.0136~mg/kg and a maximum residue level of 0.02~mg/kg for sugar beet.

# Celery

Celery is classified as a leafy vegetable in the USA but as a stalk and stem vegetable in Codex. Residues in celery (whole plant) conducted according to cGAP in the USA (4× 128 g ai/ha, PHI 7 days) were (n=7), 0.44, 0.48, 0.73, 0.78, 0.92, 1.08 and 1.40 mg/kg.

The Meeting estimated a maximum residue level of 3 mg/kg for celery together with an STMR of 0.78 mg/kg and an HR 1.41 mg/kg (highest individual analytical result from duplicate samples).

# Cereal grains

### Maize

Residue trials were available from the USA. The cGAP for maize (field corn, popcorn and seed corn) in the USA is two applications at 128 g ai/ha (maximum application per year 256 g ai/ha, 7 day interval between sprays, PHI 7 days). Residues in trials matching cGAP were: < 0.01 (20) mg/kg. At

one site two applications were also made at an exaggerated rate of 640 g ai/ha with harvest of grain 7 days later. Residues in grain were < 0.01 mg/kg.

The Meeting estimated an STMR of  $0\,\mathrm{mg/kg}$  and a maximum residue level of  $0.01\,(*)\,\mathrm{mg/kg}$  for maize.

Rice

The Meeting received field trials performed in Italy on rice. The cGAP for Italy is for  $2 \times 187.5$  g ai/ha with a PHI of 28 days. In trials approximating critical GAP in the Italy total residues in rice grain (with husk) were (n=4), Paddy rice, 0.74, 1.06, 1.32 and 1.51 mg/kg.

The number of trials is insufficient to make a maximum residue level recommendation for rice.

Sorghum

Residue trials were available from the USA. The cGAP for sorghum in the USA is two applications at 128 g ai/ha (maximum application per year 256 g ai/ha, 7 day interval between sprays, PHI 30 days). Residues in trials matching cGAP were (n=12), 0.03, 0.16, 0.16, 0.20, 0.24, 0.26, 0.28, 0.34, 0.38, 0.40, 0.74 and 0.74 mg/kg.

The Meeting estimated an STMR of 0.27~mg/kg and a maximum residue level of 1.5~mg/kg for sorghum.

#### Tree nuts

Residue trials were available from the USA. The cGAP for almonds and walnuts as well as for pecans and other tree nuts in the USA is four applications at 128 g ai/ha (maximum application per year 511 g ai/ha, 7 day interval between sprays, PHI 14 days). No trials matched cGAP as the number of sprays differed and there is insufficient data to conclude the additional spray does not significantly contribute to the terminal residue.

# Cotton seed

Residue trials were available from the USA. The cGAP for cotton in the USA is a pre-plant soil application at up to 290 g ai/ha followed by foliar applications at 128 g ai/ha (maximum application per year 547 g ai/ha, 7 day interval between sprays, PHI 30 days). Residues in trials matching cGAP were (n=11), < 0.01, 0.02, 0.04, 0.06, 0.07, 0.08, 0.09, 0.14, 0.16, 0.26 and 0.26 mg/kg.

The Meeting estimated an STMR of  $0.08\,\mathrm{mg/kg}$  and a maximum residue level of  $0.5\,\mathrm{mg/kg}$  for cotton seed.

#### Rape seed

Residue trials were available from the USA and member states of the European Union. The cGAP for rape in Russia is application at 125 g ai/ha (maximum two applications/year, interval 10–14 days, PHI 30 days). In trials conducted in member countries of the European Union approximating critical GAP in Russia, residues in rape seed were (n=8), mg/kg, Northern Europe, 0.04, 0.07, 0.13, 0.15 and 0.31 mg/kg, and Southern Europe, 0.03, 0.05 and 0.15 mg/kg.

The Meeting estimated an STMR of  $0.1\,\mathrm{mg/kg}$  and a maximum residue level of  $0.5\,\mathrm{mg/kg}$  for rape seed.

# Animal feeds

Straw, forage and fodder of cereal grains and grasses

Maize forage and fodder

Residue trials were available from the USA. The cGAP for maize (field corn, popcorn and seed corn) in the USA is two applications at 128 g ai/ha (maximum application per year 256 g ai/ha, 7 day interval between sprays, PHI 7 days, 0 days for forage). Residues in forage from trials matching cGAP were (n=20), 0.53, 0.74, 0.91, 1.08, 1.14, 1.36, 1.45, 1.47, 1.53, 1.63, 1.65, 1.66, 1.75, 1.77, 1.85, 1.89, 2.19, 2.44, 2.66 and 2.74 mg/kg (as received basis). When corrected for measured moisture contents (33–70%) residues were , 1.86, 1.92, 3.17, 3.17, 3.82, 4.18, 4.53, 4.80, 4.88, 5.10, 5.52, 5.61, 5.66, 5.73, 5.78, 6.39, 6.89, 7.29, 8.30 and 8.47 mg/kg.

The Meeting estimated median residue of 5.31 mg/kg and a highest residue of 8.47 mg/kg for maize forage (dry weight basis).

Residues in maize fodder (stover) from trials matching cGAP were (n=20), < 0.02, 0.72, 0.88, 1.00, 1.04, 1.32, 1.40, 1.44, 1.46, 1.94, 2.07, 2.27, 2.38, 2.48, 2.64, 2.99, 2.99, 3.04, 3.98 and 5.44 mg/kg (as received basis). When corrected for measured moisture contents (54–73%) residues were 0.03, 1.62, 1.90, 3.00, 3.42, 3.72, 3.79, 3.99, 4.35, 4.84, 5.03, 5.04, 6.72, 6.92, 6.99, 7.21, 7.81, 8.12, 8.17 and 10.45 mg/kg.

The Meeting estimated median residue of 4.93 mg/kg, a highest residue of 10.45 mg/kg and a maximum residue level of 20 mg/kg for maize fodder (dry weight basis).

Sorghum

Residue trials were available from the USA. The cGAP for sorghum in the USA is two applications at 128 g ai/ha (maximum application per year 256 g ai/ha, 7 day interval between sprays, PHI 30 days for grain, forage and stover).

Sorghum forage (n=12), 0.08, 0.19, 0.20, 0.24, 0.26, 0.28, 0.52, 0.54, 0.64, 0.72, 0.78 and 1.0 mg/kg (fresh weight). Median and highest residues in sorghum forage are 0.40 and 1.0 mg/kg (fresh weight basis) or 1.1 and 2.85 mg/kg (dry weight basis) as forage contains 35% dry matter.

