Lufenuron (286)

The first draft was prepared by Ms Monique Thomas, Pest Management Regulatory Agency, Canada

EXPLANATION

Lufenuron is an insect growth inhibitor that is active against larvae of Lepidoptera and Coleoptera. When ingested, lufenuron interferes with chitin synthesis, and prevents larvae from moulting.

Lufenuron was first evaluated by the 2015 JMPR where an ADI of 0–0.02 mg/kg bw was established. An ARfD was determined to be unnecessary. A residue definition of *lufenuron* was determined for compliance with the MRL and for dietary risk assessment for plant and animal commodities.

Lufenuron was proposed by the Forty-ninth Session of the CCPR for the evaluation of additional uses. The current Meeting received new GAP information and supervised field trials on citrus fruits, pome fruits, peaches, carambola, maize, sweet corn and coffee. In addition, processing studies on oranges and apples were provided.

METHODS OF ANALYSIS

An HPLC-UV method was used to analyse all carambola samples collected from the supervised field trials. Briefly, the method involved extraction using acetonitrile and anhydrous Na_2SO_4 . PSA powder and $MgSO_4$ are added to the extract prior to centrifuging. The resulting supernatant is dried prior to reconstituting in acetonitrile and subjecting to HPCL-UV (260 nm) analysis. The LOQ was reported to be 0.05 mg/kg. Concurrent method validation at 0.05 mg/kg and 0.5 mg/kg resulted in acceptable mean recoveries of 83–104% and 92–119%, respectively.

Methods used for analysis of lufenuron residues in citrus fruits, pome fruits, peaches, maize and coffee were reviewed previously by the 2015 JMPR (REM 118.07 citrus, apple, coffee; POPIT MET.153 maize) with LOQs of 0.01 mg/kg.

STABILITY OF RESIDUES IN STORED ANALYTICAL SAMPLES

The stability of residues of lufenuron on frozen storage (-18 °C) was evaluated by the 2015 JMPR. Lufenuron is stable for at least 24 months in commodities with high water (cabbage), high acid (orange) and high oil (cotton seed) content.

Additionally, information on the stability of lufenuron in samples of dry beans (high protein) and potato (high starch) stored frozen storage (-20 °C) for 12 months was made available to the Meeting. Samples were fortified at 0.1 mg/kg and stored for 1, 3, 6, 9 and 12 months. Triplicate samples were analysed on day 0 and duplicate samples at all other time points. Samples of dry bean and potato were analysed using method POPIT MET.153 (LOQ of 0.01 mg/kg)

Table 1 Storage	stability o	f lufenuron	in dry	bean	and potato
Tubic I Storage	Stubility 0	i iui ciiui oii	III ai y	Douil	and potato

Matrix	Time (month)	Procedural recoveries (%)	%Remaining in fortified storage sample	Mean %remaining (% of day 0)
	0	98, 103	96, 95, 104 (98)	-
	1	105, 107	91, 90 (91)	92
Dryboon	3	95, 93	83, 88 (86)	87
Dry bean	6	90, 88	79, 74 (77)	78
	9	76, 89	82, 77 (79)	81
	12	102, 101	90, 88 (89)	90
	0	95, 98	88, 95, 95 (93)	-
	1	93, 93	77, 74 (75)	81
Potato	3	90, 94	68, 71 (70)	75
Polato	6	85, 84	67, 65 (66)	71
	9	89, 90	63, 66 (64)	69
	12	91, 94	67, 68 (67)	73

Lufenuron residues are stable in high protein (dry bean) and high starch (potato) matrices when stored at -20 °C for at least 12 months

The periods of demonstrated stability cover the frozen storage intervals in the supervised residue trials on crops considered by the current Meeting.

USE PATTERN

The information available to the 2018 JMPR on registered uses of lufenuron relevant to the residue trial data made available is summarised in Table 2.

Table 2 Use of lufenuron (foliar applications EC formulation)

Crop	Country	No (int)	Application rate (g ai/ha)	Spray concentration (g ai/hL)	Spray volume (L/ha)	Interval (days)	PHI (days)
Citrus fruit	Brazil	1		1.25–3.75	10 L/plant (grd) 20 L/ha→	-	28
Pome fruit	Chile	3		5	>2	NS	18
Fruit trees	Algeria	-	7.5–50			NS	28
Carambola	Malaysia	2	50		1000	NS	3
Maize	Brazil	1	15		150–400 (grd) 20→	-	35
Coffee	Brazil	2	30-40		400	30	7

grd = application using ground-based equipment

→ = application by aircraft

NS = not specified

RESULTS OF SUPERVISED RESIDUE TRIALS ON CROPS

The Meeting received information on supervised field trials on the following crops or crop groups:

Commodity	Table
Citrus (oranges, limes)	3
Pome (apples)	4
Peaches	5
Carambola	6
Maize	7
Coffee	8

Residue values from the trials conducted according to critical GAP have been used for the estimation of maximum residue levels. Those results included in the evaluation are underlined.

