CYCLANILIPROLE (296)

First draft prepared by Ms M Thomas, Pest Management Regulatory Agency, Canada

EXPLANATION

Cyclaniliprole is an insecticide belonging to the chemical class of diamide insecticides which act at the ryanodine receptor, which is critical for muscle contraction.

Cyclaniliprole was first evaluated by the 2017 JMPR where an ADI of 0-0.04 mg/kg bw was established. An ARfD was determined to be unnecessary.

A residue definition of *cyclaniliprole* was determined for compliance with the MRL for plant and animal commodities and for dietary risk assessment for animal commodities.

For dietary risk assessment for plant commodities, the residue definition was determined to be cyclaniliprole + 3-bromo-2-((2-bromo-4H- pyrazolo[1,5-d]pyrido[3,2-b]-[1,4]oxazin-4-ylidene)amino)-5-chloro-N(1-cyclopropylethyl)benzamide (NK-1375), expressed as cyclaniliprole equivalents.

The residue is fat-soluble.

At the Fiftieth Session of the CCPR, a number of delegations commented that JMPR had used a model to estimate maximum residue levels for most plant commodities, and that the model needed validation to ensure that the derived MRL proposals were appropriate. Thus the Committee agreed to keep all the proposed draft MRLs at Step 4 pending the evaluation by the 2019 JMPR of new data and revised GAP information.

Cyclaniliprole was scheduled by the Fiftieth Session of the CCPR for the reassessment of the trials reviewed in 2017 and the evaluation of additional new uses. The current Meeting received new GAP information for several of the uses evaluated by the 2017 JMPR as well as new GAP information, supervised field trials on citrus fruits, berries and tuberous and corm vegetables, and orange and potato processing studies.

USE PATTERN

The registered uses of cyclaniliprole relevant to the supervised residue studies made available to the 2017 Meeting and the current Meeting are summarized in Table 1.

Table 1 Registered uses of cyclaniliprole (foliar applications; SL formulations)

Crop	Country		Application					
		Spray volume (L/ha) [¥]	Rate (g ai/ha)	Number / Interval (days)	(days)			
Citrus fruits ^a	USA	935-1870	60-80 (seasonal max 240)	3 / 7	1			
Pome fruits ^b	Canada	935-1870	60-80 (seasonal max 240)	3 / 14	7			
Stone fruits ^c	Canada	935-1870	60-80 (seasonal max 240)	3 / 7	7			
Caneberries d	Canada	935-1400	60-80 (seasonal max 240)	3 / 5	1			
Bushberries ^e	Canada	935-1400	60-80 (seasonal max 240)	3 / 5	1			
Grapes	Canada	935-1400	60-80 (seasonal max 240)	3 / 7	7			
Small fruits vine climbing, except grapes ^f	Canada	935-1400	60-80 (seasonal max 240)	3 / 5	1			
Low growing berries g	Canada	935-1400	60-80 (seasonal max 240)	3 / 5	1			
Brassica head and stem vegetables h	Canada		40-60 (seasonal max 180)	3 / 7	1			
Cucurbit vegetables i ^I	Canada		40-60 (seasonal max 180)	3 / 7	1			
Fruiting vegetables j	Canada		40-60 (seasonal max 180)	3 / 7	1			
Leafy vegetables k	Canada		40-60 (seasonal max 180)	3 / 7	1			

Crop	Country		Application					
		Spray volume (L/ha) [¥]	Rate (g ai/ha)	Number / Interval (days)	(days)			
Tuberous and corm vegetables ¹	Canada		40-60 (seasonal max 180)	3 / 5	7			
Tree nuts m	Canada	935-1870	(seasonal max 240)	3 / 14	30			
Tea ⁿ	Japan	2000-4000	2.25-4.5 g ai/hL	1 / -	3			

- ¥ The product is to be applied in sufficient water to obtain adequate coverage of the foliage. Volume to be used will vary with crop and amount of plant growth. For ground application, spray volume will usually range from 200 to 1000 L/ha per hectare unless otherwise specified. For aerial applications, a minimum of 50 L/ha is required.
- ^a Includes: Australian desert lime; Australian finger-lime; Australian round lime; Brown River finger lime; calamondin; citron; citrus hybrids; grapefruit; Japanese summer grapefruit; kumquat; lemon; lime; Mediterranean mandarin; mount white lime; New Guinea wild lime; orange, sour; orange, sweet; pummelo; Russell River lime; satsuma mandarin; sweet lime; tachibana orange; Tahiti lime; tangelo; tangerine (mandarin); tangor; trifoliate orange; uniq fruit; cultivars, varieties, and/or hybrids of these
- ^b Includes: apple; azarole; crabapple; mayhaw; medlar; pear; pear, Asian; quince; quince, Chinese; quince, Japanese; tejocote; cultivars, varieties, and/or hybrids of these.
- ^c Includes: apricot; apricot, Japanese; cherry, black; cherry, Nanking; cherry, sweet; cherry, tart; jujube, Chinese; nectarine; peach; plum, Plum, American; plum, beach; plum, Canada; plum, cherry; plum, Chickasaw; plum, Damson; plum, Japanese; plum, Klamath; plum, prune; plumcot; sloe; cultivars, varieties, and/or hybrids of these.
- d Includes: Blackberry (including Andean blackberry, arctic blackberry, bingleberry, black satin berry, boysenberry, brombeere, California blackberry, Chesterberry, Cherokee blackberry, Cheyenne blackberry, common blackberry, coryberry, darrowberry, dewberry, Dirksen thornless berry, evergreen blackberry, Himalayaberry, hullberry, lavacaberry, loganberry, lowberry, Lucretiaberry, mammoth blackberry, marionberry, mora, mures deronce, nectarberry, Northern dewberry, olallieberry, Oregon evergreen berry, phenomenalberry, rangeberry, ravenberry, rossberry, Shawnee blackberry, Southern dewberry, tayberry, youngberry, zarzamora, and cultivars, varieties and/or hybrids of these); raspberry, black and red; wild raspberry; cultivars, varieties, and/or hybrids of these.
- ^e Includes: Aronia berry; blueberry, highbush; blueberry, lowbush; buffalo currant; Chilean guava; cranberry, highbush; currant, black; currant, red; elderberry; European barberry; gooseberry; honeysuckle, edible; huckleberry; jostaberry; Juneberry (Saskatoon berry); lingonberry; native currant; salal; sea buckthorn; cultivars, varieties, and/or hybrids of these.
- f Includes: Amur river grape; gooseberry; kiwifruit, fuzzy; kiwifruit, hardy; maypop; schisandra berry; cultivars, varieties, and/or hybrids of these.
- g Includes: Bearberry; bilberry; blueberry, lowbush; cloudberry; cranberry; lingonberry; muntries; partridgeberry; strawberry; cultivars, varieties, and/or hybrids of these.
- ^h Includes: broccoli; Brussels sprouts; cabbage; cabbage, Chinese (napa); cauliflower; cultivars, varieties and/or hybrids of these.
- ¹ Includes: Chinese waxgourd (Chinese preserving melon); citron melon; cucumber; gherkin; gourd, edible (e.g., hyotan, cucuzza, hechima, Chinese okra); *Momordica spp* (e.g., balsam apple, balsam pear, bitter melon, Chinese cucumber); muskmelon, hybrids and/or cultivars of *Cucumis melo* (e.g., true cantaloupe, cantaloupe, casaba, crenshaw melon, golden pershaw melon, honeydew melon, honey balls, mango melon, Persian melon, pineapple melon, Santa Claus melon, and snake melon); pumpkin; squash, summer (e.g., crookneck squash, scallop squash, straightneck squash, vegetable marrow, zucchini); squash, winter (e.g., butternut squash, calabaza, hubbard squash, acorn squash, spaghetti squash); watermelon (includes hybrids and/or varieties of *Citrullus lanatus*)
- j Includes: African eggplant; bell pepper; currant tomato; eggplant; garden huckleberry; goji berry; groundcherry; martynia; okra; pea eggplant; pepino; nonbell pepper; scarlet eggplant; sunberry; tomatillo; tomato; cultivars, varieties, and/or hybrids of these.
- k Includes: amaranth, Chinese; amaranth, leafy; arugula; aster, Indian; blackjack; broccoli raab; broccoli, Chinese; cabbage, Abyssinian; cabbage, seakale; cat's whiskers; cham-chwi; cham-na-mul; chervil, fresh leaves; Chinese cabbage, bok choy; chipilin; chrysanthemum, garland; cilantro, fresh leaves; collards; corn salad; cosmos; cress, garden; cress, upland; dandelion; dang-gwi; dillweed, fresh leaves; dock; dol-nam-mul; ebolo; endive; escarole; fameflower; feather cockscomb; Good King Henry; Hanover salad; huauzontle; jute leaves; kale; lettuce, bitter; lettuce, head; lettuce, leaf (romaine); maca; mizuna; mustard greens; orach; parsley, fresh leaves; plantain, buckhorn; primrose, English; purslane, garden; purslane, winter; radicchio (red chicory); radish, leaves; rape greens; rocket, wild; shepherd's purse; spinach; spinach, Malabar; spinach, New Zealand; spinach, tree (giant lambsquarter); Swiss chard; tanier spinach; turnip greens; violet, Chinese; watercress; cultivars, varieties and/or hybrids of these.
- ¹Includes: arrowroot; artichoke, Chinese; artichoke, Jerusalem; canna, edible; chufa; dasheen (taro); potato; sweet potato; vam. true
- ^m Includes: almond; beechnut; bur oak; butternut; chestnut; chinquapin; ginkgo; hazelnut (filbert); heartnut; hickory nut; Japanese horse-chestnut; monkey puzzle nut; pecan; pine nut; walnut, black; walnut, English; yellowhorn; cultivars, varieties and/or hybrids of these.

RESULTS OF SUPERVISED RESIDUE TRIALS ON CROPS

Table 2 Crop field trials previously considered by the 2017 JMPR as well as those considered by the current Meeting

Group/Sub-group	Commodity	Table No.	
Citrus fruits ^a	Lemons	3	
	Oranges	4	
	Grapefruits	5	
Pome fruits	Apples	6	
	Pears	7	
Stone fruits	Cherries	8	
	Plums	9	
	Peaches	10	
Berries and small fruits ^a			
Cane berries	Raspberries	11	
Bush berries	Blueberries	12	
	Grapes	13	
Low growing berries	Strawberries	14	
	Kiwifruit	15	
Brassica vegetables (except Brassica leafy vegetables)	Broccoli	16	
	Cabbage	17	
Fruiting vegetables, Cucurbits	Cucumbers	18	
	Summer squash	19	
	Melons	20	
Fruiting vegetables, other than Cucurbits	Tomatoes (field)	21	
	Peppers (field)	22	
	Non-bell peppers (field)	23	
Leafy vegetables (including Brassica leafy vegetables)	Lettuce (head)	24	
	Lettuce (leaf)	25	
	Lettuce (cos)	26	
	Spinach	27	
	Mustard greens	28	
Tuberous and corm vegetables ^a	Potato	29	
Tree nuts	Almonds	30	
	Pecans	31	
Miscellaneous fodder and forage	Almond hulls	32	
Tea	Tea	33	

^a Crops for which trials were provided to the current (2019) Meeting. All other trials reviewed by the 2017 Meeting.

Residue data are recorded unadjusted for percentage recoveries or for residue values in control samples. Non quantifiable residues are shown as below the reported LOQ (e.g. < 0.01 mg/kg). Where multiple analyses were conducted on a single sample, the average value is reported. Where multiple samples were taken from a single plot, the individual and average values are reported. Where results from separate plots with distinguishing characteristics such as different formulations, crop varieties or treatment schedules were reported, results are listed separately for each plot. Residues

ⁿ Based on the lowest dilution of 1000.

from the trials conducted according to the critical GAP, which has been used for the estimation of maximum residue levels, STMR and HR (where applicable) values are underlined.

The residues presented in the tables are given as cyclaniliprole and metabolite NK-1375, expressed as themselves. The total residues (sum of the mean of parent and NK-1375) are expressed as parent equivalents by applying a conversion factor of 1.064 to NK-1375. Levels of NK-1375 are generally not detectable if parent concentrations are < 0.01 mg/kg. Therefore, if both parent and metabolite are < 0.01 mg/kg, the total is calculated as < 0.01 mg/kg.

In some trials either single, duplicate or even triplicate field samples were taken at various time points. Results are therefore presented as single values or as duplicate/triplicate single values with the (mean) value in brackets. Sample sizes were in accordance with the FAO manual 2016 Appendix V. In the few cases where the sample size weighed less than the required 2 kg, at least 12 fruits were picked from at least 12 plants/locations on the plot. Therefore, samples were considered sufficiently representative to be used for maximum residue estimation.

The LC-MS/MS analytical method (Report JSM 0269) used for analysis of residues of cyclaniliprole and NK-1375 in plant commodities, with LOQs of 0.01 mg/kg for each analyte, was reviewed by the 2017 JMPR. All samples collected from the supervised residue trials submitted to the current Meeting were analysed using the same method, which was concurrently validated at the time of the residue trials. All recoveries were within the acceptable range of 70-120% with relative standard deviations ≤20%.

The stability of residues of cyclaniliprole and NK-1375 during frozen storage was evaluated by the 2017 JMPR. Cyclaniliprole and NK-1375 were determined to be stable for at least 18 months at -20 °C in commodities representative of the high water, high acid, high starch, high protein and high oil commodity groups.

The periods of demonstrated stability covered the frozen storage intervals in the supervised residue trials on crops considered by the current Meeting.

Citrus fruit

Table 3 Residues of cyclaniliprole (mg/kg) in lemons (IB-2015-JAM-004-01-01) following three foliar applications of cyclaniliprole in an SL-formulation

LEMONS	No,	g ai/ha	0			Residues, mg/kg		
Location, Country;	(interval)		ai/hL	treatment day	(days)	Parent	NK-1375	Total
year;								
(variety)								
De Leon	3	100	6	BBCH 87	1	0.169 / 0.170		0.180 / 0.181
Springs, FL,	(7)	100	6	Nov 17		(0.170)	(≤ 0.01)	(<u>0.181</u>)
USA,		100	6					
2015								
(Meyer)								
Woodlake, CA,	3	102	4	BBCH 89	1	0.053 / 0.042	< 0.01 / < 0.01	0.064 / 0.053
USA,	(7)	99	4	Dec 14		(<u>0.048</u>)	(≤ 0.01)	(<u>0.059</u>)
2015		101	4					
(Lisbon)								
Blythe, CA,	3	99	8	BBCH 89	1	0.013 / 0.023		0.024 / 0.034
USA,	(7)	99	8	Mar 16		(<u>0.018</u>)	(< 0. <u>01</u>)	(<u>0.029</u>)
2015		99	8					
(Eureka)								
1 01101 11110, 011,	3	99	4	BBCH 89		0.130 [0.151] /	[< 0.01/< 0.01]	0.141 / 0.158
USA, 2015	(6,8)	100	4	Dec 17		0.147 [0.137,	<u>(< 0.01</u>)	(<u>0.150</u>)
(Pryor)		98	4			0.128] ^a (<u>0.139</u>) ^b		

	· /	g ai/ha	0			Residues, mg/kg		
Country;	(interval)		ai/hL	treatment day	(days)	Parent	NK-1375	Total
year;								
(variety)								
TIC A	3	100			0	0.155 / 0.135 (0.145)	< 0.01 / < 0.01 (< 0.01)	0.166 / 0.146 (0.156)
	(6,8)	100	4	Dec 2		,	,	,
2015 (Lisbon)		100	5		1	0.101 / 0.138 (0.120)		0.112 / 0.149 (0.131)
					3	0.072 / 0.077 (0.075)		0.083 / 0.088 (0.086)
					7	0.120 / 0.147 (<u>0.134</u>)	< 0.01 / < 0.01 (< 0.01)	0.131 / 0.158 (<u>0.145</u>)

^a Reanalysed sample in squared brackets

Table 4 Residues of cyclaniliprole (mg/kg) in oranges (IB-2015-JAM-004-01-01) following three foliar applications of cyclaniliprole in an SL-formulation

ORANGES	No,	g ai/ha	g	GS & last	DALT	Residues, mg/kg		
Location, Country;	(interval)		ai/hL	treatment day	(days)	Parent	NK-1375	Total
year; (variety)								
De Leon Springs, FLA, USA, 2015 (Navel)	3 (7)	100 100 100	6 6 6	BBCH 87 Nov 17	1	0.118 / 0.078 (0.098)	< 0.01/< 0.01 (< 0.01)	0.129 / 0.089 (0.109)
De Leon Springs, FLA, USA, 2015 (Hamlin)	3 (7,6)	100 100 101	8 7 8	BBCH 86 Nov 5	1	0.238 / 0.147 (<u>0.193</u>)	0.011 / < 0.01 (<u>0.011</u>)	0.250 / 0.158 (<u>0.205</u>)
Clermont, FL, USA, 2015 (Valencia)	3 (7)	100 99 99	5 5 5	BBCH 88 May 21	1	0.119 / 0.064 (<u>0.092</u>)	< 0.01 / < 0.01 (< 0.01)	0.130 / 0.075 (<u>0.103</u>)
Vero Beach, FL, USA, 2015 (Navel)	3 (7,6)	101 100 100	8 8 8	BBCH 86 Nov 5	1	0.145 / 0.113 (<u>0.129</u>)	< 0.01/< 0.01 (< 0.01)	0.156 / 0.124 (<u>0.140</u>)
Winter Garden, FLB, USA 2015 (Valencia)	3 (7)	102 100 101	5 5 5	Fruiting May 6	1	0.126 / 0.102 (<u>0.114</u>)	< 0.01 / < 0.01 (< 0.01)	0.137 / 0.113 (<u>0.125</u>)
Winter Garden, FLB, USA 2015 (Hamlin)	3 (7, 6)	100 100 102	8 9 9	Fruiting Nov 5	1	0.355 / 0.357 (<u>0.356</u>)	0.030 / 0.027 (<u>0.029</u>)	0.387 / 0.386 (0.387)
Oviedo, FL, USA, 2015 (Valencia)	3 (7)	100 100 100	7 7 7	BBCH 89 May 8	1 3	0.142 / 0.127 (0.135) 0.113 / 0.120 (<u>0.117</u>) 0.095 / 0.098	0.014 / 0.012 (0.013) 0.010 / 0.014 (<u>0.012</u>) 0.013 / 0.010	0.157 / 0.140 (0.149) 0.124 / 0.135 (<u>0.130</u>) 0.109 / 0.109

^b Means of each sample used for calculation of mean value

ORANGES	No,	g ai/ha		GS & last		Residues, mg/kg		
Location, Country; year; (variety)	(interval)		ai/hL	treatment day	(days)	Parent	NK-1375	Total
	! 	<u> </u>	l 			(0.097)	(0.012)	(0.109)
					7	0.113 / 0.096 (0.105)	0.015 / 0.012 (0.014)	0.129 / 0.109 (0.119)
Bithlo, FL,	3	102	7	BBCH 89	1	0.142 / 0.142	0.012 / < 0.01	0.155 / 0.153
USA, 2015	(7)	100	7	May 8		(<u>0.142</u>)	(<u>0.011</u>)	(<u>0.154</u>)
(Valencia)		99	7					
	3	102	4	BBCH 85-89	1	0.123 / 0.120	< 0.01 / < 0.01	0.134/0.131
TX. USA, 2015 (Marrs)	(7)	104	4	Dec 17		(<u>0.122</u>)	<u>(< 0.01</u>)	(<u>0.133</u>)
(Mails)		103	4					
Madera, CA,	3	102	7	Mature	1	0.044 / 0.022	< 0.01 / < 0.01	0.055 / 0.033
USA, 2015 (Navel)	(7)	98	7	Nov 24		(<u>0.033</u>)	<u>(< 0.01</u>)	(<u>0.044</u>)
(Navel)		100	7					
Porterville, CA,	3	100	5	BBCH 89	1	0.169 / 0.149	< 0.01 / < 0.01	0.180 / 0.160
USA, 2015 (Valencia)	(7,8)	100	5	May 26		(<u>0.159</u>)	<u>(< 0.01</u>)	(<u>0.170</u>)
(valencia)		100	5					
Fresno, CA,	3	100	7	BBCH 89	0	0.112 / 0.065	< 0.01 / < 0.01	0.123 / 0.076
USA, 2015 (Navel)	(7)	99	7	Dec 8		(0.089)	(< 0.01)	(0.100)
(INAVEI)		100	7		1	0.077 / 0.109 (<u>0.093</u>)	< 0.01 / < 0.01 (< 0.01)	0.088 / 0.120 (0.104)
					3	0.075 / 0.091	< 0.01 / < 0.01	0.086 / 0.102
					3	(0.083)	(< 0.01)	(0.094)
					7	0.070 / 0.061 (0.066)	< 0.01 / < 0.01 (< 0.01)	0.081 / 0.072 (0.077)

^a Trials were considered independent on the basis of the different varieties and last applications being made 12 days apart.

Table 5 Residues of cyclaniliprole (mg/kg) in grapefruits (IB-2015-JAM-004-01-01) following three foliar applications of cyclaniliprole in an SL-formulation

GRAPEFRUITS		g ai/ha	0	GS & last		Residues, mg/kg		
Location,	(interval)		aı/hL	treatment day	(days)	Parent	NK-1375	Total
Country;								
year; (variety)								
Vero Beach, FL,	3	100	8	BBCH 87	1	0.113 / 0.078	< 0.01 / < 0.01	0.124 / 0.089
USA,	(7,6)	100	7	Nov 5		(<u>0.096</u>)	<u>(< 0.01</u>)	(<u>0.107</u>)
2015		101	8					
(Ruby Red)								
De Leon	3	100	6	BBCH 87	1	0.059 / 0.059	< 0.01 / < 0.01	0.070 / 0.070
Springs, FL,	(7)	99	6	Nov 17		(<u>0.059</u>)	<u>(< 0.01</u>)	(<u>0.070</u>)
USA,		100	6					
2015								
(Red Flame)								
Umatilla, FL,	3	100	5	BBCH 89	1	0.035 / 0.012	< 0.01 / < 0.01	0.046 / 0.023
USA,	(7)	99	5	May 19		(0.024)	<u>(< 0.01</u>)	(<u>0.035</u>)
2015		101	5					
(Ruby Red)								
Raymondville,	3	101	4	BBCH 83	1	0.083 / 0.073	< 0.01 / < 0.01	0.094 / 0.084
TX, USA	(7)	104	4	Dec17		(<u>0.078</u>)	<u>(< 0.01</u>)	(<u>0.089</u>)

^b Trials considered independent on the basis of the different varieties and last applications being made 6 months apart.