Sorghum fodder (n=12), 0.30, 0.42, 0.45, 0.52, 0.68, 0.80, 0.88, 0.92, 1.14, 1.46, 1.52 and 4.40 mg/kg (fresh weight). The Meeting estimated median and highest residues of 0.84 mg/kg and 4.4 mg/kg (fresh weight basis) or 0.95 and 5 mg/kg when expressed on a dry weight basis and assuming fodder contains 88% dry matter. The Meeting estimated a maximum residue level of 7 mg/kg for sorghum fodder (dry weight basis).

Miscellaneous fodder and forage crops

Sugar beet tops

The Meeting received trials performed in countries of the EU and also the USA.

The cGAP for sugar beet in the USA is two applications at 128 g ai/ha (maximum application per year 256 g ai/ha, 14 day interval between sprays, PHI 21 days). No trials matched GAP as the number of sprays differed and there is insufficient data to conclude the additional spray does not significantly contribute to the terminal residue (three sprays in trials vs two sprays cGAP).

GAP in Russia is for two applications at 62.5 g ai/ha with a 30 day PHI. Residues in trials from northern Europe at approximately double the application rate were (n=8), 0.1, 0.14, 0.14, 0.18, 0.22, 0.22 and 0.75 mg/kg (on an as received basis). The Meeting decided to apply proportionality to the residue data.

| Trial application rate (2 <sup>nd</sup> | Scaling factor = 62.5/trial | Trial residue (mg/kg) | Scaled residue =scaling factor × |
|-----------------------------------------|-----------------------------|-----------------------|----------------------------------|
| spray) g ai/ha                          | application rate            |                       | trial residue (mg/kg)            |

| 131 | 0.477 | 0.10 | 0.048 |
|-----|-------|------|-------|
| 128 | 0.488 | 0.14 | 0.068 |
| 126 | 0.496 | 0.14 | 0.069 |
| 120 | 0.520 | 0.18 | 0.094 |
| 111 | 0.563 | 0.18 | 0.101 |
| 135 | 0.463 | 0.22 | 0.102 |
| 130 | 0.481 | 0.22 | 0.106 |
| 138 | 0.453 | 0.75 | 0.340 |

Based on the residues from Europe scaled to cGAP for Russia, the Meeting estimated a median residue of 0.098 mg/kg and a highest residue of 0.340 mg/kg (on an as received basis). Sugar beet tops contain approximately 23% DM. The Meeting estimated a median residue of 0.424 mg/kg, a highest residue of 1.477 mg/kg and a maximum residue level of 3 mg/kg for sugar beet tops (on a dry weight basis).

# Rape seed forage

Residue trials were available from the USA and member states of the European Union. The GAP for rape in Russia is application at 125 g ai/ha (maximum two applications/year, interval 10–14 days, PHI 30 days). The late application precludes the use of plant material as forage.

#### Cotton gin by-products

Residue trials were available from the USA. The cGAP for cotton in the USA is a pre-plant soil application at up to 290 g ai/ha followed by foliar applications at 128 g ai/ha (maximum application per year 547 g ai/ha, 7 day interval between sprays, PHI 30 days). Three trial matched cGAP with residues 1.12, 1.77 and 2.26 mg/kg (fresh weight basis). Three residue trials is insufficient to estimate a maximum residue level for cotton gin by-products.

#### Almond hulls

Residue trials were available from the USA. The cGAP for almonds, walnuts, pecans and other tree nuts in the USA is four applications at 128 g ai/ha (maximum application per year 511 g ai/ha, 7 day interval between sprays, PHI 14 days). No trials matched cGAP as the number of sprays differed and there is insufficient data to conclude the additional spray does not significantly contribute to the terminal residue (six sprays in trials versus four sprays for cGAP).

# Fate of residues during processing

The Meeting received information on the nature of residues under simulated processing conditions on the fate of incurred residues of flutriafol during the processing of peaches, plums, grapes, strawberries, cabbages, tomatoes, lettuce, celery, sorghum, rice, and cotton seed. Flutriafol residues are stable under simulated processing conditions (pasteurization, baking/brewing/boiling and sterilisation).

Summary of selected processing factors for flutriafol

| Raw       | Processed          | Individual PF       | Best     | STMR <sub>RAC</sub> | $STMR_{RAC} \times$ | HR <sub>RAC</sub> | $HR_{RAC} \times PF$ |
|-----------|--------------------|---------------------|----------|---------------------|---------------------|-------------------|----------------------|
| commodity | commodity          |                     | estimate | (mg/kg)             | PF                  | (mg/kg)           | (mg/kg)              |
|           |                    |                     | PF       |                     | (mg/kg)             |                   |                      |
| Apple     | Juice <sup>a</sup> | 0.50 0.45           | 0.48     | 0.08                | 0.038               |                   |                      |
|           | Wet pomace a       | 1.9 1.9             | 1.9      |                     | 0.152               |                   |                      |
|           | Dry pomace a       | 10 8.5              | 9.3      |                     | 0.744               |                   |                      |
| Peach     | Juice              | 1.7 0.8             | 1.25     | 0.17                | 0.2125              |                   |                      |
|           | Jam                | 0.7 1.0             | 0.85     |                     | 0.1445              |                   |                      |
| Plum      | Dried fruit        | 2.2                 | 2.2      | 0.075               | 0.165               | 0.22              | 0.484                |
| Grapes    | Wet pomace         | 2.5 4.4             | 3.45     | 0.21                | 0.7245              |                   |                      |
|           | Dry pomace         | 4.0 4.3 5.4 6.0 6.7 |          |                     | 1.806               |                   |                      |
|           |                    | 9.6 15, 17.8        | 8.6      |                     |                     |                   |                      |
|           | Red wine           | 0.55 0.57 1.5 1.6   | 1.055    |                     | 0.22155             |                   |                      |
|           | White wine         | 0.79 0.84 1.7 3.4   | 1.68     |                     | 0.3528              |                   |                      |