Citrus fruit

Table 3 Residues of lufenuron (mg/kg) in citrus (Ito 2017 S16-04237) (mean of duplicate samples) following a single foliar application of lufenuron in an EC-formulation

Location, year, variety CITRUS	N (interval, days)	Rate (g ai/hL)	Spray volume (L/ha)	Growth Stage	DALA	Sample	lufenuron (mg/kg)
Oranges							
Bairro do Porto, Limeira – SP, Brazil, 2016 Valência	1	3.76	10 L/plant	86	14 21 28 35 42	Fruit	0.09 0.09 (0.09) 0.09 0.10 (0.10) 0.08 0.08 (0.08) 0.07 0.09 (0.08) 0.08 0.09 (0.09)
					14 21 28 35 42	Juice	<0.01 <0.01 (<0.01) <0.01 <0.01 (<0.01) <0.01 <0.01 (<0.01) <0.01 <0.01 (<0.01) <0.01 <0.01 (<0.01) <0.01 <0.01 (<0.01)

Location, year,	N	Rate (g	Spray	Growth	DALA	Sample	lufenuron (mg/kg)
variety	(interval,		volume	Stage	DALA	Sample	lurendron (mg/kg)
CITRUS	days)	al/TIL)	(L/ha)	Stage			
	uays)	3.76	10 L/plant	86	14	Fruit	0.07 0.07 (0.07)
Bairro Imbiriçu,	'	3.70	TO L/plant	80	21	riuit	
Aguai – SP, Brazil							0.08 0.07 (0.08)
2016 Pêra-rio					28		0.07 0.06 (<u>0.07</u>)
					35		0.07 0.06 (0.07)
					42		0.06 0.08 (0.07)
					14	Juice	<0.01 <0.01 (<0.01)
					21		<0.01 <0.01 (<0.01)
					28		<0.01 <0.01 (<0.01)
					35		<0.01 <0.01 (<0.01)
					42		<0.01 <0.01 (<0.01)
Bairro Terra	1	3.76		86	14	Fruit	0.08 0.07 (0.08)
Queimada, Conchal					21		0.09 0.08 (0.09)
 SP, Brazil 2016 					28		0.12 0.10 (<u>0.11</u>)
Pêra-rio					35		0.07 0.08 (0.08)
					42		0.09 0.10 (0.10)
					14	Juice	<0.01 <0.01 (<0.01)
					21		<0.01 <0.01 (<0.01)
					28		<0.01 <0.01 (<0.01)
					35		<0.01 <0.01 (<0.01)
					42		<0.01 <0.01 (<0.01)
Brazil Vila	1	3.76	11 L/plant	86	14	Fruit	0.08; 0.08 (0.08)
	'	3.70	I I L/piaiit	00	21	riuit	
Formosa, Potirendaba – SP							0.10; 0.10 (0.10)
					28		0.09; 0.08 (<u>0.09</u>)
Brazil 2016					35		0.06; 0.05 (0.06)
Valência					42	<u> </u>	0.07; 0.08 (0.08)
					14	Juice	<0.01 <0.01 (<0.01)
					21		<0.01 <0.01 (<0.01)
					28		<0.01 <0.01 (<0.01)
					35		<0.01 <0.01 (<0.01)
					42		<0.01 <0.01 (<0.01)
Bairro Baguaçu,	1	3.76	10 L/plant	85	28	Fruit	0.10 0.08 (<u>0.09</u>)
Olimpia – SP,							
Brazil 2016 Pêra-							
rio							
					28	Juice	<0.01 <0.01 (<0.01)
Bairro Rio Claro,	1	3.76	10 L/plant	84	28	Fruit	0.05 0.05 (<u>0.05</u>)
Monte Alto – SP,							
Brazil 2016 Pêra-							
rio							
					28	Juice	<0.01 <0.01 (<0.01)
Bairro Barrero	1	3.76	10 L/plant	86	28	Fruit	0.15 0.14 (0.15)
Farto, Arthur		0170	10 Zi piani				0110 0111 (<u>0110</u>)
Nogueira – SP							
Brazil 2016							
Valência							
valencia					28	Juice	<0.01 <0.01 (<0.01)
Doirro Cão João	1	2.74	101/51554	0.4			
Bairro São João,	1	3.76	10 L/plant	86	28	Fruit	0.05 0.04 (<u>0.05</u>)
Ibitinga – SP,							
Brazil 2016							
Valência	1			1		1	
					28	Juice	<0.01 <0.01 (<0.01)
Lime	ı .	1	1	1	1	T_	To 100 and 400 and
Fernando Prestes a]1	3.76	10 L/plant	86	14	Fruit	0.11 0.12 (0.12)
Olaria, Fernando					21		0.07 0.06 (0.07)
Prestes – SPBrazil					28		0.10 0.07 (<u>0.09</u>)
2016 Quebra -					35		0.05 0.05 (0.05)
galho					42		0.05 0.06 (0.06)
	I	I	I	I			

Location, year, variety CITRUS	N (interval, days)	Rate (g ai/hL)	Spray volume (L/ha)	Growth Stage	DALA	Sample	lufenuron (mg/kg)
					14 21 28 35 42	Juice	<0.01 <0.01 (<0.01) <0.01 <0.01 (<0.01) <0.01 <0.01 (<0.01) <0.01 <0.01 (<0.01) <0.01 <0.01 (<0.01)
Bairro Boa Vista, Itápolis – SP, Brazil 2016 Fly dragon	1	3.76	10 L/plant	79	14 21 28 35 42 14 21	Fruit	0.15
					28 35 42		<0.01 <0.01 (<0.01) <0.01 <0.01 (<0.01) <0.01 <0.01 (<0.01) <0.01 <0.01 (<0.01)
Bairro São João de Itaguaçu, Urupês – SP, Brazil 2016 Quebra -galho	1	3.76	10 L/plant	78	28	Fruit	0.09 0.10 (<u>0.10</u>) <0.01 <0.01 (<0.01)
Bairro da Estrela, Tabapuã — SP Brazil 2016 Quebra -galho	1	3.76	10 L/plant	78	28	Fruit	0.10 0.08 (<u>0.09</u>)
					28	Juice	<0.01 <0.01 (<0.01)

Table 4 Residues of lufenuron (mg/kg) in apples (Woodard 2017 TK0163986) (mean of duplicate samples) following applications of lufenuron in an EC-formulation