GRAPEFRUITS	,	g ai/ha	0	GS & last		Residues, mg/kg		
Location, Country;	(interval)		ai/hL	treatment day	(days)	Parent	NK-1375	Total
year; (variety)								
2015		103	4					
(Rio Red)								
Lindsay, CA, USA, 2015 (Star	3 (7)	100 100	5 5	BBCH 89 Dec 30	0	0.042 / 0.040 (0.041)	< 0.01 / < 0.01 (< 0.01)	0.053 / 0.051 (0.052)
Ruby)		100	5		1	0.041 / 0.043 (<u>0.042</u>)	< 0.01 / < 0.01 (< 0.01)	0.052 / 0.054 (<u>0.053</u>)
					3	0.038 / 0.027 (0.033)	< 0.01 / < 0.01 (< 0.01)	0.049 / 0.038 (0.044)
					7	< 0.01 / 0.012 (0.011)	< 0.01 / < 0.01 (< 0.01)	0.021 / 0.023 (0.022)
Porterville, CA,	3	99	5	BBCH 83	1	0.098 / 0.066	< 0.01 / < 0.01	0.109 / 0.077
USA	(7)	100	5	Oct 28		(<u>0.082</u>)	<u>(< 0.01</u>)	(<u>0.093</u>)
2015 (Mellogold)		98	5					

Pome fruits

Table 6 Residues of cyclaniliprole (mg/kg) in apples (IB-2012-JLW-020-01-01; IB-2013-JLW-004-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

APPLES			g			Residues, mg/kg		
Location, Country;	(interval)		ai/hL	treatment day	(days)	Parent	NK-1375	Total
year;								
(variety)								
North Rose,	3	101	9	BBCH 85	7	0.059/0.077	< 0.01/< 0.01	0.070/ 0.089
NY,	(14)	100	9	Sept 21		(0.068)	(< 0.01)	(0.079)
USA,		100	9					
2012								
(Rome)								
North Rose,	3	995	85	BBCH 85	7	0.71 ^a	0.078 a	0.79
NY,	(14)	1010	85	Sept 21				
USA,		999	85					
2012								
(Rome)								
Hereford, PA,	3		5		0	0.11/0.13	< 0.01/< 0.01(< 0.01)	0.12/ 0.14
USA,	(14-15)		5	Sept 07		(0.12)		(0.13)
2012		101	5		3	0.073/0.064	< 0.01/< 0.01(< 0.01)	0.084/ 0.075
(Red delicious)						(0.069)		(0.079)
					6	0.047/0.061	< 0.01/< 0.01	0.058/ 0.072
						(0.054)	(< 0.01)	(0.065)
					10	0.052/0.045	< 0.01/< 0.01	0.063/ 0.056
						(0.049)	(< 0.01)	(0.059)
Blairsville, GA,	3	102	10	BBCH 87	7	0.035/0.035	< 0.01/< 0.01	0.046/ 0.046
USA,	(14)	104	10	Aug 06		(0.035)	(< 0.01)	(0.046)
2012		103	10					
(Rome)								
Deerfield, MI,	3	153	9	BBCH 87	7	0.016 ^b	< 0.01 ^b	0.027

APPLES	No,	g ai/ha	g	GS & last	DALT	Residues, mg/kg	<u> </u>	
Location,	(interval)		ai/hL	treatment day	(days)	Parent	NK-1375	Total
Country;								1 3 441
year;								
(variety)								
USA,	(14)	158	9	Sept 05				
2012		150	9					
(Red delicious)								
Oregon, WI,	3	100	9	5.1-7.6 cm	7	0.022/0.023	< 0.01/< 0.01	0.033/ 0.034
USA,	(14)	100	8	fruit diameter		(0.023)	(< 0.01)	(0.033)
2012		100	9	Sept 12				
(Cortland)								
Perry, UT,	3	103	5	BBCH 85	7	0.059/0.050	0.012/0.01	0.072/ 0.062
USA,	(13-15)	101	5	Aug 21		(0.055)	(0.012)	(0.067)
2012		102	5					
(Gala)								
Los Molinos,	3	99	7	BBCH 81	7	0.032/0.042	0.012/0.019	0.045/ 0.062
CA,	(14)	99	7	Aug 23		(0.037)	(0.016)	(0.053)
USA,		99	7					
2012								
(Summerfield)								
Ephrata, WA,	3	100	5	BBCH 85	7	0.13/0.14	0.035/0.031	0.17/ 0.17
USA	(14)	101	5	Aug 23		(0.13)	(0.033)	(0.17)
2012		99	5					
(Gala)								
Payette, ID,	3	100	11	fruit with	0	0.13/0.14	0.010/0.012	0.14/ 0.16
USA,	(14-15)	101	11	advanced colour		(0.14)	(0.011)	(0.15)
2012		101	11	Sept 27	3	0.13/0.13	0.013/0.014	0.14/ 0.14
(Early Spur Rome)				Sept 27		(0.13)	(0.014)	(0.14)
rcome)					7	0.11/0.092	0.013/0.016	0.12/ 0.11
						(0.10)	(0.015)	(0.12)
					10	0.095/0.079	0.013/< 0.01	0.11/ 0.09
						(0.087)	(0.012)	(0.10)
North Rose,	3	100	8	BBCH 85	7	0.050/0.041	< 0.01/< 0.01	0.061/ 0.052
NY,	(14)	100	9	Sept 10		(0.046)	(< 0.01)	(0.056)
USA,		100	9					
(Ida Pad)								
(Ida Red)	2	100	0	DDCII 05	7	0.048/0.049	< 0.01/< 0.01	0.050/0.060
Conklin, MI,	3	100	8	BBCH 85	7			0.059/ 0.060
USA, 2013	(14)	100	9	Sept 24		(0.049)	(< 0.01)	(0.059)
(Ida Red)		100	9					
	2	101	7	000/	0	0.000/0.111	0.026/0.010	0.12/0.12
Wyoming, IL,	3	101	7	90% mature	8	0.098/0.111	0.026/0.019	0.13/ 0.13
USA,	(14)	102	7	Aug 26		(0.10)	(0.023)	(0.13)
2013 (Cala)		101	7					
(Gala)	2	00	0	5770	7	0.011/0.014	< 0.01/ - 0.01	0.022/0.025
Oregon, WI,	3	99	9	5.7-7.0 cm fruit	7	0.011/0.014	< 0.01/< 0.01	0.022/ 0.025
USA,	(14)	101	9	Aug 15		(0.013)	(< 0.01)	(0.023)
2013		100	9	1145 15				
(Paula Red)								

APPLES	No,	g ai/ha	g	GS & last		Residues, mg/kg		
Location, Country;	(interval)		ai/hL	treatment day	(days)	Parent	NK-1375	Total
year;								
(variety)								
Ephrata, WA,	3	100	8	BBCH 85	7	0.063/0.053	0.015/0.013	0.079/ 0.067
USA,	(14)	100	9	Aug 22		(0.058)	(0.014)	(0.073)
2013		100	9					
(Gala)								
Payette, ID,	3	101	7	advanced	7	0.058/0.050	< 0.01/< 0.01	0.069/ 0.061
USA,	(13, 15)	102	7	fruit		(0.054)	(< 0.01)	(0.065)
2013		103	7	colouring Sept 26				
(Early Spur Rome)				Зер і 20				
Simcoe,	3	106	11	BBCH 85-87	7	0.066/0.070	0.015/0.015	0.082/ 0.086
Ontario,	(14)	101	11	Sept 27		(0.068)	(0.015)	(0.084)
Canada,		101	11	_				
2012								
(Golden Delicious)								
Branchton,	3	102	7	BBCH 85-87	7	0.024/0.030	< 0.01/< 0.01	0.035/ 0.041
Ontario,	(14)	102	7	Sept 18		(0.027)	(< 0.01)	(0.038)
Canada, 2013		101	7					
(Ida Red)								

^a mean of triplicate analyses

Table 7 Residues of cyclaniliprole (mg/kg) in pears (IB-2013-JLW-004-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

PEARS	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg		
Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Total
year;								
(variety)								
Oswego, NY,	3	99	8	BBCH 81	7	0.050/0.069	< 0.01/0.012	0.061/ 0.080
USA,	(14)	102	9	Aug 12		(0.060)	(0.011)	(0.070)
2013		102	9					
(Bartlett)								
Conklin, MI,	3	100	6	BBCH 81-	7	0.062/0.075	0.013/0.011	0.076/ 0.087
USA,	(14)	100	6	83		(0.069)	(0.012)	(0.081)
2013		100	6	Aug 27				
(Bartlett)								
Blissfield, MI,	3	107	8	ripening	15	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(14, 6)	59	8	Sept 3		(< 0.01)	(< 0.01)	(< 0.01)
2013		59	8					
(not reported)								
Madera, CA,	3	101	7	BBCH 77	7	0.082/0.11	0.012/0.011	0.095/0.12
USA,	(7)	99	7	Sept 05		(0.095)	(0.012)	(0.11)
2013		100	7					

^b single samples from two different plots at the same test site.

PEARS	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg			
Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Total	
year;									
(variety)									
(Hosui)									
Lindsay CA,	3	99	4	BBCH 89	6	0.10/0.11	< 0.01/< 0.01	0.11/ 0.12	
USA,	(14, 13)	100	4	Sept 10		(0.11)	<u>(< 0.01)</u>	(0.12)	
2013		100	4						
(Olympic)									
Ephrata, WA,	3	98	11	BBCH 87-	7	0.14/0.14	0.022/0.024	0.16/ 0.16	
USA,	(14)	99	11	87		(0.14)	(0.023)	(0.16)	
2013		99	11	Aug 29					
(D'Anjou)									
Fruitland, ID,	3	100	9	advanced	7	0.094/0.100	0.017/0.019	0.11/ 0.12	
USA,	(14, 13)	103	9	fruit ripening		(0.097)	(0.018)	(0.12)	
2013		134	9	Aug 21					
(Bartlett)									
Hood River, OR,	3	100	7	BBCH 85	1	0.048/0.057	0.010/0.015	0.059/ 0.073	
USA,	(14)	101	7	Sept 15		(0.053)	(0.013)	(0.066)	
2013		102	7		4	0.041/0.042	0.015/0.017	0.057/ 0.075	
(Star Crimson)						(0.042)	(0.016)	(0.066)	
					7	0.037/0.036	0.014/0.014	0.052/ 0.051	
						(0.037)	(0.014)	(0.051)	
					10	0.038/0.033	0.016/0.013	0.055/ 0.047	
						(0.036)	(0.015)	(0.051)	
Branchton,	3	99	7	BBCH 85	7	0.12/0.13	0.016/0.016	0.14/ 0.15	
Ontario, Canada,	(14)	100	7	Sept 18		(0.13)	(0.016)	(0.14)	
2013		100	7						
(Bosc)	2	00	-	0 1 0 11	-	0.12/0.15	0.017/0.010	0.15/0.15	
Arkona, Ontario, Canada,	3	99	7	fruit at full size,	7	0.13/0.15	0.017/0.019	0.15/ 0.17	
2013	(14)	101	7	beginning to		(0.14)	(0.018)	(0.16)	
(Bosc)		101	7	colour					

Stone fruit

Table 8 Residues of cyclaniliprole (mg/kg) in cherries (flesh (no stone)) (IB-2013-JLW-005-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

CHERRIES	No,	g ai/ha	g ai/hL	GS &	DALT	Residues, mg/l	kg	
Location, Country; year; (variety)	(interval)			last treatment day	(days)	Parent	NK-1375	Total
Conklin, MI, USA, 2013 (Sam) sweet cherry	3 (7)	99 99 99	10 10 10	BBCH 85-87 July 01	7	0.37/0.23 (0.30)	0.017/0.011 (0.014)	0.39/ 0.24 (0.32)
Blissfield, MI, USA,	3	97	8	Ripening	7	< 0.01/0.010	< 0.01/< 0.01	0.020/ 0.021

CHERRIES	No,	g ai/ha	g ai/hL	GS &	DALT	Residues, mg/	kg	
Location, Country; year; (variety)	(interval)		-	last treatment day	(days)	Parent	NK-1375	Total
2013 (variety not reported) sweet cherry	(6)	97 97	8 8	July 29		(0.010)	(< 0.01)	(0.021)
Perry, UT, USA, 2013 (Bing) sweet cherry	3 (6)	105 103 102	7 7 7	BBCH 85 June 19	7	0.10/0.15 (0.13)	< 0.01/0.013 (0.012)	0.11/ 0.17 (0.14)
Plainview, CA, USA, 2013 (Tulare) sweet cherry	3 (7)	100 102 107	11 11 11	BBCH 87 May 08	7	0.36/0.30 (0.33)	< 0.01/< 0.01 (< 0.01)	0.37/ 0.31 (0.34)
Fresno, CA, USA, 2013 (Brooks) sweet cherry	3 (7)	98 99 98	13 13 13	Mature coloured fruit, at com- mercial harvest May 03	7	0.16/0.20 (0.18)	0.011/0.016 (0.014)	0.17/ 0.21 (0.19)
Caldwell, ID, USA, 2013 (Bing) sweet cherry	3 (8)	103 104 100	8 8 8	BBCH 85 June 22	6	0.11/0.086 (0.097)	0.011/0.010 (0.011)	0.12/ 0.098 (0.11)
Weisser, ID, USA, 2013 (Benton) sweet cherry	3 (6, 8)	103 105 102	7 7 7	Fruit colour advanced June 26	7	0.12/0.14 (0.13)	< 0.01/< 0.01 (< 0.01)	0.13/ 0.15 (0.14)
Ephrata, WA, USA, 2013 (Bing) sweet cherry	3 (7)	104 99 99	11 11 11	BBCH 81 June 13	7	0.15/0.13 (0.14)	0.018/0.012 (0.015)	0.17/ 0.15 (0.16)
Hereford, PA, USA, 2013 (Mont- morency) tart cherry	3 (6)	103 102 101	12 12 12	BBCH 87 June 29	6	0.25/0.23 (0.24)	0.022/0.021 (0.022)	0.27/ 0.26 (0.26)
Conklin, MI, USA, 2013 (Mont-	3 (7)	99 99 99	10 10 10	BBCH 85-87 July 01	7	0.43/0.45 (0.44)	0.041/0.036 (0.039)	0.47/ 0.49 (0.48)

CHERRIES	No,	g ai/ha	g ai/hL	GS &	DALT	Residues, mg/	NK-1375 Total 8 < 0.01/< 0.01	
Location, Country; year; (variety)	(interval)			last treatment day	(days)	Parent	NK-1375	Total
morency) tart cherry								
Blissfield, MI, USA, 2013 (variety not reported) tart cherry	3 (7)	116 117 116	8 8 8	Ripening Aug 05	7	0.014/0.018 (0.016)		
Marengo, IL,USA, 2013 (North Star) tart cherry	3 (7)	99 100 99	8 8 8	Ripe July 02	7	0.081/0.082 (0.082)		
Perry, UT, USA, 2013 (Mont- morency) tart cherry	3 (6, 7)	102 102 103	8 8 8	BBCH 87 July 09	6	0.28/0.29 (0.28)		
Branchton, Ontario, Canada, 2013 (North Star) tart cherry	3 (7, 8)	97 99 95	10 10 10	BBCH 78-79 June 18	4 7 10 14	0.34/0.28 (0.31) 0.14/0.14 (0.14) 0.090/0.081 (0.086) 0.071/0.074 (0.073)	(0.064) 0.030/0.031	(0.37) 0.17/ 0.17
Josephberg, Alberta, Canada, 2013 (Evans) tart cherry	3 (6, 7)	91 110 100	10 11 10	BBCH 87-89 Aug 13	7	0.57/0.56 (0.56)	0.052/0.045 (0.049)	0.62/ 0.60 (0.61)

Table 9 Residues of cyclaniliprole (mg/kg) in plums (flesh, no stone) (IB-2013-JLW-005-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

PLUMS	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/	lkg	
Location, Country; year;	(interval)			treatment day	(days)	Parent	NK-1375	Total
(variety)								
Blissfield, MI, USA, 2013 (not reported)	3 (7)	79 79 40	8 8 8	ripe August 28	6	0.027/0.027 (0.027)	0.013/0.014 (0.014)	0.041/ 0.042 (0.042)
Conklin, MI, USA, 2013 (Stanley)	(7)	100 99 99	10 10 10	BBCH 83- 86 August 27	7	0.089/0.093 (0.091)	0.019/0.015 (0.017)	0.11/0.11 (0.11)
Madera, CA, USA, 2013 (Apple Dandy)	3 (7, 8)	100 101 99	21 21 21	BBCH 79 May 23	6	0.023/0.024 (0.024)	< 0.01/< 0.01 (< 0.01)	0.034/ 0.035 (0.035)
Orland, CA, USA, 2013 (French)	3 (7)	99 100 100	11 11 11	50-60% purple August 05	7	0.018/0.019 (0.019)	< 0.01/< 0.01 (< 0.01)	0.029/ 0.030 (0.030)
Lindsay, CA, USA, 2013 (Angelina's)	3 (8,6)	100 100 99	10 10 10	BBCH 89 August 15	7	0.054/0.076 (0.065)	< 0.01/< 0.01 (< 0.01)	0.065/ 0.087 (0.076)
Madera, CA, USA, 2013 (French – prune type)	(7)	100 102 100	7 7 7	Mature prunes July 26	7	0.059/0.065 (0.062)	0.011/0.012 (0.012)	0.071/ 0.077 (0.075)
Payette, ID, USA, 2013 (Empress)	3 (7)	103 102 101	11 11 11	advanced colouring of fruit August 26	0 1 7 10	0.066/0.089 (0.080) 0.089/0.064 (0.077) 0.049/0.063 (0.056) 0.040/0.046 (0.043)	<0.01/< 0.01 (< 0.01) <0.01/< 0.01 (< 0.01) <0.01/< 0.01 (< 0.01) <0.01/< 0.01 (< 0.01)	(0.088) 0.060/ 0.074 (0.067) 0.051/ 0.057 (0.054)
Newberg, OR, USA, 2013 (Italian)	3 (7)	99 99 100	7 7 7	BBCH 85- 88 Sept 02	7	0.019/0.019 (0.019)	< 0.01/< 0.01 (< 0.01)	0.030/ 0.030 (0.030)

Table 10 Residues of cyclaniliprole (mg/kg) in peaches (flesh, no stone) (IB-2013-JLW-005-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

PEACHES	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/k	tg ^a	
Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Total
year;				day				
(variety)								
Alton, NY,	3	100	11	BBCH 81	1	0.075/0.099	< 0.01/< 0.01	0.086/ 0.11
USA,	(6, 7)	100	11	Aug 19		(0.087)	(< 0.01)	(0.098)
2013		101	11		4	0.039/0.086	< 0.01/< 0.01	0.050/ 0.097
(Baby Gold #5)						(0.063)	(< 0.01)	(0.074)
					7	0.056/0.043	< 0.01/< 0.01	0.067/ 0.054
						(0.050)	(< 0.01)	(0.061)
					10	0.030/0.040	< 0.01/< 0.01	0.041/ 0.051
						(0.035)	(< 0.01)	(0.046)
Plains, GA,	3	102	8	BBCH 85	7	0.021/0.024	< 0.01/< 0.01	0.032/ 0.035
USA,	(7)	102	8	July 23		(0.023)	(< 0.01)	(0.034)
2013		103	11					
(Red Skin)								
-								
Chula, GA,	3	100	17	GS not	7	0.083/0.078	< 0.01/< 0.01	0.094/ 0.089
USA,	(7)		18	reported		(0.081)	(< 0.01)	(0.092)
2013			17	June 5			ĺ	
(Gala)								
,								
Monetta, SC,	3	99	9	BBCH 81	7	0.057/0.050	< 0.01/< 0.01	0.068/0.061
USA,	(6, 7)	97	9	Aug 6	ľ	(0.054)	(< 0.01)	(0.065)
2013	(~, , ,	97	9	- 100		(3.32.)		(0.000)
(Big Red)		,						
Blissfield, MI,	3	79	8	fruits ripe	7	0.014/0.023	< 0.01/< 0.01	0.025/ 0.034
USA,	(7)	79	8	Aug 28	l'	(0.019)	(< 0.01)	(0.030)
2013	(1)	55	8	riug 20		(0.01))	(\ 0.01)	(0.030)
(not reported)		33	G					
Conklin, MI,	3	100	11	fruit up to	6	0.16/0.22	< 0.01/0.012	0.17/ 0.23
USA,	(7)		10	6.0 cm	0	(0.19)	(0.017)	(0.20)
2013	(7)		10	diameter		(0.19)	(0.011)	(0.20)
(Red Haven)		101	10	Jul 31				
<u> </u>	2	00	1.1	DDCH 05	7	0.042/0.020	0.017/0.015	0.060/0.055
D'Hanis, TX,	3	99 99	11	BBCH 85 Jul 19	7	0.042/0.039	0.017/0.015	0.060/ 0.055
USA,	(7)		11	Jul 19		(0.041)	(0.016)	(0.058)
2013		100	8					
(Flamin' Fury)	2	00	12	3.6.12	7	0.066/0.026	40.01/.0.01	0.077/0.017
Madera, CA	3		13	Medium size fruit 70-80%	/	0.066/0.036	< 0.01/< 0.01	0.077/ 0.047
USA,	(8,6)		13	ripe for		(0.051)	(< 0.01)	(0.062)
2013		99	13	harvest				
(Spring Crest)				May 30				
Fresno, CA,	3	100	11	BBCH 85	7	0.043/0.046	< 0.01/< 0.01	0.054/ 0.057
USA,	(7)		11	Jul 30		(0.045)	(< 0.01)	(0.056)
2013		99	11				Ì	
(Kaweah)								
Porterville, CA,	3	100	11	BBCH 81	7	0.058/0.070	0.011/0.014	0.070/ 0.085

PEACHES	No,		g ai/hL	GS & last	DALT	Residues, mg/kg	1	
Eccanon, country,	(interval)			treatment day	(days)	Parent	NK-1375	Total
year;								
(variety)								
USA,	(7)	100	11	Jul 17		(0.064)	(0.013)	(0.078)
2013		99	11					
(Fay Alberta)								
Weiser, ID,	3	99	11	Advanced	6	0.16/0.15	< 0.01/< 0.01	0.17/ 0.16
USA,	(7)	99	11	fruit colour		(0.16)	(< 0.01)	(0.17)
2013		99	11	Sep 02				
(O'Henry)								
Branchton,	3	101	10	BBCH 79-85	6	0.091/0.096	< 0.01/< 0.01	0.10/ 0.11
Ontario, Canada,	(7)	104	10	Aug 8		(0.094)	(< 0.01)	(0.10)
2013		103	10					
(Reliance)								
Arkona area,	3	101	22	fruit	7	0.10/0.12	< 0.01/0.010	0.11/ 0.13
Ontario,	(7)	100	22	showing		(0.11)	(0.010)	(0.12)
Canada,		101	22	characteristic colour 90-				
2013				100% of				
(Harmony)				final size				
				Aug 20				