| Raw commodity | Processed commodity      | Individual PF       | Best<br>estimate<br>PF | STMR <sub>RAC</sub> (mg/kg) | STMR <sub>RAC</sub> × PF (mg/kg) | HR <sub>RAC</sub> (mg/kg) | $\begin{array}{c} HR_{RAC} \times PF \\ (mg/kg) \end{array}$ |
|---------------|--------------------------|---------------------|------------------------|-----------------------------|----------------------------------|---------------------------|--------------------------------------------------------------|
| Strawberry    | Jam                      | 0.75 0.87 0.92 0.96 | 0.875                  | 0.43                        | 0.3685                           |                           |                                                              |
| Tomato        | Purée                    | 1.2                 | 1.2                    | 0.11                        | 0.132                            |                           |                                                              |
|               | Paste                    | 2.6                 | 2.6                    |                             | 0.286                            |                           |                                                              |
| Sorghum       | Aspirated grain fraction | 7.1 8.9             | 8.0                    | 0.27                        | 2.16                             |                           |                                                              |
| Cottonseed    | Hulls                    | 0.33                | 0.33                   | 0.08                        | 0.0264                           |                           |                                                              |
|               | Meal                     | 0.08                | 0.08                   |                             | 0.0064                           |                           |                                                              |
|               | Oil                      | 0.08                | 0.08                   |                             | 0.0064                           |                           |                                                              |

<sup>&</sup>lt;sup>a</sup> Values from 2011 JMPR

Residues concentrated in prunes (dried plums). Based on the estimated maximum residue level for plums of 0.4 mg/kg, the Meeting recommended a maximum residue level for prunes of 0.9 mg/kg (MRL  $\times$  PF = 0.4  $\times$  2.2 = 0.88 mg/kg rounded to 0.9 mg/kg).

#### Residues in animal commodities

# Farm animal feeding studies

The Meeting received information on the residue levels arising in tissues and milk when dairy cows were fed a diet containing flutriafol at dietary levels of 5, 16 and 50 ppm for 28 consecutive days. Residues in whole milk were < 0.01 mg/kg. In cream, residues were < 0.01 mg/kg except for Day 21 where a residue of 0.01 mg/kg was detected. The highest residues (mean in brackets) in liver, kidney, fat and muscle from the 50 ppm dose group were 1.95 (1.83), 0.15 (0.10), 0.34 (0.19) and 0.07 (0.04) mg/kg respectively.

### Animal commodity maximum residue levels

Dietary burden calculations for beef cattle and dairy cattle and poultry are provided below. The dietary burdens were estimated using the OECD diets listed in Appendix IX of the 2009 edition of the FAO Manual.

Potential cattle and poultry feed items include maize, peanut, soya bean and wheat commodities.

Summary of livestock dietary burden (ppm of dry matter diet)

|                 | US-Canad | ada EU |                   | EU A             |      | Australia |       | Japan |  |
|-----------------|----------|--------|-------------------|------------------|------|-----------|-------|-------|--|
|                 | max      | mean   | Max               | mean             | max  | Mean      | max   | Mean  |  |
| Beef cattle     | 1.8      | 1.07   | 20.7 a            | 9.76°            | 76   | 32        | 0.161 | 0.161 |  |
| Dairy cattle    | 19.0     | 8.3    | 19.1 <sup>b</sup> | 8.7 <sup>d</sup> | 49.8 | 21.2      | 4.3   | 2.8   |  |
| Poultry Broiler | 0.26     | 0.26   | 0.24              | 0.24             | 0.24 | 0.24      | 0.23  | 0.23  |  |
| Poultry Layer   | 0.26     | 0.26   | 7.9 e             | 3.45 f           | 0.24 | 0.24      | 0.20  | 0.20  |  |

<sup>&</sup>lt;sup>a</sup> Highest maximum beef or dairy cattle dietary burden suitable for MRL estimates for mammalian meat

The maximum dietary burden for cattle exceeds the maximum dosing level used in the feeding studies. It was noted that the dietary burdens are driven by the residues in wheat forage from trials that matched GAP in the USA (selected with a 0 day PHI) and that it may be possible to further refine the dietary burdens. In Australia, flutriafol is approved for use on wheat but the anticipated residues in forage are much lower as GAP requires a 49 day interval between last application and grazing and on other cereals with a 70 day interval for grazing. At these intervals

<sup>&</sup>lt;sup>b</sup> Highest maximum dairy cattle dietary burden suitable for MRL estimates for mammalian milk

<sup>&</sup>lt;sup>c</sup> Highest mean beef or dairy cattle dietary burden suitable for STMR estimates for mammalian meat

<sup>&</sup>lt;sup>d</sup> Highest mean dairy cattle dietary burden suitable for STMR estimates for milk

<sup>&</sup>lt;sup>e</sup> Highest maximum poultry dietary burden suitable for MRL estimates for poultry meat and eggs

<sup>&</sup>lt;sup>f</sup> Highest mean poultry dietary burden suitable for STMR estimates for poultry meat and eggs.

residues in forage and fodder are less than 3 mg/kg and the cattle dietary burdens for Australia listed in the table are overestimates. The Meeting decided to recalculate the cattle dietary burdens for Australia discounting cereal forages.

Additional refinement is also possible for the EU livestock burdens as in the EU uses on cereals are understood as "on cereal for grain production" and therefore, only residues in grains and straw are considered for the animal burden calculation and to utilise the cattle dietary EU estimating in cattle burdens for the in residues commodities (http://www.efsa.europa.eu/sites/default/files/event/140619-m.pdf). The maximum burdens on refinement are 10.5 and 4.2 ppm for the maximum and mean burdens for beef and dairy cows in the Australian region. The refined poultry dietary burdens are 1.35 and 0.75 ppm for the maximum and mean burdens for laying hens in the EU region.

# Animal commodity maximum residue levels

The calculations used to estimate highest total residues for use in estimating maximum residue levels, STMR and HR values are shown below.

| Flutriafol feeding study          | Feed level                 | Residues           | Feed level                      | Residues | (mg/kg) i | n       |         |
|-----------------------------------|----------------------------|--------------------|---------------------------------|----------|-----------|---------|---------|
|                                   | (ppm) for milk<br>residues | (mg/kg) in<br>milk | (ppm) for<br>tissue<br>residues | Muscle   | Liver     | Kidney  | Fat     |
| MRL and HR beef or dairy cattle   |                            |                    |                                 |          |           |         |         |
| Feeding study a                   | 16                         | < 0.01             | 16                              | < 0.01   | 0.77      | 0.02    | 0.02    |
| Dietary burden and high residue   | 10.5                       | < 0.0066           | 10.5                            | 0.0066   | 0.505     | 0.013   | 0.013   |
| STMR beef or dairy cattle         |                            |                    |                                 |          |           |         |         |
| Feeding study b                   | 16                         | < 0.01             | 5                               | < 0.01   | 0.33      | < 0.01  | < 0.01  |
| Dietary burden and median residue | 4.2                        | < 0.0026           | 4.2                             | < 0.008  | 0.277     | < 0.008 | < 0.008 |

<sup>&</sup>lt;sup>a</sup> Highest residues for tissues and mean residues for milk

The Meeting estimated a maximum residue levels of 0.01 (\*) mg/kg for milk, 0.02 mg/kg for mammalian meat [in the fat], 0.02 for mammalian fats (except milk fats) and 1 mg/kg for mammalian edible offal.