Location, year, variety APPLE	N (interval, days)	Rate (g ai/hL)	Spray volume (L/ha)	Growth Stage	DALA	Sample	lufenuron (mg/kg)
Morza Chile (2016)	3 (10, 9)	5	4504	81	0	Fruit	0.25 0.22 (0.24)
Fuji		5	4560	85	7		0.25 0.24 (0.25)
		5	4489	85	14		0.26 0.25 (0.26)
					21		0.22 0.35 (<u>0.29</u>)
					28		0.18 0.26 (0.22)
Curico Chile (2016)	3 (10, 11)	5	4525	81	0	Fruit	0.37 0.39 (0.38)
Fuji		5	4436	85	7		0.32 0.37 (0.34)
		5	4506	87	14		0.38 0.46 (0.42)
					21		0.42 0.44 (<u>0.43</u>)
					28		0.35 0.27 (0.31)
Molina Chile	3 (11, 10)	5	4527	81	0	Fruit	0.24 0.29 (0.27)
(2016) Pink Lady		5	4524	82	7		0.38 0.42 (0.40)
		5	4519	85	14		0.34 0.43 (<u>0.38</u>)
					21		0.28 0.42 (0.35)
					28		0.37 0.34 (0.36)
Chimbarongo Chile	3 (10, 11)	5	4479	81	0	Fruit	0.32 0.39 (0.36)
(2016) Brookfield		5	4459	85	7		0.39 0.38 (0.39)
		5	4502	87	14		0.32 0.25 (0.29)
					21		0.37 0.22 (<u>0.30</u>)
					28		0.24 0.24 (0.24)
Rengo Chile (2016)	3 (10, 10)	5	4554	81	0	Fruit	0.28 0.30 (0.29)
Brookfield		5	4491	83	7		0.31 0.32 (0.32)
		5	4516	85	14		0.30 0.26 (<u>0.28</u>)
					21		0.28 0.26 (0.27)
					28		0.26 0.26 (0.26)

Location, year, variety APPLE	N (interval, days)	Rate (g ai/hL)	. 1 3	Growth Stage	DALA	Sample	lufenuron (mg/kg)
Malloa Chile	3 (10, 10)	5	4607	81	0	Fruit	0.30 0.35 (0.32)
(2016) Galaxy		5	4494	83	7		0.29 0.27 (0.28)
		5	4537	85	14		0.33 0.28 (<u>0.31</u>)
					21		0.31 0.29 (0.30)
					28		0.33 0.21 (0.27)
Rancagua Chile	3 (10, 10)	5	4528	85	0	Fruit	0.23 0.23 (0.23)
(2016) Granny		5	4460	85	7		0.23 0.19 (0.21)
Smith		5	4501	87	14		0.16 0.19 (0.18)
					21		0.16 0.24 (<u>0.20</u>)
					28		0.11 0.13 (0.12)
Doñihue Chile	3 (10, 11)	5	4510	81	0	Fruit	0.22 0.28 (0.25)
(2016) Pink Lady		5	4501	83	7		0.29 0.17 (0.23)
		5	4506	85	14		0.34 0.23 (<u>0.28</u>)
					21		0.30; 0.24 (0.27)
					28		0.22; 0.21 (0.22)

Peaches

Table 5 Residues of lufenuron (mg/kg) in peaches (Gasser 2003a 02-1073, Gasser 2003b 02-1074, Clarke 2004a 03-5056, Clarke 2004b 03-5057, Mason 2006 04-5012, Mason 2005 04-5022) (mean of duplicate samples) following applications of lufenuron in an EC-formulation

Location, year, variety PEACH	(interval, days)		volume (L/ha)	Stage		Sample	lufenuron (mg/kg)
Huesca Spain	2 (14)		1012	75	0	Pulp	0.16
(2002) Babygold 9		48.4	1006	75–77	0	Fruit	0.12
					14	Pulp	0.07 0.09 (0.08)
					14	Fruit	0.06 0.07 (0.07)
					21	Pulp	0.05 0.04 (0.05)
					21	Fruit	0.05 0.04 (0.05)
					28	Pulp	0.02 0.02 (0.02)
					28	Fruit	0.02 0.02 (0.02)
Lleida Spain	2 (13)	48.7	1013	74–75	0	Pulp	0.32
(2002) Tardibelle		48.2	1022	77–81	0	Fruit	0.30
					14	Pulp	0.08 0.12 (0.10)
					14	Fruit	0.08 0.12 (0.10)
					21	Pulp	0.14 0.10 (0.12)
					21		0.14 0.10 (0.12)
					28	Pulp	0.13 0.14 (0.14)
					28	Fruit	0.13 0.14 (0.14)
Monestirolo Italy	2 (25)	49.7	994	76–77	0-	Pulp	0.02
2003 Padana		49.6	992	78–79	0-	Fruit	0.02
					0	Pulp	0.06
					0	Fruit	0.06
					14	Pulp	0.05
					14	Fruit	0.04
					28	Pulp	0.03
					28	Fruit	0.03
Rignano Scalo	2 (28)	50.1	1001	74–75	0-	Pulp	0.03
Italy 2003 Star Red	, ,	50.1	1002	78–81			0.02
Gold					0	Pulp	0.06
						'	0.06
							0.06
							0.05
					28		0.03
					28		0.03