Cane berries

Table~11~Residues~of~cyclaniliprole~(mg/kg)~in~raspberries~(IB-2015-JAM-005-01-01)~following~three~foliar~applications~of~cyclaniliprole~in~an~SL-formulation

RASPBERRIES	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg	Ţ	
Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Total
year;				day				
(variety)								
Penn Yann, NY,	3	104	21	BBCH 87	1	0.222 / 0.248	0.031 / 0.034	0.255 / 0.284
USA,	(5,6)	102	21	July 7		(0.235)	(0.033)	(0.270)
2015		101	21					
(Encore)								
Plain City, OH,	3	100	14	BBCH 89	0	0.869 / 0.520	0.047 / 0.028	0.919 / 0.550
USA,	(5)	101	14	Sep 21		(0.695)	(0.038)	(0.735)
2015		100	14		1	0.513 / 0.551	0.041 / 0.057	0.557 / 0.612
(Caroline)						(0.532)	(0.049)	(0.584)
					3	0.202 / 0.387 (0.295)	0.023 / 0.048 (0.036)	0.226 / 0.438 (0.333)
					7	0.261 / 0.233 (0.247)	0.027 / 0.035 (0.031)	0.290 / 0.270 (0.280)
Oregon City, OR,	3	98	36	Mature fruit	1	0.308 / 0.314	0.047 / 0.049	0.358 / 0.366
USA,	(5)	96	35	Jul 6		(0.311)	(0.048)	(0.362)
2015		101	36					
(Heritage)								
Sherwood, OR,	3	98	35	Mature fruit	1	0.278 / 0.312	0.039 / 0.037	0.319 / 0.351
USA,	(5)	98	36	Jun 18		(0.295)	(0.038)	(0.335)
2015		98	36					
(Willamette)								
Abbotsford, BC,	3	98	18	65% fruiting	1	0.129 / 0.154	0.017 / 0.017	0.147 / 0.172

			g ai/hL	GS & last		Residues, mg/kg		
Location, Country;	(interval)			treatment	(days)	Parent	NK-1375	Total
year;				day				
(variety)								
Canada,	(6, 5)	99	18	Jul 7		(0.142)	(0.017)	(0.160)
2015		103	18					
(Chemainus)								

Bush berries

Table~12~Residues~of~cyclaniliprole~(mg/kg)~in~blueberries~(IB-2015-JAM-005-01-01)~following~three~foliar~applications~of~cyclaniliprole~in~an~SL-formulation

BLUEBERRIES	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg	ξ	
Location, Country;	(interval)			treatment	(days)	Parent	NK-1375	Total
year;				day				
(variety)								
Penn Yann, NY,	3	103	21	BBCH 89	1	0.197 / 0.199	0.042 / 0.040	0.242 / .0242
USA,	(4, 5)	98	21	July 29		(0.198)	(0.041)	(0.242)
2015		101	21					
(Blue Crop)								
New Tripoli, PA a,	3	101	13	90% berries	1	0.307 / 0.280	0.027 / 0.024	0.336 / 0.306
USA,	(6, 5)	105	13	coloured		(0.294)	(0.026)	(0.321)
2015		101	13	June 28				
(Weymouth)								
New Tripoli, PA a,	3	103	15	80-90% of	1	0.394 / 0.440	0.140 / 0.160	0.543 / 0.610
USA,	(4,6)	102	15	berries true		(0.417)	(0.150)	(0.577)
2015		103	15	color				
(Dixie)				Jul 27				
Chula, GA	3	97	10	Not	1	0.134 / 0.148	0.054 / 0.055	0.191 / 0.207
USA,	(4,6)	98	10	specified		(0.141)	(0.055)	(0.199)
2015		100	10	Jun 4				
(Powder Blue)								
Seven Springs,	3	102	34	BBCH 88	0	0.258 / 0.336	0.067 / 0.084	0.329 / 0.425
NC,	(5, 6)	101	29	May 26		(0.297)	(0.076)	(0.377)
USA,		102	30		1	0.276 / 0.309	0.070 / 0.086	0.350 / 0.400
2015						(0.293)	(0.078)	(0.375)
(O'Neal)					3	0.176 / 0.164 (0.170)	0.088 / 0.082 (0.085)	0.270 / 0.251 (0.260)
					7	0.103 / 0.116 (0.110)	0.068 / 0.079 (0.074)	0.175 / 0.200 (0.188)
Mansfield, OH,	3	99	20	BBCH 87	1	1.12 / 0.878	0.101 / 0.083	1.23 / 0.966
USA,	(5)	100	14	Jul 26		(0.999)	(0.092)	(<u>1.10)</u>
2015		97	14					
(Coville)								
Upper Rawdon,	3	99	21	BBCH 85-	1	0.210 / 0.255	0.111 / 0.149	0.328 / 0.414
	(4, 6)	97	21	89		(0.233)	(0.130)	(0.371)
Canada, 2015		99	21	Aug 10				
(Wild)								
Ste-Madeleine, QC, Canada, 2015	3	103	40	BBCH 81- 89	1	0.104 / 0.095	0.016 / 0.015	0.121 / 0.111
	(4, 5)	98	40			(0.100)	(0.016)	(0.116)
(North Blue)		102	40	Jul 22				

		_	g ai/hL	GS & last	DALT	Residues, mg/kg		
Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Total
year;				day				
(variety)								
Langton, ON,	3	100	20	80-90%	1			0.540 / 0.457
Canada,	(5, 6)	102	20	mature		(0.433)	<u>(0.062)</u>	(0.499)
2015		103	20	Aug 23				
(Duke)								
Abbotsford, BC,	3	99	18	BBCH 84	1			0.256 / 0.239
Canada,	(6, 5)	103	18	Jul 7		(0.149)	(0.093)	(0.248)
2015		102	18					
(Blue gold)								

^a Trials were considered independent on the basis of different varieties and the last applications being made 4 weeks apart.

Grapes

Table 13 Residues of cyclaniliprole (mg/kg) in grapes (IB-2013-JAM-002) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

GRAPES	No,	g ai/ha	g ai/hL	GS & last	DALT					
Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Total		
year;										
(variety)										
Dundee, NY, USA,	3	100	11	BBCH 85	6	0.21/0.20 (0.21)	< 0.01/< 0.01 (< 0.01)	0.22/ 0.21		
2013	(7)	101	11	Sept 20		(0.21)	<u>(< 0.01)</u>	(0.22)		
(Concord)		100	11							
Breinigsville,	3	100	13	BBCH 85	3	0.16/0.25	0.020/0.031	0.18/ 0.29		
PA, USA,	(6, 7)	100	13	Sept 18		(0.21) 0.12/0.11	(0.026) 0.015/0.012	(0.23)		
2013 (Corot Noir)		100	13		5	(0.12)	(0.013/0.012	0.13/ 0.12		
(Colot Noil)					7	0.090/0.13	0.014/0.017	(0.13)		
					/	(0.11)	(0.016) 0.019/0.013	0.10/ 0.15 (0.13)		
					9	0.11/0.093	(0.019/0.013	0.13/ 0.11		
						(0.10)	(0.010)	(0.12)		
Oregon, WI,	3	100	12	BBCH 87	7	0.12/0.11	< 0.01/< 0.01	0.13/ 0.12		
USA,	(6, 8)	100	12	Sept 24		(0.12)	<u>(< 0.01)</u>	(0.13)		
2013 (Concord)		100	12							
Fresno, CA,	3	97	13	BBCH 83	7	0.022/0.027	< 0.01/< 0.01	0.033/ 0.038		
USA,	(7)	99	13	August 28	,	(0.025)	(< 0.01)	(0.036)		
2013	(,)	100	13					(0.000)		
(Flame seedless)										
Orland, CA,	3	100	14	BBCH 85	7	0.15/0.12	0.033/0.032	0.19/ 0.16		
USA, 2013	(7)	100	14	July 30		(0.14)	(0.033)	(0.17)		
(Rubired)		100	14							
Arbuckle,	3	100	14	BBCH 85	7	0.051/ 0.037	< 0.01/< 0.01	0.062/ 0.048		
CA, USA,	(7)	100	14	August 2		(0.044)	<u>(< 0.01)</u>	(0.055)		
2013										

GRAPES	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/	/kg	
Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Total
year;								
(variety)								
(Zinfandel)		100	14					
Kingsburg, CA, USA,	3	99	12	BBCH 85	7	0.054/0.042	< 0.01/< 0.01	0.065/ 0.053
2013	(7)	103	14	Sept 5		(0.048)	<u>(< 0.01)</u>	(0.059)
(Muscat)		102	14					
Porterville,	3	102	15	BBCH 85	7	0.061/ 0.091	0.011/0.018	0.072/ 0.11
CA, USA,	(7, 6)	99	14	August 8		(0.076)	(0.015)	(0.092)
2013		99	15					
(Thompson)	2	105	1.2		-	0.20/0.27	0.15/0.070	0.54/0.25
Madera, CA, USA,	3	105 102	12 12	mature grapes	7	0.38/0.27 (0.33)	0.15/0.070 (0.11)	0.54/ 0.35 (0.44)
2013	(7)	102	12	August 15				(0.44)
(Thompson		102	12					
seedless)								
Kerman, CA,	3	103	12	BBCH	7	0.13/0.11	0.033/0.023	0.17/ 0.13
USA,	(6,7)	102	12	85-89		(0.12)	(0.028)	(0.15)
2013		102	12	August 9				
(Thompson seedless)								
Creston, CA,	3	100	18	BBCH 89	7	0.12/0.21	0.081/0.14	0.20/ 0.36
USA, 2013	(7, 8)	100	18	August 28		(0.17)	(0.11)	(0.28)
(Cabernet		100	18					
Sauvignon)								
Ephrata, WA,	3	100	13	BBCH 85	7	0.37/0.41	0.090/0.089	0.46/ 0.51
USA,	(7)	99	13	Sept 17		(0.39)	(0.090)	(0.49)
2013		101	13					
(White Riesling)								
New	3	100	21	advanced	7	0.13/0.14	< 0.01/0.020	0.14/ 0.16
Plymouth, ID,	(6, 7)	101	21	colour of		(0.14)	(0.015)	(0.15)
USA,		100	21	berries,				
(Alborz) Branchton,	3	98	12	August 21 BBCH	7	0.25/0.24	< 0.01/0.01	0.26/ 0.25
Ontario	(7, 6)	103	12	85-89	/	(0.24) (0.24)	< 0.01/0.01 (< 0.01)	(0.25)
Canada,	(7,0)	98	12	Sept 19				(0.23)
2013		70	12	_				
(Concord)								
Sparta,	3	100	12	Fruit	7	0.54/0.48	0.087/0.074	0.63/ 0.55
Ontario,	(7)	99	12	turning colour,		(0.51)	(0.081)	(0.59)
Canada,		100	12	70-95% of				
2013 (Aurore)				final size				
(Autore)				August 20				

Low growing berries

Table 14 Residues of cyclaniliprole (mg/kg) in strawberries (IB-2015-JAM-005-01-01) following three foliar applications of cyclaniliprole in an SL-formulation

STRAWBERRIES	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/k	g	
Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Total
year; (variety)				uay				
New Tripolo, PA	3	101	35	BBCH 87	1	0.055 / 0.053	< 0.01 /	0.066 / 0.064
USA,	(4)	101	36	Jun 3		(<u>0.054</u>)	< 0.01 (< 0.01)	(0.065)
2015 (Earliglow)		101	35				<u>(< 0.01)</u>	
Lawtey, FL, USA,	3	99	27	BBCH 87	1	0.098 / 0.083	< 0.01 /	0.109 / 0.094
2015 (Camarosa)	(4, 6)	97	25	Apr 20		(0.091)	< 0.01 (< 0.01)	(0.102)
		100	25				(< 0.01)	
Oregon, WI, USA,	3	100	43	BBCH 87	1	0.141 / 0.130	0.019 / 0.017	0.161 / 0.148
2015	(6,5)	102	42	Jun 21		(0.136)	(0.018)	<u>(0.155)</u>
(Daroyal)		102	42					
Hart, MI,	3	101	11	BBCH 87	1	0.115 / 0.085	< 0.01 /	0.126 / 0.096
USA,	(5)	101	11	Jun 21		(0.100)	< 0.01 (< 0.01)	(0.111)
2015 (Jewel)		100	11				,	
Woodland, CA,	3	100	35	Fruiting	0	0.647 / 0.622	0.056 / 0.055	0.707 / 0.681
USA,	(4)	98	35 and flowerin			(0.635)	(0.056)	(0.694)
2015		100		Jun 5	1	0.188 / 0.226 (0.207)	0.035 / 0.043 (0.039)	0.225 / 0.272 (0.248)
(Albion)				3411 3	3	0.193 / 0.177	0.050 / 0.048	0.246 / 0.228
					3	(0.185)	(0.049)	(0.237)
					7	0.101 / 0.075	0.035 / 0.029	0.138 / 0.106
						(0.088)	(0.032)	(0.122)
Fresno, CA, USA	3	98	35	BBCH 87	1	0.108 / 0.138	0.017 / 0.025	0.126 / 0.165
2015	(5)	99	35	Aug 3		(0.123)	(0.021)	(0.145)
(Seascape)		100	35					
Oregon City, OR,	3	100	35	Bloom to	1	0.160 / 0.161	0.013 / 0.016	0.174 / 0.178
USA,	(5)	99	35	red Fruit		(0.161)	(0.015)	(0.176)
2015 (Albion)		99	36	May 14				
Thorndale, ON,	3	99	40	Green to	1	0.157 / 0.145	0.014 / 0.011	0.172 / 0.157
Canada, 2015	(5)	101	40	ripe berries		(0.151)	(0.013)	(0.165)
(Albion)		103	40	Sep 14				
Portage la Prairie,	3	96	40	BBCH 80	1	0.312 / 0.362	0.019 / 0.022	0.332 / 0.385
MB,	(5)	98	40	Jun 25		(0.337)	(0.021)	(0.359)
Canada, 2015		100	40					
(Gloosecap)								

Kiwifruit

Table 15 Residues of cyclaniliprole (mg/kg) in fuzzy kiwifruit (IB-2015-JAM-005-01-01) following three foliar applications of cyclaniliprole in an SL-formulation

KIWI	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/k	g	
Location, Country; year; (variety)	(interval)			treatment day	(days)	Parent	NK-1375	Total
Porterville, CA USA,	3 (5)	100 101	10 11	BBCH 89 Oct 19	1	0.327 / 0.152 (0.240)	< 0.01/< 0.01 (< 0.01)	0.338 / 0.163 (0.251)

KIWI	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/k	g	
Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Total
year; (variety)								
2015 (Hayward)		100	10					
Gridley, CA, USA, 2015 (Chico)	3 (5)	100 99 99	11 11 11	2-3" diameter fruit Oct 19	1	0.015 / < 0.01 (0.013)	< 0.01/< 0.01 (< 0.01)	0.026 / 0.021 (0.024)
Live Oak, CA, USA, 2015 (Hayward)	3 (6, 5)	101 99 99	21 23 23	BBCH 89 Oct 12	1	0.505 / 0.477 (0.491)	< 0.01/< 0.01 (< 0.01)	0.516 / 0.488 (0.502)

Brassica vegetables (except Brassica leafy vegetables)

Table 16 Residues of cyclaniliprole (mg/kg) in broccoli (IB-2012-JLW-028-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

BROCCOLI	No,	g	g ai/hL	GS & last	DALT	Residues, mg/k	Residues, mg/kg			
Location, Country; year; (variety)	(interval)	ai/ha		treatment day	(days)	Parent	NK-1375	Total		
Seymour, IL, USA,	3 (7)	79 78	28 28	BBCH 66 Aug 22	1	0.31/0.52 (0.42)	0.059/0.086 (0.073)	0.37/ 0.61 (0.49)		
2013 (Waltham 29)		77	29							
York, NE,	3	79	38	BBCH 48	1	0.26/0.55	< 0.01/0.014	0.28/ 0.57		
USA,	(6,7)	79	38	Oct 01		(0.41)	(0.012)	(0.42)		
2013		78	38							
(Coronado Crown hybrid)										
Hinton, OK, USA,	3	82	39	BBCH 49-	1	0.40/0.54	0.054/0.063	0.46/ 0.61		
2013	(6, 8)	80	41	55		(0.47)	(0.059)	(0.54)		
(Calabrese)		77	42	May 30						
Porterville, CA,	3	82	27	BBCH 49	1	0.13/0.088	0.010/< 0.01	0.14/ 0.099		
USA,	(7)	82	28	May 09		(0.11)	<u>(0.010)</u>	(0.12)		
2013 (Heritage)		81	27							
Sanger, CA, USA,	3	80	29	BBCH 49	1	0.50/0.82	0.042/0.057	0.54/ 0.88		
2013	(7)	87	29	Feb 21		(0.66)	(0.050)	(0.71)		
(Marathon)		83	29							
Blythe, CA,	3	61	32	BBCH 89	1	0.14/0.21	< 0.01/< 0.01	0.15/ 0.22		
USA,	(7)	61	33	Jan 10		(0.18)	(< 0.01)	(0.19)		
2013		61	33							
(Green Goliath)										
Madera, CA,	3	63	22	Mature	1	0.11/0.12	< 0.01/< 0.01	0.12/ 0.13		
USA,	(7)	61	22	Broccoli		(0.12)	(< 0.01)	(0.13)		
2012 (Heritage)		61	22	heads 8-15 cm diameter						
				Dec 25						
Hillsboro, OR,	3	81	34	BBCH 87	1	0.38/0.37	0.010/0.011	0.39/ 0.38		
USA,	(7)	80	34	Aug 02	_	(0.37)	(0.011)	(0.38)		
2013	(,)	80	34							
(Bay Meadows)										
Branchton, Ontario,	3	83	40	ВВСН	1	0.33/0.36 (0.34)	0.035/0.043 (0.039)	0.36/ 0.40		

BROCCOLI	No,	g	g ai/hL	GS & last	1	Residues, mg/kg		
Location, Country; year; (variety)	(interval)	ai/ha		treatment day	(days)	Parent	NK-1375	Total
CANADA,	(7, 8)	79 79	40 40	49-63	3	0.096/0.097		(0.38) 0.11/ 0.11
2013 (Imperial)		/9	40	Sept. 04	3	(0.097) 0.069/0.078	(0.016) 0.011/0.012	(0.11)
					5	(0.074)	()	0.081/0.091
					7	0.062/0.052 (0.057)	0.011/< 0.01 (0.011)	(0.087) 0.073/ 0.063
						,		(0.068)
St-Marc-sur- Richelieu, QC CANADA	3 (7)	79 81 82	40 40 40	BBCH 47- 49 July 25	1	0.20/0.20 (0.20)	0.031/0.029 (0.030)	0.23/ 0.23 (0.23)
2013 (Imperial)								

Table 17 Residues of cyclaniliprole (mg/kg) in cabbage heads with outer leaves (IB-2012-JLW-028-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

CABBAGE	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg	5	
HEADS WITH OUTER LEAVES	(interval)			treatment day	(days)	Parent	NK-1375	Total
Location, Country;								
year; (variety)								
North Rose, NY,	3	64	29	20-25 cm	1	0.29/0.35	0.018/0.021	0.31/ 0.37
USA, 2012	(7)	62	29	heads		(0.32)	(0.020)	(0.34)
(Storage No. 4)		62	29	Oct 10				
Mebane, NC,	3	80	28	BBCH 49	1	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(7)	78	29	June 18		(< 0.01)	(< 0.01)	(< 0.01)
2012		87	30					
(Early Jersey Wakefield)								
Bradenton, FL	3	68	24	heads	1	0.022/0.031	< 0.01/< 0.01	0.033/ 0.042
USA,	(7)	67	24	formed		(0.027)	(< 0.01)	(0.038)
2012 (Bravo)		69	24	Dec 16				
Verona, WI, USA,	3	81	31	BBCH 47-	1	0.016/0.012	< 0.01/< 0.01	0.027/ 0.023
2013	(7,8)	80	32	49		(0.014)	<u>(< 0.01)</u>	(0.025)
(Bobcat)		83	32	Aug 23				
Seymour, IL,	3	76	28	BBCH 49	1	0.071/0.093	< 0.01/0.011	0.082/0.10
USA,	(6,8)	82	28	July 23		(0.082)	(0.011)	(0.094)
2013		77	28					
(Golden acre)								
Geneva, MN	3	99	40	heads	1	0.053/0.026	0.01/< 0.01	0.063/ 0.037
USA, 2013	(7)	99	39	> 5-11 cm ^a		(0.040)	(0.01)	(0.051)
(Golden cross)		102	40	July 19				
Bagley, IA,	3	80	39	ВВСН	0	0.36/0.32	0.027/0.018	0.39/ 0.34
USA,	(7, 8)	79	38	47		(0.34)	(0.023)	(0.36)
2013		78	36	July 12	1	0.11/0.19	0.014/0.023	0.12/ 0.21
(Stonehead)						(0.15)	(0.019)	(0.17)
					3	0.14/0.13	0.025/0.021	0.16/ 0.15
						(0.13)	(0.023)	(0.16)

CABBAGE	No,		g ai/hL	GS & last	DALT	Residues, mg/kg		
HEADS WITH OUTER LEAVES	(interval)			treatment day	(days)	Parent	NK-1375	Total
Location, Country;								
year; (variety)								
					7	0.032/0.065 (0.049)	0.016/0.013 (0.015)	0.049/ 0.079 (0.065)
Hinton, OK,	3	82	42	ВВСН	1	0.032/0.017	< 0.01/< 0.01	0.042/ 0.027
USA,	(6,7)	93	46	49		(0.025)	<u>(< 0.01)</u>	(0.035)
2013		89	43	June 20				
(Late Flat Dutch)								
Madera, CA, USA, 2012 (Golden Cross)	3 (7)	61 61 61	22 21 21	mature cabbage heads, Dec 27	1	0.40/0.39 (0.39)	0.031/0.025 (0.028)	0.43/ 0.41 (0.42)
St-Marc-sur- Richelieu, QC Canada 2013 (Bronco)	3 (7)	84 82 79	40 40 40	BBCH 47- 49 July 25	1	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)

^a Reported growth stage (vegetative) not correct, because growth stage at second application the heads were already 5–11 cm.