The refined maximum dietary burden for broiler and layer poultry is lower than that estimated by the 2011 JMPR at 1.35 ppm and is now lower than the highest dose level in the feeding study of 5.0 ppm. The Meeting utilised the refined estimates of poultry dietary burdens and estimated maximum residue levels of 0.01 (\*) mg/kg for poultry meat, 0.02 mg/kg for poultry fats, 0.03 mg/kg for poultry edible offal and 0.01 (\*) mg/kg for eggs.

| Flutriafol feeding study        | Feed level    | Residues   | Feed level | Residues (r | ng/kg) in |        |
|---------------------------------|---------------|------------|------------|-------------|-----------|--------|
|                                 | (ppm) for egg | (mg/kg) in | (ppm) for  | Muscle      | Liver     | Fat    |
|                                 | residues      | eggs       | tissue     |             |           |        |
|                                 |               |            | residues   |             |           |        |
| MRL and HR chickens             |               |            |            |             |           |        |
| Feeding study <sup>a</sup>      | 5             | 0.03       | 5          | < 0.01      | 0.10      | 0.07   |
| Dietary burden and high residue | 1.35          | 0.0081     | 1.35       | < 0.0027    | 0.027     | 0.0189 |
| STMR chickens                   |               |            |            |             |           |        |
| Feeding study b                 | 5             | 0.03       | 5          | < 0.01      | 0.07      | 0.06   |
| Dietary burden and residue      | 0.75          | 0.0045     | 0.75       | 0.0015      | 0.0105    | 0.009  |
| estimate                        |               |            |            |             |           |        |

<sup>&</sup>lt;sup>a</sup> Highest residues for tissues and mean residues for eggs

<sup>&</sup>lt;sup>b</sup> Mean residues for tissues and mean residues for milk

<sup>&</sup>lt;sup>b</sup> Mean residues for tissues and mean residues for eggs

# RECOMMENDATIONS FURTHER WORK OR INFORMATION

On the basis of the data obtained from supervised residue trials the Meeting concluded that the residue levels listed in Annex 1 are suitable for establishing maximum residue limits and for IEDI and IESTI assessment.

Definition of the residue for compliance with MRL and for estimation of dietary intake (for animal and plant commodities): *flutriafol*.

Definition of the residue for compliance with MRL and estimation of dietary intake (for animal and plant commodities): flutriafol.

The residue is fat soluble.

Table of recommendations

| Commodity |                                                                                  |                 | ded MRL  | STMR or<br>STMR-P           | HR, HR-P,<br>highest residue |
|-----------|----------------------------------------------------------------------------------|-----------------|----------|-----------------------------|------------------------------|
| CCN       | Name                                                                             | New             | Previous | (mg/kg)                     | (mg/kg)                      |
| VB 0040   | Brassica (cole or cabbage)<br>vegetables, Head cabbages,<br>Flowerhead brassicas | 1.5             |          | 0.14                        | 0.80                         |
| VS 0624   | Celery                                                                           | 3               |          | 0.78                        | 1.41                         |
| FS 0013   | Cherries                                                                         | 0.8             |          | 0.335                       | 0.66                         |
| SO 0691   | Cotton seed                                                                      | 0.5             |          | 0.08                        |                              |
| MO 0105   | Edible offal (mammalian)                                                         | 1               |          | 0.277 liver<br>0.008 kidney | 0.505 liver<br>0.013 kidney  |
| PE 0112   | Eggs                                                                             | 0.01 (*)        |          | 0.0045                      | 0.0081                       |
| VC 0045   | Fruiting vegetables, Cucurbits                                                   | 0.3             |          | 0.09                        | 0.13                         |
| VL 0482   | Lettuce, Head                                                                    | 1.5             |          | 0.22                        | 0.67                         |
| VL 0483   | Lettuce, Leaf                                                                    | 5 <sup>a</sup>  |          | 0.36                        | 2.95                         |
| GC 0645   | Maize                                                                            | 0.01 (*)        |          | 0                           |                              |
| AS 0645   | Maize fodder (dry)                                                               | 20              |          | 4.93 dw                     | 10.45 dw                     |
| MF 0100   | Mammalian fats (except milk fats)                                                | 0.02            |          | 0.008                       | 0.013                        |
| MM 0095   | Meat (from mammals other than marine mammals)                                    | 0.02 (fat)      |          | 0.008 fat<br>0.008          | 0.013 fat<br>0.007 muscle    |
|           |                                                                                  |                 |          | muscle                      |                              |
| ML 0106   | Milks                                                                            | 0.01 (*)        |          | 0.0026                      | 0.0066                       |
| VL 0485   | Mustard greens                                                                   | 7 <sup>a</sup>  |          | 2.12                        | 3.53                         |
| FS 2001   | Peaches (including nectarine and apricots)                                       | 0.6             |          | 0.17                        | 0.42                         |
| VO 0051   | Peppers (Subgroup including<br>Peppers, Chili and Peppers, Sweet)                | 1               |          | 0.28                        | 0.41                         |
| VO 0445   | Peppers, Sweet (including pimento or pimiento)                                   | W               | 1        |                             |                              |
| FS 0014   | Plums (including prunes)                                                         | 0.4             |          | 0.075                       | 0.25                         |
| FP 0009   | Pome fruit                                                                       | 0.4             | 0.3      | 0.08                        | 0.26                         |
| PF 0111   | Poultry fats                                                                     | 0.02            |          | 0.009                       | 0.0189                       |
| PM 0110   | Poultry meat                                                                     | 0.01 (*)        |          | 0.0015                      | 0.0027                       |
| PO 0111   | Poultry, Edible offal of                                                         | 0.03            |          | 0.0105                      | 0.027                        |
| DF 0014   | Prunes                                                                           | 0.9             |          | 0.165                       | 0.484                        |
| SO 0495   | Rape seed                                                                        | 0.5             |          | 0.1                         |                              |
| GC 0651   | Sorghum                                                                          | 1.5             |          | 0.27                        |                              |
| AS 0651   | Sorghum straw and fodder, dry                                                    | 7               |          | 0.95 dw                     | 5 dw                         |
| VL 0502   | Spinach                                                                          | 10 <sup>a</sup> |          | 1.665                       | 5.5                          |
| FB 0275   | Strawberry                                                                       | 1.5             |          | 0.43                        | 0.78                         |
| VR 0596   | Sugar beet                                                                       | 0.02            |          | 0.01                        | 0.0136                       |
| AV 0596   | Sugar beet leaves or tops                                                        | 3 dw            |          | 0.424 dw                    | 1.477 dw                     |
| VO 0448   | Tomatoes                                                                         | 0.8             |          | 0.11                        | 0.63                         |