Location, year,	N	Rate (g	Spray	Growth	ΠΑΙ Δ	Sample	lufenuron (mg/kg)
variety	(interval,		volume	Stage	DALA	Sample	idicidion (mg/kg)
PEACH	days)	airriaj	(L/ha)	Stage			
Aitona Spain	2 (14)	51	1021	73–74	0	Pulp	0.08
(2004) Landros	_ (,	51	1021	74	0	Fruit	0.07
(,					7	Pulp	0.04
					7	Fruit	0.04
					13	Pulp	0.03
					13	Fruit	0.03
					20	Pulp	0.03
					21	Fruit	0.03
					26	Pulp	0.03
					26	Fruit	0.03
	2 (14)	51.6	1031		0	Pulp	0.10
		51.4	1028	74	0	Fruit	0.09
					7	Pulp	0.03
					7	Fruit	0.03
					13	Pulp	0.02
					13	Fruit	0.02
					20	Pulp	0.02
					21	Fruit	0.02
					26	Pulp	0.03
					26	Fruit	0.03
Menarguens Spain	2 (14)	51	1020		0	Pulp	0.08
(2004) Roig		49.9	998	79	0	Fruit	0.08
D'Albesa					7	Pulp	0.07
					7	Fruit	0.07
					14	Pulp	0.10
					14	Fruit	0.10
					21	Pulp	0.06
					21	Fruit	0.06
					29		0.07
	- (: :)				29	Fruit	0.07
	2 (14)	51.2	1025	78	0	Pulp	0.10
		49.8	997	79	0	Fruit	0.09
					7	Pulp	0.06
					7	Fruit	0.06
					14	Pulp	0.08
					14	Fruit	0.08
					21 21	Pulp Fruit	0.06 0.06
					29		
					29	Pulp	0.05 0.05
Chulilla Chain	2 (1 4)	FO 0	1015	75		Fruit	
Chulilla Spain	2 (14)	50.8	1015	75 77	0	Pulp	0.16
(2004) Federica		49.6	992	76	0 7		0.13
					7	Pulp	0.08 0.07
						Fruit Pulp	0.07
					14 14		0.05
					21	Pulp	0.04
			1		21	Fruit	0.04
					27	Pulp	0.05
					27	Fruit	0.05
	2 (14)	49	979	75	0	Pulp	0.16
	£ (1#)	50.2	1005		0	Fruit	0.14
		JU.Z	1003		7	Pulp	0.07
	1		1		7	Fruit	0.06
			1		14	Pulp	0.06
					14	Fruit	0.05
					21	Pulp	0.04
					21	Fruit	0.04
			1		27	Pulp	0.04
i					27		0.04
<u> </u>	l	1	1	1	<u> - '</u>	j. run	lore .

Location, year,	N	Rate (g	Spray	Growth	DALA	Sample	lufenuron (mg/kg)
variety	(interval,		volume	Stage	DALA	Gampio	idionaron (ing/kg)
PEACH	days)	,	(L/ha)				
Borgo d'Ale Italy	2 (14)	48.8	976	75	0	Pulp	0.18
(2004) Red Moon		48.2	963	81	0	Fruit	0.15
					7	Pulp	0.06
					7	Fruit	0.05
					14	Pulp	0.05
					14 21	Fruit Pulp	0.05 0.03
					21	Fruit	0.03
					28	Pulp	0.02
					28	Fruit	0.02
	2 (14)	50.3	1006	75	0	Pulp	0.21
	_ (: .,	51.6	1032	81	0	Fruit	0.18
					7	Pulp	0.09
					7	Fruit	0.08
					14	Pulp	0.03
					14	Fruit	0.03
					21	Pulp	0.03
					21	Fruit	0.03
					28	Pulp	0.02
					28	Fruit	0.02
Badia Polesine	2 (14)	49.7	994	73–75	0	Pulp	0.05
Italy (2004) Big		50.3	1007	83–85	0	Fruit	0.04
Тор					7	Pulp	0.03
					7	Fruit	0.03
					14 14	Pulp Fruit	0.02 0.02
					21	Pulp	0.02
					21	Fruit	0.02
					28	Pulp	0.02
					28	Fruit	0.01
	2 (14)	49.5	990	73–75	0	Pulp	0.03
	2 (14)	49.5	990	83–85	0	Fruit	0.03
		17.0	770	00 00	7	Pulp	0.03
					7	Fruit	0.03
					14	Pulp	0.02
					14	Fruit	0.02
					21	Pulp	0.02
					21	Fruit	0.02
					28	Pulp	0.01
					28	Fruit	0.01
Via Madrara Italy	2 (14)	49.9	999	75	0	Pulp	0.09
(2004) Amiga		49.8	995	83–84	0	Fruit	0.08
					7	Pulp	0.10
					7	Fruit	0.09
					14	Pulp	0.06
					14	Fruit	0.05
					21 21	Pulp Fruit	0.04 0.04
					28	Pulp	0.04
					28	Fruit	0.05
	2 (14)	50.1	1002	75	0	Pulp	0.09
	_ (, -,	49.7	994	83–84	0	Fruit	0.07
			'		7	Pulp	0.07
					7	Fruit	0.06
					14	Pulp	0.08
					14	Fruit	0.07
					21	Pulp	0.06
					21	Fruit	0.05
					28	Pulp	0.04
					28	Fruit	0.04

Table 6 Residues of lufenuron (mg/kg) in carambola (Kwong, 2005, MYF 012005A; Bin Shahrun, 2014, 240-C-1 to 240-C-4) (mean of duplicate samples) following a two foliar applications of lufenuron in an EC-formulation

Location	Application					DALA	lufenuron (mg/kg)
Year	Spray Volume	Rate (g	No.	RTI (days)	Max Rate/ season	(days)	
Trial ID	(L/ha)	ai/ha)			(g ai/ha)		
(variety)							
Ladang Belimbing,	1000	54	2	7	108	0	0.09
Ulu Mantin, 71700						1	0.07
Mantin,						3	<0.05
Negeri Sembilan						7	0.08
2005,						14	<0.05
MYF 012005A	1000	107	2	7	214	0	0.08
(B17)						1	0.07
						3	0.06
						7	0.09
						14	<0.05
Ladang Belimbing,	1000	54	2	7	108	0	<0.05
Ulu Mantin, 71700			-	'			10.00
Mantin,						2	0.05
Negeri Sembilan ¹ ,						3	<0.05
2014,							
240-C-1							
(B10)							
MARDI Kluang,	1000	54	2	7	108	0	<0.05
KM 15, Jalan						1	<0.05
Kluang-Kota Tinggi,						3	0.05
86009 Kluang,							0.00
Johor							
240-C-2							
(B10)							
Ladang Belimbing,	1000	54	2	7	108	0	<0.05
Batu 8, 71700							
Mantin,						1	<0.05
Negeri Sembilan ¹							
240-C-3						3	<0.05
(B10)							
MARDI Jelebu,	1000	54	2	7	108	0	<0.05
Simpang Durian,							
72400 Jelebu,						1	<0.05
Negeri Sembilan						'	VU.U3
240-C-4							
(B10)						3	0.05