Fruiting vegetables - Cucurbits

Table 18 Residues of cyclaniliprole (mg/kg) in cucumber (IB-2013-JAM-003-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

CUCUMBER	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg		
Location, Country; year; (variety)	(interval)			treatment day	(days)	Parent	NK-1375	Total
Seven Springs, NC, USA, 2013 (National Pickling)	3 (7, 8)	80 80 79	27 25 25	BBCH 89 June 19	1	0.028/0.020 (0.024)	< 0.01/< 0.01 (< 0.01)	0.039/ 0.031 (0.035)
Suffolk, VA, USA, 2013 (Straight Eight)	3 (7)	82 83 84	34 35 35	0.9-1.5 m runners July 19	1	0.018/0.019 (0.019)	< 0.01/< 0.01 (< 0.01)	0.029/0.030 (0.030)
Winter Garden, FL, USA, 2013 (BOA)	3 (7)	80 79 78	21 21 21	BBCH 83 June 05	1	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)
Northwood, ND, USA, 2013 (Marketmore 76)	(7)	81 81 81	28 28 28	BBCH 85 Aug 22	1	0.021/0.015 (0.018)	< 0.01/< 0.01 (< 0.01)	0.032/ 0.026 (0.029)
Seymour, IL, USA, 2013 (Bush Crop F1)	3 (7)	83 76 80	28 28 28	BBCH 87 Aug 08	1	0.016/0.012 (0.014)	< 0.01/< 0.01 (< 0.01)	0.027/ 0.023 (0.025)
Enid, OK	3	77	42	BBCH 88	1	< 0.01/0.016	< 0.01/< 0.01	< 0.01/ 0.027

CUCUMBER	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg		
Location, Country; year; (variety)	(interval)			treatment day	(days)	Parent	NK-1375	Total
USA, 2013 (Calypso-pickle)	(6-7)	79 81	41 32	Aug 14		(0.013)	(< 0.01)	(0.024)
Leonard, MO, USA, 2013 (Jackson Classic, F1)	3 (7)	82 82 82	30 29 29	flower to ripe fruit Aug 19	1 4 7	0.049/0.061 (0.055) 0.025/0.025 (0.025) 0.015/0.016 (0.016) 0.015/0.010 (0.013)	(< 0.01) < 0.01/< 0.01 (< 0.01) < 0.01/< 0.01 (< 0.01) < 0.01/< 0.01	0.060/ 0.072 (0.066) 0.036/ 0.036 (0.036) 0.026/ 0.027 (0.027) 0.026/ 0.021 (0.024)
Uvalde, TX, USA, 2013 (Cobra F1)	3 (7)	79 81 82	38 40 37	BBCH 81 Aug 30	1	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)
St-Marc-sur- Richelieu, Quebec, CAN, 2013 (Marketmore)	(6-7)	83 81 80	40 40 40	BBCH 67- 71 July 31	1	0.010/0.012 (0.011)	< 0.01/< 0.01 (< 0.01)	0.021/ 0.023 (0.022)

Table 19 Residues of cyclaniliprole (mg/kg) in summer squash (IB-2013-JAM-003-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

SUMMER	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg		
SQUASH Location,	(interval)			treatment day	(days)	Parent	NK-1375	Total
Country;								
year; (variety)								
Germansville,	3	81	34	full boom,	1	0.028/0.029	< 0.01/< 0.01	0.039/ 0.039
PA, USA,	(6)	80	34	fruiting,		(0.028)	(< 0.01)	(0.039)
2013		80	34	mature fruit				
(Super Pik)				Aug 11				
Seven Spring,	3	79	28	BBCH 88	0	0.043/0.027	< 0.01/< 0.01	0.054/ 0.038
NC, USA,	(6, 8)	80	27	June 10		(0.035)	(< 0.01)	(0.046)
2013		79	29		1	0.011/0.017	< 0.01/< 0.01	0.022/ 0.028
(Early Prolific						(0.014)	(< 0.01)	(0.025)
Straight Neck)					4	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
						(< 0.01)	(< 0.01)	(< 0.01)
					7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
						(< 0.01)	(< 0.01)	(< 0.01)
Wintergarden,	3	80	21	BBCH 83	1	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/
FL, USA	(7)	80	21	June 05		(< 0.01)	(< 0.01)	< 0.01
2013 (Goldstar)		81	21					(< 0.01)
Northwood,	3	78	28	fruit have	1	0.024/0.027	< 0.01/< 0.01	0.035/ 0.038
ND, USA,	(6, 8)	81	28	reached		(0.026)	(< 0.01)	(0.037)
2013		79	28	typical length and				

SUMMER	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg		
SQUASH Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Total
year; (variety)								
(Black Beauty)				colour				
				Aug 16				
Seymour, IL,	3	81	28	BBCH 88	1	0.040/0.051	< 0.01/< 0.01	0.051/ 0.062
USA,	(7)	81	28	Aug 08		(0.046)	(< 0.01)	(0.057)
2013		82	29					
(Sunglo F1)								
Enid, OK,	3	79	37	BBCH 76	1	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(7)	82	37	Aug 01		(< 0.01)	(< 0.01)	(< 0.01)
2013		77	42					
(Calabacita)								
Leonard, MO,	3	79	38	51 cm tall	1	0.028/0.027	0.012/< 0.01	0.041/ 0.038
USA,	(7)	80	40	with fruit		(0.028)	(0.011)	(0.040)
2013		80	41	July 16				
(Dunja F1)								
Madera, CA,	3	81	29	Mature	1	0.031/0.034	< 0.01/< 0.01	0.042/ 0.045
USA,	(7)	83	29	summer		(0.033)	(< 0.01)	(0.043)
2013		81	28	squash				
(Black Beauty)				June 20				
Hillsboro, OR,	3	79	34	BBCH 85-	1	0.014/0.017	< 0.01/< 0.01	0.025/ 0.028
USA,	(7)	80	34	88		(0.016)	(< 0.01)	(0.027)
2013 (Hybrid Squash – Zukes)		78	34					

Table 20 Residues of cyclaniliprole (mg/kg) in melon/cantaloupe (IB-2013-JAM-003-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

MELON	No,	g	g	GS & last	DALT	Residues, mg/kg	mg/kg		
Location, Country;	(interval)	ai/ha	ai/hL	treatment day	(days)	Parent	NK-1375	Total	
year; (variety)									
Jeffersonville,	3	82	29	BBCH 87	1	0.074/0.100	< 0.01/0.011	0.085/ 0.11	
GA, USA,	(7)	82	29	Jul 15		(0.087)	(0.011)	(0.099)	
2013		79	28						
(Hales Best Jumbo)									
Northwood,	3	82	28	BBCH 88	1	0.036/0.042	< 0.01/< 0.01	0.047/ 0.053	
ND, USA,	(7)	81	34	Sep 10		(0.039)	(< 0.01)	(0.050)	
2013		80	28						
(Athena)									
Enid, OK,	3	80	31	BBCH 89	1	0.032/0.070	< 0.01/0.012	0.043/ 0.083	
USA,	(7)	80	35	Aug 28		(0.051)	(0.011)	(0.063)	
2013		80	42						
(CPMR 45)									
Seymour, IL,	3	83	28	BBCH 83	1	0.035/< 0.01	< 0.01/< 0.01	0.046/ 0.021	
USA,	(7)	76	28	Aug 29		(0.023)	(< 0.01)	(0.033)	
2013		80	29						
(Lil'Loupe)									

MELON	No,	g	g	GS & last	DALT	Residues, mg/kg		
Location, Country;	(interval)	ai/ha	ai/hL	treatment day	(days)	Parent	NK-1375	Total
year; (variety)								
Leonard, MO, USA, 2013 (SC Earlichamp F1)	3 (7)	81 81 81	29 29 29	green fruit to ripe fruit Aug 19	1	0.040/0.044 (0.042)	0.012/0.011 (0.012)	0.053/0.056 (0.055)
Hinton, OK, USA, 2013 (Superstar)	3 (7, 8)	81 80 82	43 39 43	BBCH 83 Aug 13	1	0.012/0.015 (0.014)	< 0.01/< 0.01 (< 0.01)	0.023/ 0.026 (0.024)
Madera, CA, USA, 2013 (Hales Best Jumbo)	3 (7)	81 82 81	29 29 29	mature cantaloupe July 15	0 1 4 7	0.052/0.057 (0.055) 0.030/0.050 (0.040) 0.019/0.027 (0.023) 0.014/0.012 (0.013)	0.012/0.017 (0.015) 0.014/0.020 (0.017) 0.013/0.018 (0.016) < 0.01/< 0.01 (< 0.01)	0.065/ 0.075 (0.070) 0.045/ 0.071 (0.058) 0.032/ 0.046 (0.040) 0.025/ 0.023 (0.024)
Sanger, CA, USA, 2013 (Hybrid)	3 (6-8)	77 83 79	28 28 28	BBCH 89 Oct 08	1	0.041/ 0.047 (0.044)	< 0.01/< 0.01 (< 0.01)	0.052/ 0.058 (0.055)
Porterville, CA, USA, 2013 (Top Mark)	3 (7)	80 79 80	28 28 28	BBCH 89 July 25	1	0.013/ 0.021 (0.017)	< 0.01/< 0.01 (< 0.01)	0.024/ 0.032 (0.028)
Branchton, Ontario, CAN, 2013 (Melon Muskat Hybrid)	3 (6-7)	85 82 77	27 26 26	BBCH 84-86 Sep 17	1	0.073/ 0.068 (0.071)	< 0.01/< 0.01 (< 0.01)	0.084/ 0.079 (0.081)

Fruiting vegetables, other than Cucurbits

Table 21 Residues of cyclaniliprole (mg/kg) in field tomatoes (IB-2012-JLW-029-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

TOMATO	No,	g ai/ha		GS & last		Residues, mg/kg		
Location, Country;	(interval)			treatment (days)		Parent	NK-1375	Total
year; (variety)								
North Rose, NY, USA, 2012 (Celebrity)	3 (7)	61 60 61	20 20 20 20	green and red fruit Sept 25	1	0.012/0.021 (0.017)	(< 0.01)	0.023/ 0.032 (0.028)
Mebane, NC, USA, 2013 (Sun Gold	3 (7)	81 81 81	29 29 29	BBCH 82 July 11	1	0.058/0.027 (0.043)	(< 0.01)	0.069/ 0.038 (0.053)

TOMATO	No,	g ai/ha	g	GS & last	DALT	Residues, mg/kg				
Location, Country;	(interval)		ai/hL	treatment day	(days)	Parent	NK-1375	Total		
year;										
(variety)	<u> </u>			 						
Cherry)	3	88	47	fruit and	1	0.024/0.046	< 0.01/< 0.01	0.045/0.057		
Bradenton, FL,	(7)	87	47 47	flowers	1	0.034/ 0.046 (0.040)	< 0.01/< 0.01 (< 0.01)	0.045/ 0.057 (0.051)		
USA,	(7)	84	47	May 31			,	(0.031)		
2013		04	7 /							
(BHN 785)										
Winter	3	80	21	BBCH 80-	1	0.026/ 0.038	< 0.01/< 0.01	0.036/ 0.049		
Garden, FL, USA,	(6,7)	80	21	81		(0.032)	<u>(< 0.01)</u>	(0.042)		
2013		81	21	June 18						
(Amelia)										
Northwood,	3	80	28	BBCH 83	1	< 0.01/0.012	< 0.01/< 0.01	< 0.01/ 0.023		
ND,	(7)	79	34	Sept 10		(0.011)	<u>(< 0.01)</u>	(0.022)		
USA, 2013		79	28							
(Better Boy)										
Verona, WI,	3	81	30	BBCH 82-	1	0.035/0.041	< 0.01/< 0.01	0.046/ 0.051		
USA,	(6, 7)	80	31	84	1	(0.038)	(< 0.01)	(0.049)		
2013	(-, -,	81	31	Sept 05						
(Mountain										
Fresh)										
	3	80	29	BBCH 82	1	0.039/0.021	< 0.01/< 0.01 (< 0.01)	0.050/ 0.032		
USA,	(7, 8)	79	29	Sept 03		(0.030)	(< 0.01)	(0.041)		
2013 (Celebrity)		80	28							
York, NE,	3	79	39	Not	1	< 0.01/0.016	< 0.01/< 0.01	< 0.01/ 0.027		
USA,	(7)	79	38	reported	1	(0.013)	(< 0.01)	(0.019)		
2013	(,)	80	38	Sept 24		(0.013)		(0.015)		
(Better Boy)										
Pierron, IL,	3	61	22	BBCH 88	1	0.024/ 0.025	< 0.01/< 0.01	0.035/ 0.036		
USA,	(7)	61	22	Sept 12		(0.025)	<u>(< 0.01)</u>	(0.036)		
2013 (Jet		60	23							
Star)			20	DD GIL 04	4	0.004/0.000	0.047 0.04	0.000/0.000		
Wyoming, IL		60	29 30	BBCH 83	1	0.021/0.028 (0.025)	< 0.01/< 0.01 (< 0.01)	0.032/0.039		
USA, 2013	(7)	60 60	30 29	Sept 10		(0.025)	((0.036)		
(Delicious)		00	29							
Ladoga, IN,	3	79	38	some red	0	0.058/0.041	< 0.01/< 0.01	0.068/ 0.052		
USA,	(7, 8)	79	38	tomatoes		(0.049)	(< 0.01)	(0.060)		
2013		79	38	Aug 16	1	0.034/0.017/	< 0.01/< 0.01/< 0.01/< 0.01	0.045/ 0.027		
(Mountain						0.036/0.022	(< 0.01)	(0.036)		
Fresh)						(0.027) a	< 0.01/0.015 (0.013)			
					3	0.024/0.042 (0.033)	0.014/< 0.01	0.034/ 0.058		
						0.031/0.013	(0.012)	(0.047)		
						(0.022)		0.045/ 0.024		
			2.0	0.1.1	7		0.04/	(0.034)		
Geneva, MN, USA,		79	39	fruiting	1	0.038/ 0.030 (0.034)	< 0.01/< 0.01 (< 0.01)	0.048/ 0.041		
5571,	(6,7)	81	39	Aug 30		(0.051)	1.0.01/	(0.045)		

TOMATO	No,	g ai/ha	g	GS & last	DALT	Residues, mg/kg		
Location, Country; year; (variety)	(interval)			treatment day	(days)	Parent	NK-1375	Total
(Super Fantastic)		81	42					
Leonard, MO, USA, 2013 (Celebrity)	3 (7)	82 80 83	30 29 29	flower to ripe Aug 19	1	0.036/ 0.039 (0.037)	< 0.01/< 0.01 (< 0.01)	0.046/ 0.050 (0.048)
Kerman, CA, USA, 2013 (Roma)	(7)	78 79 79	28 28 28	BBCH 75 Aug 19	1	0.070/ 0.083 (0.076)	0.024/0.028 (0.026)	0.095/ 0.11 (0.10)
Guadalupe, CA, USA, 2012 (Quait27)	3 (7)	60 60 60	23 23 20	BBCH 81 Oct 02	0 1 3 7	<0.01/0.014 (0.012) 0.025/0.011 (0.018) 0.016/0.017 (0.017) 0.016/< 0.01 (0.013)	< 0.01/< 0.01 (< 0.01) < 0.01/< 0.01 (< 0.01) < 0.01/< 0.01 (< 0.01) < 0.01/< 0.01 (< 0.01)	< 0.01/ 0.025 (0.023) 0.035/ 0.022 (0.029) 0.026/ 0.028 (0.027) 0.027/ < 0.01 (0.024)
Guadalupe, CA, USA, 2013 (Roma K2763)	3 (7)	79 80 80	27 27 27	BBCH 84 Oct 29	1	0.036/0.029 (0.032)	< 0.01/< 0.01 (< 0.01)	0.046/ 0.040 (0.043)
Porterville, CA, USA, 2013 (AB2)	3 (6-7)	80 80 79	27 25 25	BBCH 89 Aug 26	1	0.026/0.025 (0.026)	< 0.01/< 0.01 (< 0.01)	0.036/ 0.036 (0.036)
Sanger, CA, USA, 2013 (Q21)	3 (7)	62 97 83	16 27 22	BBCH 87 Sept 13	1	0.044/0.041 (0.042)	< 0.01/< 0.01 (< 0.01)	0.055/ 0.051 (0.053)
Dunnigan, CA, USA, 2013 (577 Heinz)	3 (7)	81 81 81	43 43 43	BBCH 89 Sept 01	1	0.025/0.028	< 0.01/< 0.01 (< 0.01)	0.035/ 0.039 (0.037)
Madera, CA, USA, 2013 (Quality)	3 (7)	81 81 81	29 29 29	Mature tomatoes July 15	1	0.027/0.031 (0.029)	< 0.01/0.011 (0.011)	0.038/ 0.043 (0.040)
Branchton, Ontario, CANADA, 2013 (TSH24)	3 (6, 7)	81 80 79	40 40 40	BBCH 85 Aug 29	1	0.063/0.076 (0.070)	< 0.01/< 0.01 (< 0.01)	0.074/ 0.087 (0.080)
St-Marc-sur- Richelieu,	3	81	32	BBCH 73	1	0.021/0.016	< 0.01/< 0.01	0.032/ 0.027

TOMATO		g ai/ha	_			Residues, mg/kg		
Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Total
year; (variety)								
Quebec,	(6, 8)	80	32	Aug 22		(0.019)	<u>(< 0.01)</u>	(0.029)
CANADA,		73	32					
2013								
(Joker)								

^a Mean of four replicate field samples

Table 22 Residues of cyclaniliprole (mg/kg) in field sweet bell peppers (IB-2012-JLW-029-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

DELL	DELL DELL DELL DELL DELL DELL DELL DELL										
BELL PEPPERS,	No, (interval)	g ai/ha	g ai/hL	GS & last treatment day	DALT (days)	Residues, mg/l					
SWEET	(IIIICI val)	a1/11d	al/IIL	ireatinent day	(uays)	Parent	NK-1375	Total			
Location, Country;											
year; (variety)											
Seven	3	82	25	BBCH 89	1	0.019/ 0.019	< 0.01/< 0.01	0.029/ 0.029			
Springs, NC, USA,	(7)	79	25	June 26		(0.019)	<u>(< 0.01)</u>	(0.029)			
2013		81	24								
(California											
Wonder)											
Winter	3	81	21	BBCH 82	1	0.088/ 0.11	< 0.01/< 0.01	0.099/ 0.12			
Garden, FL, USA,	(6,7)	81	21	June 18		(0.098)	<u>(< 0.01)</u>	(0.11)			
2013		80	21								
(New Ace)											
Northwood,	3	78	28	fruit reached	1	0.048/ 0.048	< 0.01/< 0.01	0.059/ 0.059			
ND, USA,	(6,8)	81	29	final length and		(0.048)	<u>(< 0.01)</u>	(0.059)			
2013		80	28	colour							
(Bell)				Aug 16							
Seymour,	3	82	29	BBCH 84	1	0.070/ 0.074	< 0.01/< 0.01	0.080/ 0.085			
IL, USA,	(7)	77	28	Sept 24		(0.072)	<u>(< 0.01)</u>	(0.083)			
2013		79	29								
(King Arthur F1)											
Geneva,	3	80	40	fruiting	1	0.028/ 0.021	< 0.01/< 0.01	0.039/ 0.031			
MN,	(6,8)	83	41	Sept 23		(0.025)	<u>(< 0.01)</u>	(0.035)			
USA,		82	38								
2013											
(California Wonder)											
Uvalde TX,	3	62	26	BBCH 84	1	0.045/ 0.047	< 0.01/< 0.01	0.055/ 0.058			
USA,	(7)	60	26	Sept 25		(0.046)	<u>(< 0.01)</u>	(0.056)			
2012		61	26								
(Taurus)											
Sanger,	3	60	16	BBCH 89	1	0.098 / 0.10	0.016/0.019	0.11/ 0.12			
CA,	(7)	60	16	Oct 18		(0.10)	(0.018)	(0.12)			
USA,											

BELL	No,	g	g	GS & last	DALT	Residues, mg/l	κg	
PEPPERS, SWEET	(interval)	ai/ha	ai/hL	treatment day	(days)	Parent	NK-1375	Total
Location, Country;								
year; (variety)								
2012		61	16					
(Indra)								
Madera, CA, USA,	3 (7,7)	81 82	29 28	mature (medium to	0	0.10/ 0.07 (0.086)	0.023/ 0.018 (0.020)	0.13/ 0.089 (0.11)
2013	(*,7.)	81	29	large)	1	0.077/ 0.060	0.028/ 0.024	0.11/0.085
(Cypress)				June 28		(0.068)	(0.026)	(0.096)
					3	0.038/ 0.037	0.018/ 0.020	0.057/ 0.063
						(0.037)	(0.019)	(0.058)
					7	0.035/ 0.032	0.027/ 0.031	0.064/ 0.065
						(0.033)	(0.029)	(0.064)
St-Marc-	3	75	32	BBCH 71-73	1	0.015/ 0.013	< 0.01/< 0.01	0.025/ 0.024
sur- Richelieu.	(6, 8)	80	32	Aug 22		(0.014)	<u>(< 0.01)</u>	(0.025)
Quebec,		75	32					
CANADA,								
2013								
(Patriot)								

Table 23 Residues of cyclaniliprole (mg/kg) in field non-bell peppers (IB-2012-JLW-029-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

NON-BELL PEPPERS,	No, (interval)	No, g g GS & last DALT interval) ai/ha ai/hL treatment (days)			, 8 8			
Location, Country;	(intervar)	an na	ur iiL	day	(days)	Parent	NK-1375	Total
year; (variety)								
Winter Garden,	3	80	21	BBCH 82	1	0.057/0.056	< 0.01/< 0.01	0.068/ 0.067
FL,	(6,7)	80	21	June 18		(<u>0.057</u>)	<u>(< 0.01</u>)	(0.067)
USA,		80	21					
2013 (Calica)								
Seymour, IL,	3	81	29	BBCH 89	1	0.036/0.046	< 0.01/< 0.01	0.046/ 0.056
USA,	(7,8)	77	29	Sept 03		(<u>0.041</u>)	<u>(< 0.01</u>)	(0.051)
2013		77	29					
(Sopron F1)								
Porterville, CA,	3	80	28	BBCH 89	1	0.074/0.080	0.019/0.013	0.094/ 0.095
USA,	(7,7)	80	28	July 25		(<u>0.077</u>)	(<u>0.016</u>)	(0.094)
2013		80	28					
(Jalapeno Mammoth)								