dw = dry weight basis

Table of additional STMR/median and HR/highest residue values for use in dietary intake and livestock dietary burden estimation.

| Commodity |                         | Recommended MRL (mg/kg) |          | STMR or<br>STMR-P | HR, HR-P,<br>highest residue |
|-----------|-------------------------|-------------------------|----------|-------------------|------------------------------|
| CCN       | Name                    | New                     | Previous | (mg/kg)           | (mg/kg)                      |
| OR 0691   | Cotton seed oil, edible |                         |          | 0.0064            |                              |
|           | Cotton seed hulls       |                         |          | 0.0264            |                              |
|           | Cotton seed meal        |                         |          | 0.0064            |                              |
| AB 0269   | Grape pomace, dry       |                         |          | 1.806             |                              |

<sup>&</sup>lt;sup>a</sup> On the basis of information provided to the JMPR, the Meeting concluded that the short-term intake of residues of flutriafol from consumption of leaf lettuce, mustard greens and spinach may present a public health concern.

| Commodity | 7                                 | Recommend<br>(mg/kg) | led MRL  | STMR or<br>STMR-P | HR, HR-P,<br>highest residue |
|-----------|-----------------------------------|----------------------|----------|-------------------|------------------------------|
| CCN       | Name                              | New                  | Previous | (mg/kg)           | (mg/kg)                      |
|           | Red wine                          |                      |          | 0.22155           |                              |
|           | White wine                        |                      |          | 0.3528            |                              |
| AF 0645   | Maize forage                      |                      |          | 5.31 dw           | 8.47 dw                      |
|           | Peach juice                       |                      |          | 0.2125            |                              |
|           | Peach jam                         |                      |          | 0.1445            |                              |
| AB 0226   | Apple pomace, dry                 |                      |          | 0.744             |                              |
| AF 0651   | Sorghum forage (green)            |                      |          | 1.1 dw            | 2.85 dw                      |
|           | Sorghum aspirated grain fractions |                      |          | 2.16              |                              |
|           | Strawberry jam                    |                      |          | 0.3685            |                              |
|           | Tomato purée                      |                      |          | 0.132             |                              |
|           | Tomato paste                      |                      |          | 0.286             |                              |

dw = dry weight basis

#### **DIETARY RISK ASSESSMENT**

# Long-term intake

The 2011 JMPR established an Acceptable Daily Intake (ADI) of 0–0.01 mg/kg bw for flutriafol.

The evaluation of flutriafol resulted in recommendations for MRLs and STMR values for raw and processed commodities. Where data on consumption were available for the listed food commodities, dietary intakes were calculated for the 17 GEMS/Food Consumption Cluster Diets. The results are shown in Annex 3.

The IEDIs in the seventeen Cluster Diets, based on the estimated STMRs were 3–10% of the maximum ADI (0.01 mg/kg bw). The Meeting concluded that the long-term intake of residues of flutriafol from uses that have been considered by the JMPR is unlikely to present a public health concern.

#### Short-term intake

The 2011 JMPR established an Acute Reference Dose (ARfD) of 0.05 mg/kg bw for flutriafol. The International Estimated Short-term Intake (IESTI) for flutriafol was calculated for raw and processed commodities for which maximum residue levels, HR and STMR values were estimated. The results are shown in Annex 4 to the 2015 Report.

The IESTI represented greater than 100% of the ARfD of 0.05 mg/kg bw in the case of leaf lettuce (360% children; 120% general population), mustard greens (350% children; 140% general population) and spinach (490% children; 150% general population). No alternative GAP was available. On the basis of information provided to the JMPR, the Meeting concluded that the short-term intake of residues of flutriafol from consumption of leaf lettuce, mustard greens and spinach may present a public health concern.

Estimates of intake for the other commodities considered by the 2015 JMPR were within 0–90% of the ARfD. The Meeting concluded that the short-term intake of flutriafol for these other commodities considered is unlikely to present a public health concern when flutriafol is used in ways that considered by the Meeting.