Maize

Table 7 Residues of lufenuron (mg/kg) in maize (JMPR 2015; Iwai 2017 TK0313741) (mean of duplicate samples) following applications of lufenuron in an EC-formulation

Location, year, variety	N (interval,	Rate (g ai/ha)	. 1 3	Growth Stage	DALA	Sample	lufenuron (mg/kg)	
	days)	,	(L/ha)	3				
JMPR 2015	MPR 2015							
Engenheiro Coelho	2	15		33-34	35	Immature (=sweetcorn)	<0.01	
SP Brazil 2009		15		51–53	82	Grain	<0.01	
Bandeirante								
Palmeira – PR	2	15		41-43	35	Immature (=sweetcorn)	<0.01	
Brazil 2009 30 R		15		49–51	66	Grain	<0.01	
50								
Goiânia – GO	2	15		39	35	Immature (=sweetcorn)	<0.01	
Brazil 2009		15		51	78	Grain	<0.01	
Impacto								

Location, year,	N	Rate (g	Spray	Growth	DALA	Sample	lufenuron (mg/kg)		
variety	(interval,	ai/ha)	volume	Stage					
MAIZE	days)		(L/ha)						
Uberlândia – MG	2	15		60	35	Immature (=sweetcorn)	<0.01		
Brazil 2009 Master		15		69	56	Grain	<0.01		
Current Meeting									
Primavera do	1	15	400	75	35	Grain	<0.01		
Leste – MT Brazil									
2017 30F53									
Araguari – MG	1	15	400	85	35	Grain	<0.01		
Brazil 2017									
Supremo vip									
Bandeirantes – PR	1	15	400	75	35	Grain	<0.01		
Brazil 2017 XB									
7116									
Cabeceiras – GO	1	15	400	89	35	Grain	<0.01		
Brazil 2017									
Supremo viptera									

Table 8 Residues of lufenuron (mg/kg) in green coffee beans (JMPR 2015; Draetta 2017 TK0313740) (mean of duplicate samples) following applications of lufenuron in an EC-formulation

variety	N (interval, days)	· ′	Spray volume (L/ha)	Growth Stage	DALA	Sample	lufenuron (mg/kg)
JMPR 2015	uuysj		(L/Tiu)				
	2 (30)	40	l	73–77	3	Beans	<0.01
Brazil 2006 Mundo		40		85–87	7	Beans	<0.01
Nova		40		03-07	10	Beans	<0.01
Santa Amélia – PR	2 (30)	40		73–77	3	Beans	<0.01
Brazil 2006 Obatá	2 (30)	40		85–87	7	Beans	<0.01
Bruzii 2000 Obutu		10		00 07	10	Beans	<0.01
Monte Carmelo -	2 (30)	40		85	3	Beans	<0.01
MG Brazil 2006	2 (00)	40		89	7	Beans	<0.01
Mundo Nova					10	Beans	<0.01
Indianópolis - MG	2 (30)	40		85	3	Beans	<0.01
Brazil 2006 Mundo	(40		89	7	Beans	<0.01
Nova					10	Beans	<0.01
Current Meeting							
Sooretama - ES	2 (30)	42.8	429	81	3	Beans	0.02
Brazil 2017		41.7	418	85	7	Beans	0.03
Conilon					10	Beans	0.02
São Mateus - ES	2 (30)	41.1	412	81	3	Beans	0.01
Brazil 2017		41.1	412	89	7	Beans	0.01
Conilon					10	Beans	0.01
Poços de Calda -	2 (30)	40	401	83	3	Beans	0.03
MG Brazil 2017		40	401	88	7	Beans	0.03
Catuai					10	Beans	<0.01
Campinas - SP	2 (30)	38.9	390	77	3	Beans	<0.01
Brazil 2017 Catuai		40.9	410	88	7	Beans	0.04
amarelo					10	Beans	<0.01

FATE OF RESIDUES IN PROCESSING

Oranges

The effect of processing on residues of oranges was made available to the Meeting (Ito 2017 S16-04237).

Fruit samples from two trials conducted at an exaggerated rate (bulk samples) were processed using procedures designed to simulate commercial practices. Samples of fruit were washed with water using an extraction machine (Citrus Extractor – JBT, Model 391) separated into peel, dry pulp, juice and emulsion. Each sample was homogenised. The emulsion samples were

filtered through a sieve and juice sample were filtered using the Finisher JBT, model UCF 35. For analysis, the emulsion was centrifuged to separate the oil.

Table 9. Residues of lufenuron (mg/kg) in orange commodities after processing oranges (Ito 2017 S16-04237) (mean of duplicate samples)

Location, year, variety ORANGES	N	Rate (g ai/hL)	DALA	Sample	Lufenuron (mg/kg)	Processing factor (PF)
Arthur Nogueria — SP Brazil 2016 Valencia	1	18.8	28	RAC	0.53	-
				Peel	0.76	1.4
				Juice	<0.01	<0.02
				Pulp dry	0.06	0.11
				Oil	9.8	19
Ibitinga – SP Brazil 2016 Valencia	1	18.8	28	RAC	0.28	
				Peel	0.57	2
				Juice	<0.01	<0.04
				Pulp dry	0.05	0.18
				Oil	8.2	29

Apple

One field trial was conducted on pome fruits in the EU (France) in 2003, where two applications of 5 g ai/hL were applied (Clarke 2003 03-5072). Approximately 77 kg of fruit were harvested for further processing.