Leafy vegetables (including Brassica leafy vegetables)

Table 24 Residues of cyclaniliprole (mg/kg) in head lettuce (IB-2012-JAM-001-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

LETTUCE,	No,	g ai/ha		GS & last	DALT	Portion	Residues, mg	g/kg	
HEAD	(interval)		ai/hL	treatment day	(days)	analysed	Parent	NK-1375	Total.
Location,									
Country;									
year; (variety)									
North Rose, NY,		83	33	10-15 cm	1	WWL	1.1/1.2	0.19/0.20	1.3/ 1.4
USA,	(7)	81	32	heads,			(1.2)	(0.20)	(1.4)
2013		83	33	July 25		W/OWL	0.60/0.61	0.10/0.11	0.71/ 0.73
(Ithaca)							(0.61)	(0.11)	(0.72)
Bradenton, FL,	3	68	24	head	1	WWL	0.37/0.27	0.040/0.037	0.41/ 0.31
USA,	(7)	67	24	formation			(0.32)	(0.039)	(0.36)
2012		68	24	Dec 16		W/OWL	0.065/0.11	< 0.01/0.014	0.076/ 0.12
(Raider)							(0.088)	(0.012)	(0.098)
Guadalupe, CA,	3	82	28	BBCH 49	1	WWL	1.2/1.5	0.21/0.27	1.4/ 1.8
USA,	(6,7)	78	28	July 12			(1.4)	(0.24)	(1.6)
2013		82	28			W/OWL	0.081/0.097	0.013/0.016	0.095/ 0.11
(Iceberg)							(0.089)	(0.015)	(0.10)
Porterville, CA,	3	81	29	BBCH 49	1	WWL	0.20/0.32	0.034/0.051	0.24/ 0.37
USA,	(6, 8)	80	29	May 07			(0.26)	(0.043)	(0.31)
2013		80	29			W/OWL	0.012/< 0.01	< 0.01/< 0.01	0.023/< 0.01
(Vandenberg)							(0.011)	(< 0.01)	(0.017)
Sanger, CA,	3	61	16	BBCH 49	1	WWL	0.55/0.57	0.045/0.050	0.60/ 0.62
USA,	(7)	62	16	Nov 02			(0.56)	(0.048)	(0.61)
2012		63	16			W/OWL	0.059/0.063	< 0.01/< 0.01	0.070/ 0.074
(Tahema)							(0.061)	(< 0.01)	(0.072)
	3	62	22	mature head	1	WWL	2.1/2.3	0.14/0.14	2.2/ 2.4
USA,	(7)	62	22	lettuce			(2.2)	(0.14)	(2.3)
2013		61	21	Jan 16		W/OWL	0.17/0.10	< 0.01/< 0.01	0.18/ 0.11
(Great lakes)							(0.14)	(< 0.01)	(0.15)
St-Marc-sur-	3	79	40	BBCH 48,	1	WWL	0.065/0.069	0.024/0.030	0.091/ 0.10
Richelieu,	(7, 8)	78	40	July 18			(0.067)	(0.027)	(0.096)
Quebec,		78	40			W/OWL	< 0.01/	< 0.01/< 0.01	< 0.01/< 0.01
CANADA,							< 0.01	(< 0.01)	(< 0.01)
2013							(< 0.01)	Ì	
(PYB 7101)					<u> </u>				

WWL: With wrapper leaves W/OWL: Without wrapper leaves

Table 25 Residues of cyclaniliprole (mg/kg) in leaf lettuce (IB-2012-JAM-001-01-01) following three foliar applications of cyclaniliprole in an SL-formulation

LETTUCE,		DALT	Residues, mg/kg					
LEAFY	(interval)	ai/ha	ai/hL	treatment day	(days)	Parent	NK-1375	Total
Location, Country;				day				
year; (variety)								
Seven Springs,	3	80	3632	BBCH 49	1	2.7/3.2	0.27/0.31	3.0/ 3.6

LETTUCE,	No,	g	g	GS & last	DALT	Residues, mg/	kg	
LEAFY	(interval)	ai/ha	ai/hL	treatment day	(days)	Parent	NK-1375	Total
Location, Country;				day				
year; (variety)								
NC,	(6,7)	80	31	May 08		(3.0)	(0.29)	(3.3)
USA, 2013		78						
(Black Seeded								
Simpson)								
Seymour, IL,	3	79	29	BBCH 49	1	2.5 / 2.4	0.18 / 0.19	2.7/ 2.6
USA,	(6,9)	80	29	July 23		(2.4)	(0.19)	(2.6)
2013		78	29					
(Black Seeded Simpson)								
Highland, IL,	3	81	29	BBCH 49	1	0.77 / 0.77	0.022/ 0.022	0.80/ 0.79
USA,	(6,7)	81	29	Nov 04		(0.77)	(0.022)	(0.79)
2013		81	29					
(Oakleaf)								
Glenn, CA,	3	61	32	BBCH 49	1	1.48/1.1	0.037/0.028	1.4/ 1.1
IUSA,	(6, 8)	61	32	Nov 27		(1.2)	(0.033)	(1.3)
2012		61	32					
(Greenleaf)								
Porterville, CA,	3	81	29	BBCH 49	1	1.3/1.2	0.086/ 0.074	1.4/ 1.3
USA,	(7)	80	29	Feb 28		(1.3)	(0.080)	(1.4)
2013		80	29					
(Star fighter)								
Sanger CA,	3	63	16	BBCH 48	1	0.91/0.81	0.16 / 0.16	1.1/ 0.98
USA,	(7)	100	26	June 03		(0.86)	(0.16)	(1.0)
2013		83	22					
(Green Forest)								
Madera, CA,	3	61	22	mature	1	1.9/2.1	0.19 / 0.21	2.1/ 2.3
USA,	(7)	61	22	lettuce, Nov 01		(2.0)	(0.20)	(2.2)
2012		61	21	1107 01				
(Green Star)								
Princeton,	3	79	32	BBCH 49	0	1.2 / 1.3	0.027/0.028	1.2/ 1.3
Ontario,	(6,7)	82	32	June 25		(1.2)	(0.028) 0.024/0.020	(1.3)
CANADA,		84	32		1	0.26 / 0.23	(0.022)	0.28/ 0.25
(Green leaf)						(0.25) 0.088/0.095	0.012/0.010	(0.27)
(Green lear)					3	(0.092)	(0.011)	0.10/ 0.11
					_	0.031/0.031	< 0.01/< 0.01	(0.10)
					7	(0.031)	(< 0.01)	0.041/ 0.041
G. M		0.0	40	DDCH 10	1	` ′	0.25/0.26	(0.41)
St-Marc-sur- Richelieu, QC	3	80	40	BBCH 19	1	2.1 / 2.3 (2.2)	0.35/0.36 (0.36)	2.5/ 2.6
CANADA	(7,8)	71	40	July 03		<u>1,4.4.)</u>	(0.50)	(2.6)
2013		85	40					
(Salad Bowl)								
Princeton,	3	74	32	BBCH 47-	1	WWL	l	1
Ontario,	(7)	76	32	49	1	0.097/0.090	0.013/0.011	0.11/0.10
CANADA,		86	32	July 31		(0.094)	(0.013/0.011 (0.012)	(0.11)
2013			52			W/OWL		(0.11)
(Butterhead)							< 0.01/< 0.01	0.049/0.052
						0.037/0.042	< 0.01/< 0.01	0.048/ 0.053

LETTUCE,	No,	g	g	GS & last	DALT	Residues, mg/l	kg	
LEAFY	(interval)	ai/ha	ai/hL	treatment	(days)	Parent	NK-1375	Total
Location,				day				
Country;								
year; (variety)								
						(0.040)	(< 0.01)	(0.051)

WWL: With wrapper leaves W/OWL: Without wrapper leaves

Table 26 Residues of cyclaniliprole (mg/kg) in cos lettuce (IB-2012-JAM-001-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

LETTUCE,	No,	g	g	GS &	DALT	Residues, mg/kg		
COS Location, Country;	(interval)	ai/ha	ai/hL	last treatment day	(days)	Parent	NK-1375	Total
year; (variety)								
Bradenton, FL, USA, 2012	3 (7)	67 66	24 24	Heading/ flowering initiation	1	0.71 / 0.76 (0.74)	0.10 / 0.11 (0.10)	0.82/ 0.87 (0.85)
(Green Tower, Romaine)		66	24	Dec 16				
Northwood, ND, USA, 2013	3 (7)	81 79 80	32 32 32	BBCH 19+	1	0.83/0.70 (0.76)	0.084/0.070 (0.077)	0.92/ 0.77 (0.84)
(Romaine)			32					
Seymour, IL,	3	83	28	BBCH	1	WWL	ı	1
USA, 2013	(7)	76 81	28 29	60 Aug 08		0.77/1.1 (0.94)	0.096/0.12 (0.11)	0.87/ 1.2 (1.0)
(Parris Island						W/OWL		·
cos)						0.72/0.69 (0.71)	0.045/0.033 (0.039)	0.77/ 0.73 (0.75)

WWL: With wrapper leaves W/OWL: Without wrapper leaves

Table 27 Residues of cyclaniliprole (mg/kg) in spinach (IB-2012-JAM-001-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

SPINACH		g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg		
Location, Country; year; (variety)	(interval)			treatment day	(days)	Parent	NK-1375	Tot.
Germansville, PA, USA, 2013 (Tyee)	3 (8,6)	82 80 80	39 39 39	BBCH 48- 49 June 04	1	3.2/3.6 (<u>3.4</u>)	0.68/0.70 (<u>0.69</u>)	3.9/ 4.3 (<u>4.1</u>)
Seven Springs, NC, USA, 2012 (Baker)	3 (6,8)	61 60 60	21 20 20	BBCH 49 Oct 31	1	3.0/2.8 (<u>2.9</u>)	0.36/0.32 (<u>0.34</u>)	3.4/3.1 (<u>3.3</u>)
Dearfield, MI, USA ^a , 2013 (Crocodile Hybrid)	(7)	61 60 61	26 26 26	Not reported Oct 23	2	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)	< 0.01/ < 0.01 (< 0.01)
Seymour, IL,	3	82	29	BBCH 55	1	2.8/2.7	0.50/0.58	3.3/ 3.3

SPINACH	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg			
Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Tot.	
year; (variety)				,					
USA,	(7)	83	29	Aug 22		(<u>2.8</u>)	(<u>0.54</u>)	(<u>3.3</u>)	
2013		80	29						
(Olympia F1)									
Uvalde, TX,	3	62	32	BBCH 48	1		0.20/0.21	2.4/ 2.5	
USA,	(7)	61	33	Dec 19		(<u>2.3</u>)	(<u>0.21</u>)	(<u>2.5</u>)	
2012 (DMC 6607)		62	32						
Jerome, ID,	3	63	21	BBCH 49	1	1.9/2.1	0.068/0.072	2.0/2.2	
USA,	(8,6)	62	20	Oct 24		(<u>2.0</u>)	(<u>0.070</u>)	(<u>2.1</u>)	
2012 (Unipack 151)		63	20						
Santa Maria, CA,	3	80	28	BBCH 49	1	2.4/2.4	0.25/0.24	2.7/ 2.7	
USA,	(7,6)	80	28	July 12		(<u>2.4</u>)	(<u>0.25</u>)	(<u>2.7</u>)	
2013 (Avenger)		82	28						
Madera, CA, USA,	3	61	22	mature	1	1.4/1.4	0.079/0.068	1.5/ 1.5	
2012 (Shasta)	(7)	61	22	spinach		(<u>1.4</u>)	$(\underline{0.074})$	(<u>1.5</u>)	
		61	21	Dec 27					
St-Marc-sur-	3	80	40	BBCH 16-	1	4.5/4.7	0.88/0.89	5.4/ 5.6	
Richelieu, QC	(7,8)	71	40	19		(<u>4.6</u>)	(0.89)	(<u>5.5</u>)	
Canada		85	40	July 03					
2013 (Stanton)									

^a As the residues from this trial did not follow the same trend as all other trials conducted on spinach, this trial was not considered in the estimation of the maximum residue level estimation.

Table 28 Residues of cyclaniliprole (mg/kg) in mustard greens (IB-2012-JLW-028-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

MUSTARD	No, (interval)	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/	kg	
GREENS				treatment day	(days)	Parent	NK-1375	Tot.
Location, Country;								
year; (variety)								
Seven Springs, NC,	3	60	21	BBCH 49	0	4.8/5.1	0.39/0.39	5.2/ 5.5
USA,	(6,7)	61	21	Oct 23		(5.0)	(0.39)	(5.4)
2012 (Tendergreen)		60	20		1	3.1/3.0	0.42/0.40	3.5/ 3.4
						(3.0)	(0.41)	(3.5)
					3	2.1/2.4	0.40/0.45	2.5/ 2.9
						(2.3)	(0.43)	(2.7)
					7	0.80/0.82	0.16/0.17	0.97/ 1.0
						(0.81)	(0.16)	(0.99)
Cheneyville, LA,	3	62	20	8-10 leaf	1	4.0/4.2	0.30/0.32	4.3/ 4.6
USA,	(7)	61	20	Nov 13		<u>(4.1)</u>	(0.31)	(4.4)
2012		60	19					
(Florida Broadleaf)								
Leonard, MO,	3	81	39	some plants	1	4.1/3.8	0.36/0.32	4.5/ 4.1
USA,	(7)	80	39	heading		(4.0)	(0.34)	(4.3)
2013		79	39	June 27				
(Southern Giant Curled)								
Hinton, OK, USA,	3	80	38	BBCH 45	1	5.3/6.5	0.30/0.35	5.6/6.8

	No, (interval)	g ai/ha	g ai/hL	GS & last		Residues, mg/l	ζg	
GREENS Location, Country;				treatment day	(days)	Parent	NK-1375	Tot.
year; (variety)								
2013 (Florida Broadleaf)	(-).)	80 80	38 38	Nov20		(5.9)	(0.32)	(6.2)
Madera, CA, USA, 2012 (Florida Broadleaf)	(7)	61 61 61	22 22 21	mature mustard greens Nov 01	1		0.095/0.10 (0.10)	1.4/ 1.6 (1.5)

Tuberous and Corm Vegetables

Table 29 Residues of cyclaniliprole (mg/kg) in potato tubers (IB-2015-JAM-003-01-01) following three foliar applications of cyclaniliprole in an SL-formulation

POTATO	No, (interval)	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg	g	
Location, Country; year; (variety)	(interval)			treatment day	(days)	Parent	NK-1375	Total
North Rose, NY,	3	100	33	Post bloom	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(5)	100	33	Aug 10		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2015		99	33					
(Red Norland)								
Waterloo, NY,	3	99	36	Post bloom	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.0
USA,	(5)	101	36	Sep 8		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2015		101	36					
(Red Norland)								
	3	99	36	Post bloom	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.0
USA,	(5)	99	35	Sep 2		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2015 (Chieftan)		100	36					
Germansville,	3	101	42	BBCH 48-	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.0
PA, USA,	(5)	100	43	49		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2015 (Reba)		101	43	Aug 31				
Baptistown, NJ,	3	101	36	BBCH 46-	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.0
USA, 2015 (Waneta)	(4, 6)	104	35	47		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
(waneta)		103	35	Sep 15				
Seven Springs,	3	101	38	BBCH 73	6	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.0
NC, USA,	(5, 6)	100	29	Jun 1		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2015		101	28					
(Red Pontiac)								
Winter Garden,	3	100	35	BBCH 48	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.0
FL, USA,	(4,5)	100	35	May 6		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2015 (Molli)		100	36					
Fitchburg, WI,	3	101	36	BBCH 91-	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.0
USA,	(4)	100	35	95		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2015 (Superior)		100	34	Sep 4				
Geneva, MN,	3	100	46	BBCH 47-	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.0
USA,	(5)	99	46	48		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2015		100	46	Sep 3				
(Norlands)								
Northwood, ND,		101	36	BBCH 48	3	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.0
USA, 2015	(4,6)	101	36	Sep 8		(< 0.01)	(< 0.01)	(< 0.01)

POTATO	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg		
Location,	(interval)			treatment day	(days)	Parent	NK-1375	Total
Country;				day				
year; (variety)			ļ	ļ				
(Atlantic)		100	35		5	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
						(< 0.01)	(< 0.01)	(< 0.01)
					7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
						(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
					10	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
						(< 0.01)	(< 0.01)	(< 0.01)
Rice, MN, USA,	3	99	42	5-10 cm	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
2015	(6,4)	99	42	tubers		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
(Cascade)		100	43	Aug 3				
Jerome, ID,	3	101	52	BBCH 48	3	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(5,4)	98	53	Sep 11		(< 0.01)	(< 0.01)	(< 0.01)
2015		102	52		7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
(Ranger Russet)						(< 0.01)	(< 0.01)	(< 0.01)
					10	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
						(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
					12	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
						(< 0.01)	(< 0.01)	(< 0.01)
Madera, CA,	3	102	36	Mature	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(4, 6)	102	35	May 19	ľ	(< 0.01)	(< 0.01)	(< 0.01)
2015	(1, 1)	102	36	,		(*****)		
(California		102						
white)								
Kimberly, ID,	3	98	44	BCH 48	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(6, 4)	102	46	Sep 04		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2015 (Russet Burbank)		100	46					
Rupert, ID,	3	98	46	BBCH 48	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(5)	100	47	Aug 20	/	(< 0.01)	(< 0.01)	(< 0.01)
2015(Russet	(3)	99	46	Aug 20		(< 0.01)	(< 0.01)	
Burbank)		22	40					
Minidoka, ID,	3	98	45	BBCH 48	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(5)	98	45	Aug 8		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2015 (Russet		102	45					
Norkotah)	2	101	26	DDCII 40	7	.0.01/.0.01	. 0.01/. 0.01	. 0.01/. 0.01
Ephrata, WA, USA,	3	101	36	BBCH 48	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01 (< 0.01)
2015 (Umatilla)	(5)	101	36	Aug 24		(< 0.01)	(< 0.01)	<u>(· 0.01)</u>
` ′	2	103	36	DDCII 40	7	.0.01/.0.01	. 0.01/. 0.01	. 0.01/. 0.01
Payette, ID, USA,	3	100	43	BBCH 48	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01 (< 0.01)
2015	(5)	99	42	Sep 14		(< 0.01)	(< 0.01)	(* 0.01)
(Ranger Russet)		99	42					
Yakima, WA,	3	99	37	Post bloom	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(6, 4)	100	38	Aug 19	'	(< 0.01)	(< 0.01)	(< 0.01) 0.01
2015	(0, 7)	100	35	raug 19		(> 0.01)	(> 0.01)	
(Bintje-organic)		100	33					
Nictaux, NS,	3	102	30	BBCH 90	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
Canada,	(5)	101	30	Jul 31		(< 0.01)	(< 0.01)	(< 0.01)
2015	(-)	100	30				(2.01)	
(Superior)								
Canning, NS,	3	99	31	BBCH 87	7	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
6,,	<u> </u>		1	I	1	1		

POTATO	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/kg		
Location, Country;	(interval)			treatment day	(days)	Parent	NK-1375	Total
year; (variety)								
Canada,	(5)	98	30	Aug 24		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2015		101	30					
(Dakota Pearl)								
Broderick, SK, Canada, 2015 (E3 Wisconsin Norland)	3 (5, 4)	71 70 73	24 24 24	BBCH 81- 82 Aug 21	7	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)
Taber, AL, Canada, 2015 (Sangre)	3 (5, 4)	102 102 101	50 50 50	BBCH 45- 47 Aug 21	7	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)
Minto, MB, Canada, 2015 (Red Norland)	3 (5)	100 99 99	33 33 33	BBCH 69 Aug 24	7	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)
Glenboro, MB, Canada, 2015 (Norland)	3 (6, 5)	100 105 99	44 44 44	BBCH 48- 49 Aug 11	6	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)	< 0.01/< 0.01 (< 0.01)

Tree Nuts

Table 30 Residues of cyclaniliprole (mg/kg) in almond nutmeats (IB-2012-JLW-019-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

ALMONDS	No,	g ai/ha	g ai/hL	GS & last	Portion		Residues, mg/	kg	
Location, Country;	(interval)			treatment day	analysed	(days)	Parent	NK-1375	Total
year; (variety)									
Orland, CA,	3	100	7	BBCH 85	Almond	30	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(14)	100	7	July 26	nutmeat		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2012		100	7						
(Non-Pareil)									
Chico, CA,	3	100	7	BBCH 85	Almond	30	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(14)	100	7	July 24	nutmeat		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2012		99	7						
(Non-Pareil)									
Madera, CA,	3	101	10	Advanced	Almond	30	0.011/ 0.018	< 0.01/< 0.01	0.022/ 0.030
USA,	(13, 15)	99	10	hull split	nutmeat		(0.015)	(< 0.01)	(0.026)
2012		101	10	July 24					
(Non-Pareil)									
Strathmore, CA,	3	99	6	BBCH 81	Almond	31	0.015/< 0.01	< 0.01/< 0.01	0.026/ < 0.01
USA,	(14, 15	100	6	Oct 05	nutmeat		(0.013)	(< 0.01)	(0.024)
2012 (Fritz)		100	7						
Terra Bella, CA,	3	100	6	BBCH 81	Almond	20	< 0.01/ 0.012	< 0.01/< 0.01	< 0.01/ 0.023
USA,	(14, 15)	100	6	Oct 05	nutmeat		(0.011)	(< 0.01)	(0.022)
2012		101	6						
(Monterey)						25	0.015/ 0.010	< 0.01/< 0.01	0.026/ 0.021

ALMONDS	No,	g ai/ha	g ai/hL	GS & last		1	Residues, mg/	kg	
Location,	(interval)			treatment day	analysed	(days)	Parent	NK-1375	Total
Country;				day					
year; (variety)									
							(0.013)	(< 0.01)	(0.024)
						_		< 0.01/< 0.01	0.024/ 0.024
							(0.013)	(< 0.01)	(0.024)
								< 0.01/< 0.01	< 0.01/0.022
							(0.011)	(< 0.01)	(0.022)

Table 31 Residues of cyclaniliprole (mg/kg) in pecan nutmeats (IB-2012-JLW-019-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