# **REFERENCES**

| Code   | Author             | Year | Title                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------|--------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1235   | Pollmann,<br>B.    | 2005 | Residue Behaviour of Sugarbeet after Application of Flutriafol 125 g/L SC - 4<br>Sites in Northern Europe 2004, GAB Biotechnologie GmbH & GAB Analytik<br>GmbH, DEU, Study No.: '20044015/E1-FPSB, Report No.: - Unpublished                                                                                                                                                                                           |
| 1236   | Pollmann,<br>B.    | 2005 | report, CHA Doc. No.: 1235 FLU Residue Behaviour of Sugarbeet after Application of Flutriafol 125 g/L SC - 4 Sites in Southern Europe 2004, GAB Biotechnologie GmbH & GAB Analytik GmbH, DEU, Study No.: '20044015/E2-FPSB, Report No.: - Unpublished                                                                                                                                                                  |
| 1262   | López<br>Benet, F. | 2004 | report, CHA Doc. No.: 1236 FLU Determination of Residues of Flutriafol in Tomatoes, LARP, Laboratorio de Análisis de Residuos de Plaguicidas, Universitat Jaume I, ESP, Study No.: '039-03, Report No.: - Unpublished report, CHA Doc. No.: 1262 FLU                                                                                                                                                                   |
| 1263   | Gimeno, C.         | 2004 | Magnitude of Residues in Tomatoes following Three Applications with IMPACT 25 SC, TrialCamp S.L.L, ESP, Study No.: TRC03-14, Report No.: - Unpublished report, CHA Doc. No.: 1263 FLU                                                                                                                                                                                                                                  |
| 1266   | López<br>Benet, F. | 2005 | Determination of Residues of Flutriafol in Tomatoes (2004), LARP,<br>Laboratorio de Análisis de Residuos de Plaguicidas, Universitat Jaume I, ESP,<br>Study No.: '062-04, Report No.: -, Unpublished report, CHA Doc. No.: 1266<br>FLU                                                                                                                                                                                 |
| 1267   | Gimeno, C.         | 2005 | Magnitude of Residues in Tomatoes following Three Applications with IMPACT 25 SC (Flutriafol), TrialCamp S.L.L, ESP, Study No.: TRC04-25, Report No.: - Unpublished report, CHA Doc. No.: 1267 FLU                                                                                                                                                                                                                     |
| 1298   | Pollmann,<br>B.    | 2006 | Residue Behaviour of Rape after Application of Flutriafol 125 g/l SC - 6 Sites in Europe 2005, GAB Biotechnologie GmbH & GAB Analytik GmbH, DEU, Study No.: '20054005/E1-FPRA, Report No.: - Unpublished report, CHA Doc. No.: 1298 FLU                                                                                                                                                                                |
| 1334   | Pollmann,<br>B.    | 2006 | Residue Behaviour of Sugarbeet after Application of Flutriafol 125 g/L SC - 4<br>Sites in Northern Europe 2005, GAB Biotechnologie GmbH & GAB Analytik<br>GmbH, DEU, Study No.: '20054005/E1-FPSB, Report No.: - Unpublished<br>report, CHA Doc. No.: 1334 FLU                                                                                                                                                         |
| 1335   | Pollmann,<br>B.    | 2006 | Residue Behaviour of Sugarbeet after Application of Flutriafol 125 g/L SC - 4<br>Sites in Southern Europe 2005, GAB Biotechnologie GmbH & GAB Analytik<br>GmbH, DEU, Study No.: '20054005/E2-FPSB, Report No.: - Unpublished<br>report, CHA Doc. No.: 1335 FLU                                                                                                                                                         |
| 1368   | Pollmann,<br>B.    | 2006 | Residue Behaviour of Rape after Application of Flutriafol 125 g/L SC - 5 Sites in Europe 2006, Eurofins-GAB GmbH, Niefern-Öschelbronn, DEU, Study No.: '20054005/E2-FPRA, Report No.: -, Unpublished report, CHA Doc. No.: 1368 FLU                                                                                                                                                                                    |
| 1381   | Pollmann,<br>B.    | 2007 | Residue Behaviour of Sugarbeet after Application of Flutriafol 125 g/L SC - 1 Site in Spain 2006, Eurofins-GAB GmbH, Niefern-Öschelbronn, DEU, Study No.: '20054005/E3-FPSB, Report No.: -,Unpublished report, CHA Doc. No.: 1381 FLU                                                                                                                                                                                  |
| 1471   | Willard,<br>T.R.   | 2007 | Magnitude of the Residue of Flutriafol and Three Triazole Metabolites in Apple Raw Agricultural and Processed Commodities American Agricultural Services, Inc. (USA) / ACDS Research, Inc. (USA) / Morse Laboratories, Inc. (USA)                                                                                                                                                                                      |
| 1542   | Pollmann,<br>B.    | 2007 | Study No.: AA060705, Unpublished report, CHA Doc. No.: 1471<br>Residue Behaviour of Rape after Application of Flutriafol 125 g/L SC - 1 Site<br>in France 2006, Eurofins-GAB GmbH, Niefern-Öschelbronn, DEU, Study No.:<br>'20054005/F1-FPRA, Report No.: -, Unpublished report, CHA Doc. No.: 1542<br>FLU                                                                                                             |
| 1629.1 | López<br>Benet, F. | 2006 | Determination of Residues of Flutriafol in Paddy Rice, Laboratorio de Análisis de Residuos de Plaguicidas, ESP, Study No.: '086-05, Report No.: -, Unpublished report, CHA Doc. No.: 1629 FLU (1629.1 FLU)                                                                                                                                                                                                             |
| 1629.2 | Gimeno, C.         | 2006 | Magnitude of Residues in Paddy Rice following two Appliation with Impact 12.5 SC (Flutriafol), TrialCamp S.L.L., ESP, Study No.: TRC05-10, Report No.: -, Unpublished report, CHA Doc. No.: 1629 FLU (1629.2 FLU)                                                                                                                                                                                                      |
| 1630   | Martos, C.<br>G    | 2007 | Magnitude of Residues in Paddy Rice following two Applications with Impact 12.5 SC (Flutriafol), TrialCamp S.L.L., ESP, Study No.: TRC06-12, Report No.: -, Unpublished report, CHA Doc. No.: 1630 FLU                                                                                                                                                                                                                 |
| 1805   | Carringer,<br>S.J. | 2010 | Magnitude and Decline of Flutriafol and Metabolite Residues in/on Sweet Cherry Raw Agricultural Commodities Following Four Applications of Flutriafol 125 g/l SC at 0.114 lb ai/A with a 7-day Retreatment Interval and a 7-day PHI—2009, The Carringers, Inc. / Morse Laboratories, LLC, USA, Study No.: TCI-09-230; ML09-1511-CVA, Report No.: TCI-09-230; ML09-1511-CVA, Unpublished report, CHA Doc. No.: 1805 FLU |