Fruit samples were washed with water and sampled for analysis. Unwashed fruit were crushed and pressed. Wet pomace samples were taken and the pomace dried in an oven at 60 °C. To the juice, pectolytic enzymes were added and after storage for 12 hours the juice was filtered and raw juice samples taken. Pasteurisation was conducted at 85 °C and pasteurised juice samples taken. Unwashed fruit were blanched, crushed and sieved into puree. Wet pomace samples were taken. Sugar was added to the purée and heated. Samples of purée were taken. Residues determined in whole apple fruit (RAC) and its associated processed fractions (wet pomace, dry pomace, juice and purée) are shown in Table 10.

Table 10 Residues of lufenuron (mg/kg) in apple commodities after processing apples (Clarke 2003 03-5072) (mean of duplicate samples)

Location, year, variety APPLE	N (interval, days)	(3 /	DALA	Sample	, , ,	Processing factor (PF)
Beaucaire France 2003 Golden	2 (13)	5 5	28	RAC	0.05	
				Pomace wet	0.24	4.8
				Pomace dry	0.88	17.6
				Juice	<0.01	<0.2
				Juice pasteurised	<0.01	<0.2
				Purée	<0.01	<0.2

In summary, residues of lufenuron concentrated in orange peel, orange oil and apple pomace. (Table 11).

Table 11 Summary of lufenuron processing factors

Commodity	Processing fraction	Processing factor (PF)	Best estimate PF
Orange	Peel	1.4, 2.0	1.7
	Juice	<0.02, <0.04	<0.02
	Dried pulp	0.11, 0.18	0.145
	Oil	19, 29	24
Apple	Pomace, wet	4.8	4.8
	Pomace, dry	17.6	17.6
	Juice	<0.2	<0.2
	Pureé	<0.2	<0.2

APPRAISAL

Lufenuron is an insect growth inhibitor that is active against larvae of Lepidoptera and Coleoptera. When ingested, lufenuron interferes with chitin synthesis, and prevents larvae from moulting.

Lufenuron was first evaluated by the 2015 JMPR where an ADI of 0-0.02 mg/kg bw was established. An ARfD was determined to be unnecessary.

Definition of the residue for compliance with the MRL and for dietary risk assessment for plant and animal commodities: *lufenuron*

The residue is fat-soluble.

Lufenuron was scheduled by the Forty-ninth Session of the CCPR for the evaluation of additional use patterns by the 2018 JMPR. The current Meeting received new GAP information and supervised field trials on citrus fruit, pome fruit, peaches, carambola, maize, sweet corn, and coffee along with processing studies on oranges and apples.

Methods of analysis

An HPLC-UV method, used to analyse all carambola samples collected from the supervised field trials, with a validated LOQ of 0.05 mg/kg, was determined to be acceptable.

Methods used for analysis of residues in citrus fruit, pome fruit, peaches, maize, sweet corn and coffee were previously reviewed by the 2015 JMPR (REM 118.07 citrus, apple, coffee; POPIT MET.153 maize) with LOQs of 0.01 mg/kg.

Storage Stability of residues in stored analytical samples

The stability of lufenuron residues during frozen storage (-18 °C) was evaluated by the 2015 JMPR. Lufenuron is stable for at least 24 months in commodities with high water (cabbage), high acid (orange) and high oil (cotton seed) content.

The current Meeting received frozen storage stability data for dry beans and potatoes. Lufenuron was determined to be stable for at least 12 months in commodities with high protein (dry beans) and high starch (potato) content.

The periods of demonstrated stability cover the frozen storage intervals used in the supervised field trials considered by the current Meeting.

Results of supervised residue trials on crops

Citrus fruits

The critical GAP in Brazil for citrus fruit is one application at 3.75 g ai/hL with a 28-day PHI.

Residues in trials from Brazil on oranges conducted according to the critical GAP were (n = 8): 0.05 (2), 0.07, 0.09 (3), 0.11 and 0.15 mg/kg.

The Meeting estimated a maximum residue level and STMR for the subgroup of oranges sweet, sour of 0.3 mg/kg and 0.09 mg/kg, respectively

In trials from Brazil on limes matching the critical GAP, residues were (n = 4): 0.09 (2), 0.10 and 0.17 mg/kg.

The Meeting estimated a maximum residue level and STMR for limes of 0.4 mg/kg and 0.10 mg/kg, respectively.

Pome fruit

The critical GAP in Chile for pome fruit is three applications at 5 g ai/hL with an 18-day PHI.

Residue trials were reported from Chile where three applications were made at $5\,g$ ai/hL with sampling at 0, 7, 14, 21 and $28\,d$ ays after application.

The Meeting noted there was little decline in residues and agreed that residues in samples collected at 14 or 21 days reflect critical GAP. Residues in 8 trials approximating critical GAP in Chile were: 0.20, 0.28 (2), 0.29, 0.30, 0.31, 0.38 and 0.43 mg/kg.

The Meeting estimated a maximum residue level and STMR for apples of 1 mg/kg and 0.29 mg/kg, respectively. Noting the use in Chile is for pome fruit, the Meeting agreed to extrapolate the recommendation to the pome fruit crop group.

Peaches

In Algeria, the critical GAP for lufenuron on tree fruit is for foliar application at 50 g ai/ha and a 28-day PHI with a maximum number of applications not specified.