PECANS	No,	g ai/ha	g ai/hL	GS & last	Portion	DALT	Residues, mg/	kg	
Location, Country; year; (variety)	(interval)			treatment day	analysed	(days)	Parent	NK-1375	Total
Anton, TX,	2	103	7	Green shuck	Pecan	14	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(13)	104	7	Oct 31	nutmeat		(< 0.01)	(< 0.01)	(< 0.01)
2012									
(Western Schley)									
Pearsall, TX,	3	102	8	BBCH 87	Pecan	29	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(14,13)	102	8	Sept 20	nutmeat		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2012		103	8						
(Cheyenne)									
Alexandria, LA, USA, 2012 (Creek)	3 (14)	105 102 103	9 9 11	Advanced shuck split (90-95%) Some green hulls Oct 11	Pecan nutmeat	20	< 0.01/< 0.01 (< 0.01)	(< 0.01)	< 0.01/< 0.01 (< 0.01)
						25	(< 0.01)<	(< 0.01)<	< 0.01/< 0.01 (< 0.01)
						29	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
							(< 0.01)	(< 0.01)	(< 0.01)
						40	< 0.01/< 0.01	0.022/< 0.01	0.033/< 0.01
							(< 0.01)	(0.016)	(0.027)
Bailey, NC,	3	103	9	BBCH 79	Pecan	30	< 0.01/< 0.01	< 0.01/< 0.01	< 0.01/< 0.01
USA,	(14,12)	101	7	Oct 10	nutmeat		(< 0.01)	(< 0.01)	<u>(< 0.01)</u>
2012		99	7						
(Stuart)									
Girard, GA,	3	101	9	BBCH 85	Pecan	17	< 0.01/< 0.01	< 0.01/0.012	< 0.01/0.023
USA,	(15,14)	99	9	Sept 29	nutmeat		(< 0.01)	(0.011)	(0.022)
2012 (Desirables)		99	9						

Miscellaneous fodder and forage

Almond hulls

Table 32 Residues of cyclaniliprole (mg/kg) in almond hulls (IB-2012-JLW-019-01-01) following three foliar applications of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

ALMOND	No,	g	g	GS & last	DALT	Portion	Residues,	mg/kg	
HULLS Location, Country; year; (variety)	(interval)	ai/ha	ai/hL	treatment day	(days)	analysed ^a	Parent	NK-1375	Total
Orland, CA, USA, 2012 (Non-Pareil)	3 (14)	100 100 100	7 7 7	BBCH 85 July 26	30	almond hulls almond hulls, dry weight	1.7 / 1.2 (1.5) 2.1 / 1.4 (<u>1.8</u>)	0.49 / 0.30 (0.39) 0.60 / 0.36 (<u>0.48</u>)	2.2/1.5 (1.9) 2.8/1.8 (<u>2.3</u>)
Chico, CA, USA, 2012 (Non-Pareil)	3 (14,14)	100 100 99	7 7 7	BBCH 85 July 24	30	almond hulls almond hulls, dry weight	2.3 / 2.1 (2.2) 2.6 / 2.4 (<u>2.5</u>)	0.58 / 0.50 (0.54) 0.67 / 0.57 (<u>0.62</u>)	2.9/ 2.6 (2.8) 3.3/ 3.0 (<u>3.2</u>)
Madera, CA, USA, 2012 (Non-Pareil)	3 (13,15)	101 99 101	10 10 10	Advanced hull split July 24	30	almond hulls almond hulls, dry weight	2.7 / 2.9 (2.8) 3.2 / 3.4 (<u>3.3</u>)	0.69 / 0.71 (0.70) 0.81 / 0.84 (<u>0.83</u>)	3.4/3.6 (3.5) 4.1/4.3 (4.2)
Strathmore, CA, USA, 2012 (Fritz)	3 (14,15	99 100 100	6 6 7	BBCH 81 Oct 05	31	almond hulls almond hulls, dry weight	1.5 / 1.6 (1.5) 1.9/2.1 (2.0)	0.21 / 0.26 (0.24) 0.27 / 0.35 (<u>0.31</u>)	1.7/ 1.9 (1.8) 2.2/ 2.5 (2.3)
Terra Bella, CA, USA, 2012 (Monterey)	3 (14,15)	100 100 101	6 6 6	BBCH 81 Oct 05	25	almond hulls	2.1 / 1.7 (1.9) 1.8 / 1.6 (1.7)	0.37 / 0.32 (0.34) 0.31 / 0.26 (0.29)	2.5/ 2.0 (2.2) 2.2/ 1.9 (2.0)
					31 39 20 25 31	almond hulls, dry weight	1.8 / 1.8 (1.8) 1.5 / 1.8 (1.6) 2.8 / 2.3 (2.5) 2.1 / 1.8 (2.0) 2.2 / 2.1 (<u>2.1</u>)	0.34 / 0.31 (0.33) 0.29 / 0.32 (0.31) 0.49 / 0.45 (0.47) 0.36 / 0.30 (0.33) 0.41 / 0.36 (<u>0.38</u>)	2.2/2.1 (2.2) 1.8/2.1 (2.0) 3.3/2.8 (3.0) 2.5/2.2 (2.3) 2.6/2.5 (<u>2.5</u>)
					39		1.8 / 2.1 (2.0)	0.36 / 0.38 (0.37)	2.2/ 2.5 (2.3)

^a Almond hulls: residues reported on as received basis

Almond hulls, dry weight: adjusted for %DM which ranged from 72-89%

Table 33 Residues of cyclaniliprole (mg/kg) in dry tea leaves (JP2011C133 and JP2012C101) following one foliar application of cyclaniliprole in an SL-formulation (extracted from 2017 JMPR Monograph)

DRY TEA	No,	g ai/ha	g ai/hL	GS & last	DALT	Residues, mg/l	κg	
LEAVES	(interval)			treatment day	(days)	Parent	NK-1375	Total
Location, Country;								
year; (variety)								
Chiba,	1	199	5	Opening of	3	8.41/8.35	2.13/2.08	10.68/10.56
Japan,	(-)	177		third to fourth	3	(8.38)	(2.11)	(<u>10.62</u>)
2011				leaf		(0.50)	(2.11)	
(Yabukita)				Jul 10				
,				Opening of	7	3.14/3.11	0.55/0.54	3.73/3.68
				third to fourth leaf		(3.13)	(0.55)	(3.70)
				Jul 06				
				Opening of	14	0.36/0.35	0.12/0.12	0.49/0.48
				first to second		(0.36)	(0.12)	(0.48)
				leaf				
				Jun 29				
				Date of sprouting	21	< 0.02/< 0.02	< 0.02/< 0.02	< 0.02/< 0.02
				Jun 22		(< 0.02)	(< 0.02)	(< 0.02)
Kochi,	1	191	5	4 leaf stage	3	4.88/4.78	0.09/0.09	4.98/4.88
Japan,	(-)	171		Jul 04	3	(4.83)	(0.09)	(4.93)
2011				3-4 leaf stage	7	3.18/3.03	0.11/0.11	3.30/3.15
(Yabukita)				Jun 30	,	(3.11)	(0.11)	(3.22)
				2-3 leaf stage	14	0.46/0.45	0.31/0.30	0.79/0.77
				Jun 23		(0.46)	(0.31)	(0.78)
				1-2 leaf stage	21	< 0.02/< 0.02	< 0.02/< 0.02	< 0.02/< 0.02
				Jun 15		(< 0.02)	(< 0.02)	(< 0.02)
Saitama,	1	185	5	3 leaf stage,	3	13.0/12.9	1.31/1.30	14.39/14.28
Japan,	(-)			Second grade		(13.0)	(1.31)	(14.34)
2012				tea leaf				
(Sayama-midori)				Jul 14				
Chiba,	1	174	5	3-4 leaf	3	6.84/6.66	0.68/0.66	7.56/7.36
Japan,	(-)			opening stage		(6.75)	(0.67)	(7.46)
2012				Jul 13				
(Yabukita)								
Kochi,	1	189	5	4 leaf stage	3	28.3/27.8	1.46/1.36	29.85/29.25
Japan,	(-)			May 07		(28.1)	(1.41)	(29.55)
2012								
(Yabukita)		<u> </u>						
Kagoshima,	1	171	5		3	16.5/16.2	0.62/0.62	17.16/16.86
Japan,	(-)			May 07		(16.4)	(0.62)	(17.01)
2012								
(Yamato-midori)								

FATE OF RESIDUES IN PROCESSING

Oranges

One processing trial in orange was conducted in 2015 in the USA where a SL formulation containing 50 g/L cyclaniliprole was applied to orange trees three times at rates of 496–500 g ai/ha, for a total seasonal application rate of 1493 g ai/ha (McDonald, 2017, IB-2015-JAM-004-01-01). Oranges were harvested 1 day after the last application and processed to orange juice, orange oil and dry pulp. Samples were analysed for cyclaniliprole and NK-1375 using the validated LC-MS/MS method JSM 0269.

Orange juice, dry pulp

Whole cleaned oranges (18.5 kg) were processed in a juicer machine. The juicer separated the oranges into juice and by-products (peel, rag and seed). Raw juice was screened, placed in a sterilised container and stored frozen.

The pulp remaining from the juice production was chopped prior to removing the water using a hydraulic press. The remaining solids were placed in an oven and dried at 64–91 °C until the moisture content was less than 12%. The resulting dried orange pulp was stored frozen.

Orange oil

To produce peel oil, cleaned oranges (113 kg) were peeled with a modified abrasion peeler. As the oranges were being peeled, a spray of water was used to collect the peel oil being released. The liquid solution was sieved to remove solids after which the liquid was placed into the cooler and allowed to separate into juice and oil/water emulsion. Peel oil was separated from the emulsion by centrifugation. The resulting peel oil fraction was stored frozen.

Residues of cyclaniliprole and NK-1375 and processing factors for the processed orange commodities are summarized in Table 34.

Table 34 Residues (mg/kg) of cyclaniliprole and	NK-1375 in orange commodities after process	ing
oranges (IB-2015-JAM-004-01-01)		

Processed	Cyclaniliprole	NK-1375	Total residue ^a	PF _{ENF} ^b	PF _{RISK} c
commodity	[mg/kg]	[mg/kg]	[mg/kg]		
RAC	0.797 / 0.837 / 0.454	0.047 / 0.040 / 0.016	0.847 / 0.880 /	-	-
	(0.696)	(0.034)	0.471		
			(0.733)		
Orange juice	0.076 / 0.076	< 0.01/ < 0.01	0.087 / 0.087	0.11	0.12
	(0.076)	(< 0.01)	(0.087)		
Orange oil	78.5 / 82.8	4.12 / 3.80	82.9 / 86.8	116	116
	(80.7)	(3.96)	(84.9)		
Orange, dry pulp	0.838 / 0.932	0.036 / 0.043	0.876 / 0.978	1.27	1.27
	(0.885)	(0.040)	(0.927)		

^a Cyclaniliprole + NK-1375 expressed as parent equivalents

Potato

One processing trial in potatoes was conducted in 2015 in the USA where an SL formulation containing 50 g/L cyclaniliprole was applied to potatoes three times at 1.003-1.006 kg ai/ha, for a total seasonal application rate of 3.015 kg ai/ha (McDonald, 2017, IB-2015-JAM-003-01-01). Potatoes were harvested 7 days after the last application and processed to potato chips, flakes/granules and

^b PF_{ENF} = residue of cyclaniliprole in processed product / residue of cyclaniliprole in RAC

^c PF_{RISK} = residue of cyclaniliprole + NK-1375 in processed product / residue of cyclaniliprole + NK-1375 in RAC

potato wet peels. Samples were analysed for cyclaniliprole and NK-1375 using the validated LC-MS/MS method JSM 0269.

Potato flakes/granules

Washed potatoes (35 kg) were batch steam peeled using a steam peeler. The potatoes were batch scrubbed for 30 seconds. The potato peel was collected from the peeling and scrubbing process. The peeled potatoes were inspected and hand trimmed to remove additional peel, rot, green or otherwise damaged potatoes. The trim waste was retained. The collected peel was hydraulically pressed and the pressed peel blended with the cut trim waste and collected as wet peel sample. The peeled potatoes were cut into slabs. Slabs were batch sprayed in cold tap water for 30 seconds to remove free starch. The potato slabs were precooked at 70–77 °C for 20 minutes and cooled to less than 32 °C for 20 minutes. The pre-cooked and cooled potato slabs were steam-cooked at 94–100 °C for 40–42 minutes. An aliquot of cooked potato slabs was mashed. The potato mash was mixed with an emulsion of pre-weighed food additives. The cooked mash was hand fed onto a dryer to dry the cooked mash into a thin sheet, and was initially broken into large flakes by hand. The flakes were then fed into a hammer mill for uniform milling of the potato flakes.

Potato crisps

Washed potatoes (8 kg) were batch peeled. The peel was weighed and discarded. The peeled potatoes were inspected by hand and trimmed, if necessary, to remove rot, green or otherwise damaged potato tissue. Any trim waste was weighed and discarded. The peeled potatoes were cut into thin (0.16 cm) slices. The sliced potatoes were placed in a tub of hot water to remove free starch. The slices were drained over a screen or a cloth/paper towel to remove excess water and were fried at 163–191 °C frying oil for 80–105 seconds. The fried potato crisps were drained, salted and inspected.

Residues of cyclaniliprole and NK-1375 and processing factors for the processed potato commodities are summarized in Table 35.

Table 35 Residues (mg/kg) of cyclaniliprole and NK-1375 in potato commodities after processing potatoes (IB-2015-JAM-003-01-01)

Processed	Cyclaniliprole	NK-1375	Total residue ^a	PF _{ENF} b	PF _{RISK} ^c
commodity	[mg/kg]	[mg/kg]	[mg/kg]		
Potato RAC	0.022 / 0.041 /	< 0.01/ < 0.01	0.033 / 0.052 /	-	-
	0.020	(< 0.01)	0.031		
	(0.028)		(0.039)		
Wet peels	0.119	0.013	0.133	4.25	3.41
Crisps	< 0.01/ < 0.01	< 0.01/ < 0.01	< 0.01/ < 0.01	< 0.36	< 0.26
	(< 0.01)	(< 0.01)	(< 0.01)		
Flakes/Granules	< 0.01/ < 0.01	< 0.01/ < 0.01	< 0.01/ < 0.01	< 0.36	< 0.26
	(< 0.01)	(< 0.01)	(< 0.01)		

^a Cyclaniliprole + NK-1375, expressed as parent equivalents

In summary, residues of cyclaniliprole concentrated in orange oil, orange dry pulp and potato wet peels (Table 36).

Table 36 Summary of cyclaniliprole processing factors

Commodity	Processing fraction	PF _{ENF} ^a	PF _{RISK} ^b
Orange	Juice	0.11	0.12
	Oil	116	116
	Dry pulp	1.27	1.27

^b PF_{ENF} = residue of cyclaniliprole in processed product / residue of cyclaniliprole in RAC

^c PF_{RISK} = residue of cyclaniliprole + NK-1375 in processed product / residue of cyclaniliprole + NK-1375 in RAC

Potato	Wet peels	4.25	3.41
	Crisps	< 0.36	< 0.26
	Flakes/Granules	< 0.36	< 0.26

^a PF_{ENF} = residue of cyclaniliprole in processed product / residue of cyclaniliprole in RAC

APPRAISAL

Cyclaniliprole is an insecticide belonging to the chemical class of diamide insecticides which act at the ryanodine receptor, which is critical for muscle contraction.

Cyclaniliprole was first evaluated by the 2017 JMPR where an ADI of 0–0.04 mg/kg bw was established. An ARfD was determined to be unnecessary.

A residue definition of *cyclaniliprole* was determined for compliance with the MRL for plant and animal commodities and for dietary risk assessment for animal commodities.

For dietary risk assessment for plant commodities, the residue definition was determined to be cyclaniliprole + 3-bromo-2-((2-bromo-4H-pyrazolo[1,5-d]pyrido[3,2-b]-[1,4]oxazin-4-ylidene)amino)-5-chloro-N(1-cyclopropylethyl)benzamide (NK-1375), expressed as cyclaniliprole equivalents.

The residue is fat-soluble.

Cyclaniliprole was scheduled by the Fiftieth Session of the CCPR for the reassessment of the trials reviewed in 2017 and the evaluation of additional new uses. The current Meeting received revised GAP information for several of the uses evaluated by the 2017 JMPR as well as new GAP information, supervised field trials on citrus fruits, berries and tuberous and corm vegetables, and orange and potato processing studies.

Methods of analysis

The LC-MS/MS analytical method (Report JSM 0269) used for analysis of residues of cyclaniliprole and NK-1375 in plant commodities, with LOQs of 0.01 mg/kg for each analyte, was reviewed by the 2017 JMPR. All samples collected from the supervised residue trials submitted to the current Meeting were analysed using the same method.

Stability of residues in stored analytical samples

The stability of residues of cyclaniliprole and NK-1375 during frozen storage was evaluated by the 2017 JMPR. Cyclaniliprole and NK-1375 were determined to be stable when stored frozen for at least 18 months at -20 °C in commodities representative of the high water, high acid, high starch, high protein and high oil commodity groups.

The periods of demonstrated stability adequately covered the frozen storage intervals of the samples in the supervised residue trials on crops considered by the current Meeting.

Results of supervised residue trials on crops

The current Meeting received supervised trial data for cyclaniliprole on lemons, oranges, grapefruits, raspberries, blueberries, strawberries, kiwifruit and potato. The Meeting also received revised use pattern information for pome fruits, stone fruits, *Brassica* head and stem vegetables, fruiting vegetables except cucurbits, fruiting vegetables, leafy vegetables, tree nuts and tea, previously assessed at the 2017 Meeting. Therefore, the supervised residue trials for these crops were reassessed in the framework of the revised use patterns.

^b PF_{RISK} = residue of cyclaniliprole + NK-1375 in processed product / residue of cyclaniliprole + NK-1375 in RAC

Residues for maximum residue estimation are expressed in mg cyclaniliprole/kg. Residues for dietary risk assessment include parent cyclaniliprole and metabolite NK1375. The totals (sum of the mean of parent and NK-1375) are expressed as parent equivalents by applying a conversion factor of 1.064 to NK-1375.

For all crops, with the exception of tea, the number of applications, re-treatment interval and PHI approximated the critical GAPs from USA (citrus fruits only) or Canada, however, individual application rates were all greater than those of the critical GAPs. Therefore, the current Meeting agreed to utilise the proportionality approach to estimate residues matching the critical GAP for estimation of the maximum residue levels and dietary exposures. For tea, all trials were conducted within 25% of the critical GAP in Japan.

Citrus fruits

The critical GAP for citrus fruits is from the USA; 3×80 g ai/ha, 7-day RTI, 1-day PHI. The Meeting received trials from the USA on citrus fruits where 3 foliar spray applications were made at a nominal rate of 100 g ai/ha per application, 7-day RTI and 1-day PHI.

Lemons

Cyclaniliprole residues in lemons in ranked order were (n = 5): 0.018, 0.048, 0.13, 0.14 and 0.17 mg/kg. Using scaling factors of ~0.8, scaled residues in ranked order were (n = 5): 0.015, 0.038, 0.11 (2) and 0.14 mg/kg.

Total cyclaniliprole residues in lemons in ranked order were (n = 5): 0.029, 0.059, 0.14, 0.15 and 0.18 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 5): 0.023, 0.047, 0.12 (2) and 0.15 mg/kg.

Orange

Cyclaniliprole residues in oranges in ranked order were (n = 12): 0.033, 0.092, 0.093, 0.098, 0.11, 0.12 (2), 0.13, 0.14, 0.16, 0.19 and 0.36 mg/kg. Using scaling factors of ~ 0.8 , scaled residues in ranked order were (n = 12): 0.026, 0.074, 0.075, 0.078, 0.090, 0.094, 0.095, 0.10, 0.11, 0.13, 0.15 and 0.28 mg/kg.

Total cyclaniliprole residues in oranges in ranked order were (n = 12): 0.044, 0.10 (2), 0.11, 0.12, 0.13 (2), 0.14, 0.15, 0.17, 0.20 and 0.39 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 12): 0.035, 0.083 (2), 0.087, 0.099, 0.10 (2), 0.11, 0.12, 0.14, 0.16 and 0.31 mg/kg.

Grapefruit

Cyclaniliprole residues in grapefruits in ranked order were (n = 6): 0.024, 0.042, 0.059, 0.078, 0.082 and 0.096 mg/kg. Using scaling factors of \sim 0.8, scaled residues in ranked order were (n = 6): 0.019, 0.034, 0.047, 0.061, 0.066 and 0.077 mg/kg.

Total cyclaniliprole residues in grapefruits in ranked order were (n = 6): 0.035, 0.053, 0.07, 0.089, 0.093 and 0.11 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 6): 0.028, 0.042, 0.056, 0.069, 0.075 and 0.085 mg/kg.

The Meeting noted that the GAP covers the group of citrus fruits and that median residues of lemons, oranges and grapefruits are within a 5-fold difference. Although trials were not provided for mandarins, the Meeting noted that residues in lemons/limes have been shown to be similar to or greater than residues in mandarins. The Kruskal-Wallis H-test also determined that the datasets were from the same population. Therefore, the Meeting decided to combine the three datasets of lemons, oranges and grapefruits.

Combined scaled cyclaniliprole residues in lemons, oranges and grapefruits were (n = 23): 0.015, 0.019, 0.026, 0.034, 0.038, 0.047, 0.061, 0.066, 0.074, 0.075, 0.077, 0.078, 0.090, 0.094, 0.095, 0.096, 0.11 (3), 0.13, 0.14, 0.15 and 0.28 mg/kg.

Total scaled cyclaniliprole residues in lemons, oranges and grapefruits in ranked order were (n = 23): 0.023, 0.028, 0.035, 0.042, 0.047, 0.056, 0.069, 0.075, 0.083 (2), 0.085, 0.087, 0.099, 0.10 (2), 0.11, 0.12 (3), 0.14, 0.15, 0.16 and 0.31 mg/kg.

The Meeting estimated a maximum residue level of 0.4~mg/kg and an STMR of 0.087~mg/kg for the Group of citrus fruits.

The Meeting estimated a median residue of 0.078 mg/kg (parent only) for animal dietary burden calculations.

Pome fruits

The critical GAP for pome fruit is from Canada; 3×80 g ai/ha, 14-day RTI, 7-day PHI. The Meeting received trials from Canada and the USA on pome fruits where 3 foliar spray applications were made at a nominal rate of 100 g ai/ha/application, 14-day RTI and 1-day PHI.