| 1806   | Carringer,         | 2010 | Magnitude and Decline of Flutriafol and Metabolite Residues in/on Tart Cherry                                                                                                                                                                                                                                                                                                                                                                                    |
|--------|--------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | S.J.               |      | Raw Agricultural Commodities Following Four Applications of Flutriafol 125 g/l SC at 0.114 lb ai/A with a 7-day Retreatment Interval and a 7-day PHI—2009, The Carringers, Inc. / Morse Laboratories, LLC, USA, Study No.: TCI-09-231; ML09-1512-CVA, Report No.: TCI-09-231; ML09-1512-CVA,                                                                                                                                                                     |
| 1807   | Carringer,<br>S.J. | 2010 | Unpublished report, CHA Doc. No.: 1806 FLU Magnitude and Decline of Flutriafol and Metabolite Residues in/on Peach Raw Agricultural Commodities Following Four Applications of Flutriafol 125 g/l SC at 0.114 lb ai/A with a 7-day Retreatment Interval and a 7-day PHI—2009, The Carringers, Inc. / Morse Laboratories, LLC, USA, Study No.: TCI-09-232;                                                                                                        |
| 1808   | Carringer,         | 2010 | L09-1509-CVA, Report No.: TCI-09-232; ML09-1509-CVA, Unpublished report, CHA Doc. No.: 1807 FLU Magnitude and Decline of Flutriafol and Metabolite Residues in/on Plum Raw                                                                                                                                                                                                                                                                                       |
| 1000   | S.J.               | 2010 | Agricultural and Processed Commodities Following Four Applications of Flutriafol 125 g/l SC with a 7-day Retreatment Interval and a 7-day PHI—2009, The Carringers, Inc. / Morse Laboratories, LLC, USA, Study No.: TCI-09-233; ML09-1510-CVA, Report No.: TCI-09-233; ML09-1510-CVA, Unpublished                                                                                                                                                                |
| 1809   | Carringer,<br>S.J. | 2010 | report, CHA Doc. No.: 1808 FLU Magnitude and decline of flutriafol and metabolite residues in/on pear raw agricultural commodities following six applications of Flutriafol 125 g/L SC at 0.107 lb ai/A with a 14-day retreatment interval and a 14-day PHI - 2009, The Carringers, Inc. (USA) / Morse Laboratories, LLC (USA), Study No.: TCI-09-                                                                                                               |
| 1810   | Carringer, S. J.   | 2010 | 234, Report No.: -, Unpublished report, CHA Doc. No.: 1809 FLU Magnitude and Decline of Flutriafol and Metabolite Residues in or on Field Corn Raw Agricultural and Processed Commodities Following Two Foliar                                                                                                                                                                                                                                                   |
|        |                    |      | Applications of Flutriafol 125 g/l SC at 0.114 lb ai/Acre/Application—2009, The Carringers, Inc. / Morse Laboratories, LLC, USA, Study No.: TCI-09-250; ML09-1543-CVA, Report No.: TCI-09-250; ML09-1543-CVA, Unpublished report, CHA Doc. No.: 1810 FLU                                                                                                                                                                                                         |
| 1812   | Jones, G.          | 2010 | Magnitude of the Residue of Flutriafol and Three Triazole Metabolites in Sugar<br>Beet Raw Agricultural and Processed Commodities, Morse Laboratories, LLC /<br>American Agricultural Services, Inc., USA, Study No.: AA080707, Report                                                                                                                                                                                                                           |
| 2158   | Carringer, S. J.   | 2011 | No.: - Unpublished report, CHA Doc. No.: 1812 FLU Magnitude and Decline of Flutriafol and Metabolite Residues in/on Strawberry Raw Agricultural Commodities Following Four Foliar Applications of Flutriafol 125 g/l SC at 0.114 lb ai/A with a 7-day Retreatment Interval and a 0-day PHI—2010, The Carringers, Inc. / Morse Laboratories, LLC, USA, Study No.: TCI-10-261, Report No.: TCI-10-261; ML10-1610-CVA, Unpublished                                  |
| 2159   | Carringer,<br>S.J. | 2010 | report, CHA Doc. No.: 2158 FLU Magnitude of flutriafol and metabolite residue in/on apple raw agricultural commodities following six applications of flutriafol 125 g/l SC at 0.107 lb ai/A with 14-day retreatment interval and a 14-day PHI2010, The Carringers, Inc. (USA) / Morse Laboratories, LLC (USA), Study No.: TCI-10-284, Report No.:                                                                                                                |
| 2161   | Rice, F.           | 2011 | <ul> <li>- Unpublished report, CHA Doc. No.: 2159</li> <li>Magnitude and Decline of Flutriafol and Metabolite Residues in/on Raw</li> <li>Agricultural Commodities of Tree Nuts Following Six Applications of</li> <li>Flutriafol 125 g/l SC with a 7-day Retreatment Interval and a 14-day PHI, ABC</li> <li>Laboratories, Inc. / Morse Laboratories, LLC, USA, Study No.: 65573, Report</li> <li>No.: -, Unpublished report, CHA Doc. No.: 2161 FLU</li> </ul> |
| 2186.1 | López<br>Benet, F. | 2006 | Determination of residues of flutriafol on peach, LARP - Laboratorio de Análisis de Residuos de Plaguicidas, ESP, Study No.: 087-05, Report No.: -, Unpublished report, CHA Doc. No.: 2186 FLU (2186.1 FLU)                                                                                                                                                                                                                                                      |
| 2186.2 | Martos, C.G        | 2005 | Final Field Report: Magnitude of Residues in Peach following three Applications with Impact (Flutriafol), TrialCamp S.L.L., ESP, Study No.: TRC05-15, Report No.: -, Unpublished report, CHA Doc. No.: 2186 FLU (2186.2 FLU)                                                                                                                                                                                                                                     |
| 2187.1 | López<br>Benet, F. | 2007 | Determination of residues of flutriafol in stone fruits, LARP - Laboratorio de Análisis de Residuos de Plaguicidas, ESP, Study No.: '092-06, Report No.: - Unpublished report, CHA Doc. No.: 2187 FLU (2187.1 FLU)                                                                                                                                                                                                                                               |
| 2187.2 | Martos, C.<br>G.   | 2006 | Final Field Report: Magnitude of Residues in Stone Fruits following Three Applications with Impact 25 SC (Flutriafol), TrialCamp S.L.L., ESP, Study No.: TRC06-5, Report No.: -, Unpublished report, CHA Doc. No.: 2187 FLU (2187.2 FLU)                                                                                                                                                                                                                         |