Trials were available from Italy and Spain where trees received two foliar applications at 50 g ai/ha. As lufenuron is a persistent residue (t ½ 28 days), the Meeting was unable to determine whether additional sprays or shorter intervals between sprays would make a significant contribution to the terminal residues, therefore, a maximum residue level was not estimated.

Carambola

In Malaysia, the critical GAP for lufenuron on carambola is a maximum of 2 foliar spray applications at 50 g ai/ha and a PHI of 3 days.

In the supervised field trials, fruits were wrapped with papers during the growing stage to protect against fruit flies. As the Malaysian GAP does not specify the requirement to wrap/cover the fruit, the Meeting concluded that a maximum residue level could not be estimated in the absence of trials conducted in accordance with the critical GAP (unwrapped fruit).

Maize

The critical GAP for lufenuron on maize is in Brazil with a single foliar application at 15 g ai/ha and a 35-day PHI.

In trials from Brazil matching the critical GAP, residues were (n = 4) : < 0.01 (4) mg/kg. In addition, four trials were reported by the 2015 JMPR on maize, where two foliar applications were made with harvest at 35 days (immature corn=sweet corn) and at approximately 50 days after the last application (maize), residues were < 0.01 mg/kg for both immature and mature maize.

The Meeting concluded there is no expectation of residues above the LOQ of 0.01 mg/kg and estimated a maximum residue level and STMR of 0.01 mg/kg and 0.01 mg/kg, respectively, for maize.

Coffee beans

The critical GAP in Brazil for lufenuron on coffee is two foliar applications at 40 g ai/ha at an interval of 30 days with a 7-day PHI.

In trials from Brazil matching the critical GAP, residues in green coffee beans were (n = 8) < 0.01 (4), 0.01 (1), 0.03 (2) and 0.04 mg/kg.

The Meeting estimated a maximum residue level and STMR of 0.07 mg/kg and 0.01 mg/kg, respectively, for coffee beans.

Fate of residues during processing

Residues in processed commodities

Processing studies on oranges were reviewed by the Meeting. A summary of relevant lufenuron processing factors is provided below.

	Processed Fraction	Processing Factor (PF) ^a	Best estimate PF	RAC STMR or median	\ J' J'	Highest residue-P (mg/kg)
Orange	Peel	1.4, 2.0	1.7	0.09	0.153	0.51
MRL 0.3	Juice	< 0.02, < 0.04	< 0.02		0.01*	
	Dried pulp	0.11, 0.18	0.145		0.013	
	Oil	19, 29	24		2.16	7.2
Apple	Pomace, wet	4.8	4.8	0.29	1.42	
MRL 1	Pomace, dry	17.6	17.6		5.19	17.6
	Juice	< 0.2	< 0.2		0.06	
	Purée	< 0.2	< 0.2		0.06	

 $^{^{\}mathrm{a}}$ PF = residues lufenuron in processed commodity divided by lufenuron in RAC

 ${\it STMR-P}\ for\ juice\ is\ from\ actual\ supervised\ trials\ where\ residues\ were\ measured.$

Residues of lufenuron concentrated in orange peel, orange oil and apple dry pomace.

The Meeting recommended a maximum residue level of 8 mg/kg for orange oil.

Residues in animal commodities

Estimation of livestock dietary burdens

Dietary burdens were calculated for beef cattle, dairy cattle, broilers and laying poultry based on feed items evaluated by the JMPR. The dietary burdens, estimated using the OECD diets listed in Appendix IX of the 2016 edition of the FAO manual, are presented in Annex 6 and summarised below.

Potential cattle feed items include: citrus pulp, apple pomace, potato culls, maize grain, soya beans and tomato pomace.

Summary of livestock dietary burden (ppm)

US-Canada	EU	Australia	Japan

	Max	mean	Max	Mean	max	Mean	Max	Mean
Beef cattle	0.02	0.02	1.17	1.17	1.17 ^a	1.17 ^c	0.008	0.008
Dairy cattle	0.59	0.59	0.6 b	0.6 ^d	0.59	0.59	0.009	0.009
Broilers	0.01	0.01	0.013	0.013	-	-	0.008	0.008
Layers	0.009	0.009	0.013 ^e	0.013 ^f	-	-	0.009	0.009

^a Highest maximum beef or dairy cattle dietary burden suitable for maximum residue level estimates for mammalian tissues

Animal commodity maximum residue levels

As noted by the 2015 JMPR, two feeding studies on lactating cows and steers were available. Since no accumulation of residues in steers compared to dairy cows was observed, the Meeting decided to base its recommendations for mammalian products on the lactating cow feeding study, generally showing higher residues at identical intake levels.

The calculations used in estimating maximum residue levels and STMR values are shown below.

	Feed level	Residues	Feed level	Residues (r	Residues (mg/kg) in		
	(ppm) for milk	(mg/kg) in milk	(ppm) for tissue	Muscle	Liver	Kidney	Fat
	residues		residues				
maximum residue level beef or dairy	cattle						
Feeding study ^a	0.82	0.16	4.3	0.26	0.39	0.23	5.3
		(cream 3.1)					
			0.82	0.04	0.07	0.04	1.2
Dietary burden and high residue	0.6	0.117	1.17	0.06	0.10	0.06	1.61
		(cream 2.29)					
STMR beef or dairy cattle							
Feeding study b	0.82	0.16	4.3	0.125	0.37	0.22	4.1
		(cream 3.1)					
			0.82	0.03	0.06	0.03	0.73
Dietary burden and median residue	0.6	0.117	1.17	0.04	0.09	0.05	1.07
estimate		(cream 2.29)					

^a highest residues for tissues and mean residues for milk

The Meeting replaces its previous recommendations of 0.7 mg/kg for mammalian fats and meat (from mammals other than marine mammals), 0.04 mg/kg for edible offal, 0.1 mg/kg for milks and 2 mg/kg for milk fats with the following estimated maximum residue levels: milk, 0.15 mg/kg; milk fat, 5 mg/kg (based on cream assuming it contains 50% fat); meat (mammalian except marine mammals), 2 mg/kg; mammalian fat (except milk fat), 2 mg/kg and edible offal 0.15 mg/kg (based on liver). The Meeting estimated the following STMRs: milk 0.117 mg/kg; milk fat 4.58 mg/kg; meat (mammalian except marine mammals) 0.04 mg/kg; mammalian fat (except milk fat) 1.07 mg/kg; liver 0.09 mg/kg and kidney 0.05 mg/kg.