Apple

Cyclaniliprole residues in apples in ranked order were (n = 16): 0.013, 0.023, 0.027, 0.035, 0.037, 0.046, 0.049, 0.054 (2), 0.055, 0.058, 0.068 (2), 0.10 (2) and 0.13 mg/kg. Using scaling factors of \sim 0.8, scaled residues in ranked order were (n = 16): 0.01, 0.018, 0.021, 0.027, 0.030, 0.037, 0.039, 0.042, 0.043 (2), 0.046, 0.053, 0.054, 0.079 (2) and 0.10 mg/kg.

Total cyclaniliprole residues in apples in ranked order were (n = 16): 0.023, 0.033, 0.038, 0.046, 0.053, 0.056, 0.059, 0.065 (2), 0.067, 0.073, 0.079, 0.084, 0.12, 0.13 and 0.17 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 16): 0.018, 0.026, 0.030, 0.036, 0.043, 0.045, 0.047, 0.051, 0.052, 0.053, 0.058, 0.063, 0.065, 0.095, 0.10 and 0.14 mg/kg.

Pear

Cyclaniliprole residues in pears in ranked order were (n = 8): 0.037, 0.060, 0.069, 0.097, 0.11, 0.13 and 0.14 (2) mg/kg. Using scaling factors of 0.7–0.8, scaled residues in ranked order were (n = 8): 0.029, 0.048, 0.055, 0.078, 0.079, 0.10, 0.11 (2) mg/kg.

Total cyclaniliprole residues in pears in ranked order were (n = 8): 0.051, 0.070, 0.081, 0.12 (2), 0.14 and 0.16 (2) mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 8): 0.040, 0.056, 0.065, 0.085, 0.097, 0.11 and 0.13 (2) mg/kg.

The Meeting noted that the scaled median residues of cyclaniliprole in apples and pears were within five-fold and that the datasets were from the same population (Mann-Whitney U-test). The Meeting decided to combine the data to estimate a maximum residue level for pome fruits. The combined cyclaniliprole scaled residues in apples and pears were (n = 24): 0.01, 0.018, 0.021, 0.027, 0.029, 0.030, 0.037, 0.039, 0.042, 0.043 (2), 0.046, 0.048, 0.053, 0.054, 0.055, 0.078, 0.079 (3), 0.10 (2) and 0.11 (2) mg/kg.

Scaled total cyclaniliprole residues in apples and pears in ranked order were (n = 24): 0.018, 0.026, 0.030, 0.036, 0.040, 0.043, 0.045, 0.047, 0.051, 0.052, 0.053, 0.056, 0.058, 0.063, 0.065 (2), 0.085, 0.095, 0.097, 0.10, 0.11, 0.13 (2) and 0.14 mg/kg.

The Meeting estimated a maximum residue level of 0.2 mg/kg and an STMR of 0.057 mg/kg for pome fruits, except Japanese persimmons, and withdraws its previous recommended maximum residue level of 0.3 mg/kg for the Group of pome fruits.

The Meeting estimated a median residue of 0.047 mg/kg (parent only) for animal dietary burden calculations.

Stone fruit

The critical GAP for stone fruit is from Canada; 3×80 g ai/ha, 7-day RTI, 7-day PHI. The Meeting received trials from Canada and the USA on stone fruits where 3 foliar spray applications were made at a nominal rate of 100 g ai/ha per application, 7-day RTI and 7-day PHI.

Cherries

Cyclaniliprole residues in cherries in ranked order were (n = 15): 0.010, 0.016, 0.082, 0.097, 0.13 (2), 0.14 (2), 0.18, 0.24, 0.28, 0.30, 0.33, 0.44 and 0.56 mg/kg. Using scaling factors of 0.7–0.8, scaled residues in ranked order were (n = 15): 0.008, 0.013, 0.063, 0.075, 0.10, 0.11 (3), 0.14, 0.19 (2), 0.24, 0.26, 0.36 and 0.45 mg/kg.

Residue levels in the field trials from Canada and the USA were reported as flesh without stone. At the 2017 Meeting, it was concluded that, based on the Japanese trials on cherries, the contribution of the pit to the weight of the whole fruit is approximately 10%. Correcting the residue levels using this weight/weight ratio would lead to the same maximum residue level.

Total cyclaniliprole residues in flesh in ranked order were (n = 15): 0.021, 0.027, 0.10, 0.11, 0.14 (2), 0.16, 0.17, 0.19, 0.26, 0.32, 0.34 (2), 0.48 and 0.61 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 15): 0.017, 0.022, 0.077, 0.085, 0.11 (2), 0.12, 0.14, 0.15, 0.21, 0.23, 0.26, 0.27, 0.40 and 0.49 mg/kg.

The Meeting estimated a maximum residue level of 0.7 mg/kg and an STMR of 0.14 mg/kg for the Subgroup of cherries, to replace its previous recommended maximum residue level of 0.9 mg/kg.

Plums

Cyclaniliprole residues in plums in ranked order were (n = 8): 0.019 (2), 0.024, 0.027, 0.056, 0.062, 0.065 and 0.091 mg/kg. Using scaling factors of 0.8–1.2, scaled residues in ranked order were (n = 8): 0.015 (2), 0.019, 0.033, 0.044, 0.049, 0.052 and 0.073 mg/kg.

Residue levels in the field trials from Canada and the USA were reported as flesh without stone. At the 2017 Meeting, it was concluded that, based on the ratio of the residue levels in flesh versus whole fruit which ranged between 0.86 and 0.97, an overestimation of residues of approximately 10% was anticipated. Correcting for this factor would lead to the same maximum residue level.

Total cyclaniliprole residues in plums in ranked order were (n = 8): 0.030 (2), 0.035, 0.042, 0.067, 0.075, 0.076 and 0.11 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 8): 0.024 (2), 0.028, 0.051, 0.053, 0.060, 0.061 and 0.089 mg/kg.

The Meeting estimated a maximum residue level of 0.15 mg/kg and an STMR value of 0.052 mg/kg for the Subgroup of plums, to replace its previous recommended maximum residue level of 0.2 mg/kg.

Peaches (including nectarines and apricots)

Cyclaniliprole residues in peaches in ranked order were (n = 13): 0.019, 0.023, 0.041, 0.045, 0.050, 0.051, 0.054, 0.064, 0.081, 0.094, 0.11, 0.16 and 0.19 mg/kg. Using scaling factors of 0.8-1.1, scaled residues in ranked order were (n = 13): 0.018, 0.021, 0.033, 0.036, 0.040, 0.041, 0.044, 0.051, 0.065, 0.073, 0.087, 0.13 and 0.15 mg/kg.

Residue levels in the field trials from Canada and the USA were reported as flesh without stone. At the 2017 Meeting, it was concluded that, based on the ratio of the residue levels in flesh versus whole fruit which ranged between 0.85 and 0.96, an overestimation of residues of approximately 10% was anticipated. Correcting for this factor would lead to the same maximum residue level.

Total cyclaniliprole residues in peaches in ranked order were (n = 13): 0.030, 0.034, 0.056, 0.058, 0.061, 0.062, 0.065, 0.078, 0.092, 0.10, 0.12, 0.17 and 0.20 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues were (n = 13): 0.027, 0.034, 0.045, 0.047, 0.049, 0.050, 0.053, 0.063, 0.074, 0.078, 0.095, 0.14 and 0.16 mg/kg.

The Meeting estimated a maximum residue level of 0.3 mg/kg and an STMR value of 0.053 mg/kg for the Subgroup of peaches, and confirms its previous recommended maximum residue level of 0.3 mg/kg.

Cane berries

The critical GAP for caneberries is from Canada; 3×80 g ai/ha, 5-day RTI, 1-day PHI. The Meeting received trials from Canada and the USA on raspberries where 3 foliar spray applications were made at a nominal rate of 100 g ai/ha per application, 5–6 day RTI and 1-day PHI.

Raspberries

Cyclaniliprole residues in raspberries in ranked order were (n = 5): 0.14, 0.24, 0.30, 0.31 and 0.53 mg/kg. Using scaling factors of ~0.8, scaled residues in ranked order were (n = 5): 0.11, 0.18, 0.24, 0.25 and 0.42 mg/kg.

Total cyclaniliprole residues in raspberries in ranked order were (n = 5): 0.16, 0.27, 0.34, 0.36 and 0.58 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 5): 0.13, 0.21, 0.27, 0.30 and 0.47 mg/kg.

Noting that raspberries are the representative crop of the subgroup cane berries, the Meeting estimated a maximum residue level of 0.8 mg/kg and an STMR of 0.27 mg/kg for the Subgroup of cane berries.

Bush berries

The critical GAP for bushberries is from Canada; 3×80 g ai/ha, 5-day RTI, 1-day PHI. The Meeting received trials from Canada and the USA on blueberries where 3 foliar spray applications were made at a nominal rate of 100 g ai/ha per application, 5-day RTI and 1-day PHI.

Blueberries

Cyclaniliprole residues in blueberries in ranked order were (n = 10): 0.10, 0.14, 0.15, 0.20, 0.23, 0.29 (2), 0.42, 0.43 and 1.0 mg/kg. Using scaling factors of \sim 0.8, scaled residues in ranked order were (n = 10): 0.079, 0.12 (2), 0.16, 0.19, 0.23 (2), 0.32, 0.34 and 0.81 mg/kg.

Total cyclaniliprole residues in blueberries in ranked order were (n = 10): 0.12, 0.20, 0.22, 0.24, 0.32, 0.37, 0.38, 0.50, 0.58 and 1.1 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 10): 0.092, 0.16, 0.19, 0.20, 0.25, 0.30(2), 0.39, 0.45, 0.89 mg/kg.

Noting that blueberries is the representative crop of the subgroup bush berries, the Meeting estimated a maximum residue level of 1.5 mg/kg and an STMR of 0.275 mg/kg for the Subgroup of bush berries and extrapolated these values to elderberries and Guelder rose.

Grapes

The critical GAP for grapes is from Canada; 3×80 g ai/ha, 7-day RTI, 7-day PHI. The Meeting received trials from Canada and the USA on grapes where 3 foliar spray applications were made at a nominal rate of 100 g ai/ha per application, 6-day RTI and 6-7-day PHI.

Cyclaniliprole residues in grapes in ranked order were (n = 15): 0.025, 0.044, 0.048, 0.076, 0.11, 0.12 (2), 0.14 (2), 0.17, 0.21, 0.24, 0.33, 0.39 and 0.51 mg/kg. Using scaling factors of \sim 0.8, scaled residues in ranked order were (n = 15): 0.020, 0.035, 0.038, 0.061, 0.088, 0.094, 0.096, 0.11(2), 0.14, 0.17, 0.19, 0.26, 0.31 and 0.41 mg/kg.

Total cyclaniliprole residues in grapes in ranked order were (n = 15): 0.036, 0.055, 0.059, 0.092, 0.13 (2), 0.15 (2), 0.17, 0.22, 0.25, 0.28, 0.44, 0.48 and 0.59 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 15): 0.029, 0.044, 0.047, 0.074, 0.10 (2), 0.12 (2), 0.14, 0.18, 0.20, 0.22, 0.34, 0.38 and 0.47 mg/kg.

The Meeting estimated a maximum residue level of 0.6 mg/kg and an STMR of 0.12 mg/kg for grapes to replace its previous recommended maximum residue level of 0.8 mg/kg.

The Meeting estimated a median residue of 0.11 mg/kg (parent only) for animal dietary burden calculations.

Low growing berries

The critical GAP for low growing berries is from Canada; 3×80 g ai/ha, 5-day RTI, 1-day PHI. The Meeting received trials from Canada and the USA on grapes where 3 foliar spray applications were made at a nominal rate of 100 g ai/ha per application, 4–6 day RTI and 1-day PHI.

Strawberries

Cyclaniliprole residues in strawberries in ranked order were (n = 9): 0.054, 0.091, 0.10, 0.23, 0.14, 0.15, 0.16, 0.21 and 0.34 mg/kg. Using scaling factors of ~0.8, scaled residues in ranked order were (n = 9): 0.043, 0.074, 0.079, 0.099, 0.11, 0.12, 0.13, 0.17 and 0.28 mg/kg.

Total cyclaniliprole residues in strawberries in ranked order were (n = 9): 0.065, 0.10, 0.11, 0.14, 0.16 (2), 0.18, 0.25 and 0.36 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 9): 0.051, 0.083, 0.088, 0.12 (2), 0.13, 0.14, 0.20 and 0.29 mg/kg.

Noting that strawberries is the representative crop of the subgroup low growing berries but that the cultural practices for cranberries are significantly different from those of the other berries within the same crop subgroup, the Meeting estimated a maximum residue level of 0.4 mg/kg and an STMR of 0.12 mg/kg for the Subgroup of low growing berries, except cranberries.

Kiwifruit

The critical GAP is from Canada for "small fruits vine climbing, except grapes" including kiwifruit; 3×80 g ai/ha, 5-day RTI, 1-day PHI. The Meeting received trials from the USA on kiwifruits where 3 foliar spray applications were made at a nominal rate of 100 g ai/ha per application, 5-day RTI and 1-day PHI.

Cyclaniliprole residues in kiwifruit in ranked order were (n = 3): 0.013, 0.24 and 0.49 mg/kg.

Total cyclaniliprole residues in kiwifruit in ranked order were (n = 3): 0.024, 0.25 and 0.50 mg/kg.

The Meeting noted that three trials are insufficient to estimate a maximum residue level and STMR for kiwifruit.

Brassica vegetables (except Brassica leafy vegetables)

The critical GAP for flowerhead brassicas is from Canada for "Brassica head and stem vegetables"; 3×60 g ai/ha, 7-day RTI, 1-day PHI. The Meeting received trials from Canada and the USA on Brassica vegetables where 3 foliar spray applications were made at a nominal rate of 80 g ai/ha/application, 6–8 day RTI and 1-day PHI.

Flowerhead Brassicas

Cyclaniliprole residues in broccoli in ranked order were (n = 10): 0.11, 0.12, 0.18, 0.20, 0.34, 0.37, 0.41, 0.42, 0.47, and 0.66 mg/kg. Using scaling factors of 0.72–0.98, scaled residues in ranked order were (n = 10): 0.08, 0.12, 0.15, 0.18, 0.25, 0.28, 0.31, 0.32, 0.35 and 0.48 mg/kg.

Total cyclaniliprole residues in broccoli in ranked order were (n = 10): 0.12, 0.13, 0.19, 0.23, 0.38 (2), 0.42, 0.49, 0.54, and 0.71 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 10): 0.088, 0.13, 0.17, 0.19, 0.28 (2), 0.32, 0.38, 0.41 and 0.51 mg/kg.

Noting that broccoli is the representative crop of the flowerhead brassicas subgroup, the Meeting estimated a maximum residue level of 0.8 mg/kg and an STMR of 0.28 mg/kg for the Subgroup of flowerhead brassicas to replace its previous recommended maximum residue level of 1 mg/kg.

Brussels sprouts

Residue trials performed on Brussels sprouts in Europe, reviewed by the 2017 JMPR, did not match the critical GAP from Canada nor could the proportionality approach be used. Therefore, the Meeting could not estimate a maximum residue level for Brussels sprouts.

Cabbages, head

Cyclaniliprole residues in cabbage heads with wrapper leaves in ranked order were (n = 10): < 0.01 (2), 0.014, 0.025, 0.027, 0.040, 0.082, 0.15, 0.32 and 0.39 mg/kg. Using scaling factors of 0.60–0.98, scaled residues in ranked order were (n = 10): < 0.01 (2), 0.01, 0.017, 0.024 (2), 0.063, 0.11, 0.31 and 0.38 mg/kg.

Total cyclaniliprole residues in cabbage heads with wrapper leaves in ranked order were (n=10): < 0.01 (2), 0.025, 0.035, 0.038, 0.051, 0.094, 0.17, 0.34, and 0.42 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n=10): < 0.01 (2), 0.018, 0.024, 0.031, 0.034, 0.072, 0.13, 0.33 and 0.41 mg/kg.

The Meeting estimated a maximum residue level of 0.7~mg/kg and an STMR of 0.0325~mg/kg for cabbage heads and withdraws its previous recommendation of 0.7~mg/kg for the Subgroup of head Brassicas.

The Meeting estimated a median residue of 0.024 mg/kg and a highest residue of 0.38 mg/kg (parent only) for animal dietary burden calculations.

Fruiting vegetables - Cucurbits

The critical GAP for fruiting vegetables-cucurbits is from Canada for "cucurbit vegetables"; 3×60 g ai/ha, 7-day RTI, 1-day PHI. The Meeting received trials from Canada and the USA on fruiting vegetables-cucurbits where 3 foliar spray applications were made at a nominal rate of 80 g ai/ha per application, 7-day RTI and 1-day PHI.

Subgroup of cucumbers and summer squashes

Cucumbers

Cyclaniliprole residues in cucumbers in ranked order were (n = 9): < 0.01 (2), 0.011, 0.013, 0.014, 0.018, 0.019, 0.024, and 0.025 mg/kg. Using scaling factors of \sim 0.74, scaled residues in ranked order were (n = 9): < 0.01 (3), 0.010, 0.011, 0.013, 0.014 and 0.018 (2) mg/kg.

Total cyclaniliprole residues in cucumbers in ranked order were (n = 9): <0.01 (2), 0.022, 0.024, 0.025, 0.029, 0.030, 0.035 and 0.036 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 9): <0.01 (2), 0.016, 0.018, 0.019, 0.021, 0.022 and 0.026 (2) mg/kg.

Summer squashes

Cyclaniliprole residues in summer squashes in ranked order were (n = 9): < 0.01(2), 0.014, 0.016, 0.026, 0.028(2), 0.033 and 0.046 mg/kg. Using scaling factors of ~0.75, scaled residues in ranked order were (n = 9): < 0.01 (2), 0.011, 0.012, 0.020, 0.021 (2), 0.024 and 0.034 mg/kg.

Total cyclaniliprole residues in summer squashes in ranked order were (n = 9): < 0.01 (2), 0.025, 0.027, 0.037, 0.039, 0.040, 0.043 and 0.057 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 9): < 0.01 (2), 0.019, 0.021, 0.028, 0.029, 0.030, 0.032 and 0.042 mg/kg.

The Meeting noted that the median residues of cucumbers and summer squashes were within 5-fold, and that the Mann-Whitney U-test determined the datasets of cucumbers and summer squashes were from the same population. Therefore, the Meeting decided to combine the two datasets of cucumbers and summer squashes.

The ranked order of the combined cyclaniliprole scaled residues in cucumbers and summer squashes were (n = 18): < 0.01(5), 0.010, 0.011 (2), 0.012, 0.013, 0.014, 0.018 (2), 0.020, 0.021 (2), 0.024 and 0.034 mg/kg.

The ranked order of total cyclaniliprole scaled residues in cucumbers and summer squashes were (n = 18): < 0.01 (4), 0.016, 0.018, 0.019 (2), 0.021 (2), 0.022, 0.026 (2), 0.028, 0.029, 0.030, 0.032 and 0.042 mg/kg.

Noting that cucumbers and summer squashes are the representative crops for the crop subgroup cucumbers and summer squashes, the Meeting estimated a maximum residue level of 0.05 mg/kg and an STMR of 0.021 mg/kg for the Subgroup of cucumbers and summer squashes to replace its previous recommended maximum residue level of 0.06 mg/kg.

Melons, pumpkins and winter squashes

Melons

The critical GAP for melons is from Canada for "cucurbit vegetables": 3×60 g ai/ha, 7-day RTI, 1-day PHI. The Meeting received trials from Canada and the USA on melons where 3 foliar spray applications were made at a nominal rate of 80 g ai/ha per application, 6–8 day RTI and 1-day PHI.

Cyclaniliprole residues in melons in ranked order were (n = 10): 0.014, 0.017, 0.023, 0.039, 0.040, 0.042, 0.044, 0.051, 0.071 and 0.087 mg/kg. Using scaling factors of ~0.75, the scaled residues in ranked order were (n = 10): 0.010, 0.013, 0.017, 0.029, 0.030, 0.031, 0.033, 0.038, 0.052 and 0.064 mg/kg.

In the absence of data on melons without peel, residues used for the estimation of the STMR are based on whole fruit. Total cyclaniliprole residues in whole melon in ranked order were (n=10): 0.024, 0.028, 0.033, 0.050, 0.055 (2), 0.058, 0.063, 0.081, and 0.099 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n=10): 0.018, 0.021, 0.025, 0.037, 0.041 (2), 0.043, 0.047, 0.060 and 0.073 mg/kg for whole melon.

Noting that melons is the representative crop of the melons, pumpkins and winter squashes crop subgroup, the Meeting estimated a maximum residue level of 0.1 mg/kg and an STMR of 0.041 mg/kg for the Subgroup of melons, pumpkins and winter squashes to replace its previous recommended maximum residue level of 0.15 mg/kg.

Fruiting vegetables, other than Cucurbits

The critical GAP for fruiting vegetables, other than cucurbits is from Canada for "fruiting vegetables"; 3×60 g ai/ha, 7-day RTI, 1-day PHI. The Meeting received trials from Canada and the USA on cherry tomatoes, tomatoes, sweet bell peppers and non-bell peppers where 3 foliar spray applications were made at a nominal rate of 80 g ai/ha per application, 6–8 day RTI and 1-day PHI.

Tomatoes

Cyclaniliprole residues in field $\underline{tomatoes}$ (including cherry tomatoes) in ranked order were (n = 22): 0.011, 0.013, 0.017, 0.018, 0.019, 0.025 (2), 0.026 (2), 0.029, 0.030, 0.032 (2), 0.033, 0.034, 0.037, 0.038, 0.040, 0.042, 0.043, 0.070 and 0.076 mg/kg. Using scaling factors of 0.72–0.99, scaled residues in ranked order were (n = 22): 0.008, 0.010, 0.015, 0.017, 0.018, 0.019, 0.020, 0.021, 0.023, 0.024 (3), 0.025 (3), 0.027, 0.028, 0.029, 0.031, 0.032, 0.053, and 0.058 mg/kg.

Total cyclaniliprole residues in tomatoes (including cherry tomatoes) in ranked order were (n=22): 0.019, 0.022, 0.028, 0.029 (2), 0.036 (3), 0.037, 0.040, 0.041, 0.042, 0.043, 0.045, 0.047, 0.048, 0.049, 0.051, 0.053 (2), 0.08 and 0.1 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n=22): 0.014, 0.017, 0.022, 0.027 (2), 0.028, 0.029, 0.030, 0.031 (2), 0.032, 0.034, 0.035 (2), 0.036 (3), 0.037, 0.039 (2), 0.060 and 0.076 mg/kg.

The Meeting estimated a maximum residue level of 0.08~mg/kg and an STMR of 0.033~mg/kg for the Subgroup of tomatoes and withdraws its previous recommendations of 0.1~mg/kg for tomato and cherry tomato.