| 2187.2 | Martos, C.<br>G.   | 2011 | Amendment 1 to Field Phase Report TRC06-05: Magnitude of Residues in Stone Fruits following Three Applications with Impact 25 SC (Flutriafol) - Processing Phase, TrialCamp S.L.L., ESP, Study No.: TRC06-5 Amendment 1, Report No.: -, Unpublished report, CHA Doc. No.: 2187 FLU amdt-1 (2187.2 FLU amdt-1)                                                                                                                        |
|--------|--------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2438   | LaMar, J. E.       | 2012 | A Metabolism Study with [14C]Flutriafol (2 Radiolabels at 25 ppm) in the Lactating Goat, PTRL West, USA, Study No.: '2262W, Report No.: Unpublished report, CHA Doc. No.: 2438                                                                                                                                                                                                                                                       |
| 2439   | Carringer,<br>S.J. | 2012 | Magnitude and Decline of Flutriafol and Metabolite Residues in/on Curcubit Vegatables Raw Agricultural Commodities Following Four Foliar Applications of Flutriafol 125 g/l SC at 0.114 lb ai/A with a 7-day Retreatment Interval and a 0-day PHI—2011, The Carringers, Inc. / Morse Laboratories, LLC, USA, Study No.: TCI-11-295; 66969, Report No.: Unpublished report, CHA Doc. No.: 2439 FLU                                    |
| 2440   | Carringer,<br>S.J. | 2012 | Magnitude and Decline of Flutriafol and Metabolite Residues in/on Fruiting Vegatables Raw Agricultural and Processed Commodities Following Four Applications of Flutriafol 125 g/l SC with a 7-day Retreatment Interval and a 0-day PHI—2011, The Carringers, Inc. / Morse Laboratories, LLC / University of Idaho Food Technology Center, USA, Study No.: TCI-11-296; 66970, Report No.: Unpublished report, CHA Doc. No.: 2440 FLU |
| 2441   | Hiler, T.          | 2012 | Nature of [14C]Flutriafol Residues in Processed Commodities - High<br>Temparature Hydrolysis, PTRL West, USA, Study No.: 2274W, Report No.:<br>2274W-001, Unpublished report, CHA Doc. No.: 2441 FLU                                                                                                                                                                                                                                 |
| 2470   | LaMar, J. E.       | 2012 | A Metabolism Study with [14C]Flutriafol (2 Radiolabels) in the Lactating Goat, PTRL West, USA, Study No.: '2222W, Report No.: -Unpublished report, CHA Doc. No.: 2470                                                                                                                                                                                                                                                                |
| 2479   | Rice, F.           | 2012 | Magnitude of Residues of Flutriafol and Three Triazole Metabolites in Tissues and Milk of lactating Dairy Cows Following Dosing with Flutriafol, ABC Laboratories, Inc. / Genesis Midwest laboratories / Morse Laboratories, LLC, USA, Study No.: 68287, Report No.: -, Unpublished report, CHA Doc. No.: 2479 FLU                                                                                                                   |
| 2582.1 | López<br>Benet, F. | 2005 | Determination of residues in Flutriafol in strawberries, LARP - Laboratorio de Análisis de Residuos de Plaguicidas, ESP Study No.: '054-04, Report No.: - Unpublished report, CHA Doc. No.: 2582 FLU (2582.1 FLU)                                                                                                                                                                                                                    |
| 2582.2 | Fernández,<br>E.   | 2005 | Residues of Flutriafol on strawberries, decline curve after three applications of the formulation Impact 25 SC - Spain 2004, Promo-Vert, FRA, Study No.: 04 F FR AD P/A, Report No.: - Unpublished report, CHA Doc. No.: 2582 FLU (2582.2 FLU)                                                                                                                                                                                       |
| 2583   | Partington,<br>K.  | 2005 | To determine the magnitude of Flutriafol residues at intervals in the raw agricultural commodity protected strawberries and processed fractions resulting from sequential overall applications of Impact 12.5 SC, in Spain, Agrisearch UK Ltd., GBR, Study No.: AF/8466/AZ; RES-05/01, Report No.: -, Unpublished report, CHA Doc. No.: 2583 FLU                                                                                     |
| 2649   | Mason, B. J.       | 2013 | Frozen Storage Staility of Flutriafol and Three Triazole Metabolites (1,2,4-Triazole, Triazole Alanine, and Triazole Acetic Acid) in Ruminant Matrices, Morse Laboratories, LLC, USA, Study No.: 67758, Report No.: -Unpublished                                                                                                                                                                                                     |
| 2650   | Block, H.          | 2013 | report, CHA Doc. No.: 2649  Determination of Residues of Flutriafol after Four Applications of Flutriafol 125 g/L SC in the Processed Fractions of Grapewine at 4 Sites in Southern France and Germany 2012, Eurofins Agroscience Services GmbH, DEU / Eurofins Agroscience Services Chem SAS / Staphyt Processing, FRA, Study No.: S12-01932; CVE-12-12576, Report No.: - Unpublished report, CHA Doc. No.: 2650 FLU                |
| 2697   | Carringer,<br>S.J. | 2013 | Magnitude and Decline of Flutriafol and Metabolite Residues in/on Brassica (Cole) Leafy Vegetables Raw Agricultural Commodities Following Four Foliar Applications of Flutriafol 125 g/l SC at 0.114 lb ai/A/Application with a 7-day Retreatment Interval and a 7-day PHI—2011, The Carringers, Inc., / Morse Laboratories, LLC, USA, Study No.: TCI-11-323; 67613, Report No.: - Unpublished report, CHA Doc. No.: 2697 FLU        |
| 2698   | Carringer, S. J.   | 2013 | Magnitude and Decline of Flutriafol and Metabolite Residues in/on Leafy Vegetables Raw Agricultural Commodities Following Four Foliar Applications of Flutriafol 125 g/l SC at 0.114 lb ai/A/Application with a 7-day Retreatment Interval and a 7-day PHI—2011, The Carringers, Inc., / Morse Laboratories, LLC, USA, Study No.: TCI-11-322; 67612, Report No.: -, Unpublished report, CHA Doc. No.: 2698 FLU                       |

| 2699 | Carringer, | 2013 | Magnitude and Decline of Flutriafol and Metabolite Residues in/on Grain       |
|------|------------|------|-------------------------------------------------------------------------------|
|      | S.J.       |      | Sorghum Raw Agricultural Commodities following two foliar Applications of     |
|      |            |      | Flutriafol 125 g/L SC – 2012, The Carringers, Inc. / Morse Laboratories, LLC, |
|      |            |      | USA, Study No.: TCI-12-344; 68551, Report No.: TCI-12-344; 68551,             |
|      |            |      | Unpublished report, CHA Doc. No.: 2699 FLU                                    |
| 2700 | Carringer, | 2013 | Magnitude and Decline of Flutriafol and Metabolite Residues in/on Cotton Raw  |
|      | S.J.       |      | Agricultural and Processed Commodities Following One In-furrow Application    |
|      |            |      | and Two Foliar Applications of Flutriafol 125 g/L SC - 2012, The Carringers,  |
|      |            |      | Inc. / Morse Laboratories, LLC, USA, Study No.: TCI-12-343; 68550, Report     |
|      |            |      | No.: TCI-12-343; 68550, Unpublished report, CHA Doc. No.: 2700 FLU            |