RECOMMENDATIONS

On the basis of the data from supervised field trials, the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI assessment.

Definition of the residue for compliance with the MRL and for dietary risk assessment for plant and animal commodities: *lufenuron*

The residue is fat soluble.

1				
ı	CCN	Commodity Name	Maximum residue level, mg/kg	STMR, STMR-P or median
١				(mg/kg)

^b Highest maximum dairy cattle dietary burden suitable for maximum residue level estimates for mammalian milk

^c Highest mean beef or dairy cattle dietary burden suitable for STMR estimates for mammalian tissues.

^d Highest mean dairy cattle dietary burden suitable for STMR estimates for milk.

e Highest maximum poultry dietary burden suitable for maximum residue level estimates for poultry meat and eggs

^f Highest mean poultry dietary burden suitable for STMR estimates for poultry tissues and eggs

^b mean residues for tissues and mean residues for milk

		New	Previous	
SB 0716	Coffee beans	0.07	-	0.01
MO 0105	Edible offal (Mammalian)	0.15	0.04	0.09 liver 0.05 kidney
FC 0205	Lime	0.4	-	0.10
MF 0100	Mammalian fats	2	0.7	1.07
MM 0095	Meat (mammalian except marine mammals)	2 (fat)	0.7	0.04 muscle 1.07 fat
GC 0645	Maize	0.01	-	0.01
ML 0106	Milks	0.15	0.1	0.117
FM 0103	Milk fats	5	2	4.58
FC 0004	Oranges sweet, sour, Subgroup of (includes all commodities in this subgroup)	0.3	-	0.09
OR 0004	Orange oil, edible	8	-	2.16
FP 0009	Pome fruits, Group of (includes all commodities in this group)	1	-	0.29
JF 0004	Orange juice			0.01
	Apple juice			0.06
	Apple puree			0.06
	Citrus pulp, dry			0.01305
	Apple pomace, dry			5.192

DIETARY RISK ASSESSMENT

Long-term dietary exposure

The ADI for lufenuron is 0–0.02 mg/kg bw. The International Estimated Daily Intakes (IEDIs) for lufenuron were estimated for the 17 GEMS/Food Consumption Cluster Diets using the STMR or STMR-P values estimated by the JMPR. The results are shown in Annex 3 of the 2018 JMPR Report. The IEDIs ranged from 2–10% of the maximum ADI.

The Meeting concluded that long-term dietary exposure to residues of lufenuron from uses considered by the present JMPR is unlikely to present a public health concern.

Acute dietary exposure

The 2015 JMPR decided that an ARfD for lufenuron was unnecessary. The Meeting therefore concluded that the acute dietary exposure to residues of lufenuron resulting from uses that have been considered by the current Meeting is unlikely to present a publich health concern.

REFERENCES

Report No.	Author/s	Issue	Report Title
		Year	
S16-04237	Ito, C.E.	2017	A7814 (Lufenuron) Magnitude of the Residues in Citrus (whole fruits and processed commodities) in Field Trials in Brazil.
			Report No. S16-04237, Syngenta File No. A7814B_10029
TK0163986	Woodard, D	2017	A7814 (Lufenuron) Magnitude of the Residues of Lufenuron in Apple in Chile, 2016. Report
			No. TK0163986, Syngenta File No. A7814B_10234
02-1073	A Gasser	2003	Residue Study with Lufenuron (CGA 184699) in or on Peaches in Spain Syngenta File No.
			CGA184699/0777, Syngenta Report No. 02-1073
02-1074	A Gasser	2003	Residue Study with Lufenuron (CGA 184699) in or on Peaches in Spain Syngenta File No.
			CGA184699/0778, Syngenta Report No. 02-1074
03-5056	D Clarke	2004	Residue Study with Lufenuron (CGA184699) in or on Peaches in Italy Syngenta File No.
			CGA184699/0903, Syngenta Report No. 03-5056
03-5057	D Clarke	2004	Residue Study with Lufenuron (CGA 184699) in or on Peaches in Italy Syngenta File No.
			CGA184699/0904, Syngenta Report No. 03-5057

Report No.	Author/s	Issue	Report Title
		Year	
04-5012	R Mason	2006	Lufenuron (CGA184699): Residue Study in or on Peaches in Spain Syngenta File No.
			CGA184699/1044, Syngenta Report No. 04-5012
04-5022	R Mason	2005	Lufenuron (CGA184699): Residue Study in or on Peaches in Italy Syngenta File No.
			CGA184699/1003, Syngenta Report No. 04-5022
TK0313741	Iwai, M.P.S.	2017	A7814 - Magnitude of the Residues of Lufenuron in Field Corn Grains - Brazil, 2016-17; Report
			No. TK0313741, Syngenta File No. A7814R_10029
TK0313740	Draetta, M.d.S	2017	A7814 (Lufenuron) Magnitude of the Residues in Coffee Grains - Brazil, 2016-17. Report No.
			TK0313740, Syngenta File No. A94414A_10081
03-5072	Clarke, D. M.	2003	Residue study with lufenuron (CGA 184699) in or on apples and its processed commodities in
			Southern France.
			Report No. 03-5072, Syngenta File No. CGA184699/1001