The Meeting estimated a median residue of 0.024 mg/kg (parent only) for animal dietary burden calculations.

Peppers

Cyclaniliprole residues in bell peppers and non-bell peppers [NB] in ranked order were (n = 12): 0.014, 0.019, 0.025, 0.041^[NB], 0.046, 0.048, 0.057^[NB], 0.068, 0.072, 0.077^[NB], 0.098, and 0.10 mg/kg. Using scaling factors of 0.74–0.99, scaled residues in ranked order were (n = 12): 0.011, 0.014, 0.018, 0.031^[NB], 0.036, 0.043^[NB], 0.045, 0.050, 0.054, 0.058^[NB], 0.073 and 0.099 mg/kg.

Total cyclaniliprole residues in sweet bell and non-bell peppers in ranked order were (n = 12): 0.025, 0.029, 0.035, 0.051^[NB], 0.056, 0.059, 0.067^[NB], 0.083, 0.094^[NB], 0.096, 0.11, and 0.12 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues were (n = 12): 0.020, 0.022, 0.026, 0.039^[NB], 0.044, 0.050^[NB], 0.055, 0.063, 0.071, 0.071^[NB], 0.082 and 0.119 mg/kg.

The Meeting estimated a maximum residue level of 0.15 mg/kg and an STMR of 0.0525 mg/kg for the Subgroup of peppers (excluding martynia, okra and roselle), to replace its previous recommended maximum residue level of 0.2 mg/kg.

The Canadian critical GAP for fruiting vegetables, other than cucurbits, also covers eggplants. The Meeting decided the pepper data could be used to extrapolate the maximum residue level of 0.15 mg/kg and the STMR of 0.0525 mg/kg for peppers to the Subgroup of eggplants to replace its previous recommended maximum residue level of 0.1 mg/kg.

Chili peppers, dried

Based on the estimated maximum residue level of 0.15 mg/kg for the Subgroup of peppers (excluding Martynia, okra and Roselle) and applying a default processing factor of 10, the Meeting estimated a maximum residue level of 1.5 mg/kg for peppers, chili, dried, together with an STMR of 0.525 mg/kg parent equivalents (0.0525 mg/kg ×10), to replace its previous recommended maximum residue level of 2.0 mg/kg.

Leafy vegetables (including Brassica leafy vegetables)

The critical GAP for leafy vegetables (including Brassica leafy vegetables) is from Canada for "leafy vegetables"; 3×60 g ai/ha, 7 day-RTI, 1-day PHI. The Meeting received trials from Canada and the USA on leafy vegetables where 3 foliar spray applications were made at a nominal rate of 80 g ai/ha per application, 6–9 day RTI and 1-day PHI.

Head lettuce

Cyclaniliprole residues in <u>head lettuce with wrapper leaves</u>, in ranked order were (n = 7): 0.067, 0.26, 0.32, 0.56, 1.2, 1.4 and 2.2 mg/kg. Using scaling factors of 0.74–0.97, scaled residues in head lettuce with wrapper leaves in ranked order were (n = 7): 0.051, 0.19, 0.28, 0.54, 0.87, 1.04 and 2.14 mg/kg.

Total cyclaniliprole residues in head lettuce with wrapper leaves were in ranked order (n = 7): 0.096, 0.31, 0.36, 0.61, 1.4, 1.6 and 2.3 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in head lettuce with wrapper leaves were in ranked order (n = 7): 0.074, 0.23, 0.32, 0.59, 1.02, 1.19 and 2.24 mg/kg.

Leaf lettuce

Cyclaniliprole residues in <u>leaf lettuce</u> in ranked order were (n = 10): 0.094, 0.25, 0.77, 0.86, 1.2, 1.3, 2.0, 2.2, 2.4 and 3.0 mg/kg. Using scaling factors of 0.73–0.98, scaled residues in ranked order were (n = 10): 0.072, 0.18, 0.57, 0.63, 0.97, 1.18, 1.82, 1.68, 1.97 and 2.27 mg/kg.

Total cyclaniliprole residues in leaf lettuce in ranked order were (n = 10): 0.11, 0.27, 0.79, 1.0, 1.3, 1.4, 2.2, 2.6 (2) and 3.3 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues were in ranked order (n = 10): 0.084, 0.20, 0.58, 0.73, 1.05, 1.28, 1.98 (2), 2.16 and 2.50 mg/kg.

Cos lettuce

In trials from the USA matching the critical GAP, cyclaniliprole residues in $\underline{\cos}$ lettuce were (n = 3): 0.74, 0.76 and 0.94 mg/kg. Using scaling factors of 0.8–0.9, scaled residues were (n = 3): 0.57, 0.67 and 0.70 mg/kg.

Total cyclaniliprole residues in cos lettuce in ranked order were (n = 3): 0.84, 0.85 and 1.0 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues were (n = 3): 0.63, 0.75 and 0.77 mg/kg.

Spinach

Cyclaniliprole residues in <u>spinach</u> in ranked order were (n = 8): 1.4, 2.0, 2.3, 2.4, 2.8, 2.9, 3.4 and 4.6 mg/kg. Using scaling factors of 0.73–0.99, scaled residues in ranked order were (n = 8): 1.4, 1.8, 1.9, 2.1, 2.2, 2.5, 2.9 and 3.5 mg/kg.

Total cyclaniliprole residues in spinach in ranked order were (n = 8): 1.5, 2.1, 2.5, 2.7, 3.3 (2), 4.1 and 5.5 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 8): 1.5, 2.0 (2), 2.4 (2), 3.0, 3.3 and 4.2 mg/kg.

The Meeting noted that the scaled median residues of cyclaniliprole in head lettuce (with wrapper leaves), leaf lettuce, cos lettuce and spinach were within a 5-fold range. From the Kruskal-Wallis H-test, the datasets of head lettuce (with wrapper leaves), leaf lettuce, cos lettuce and spinach were not from the same population. Therefore, using the spinach dataset, the Meeting estimated a maximum residue level of 7 mg/kg and an STMR of 2.4 mg/kg for the Subgroup of Leafy greens.

Subgroup of Leaves of Brassicaceae

Mustard greens

Cyclaniliprole residues in <u>mustard greens</u> in ranked order were (n = 5): 1.4, 3.0, 4.0, 4.1, and 5.9 mg/kg. Using scaling factors of 0.75–0.98, scaled residues in ranked order were (n = 5): 1.4, 3.0 (2), 4.0 and 4.4 mg/kg.

Total cyclaniliprole residues in mustard greens in ranked order were (n = 5): 1.5, 3.5, 4.3, 4.4 and 6.2 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 5): 1.5, 3.2, 3.5, 4.3 and 4.6 mg/kg.

Noting that mustard greens is the representative crop of the leaves of brassicaceae subgroup, the Meeting estimated a maximum residue level of 10 mg/kg and an STMR of 3.5 mg/kg for the Subgroup of leaves of brassicaceae to replace its previous recommended maximum residue level of 15 mg/kg.

The Meeting estimated a median residue value of 3.0 mg/kg and a highest residue of 4.4 mg/kg, both for parent only, for the Subgroup of leaves of brassicaceae for livestock dietary burden calculations.

Tuberous and Corm Vegetables

The critical GAP for tuberous and corm vegetables is from Canada; 3×60 g ai/ha, 5 day RTI, 7-day PHI. The Meeting received trials from Canada and the USA on potatoes where 3 foliar spray applications were made at a 100 g ai/ha per application, 4–6-day RTI and 6–7-day PHI.

Cyclaniliprole residues in <u>potatoes</u> were all < 0.01 mg/kg (n = 25) when treated at seasonal application rates of 214-308 g ai/ha, equivalent to 1.2–1.7-fold the critical GAP in Canada. Therefore, when treated in accordance with the critical GAP from Canada, residues of cyclaniliprole in potatoes are not expected to be quantifiable.

Total cyclaniliprole residues in potatoes were all < 0.01 mg/kg (n = 25) following treatment at exaggerated rates (1.2–1.7-fold the critical GAP in Canada). Therefore, when treated in accordance with the critical GAP from Canada, total residues of cyclaniliprole in potatoes are not expected to be quantifiable.

The Meeting estimated a maximum residue level of 0.01(*) mg/kg and an STMR of 0 mg/kg parent equivalents for the Subgroup of Tuberous and corm vegetables .

The Meeting estimated a median residue value of 0 mg/kg (parent only) for potatoes for livestock dietary burden calculations.

Tree Nuts

The critical GAP for tree nuts is from Canada: 3×80 g ai/ha, 14 day-RTI, 30-day PHI. The Meeting received trials from the USA on tree nuts where 3 foliar spray applications were made at a nominal rate of 100 g ai/ha per application, 12–15 day RTI and 30-day PHI for almonds and 14–30 days for pecans.

Almonds

Cyclaniliprole residues in <u>almond nutmeats</u> in ranked order were (n = 5): < 0.01 (2), 0.013 (2) and 0.015 mg/kg. Using scaling factors of ~0.8, scaled residues in ranked order were (n = 5): < 0.01 (2), 0.010 (2) and 0.012 mg/kg.

Total cyclaniliprole residues in almond nutmeats in ranked order were (n = 5): < 0.01 (2), 0.024 (2) and 0.026 mg/kg. Using the same scaling factors, scaled total cyclaniliprole residues in ranked order were (n = 5): < 0.01 (2), 0.019 (2) and 0.021 mg/kg.

The Meeting estimated a maximum residue level of 0.03 mg/kg and an STMR of 0.019 mg/kg for almonds.

Pecans

Two of the five pecan field trials from the USA differed from the critical GAP with regard to the pre-harvest interval. Therefore, due to the insufficient number of trials, conducted in accordance with the critical GAP, the Meeting did not estimate a maximum residue level and STMR for pecans.

Tea

The critical GAP for tea is from Japan: 1×4.5 g ai/hL and a 3-day PHI.

In trials from Japan matching the critical GAP, cyclaniliprole residues in dried tea leaves in ranked order were (n = 6): 4.8, 6.8, 8.4, 13, 16 and 28 mg/kg.

The total cyclaniliprole residues in dried tea leaves in ranked order were (n = 6): 4.9, 7.5, 11, 14, 17 and 30 mg/kg.

The Meeting estimated a maximum residue level of 50 mg/kg and an STMR of 12.5 mg/kg for tea, green, black (black, fermented and dried).

Miscellaneous fodder and forage

Almond hulls

The critical GAP for tree nuts is from Canada: 3×80 g ai/ha, 14 day-RTI, 30-day PHI. The Meeting received trials from the USA on almonds where 3 foliar spray applications were made at a nominal rate of 100 g ai/ha/application, 13–15 day RTI and 30–31 day PHI.

Cyclaniliprole residues in almond hulls, on a dry weight basis, in ranked order were (n = 5): 1.8, 2.0, 2.1, 2.5 and 3.3 mg/kg. Using scaling factors of \sim 0.8, scaled residues in ranked order were (n = 5): 1.4, 1.6, 1.7, 2.0 and 2.6 mg/kg.

The Meeting estimated a maximum residue level of 6 mg/kg and median residue of 1.7 mg/kg for almond hulls.

Residues in processed commodities

At the current Meeting, processing studies were reviewed for oranges and potatoes, while at the 2017 Meeting processing studies were reviewed for apples, peaches, tomatoes, plums, grapes, and tea. Maximum residue levels in processed commodities are only proposed where they are higher than the maximum residue levels in the raw commodity. For maximum residue level derivation the processing factors are based on parent only. For estimation of the dietary exposure, STMR-P's were based on the processing factors for parent + metabolite NK-1375 (separate table).

Table 36 Maximum Residue	Level Derivation 1	for Processed	Commodities

Raw Agricultural Commodity (RAC)	Processed Commodity	PF (parent only)	PF (best estimate)	MRL × PF (mg/kg)
Citrus fruit [MRL = 0.4 mg/kg]	Citrus, oil	116ª	116 (n = 1)	50
Plum [MRL = 0.15]	Prunes	3.7	3.7 (n = 1)	0.6
Tomato $[MRL = 0.08]$	Tomato, dried	3.33, 3.75, 3.8, 4, 5.5	3.8 (median, n = 5)	0.35

^a Noting that the Meeting is recommending a maximum residue level for the Group of citrus fruits, the processing factor for orange was extrapolated to the entire citrus fruit crop group.

Cyclaniliprole residues were shown to concentrate in citrus oil, prunes, and tomato, dried.

The Meeting estimated a maximum residue level of 50 mg/kg ($0.4 \, \text{mg/kg} \times 116 = 46.4 \, \text{mg/kg}$) for citrus oil. The Meeting also estimated maximum residue levels of $0.6 \, \text{mg/kg}$ ($0.15 \, \text{mg/kg} \times 3.7 = 0.56 \, \text{mg/kg}$) for prunes and $0.35 \, \text{mg/kg}$ ($0.08 \, \text{mg/kg} \times 3.8 = 0.30 \, \text{mg/kg}$) for tomato, dried to replace its previous recommended maximum residue levels of $0.8 \, \text{mg/kg}$ and $0.4 \, \text{mg/kg}$, respectively, for these processed commodities.

Table 37 Derivation of STMR-Ps for dietary exposure estimation

Commodity	PF (parent + NK-1375)	PF (best estimate)	RAC STMR (mg/kg)	STMR-P (mg/kg)
Citrus fruit			0.087	

Commodity	PF (parent + NK-1375)	PF (best estimate)	RAC STMR (mg/kg)	STMR-P (mg/kg)
- juice	0.12	0.12 (n = 1)		0.01
- oil	116	116 (n = 1)		10.1
Apples			0.057	
- juice, pasteurised	0.13, < 0.33, < 0.5	< 0.33 (median, n = 3)		0.019
Plums			0.052	
- dried	3.7 a	3.7 (n = 1)		0.19
Grapes			0.12	
- must	0.63, 0.63, 0.71, 0.86	0.67 (median n = 4)		0.08
- juice, pasteurised	0.20, 0.12, 0.33, 0.38, 0.50, 0.71	0.36 (median, n = 6)		0.04
- wine, stored	0.14, 0.20, < 0.33, 0.38, 0.040, 0.50	0.355 (median, n = 6)		0.04
Tomatoes			0.033	
- canned	< 0.14, < 0.17, < 0.2, < 0.5, < 0.5	0.14 (median, n = 5)		0.005
- paste	0.49, 0.50, 0.67, 1.57, 1.8, 2.5	1.12 (median, n = 6)		0.04
- juice, pasteurised	< 0.5, 0.17, 0.8, 1.14, 1.5	0.8 (median, n = 6)		0.03
- dried	3, 3.2, 3.3, 5, 6	3.3 (median, n = 5)		0.11
Potatoes			0	
-crisps	< 0.26	< 0.26 (n = 1)		0
-flakes/granules	< 0.26	< 0.26 (n = 1)		0
Tea			13	
infusion	0.09 (3), 0.13 (2), 0.14, 0.17 (3), 0.19	0.14 (median)		1.8

PF based on total cyclaniliprole; cyclaniliprole + NK-1375 expressed as parent equivalents

STMR-P is used for the dietary exposure estimates and is based on the residue definition for dietary risk assessment: cyclaniliprole + NK-1375 expressed as parent equivalents

Livestock dietary burden

The Meeting estimated the livestock dietary burden for cyclaniliprole on the basis of the diets (USA/Canada, EU, Australia and Japan) listed in the OECD Feed Table 2018. Calculation from highest residue and median values (some bulk commodities) provide the levels in feed suitable for estimating maximum and highest residue levels while calculation from median values for feed is suitable for estimating STMR values for animal commodities.

The commodities used in estimating livestock dietary burdens are included in the table below and capture both the feed items assessed at the 2017 Meeting together with the new feed items assessed by the current Meeting. In the rotational crop studies, reviewed by the 2017 Meeting, residues of cyclaniliprole were detected in wheat straw and forage. For the dietary burden calculation, these levels were extrapolated to the straw/hay (dry feed commodities) and forage (wet feed commodities) of the whole group of cereal grain crops. The input was based on the intake of parent only.

Table 38 Commodities for consideration in dietary burden calculations

Codex Classification	Commodity	Median residue (-P)	Highest residue (-P) (mg/kg)
		(mg/kg)	
AB 0001	Citrus pulp, dry (median 0.078 mg/kg × PF 1.27)	0.099	
AB 0226	Apple pomace, wet (median 0.047 mg/kg ×PF 3.2)	0.15	-
AB 0269	Grape pomace, wet (median 0.11 mg/kg ×PF 1.7)	0.19	-
VL 0054	Leaves of Brassicaceae, (based on mustard greens dataset)	3.0	4.4

Cyclaniliprole

Codex	Commodity	Median residue	Highest residue
Classification		(-P)	(-P) (mg/kg)
		(mg/kg)	
VB 0041	Cabbages, head	0.024	0.38
AB – no code	Tomato pomace, wet	0.02	-
	(median of 0.024×PF 0.67)		
	Potato, wet peels (median of 0 × PF 4.25)	0	
AF – no code	Barley, forage (30% DM)	0.01	0.026
AS 0640	Barley, hay (88% DM)	0.0475	0.18
AS 0641	Barley, straw (89% DM)	0.0475	0.18
AF/AS – no code	Corn, field, forage/silage (40% DM)	0.01	0.026
AS 0645	Corn, field, stover (83% DM)	0.0475	0.18
AF – no code	Corn, pop, stover (83% DM)	0.0475	0.18
AF – no code	Corn, sweet, forage (48% DM)	0.01	0.026
AF – no code	Corn, sweet, stover (83% DM)	0.0475	0.18
AF – no code	Millet, forage (30% DM)	0.01	0.026
AF – no code	Millet, hay (85% DM)	0.0475	0.18
AF 0646	Millet, straw (90% DM)	0.0475	0.18
AF 0647	Oat, forage (30% DM)	0.01	0.026
AS 0647	Oat, hay (90% DM)	0.0475	0.18
AF – no code	Oat, straw (90% DM)	0.0475	0.18
AS0469	Rice, straw (90% DM)	0.0475	0.18
AF0650	Rye, forage (30% DM)	0.01	0.026
AS0650	Rye, straw (88% DM)	0.0475	0.18
AF0651	Sorghum, grain, forage (35% DM)	0.01	0.026
AS – no code	Sorghum, grain, stover (88% DM)	0.0475	0.18
AF – no code	Triticale, forage (30% DM)	0.01	0.026
AF – no code	Triticale, hay (88% DM)	0.0475	0.18
AF – no code	Triticale, straw (90% DM)	0.0475	0.18
AF 0654	Wheat forage (25% DM)	0.01	0.026
AS 0654	Wheat, hay (88% DM)	0.0475	0.18
AS 0654	Wheat, straw (88% DM	0.0475	0.18
AM 0660	Almond hulls	1.7	-

Note: levels for cereal straw, hay, and forage are presented on as received basis.

The dietary burden calculations for cyclaniliprole for beef cattle, dairy cattle, broilers and laying poultry are provided in Annex 6 of the 2019 JMPR Report and summarized below.

Table 39 Livestock dietary burden for cyclaniliprole

		Livestock dietary burden for cyclaniliprole (based on cyclaniliprole parent only) ppm of dry matter diet					
		USA/Canada	EU	Australia	Japan		
Max	beef cattle	0.06	9.0	14.7 ^A	0.11		
	dairy cattle	4.52	6.0	12.1 ^B	0.07		
	poultry – broiler	-	0.005	-	-		
	poultry – layer	-	1.49 ^C	-	-		
Mean	beef cattle	0.021	6.10	10.0 ^D	0.03		

dairy cattle	3.06	4.07	8.3 ^E	0.02
poultry – broiler	-	-	-	-
poultry – layer	-	1.00 ^F	-	-

A Highest maximum beef cattle dietary burden suitable for maximum residue level estimates for mammalian meat.

Animal commodity maximum residue levels

Table 40 Animal commodity residue levels for mammalian matrices

	Feeding level (ppm) for milk residues	Residues (mg/kg) in milk cream	Feed level (ppm) for tissue residues		Residues	(mg/kg) in	
				Muscle	Liver	Kidney	Fat
		MRL beef	or dairy cattle	•	•	•	
Feeding study b	3.5	0.02	3.5	< 0.01	0.040	0.045	0.045
	11.6	0.078	11.6	0.032	0.141	0.114	0.199
Dietary burden and high residue estimate	12.1	0.078	14.7	0.032	0.141	0.114	0.199
		STMR beef	or dairy cattle				
Feeding study ^c	3.5	0.02	3.5	< 0.01	0.021	0.022	0.023
	11.6	0.078	11.6	0.018	0.071	0.059	0.074
Dietary burden and mean residue estimate	8.3	0.054	10.0	0.016	0.061	0.052	0.064

^a No residues were found in skimmed milk, all residues were detected in milk cream which contains 50% milk fat, therefore residues in milk fat are 0.156 mg/kg (0.078 mg/kg ÷ 0.50). Based on the default milk fat content of 4% for whole milk, the maximum residue level and STMR for mammalian milk were estimated at 0.01 mg/kg (0.156 × 0.04 = 0.006) and 0.004 mg/kg ((0.054 ÷ 0.5) × 0.04 = 0.004), respectively.

The Meeting estimated maximum residue levels of 0.01 mg/kg for milks, 0.2 mg/kg for milk fats, 0.25 mg/kg for meat, based on fat (from mammals other than marine mammals) and mammalian fats (except milk fats) and 0.2 mg/kg for edible offal (mammalian). The Meeting estimated STMRs of 0.004 mg/kg for milks, 0.108 mg/kg for milk fats, 0.016 mg/kg for meat (muscle), 0.061 mg/kg for liver, 0.052 mg/kg for kidney and 0.064 mg/kg for mammalian fat. These recommendations are intended to replace all previous recommendations for all ruminant matrices.

Poultry

In the absence of a poultry feeding study, the Meeting relied on the laying hen metabolism study to determine the maximum residue levels and STMRs in poultry commodities.

Table 41 Animal commodity residue levels for poultry matrices

Dose	Cyclaniliprole	Dose level	TRRs (mg eq/kg) in
level	TRRs in eggs	(ppm) for	
(ppm)	(mg eq/kg)	tissue TRRs	
for egg			

^B Highest maximum dairy cattle dietary burden suitable for maximum residue level estimates for milk.

c Highest maximum poultry-layer dietary burden suitable for maximum residue level estimates for poultry meat and eggs.

^D Highest mean beef cattle dietary burden suitable for STMR estimates for mammalian meat.

^E Highest mean dairy cattle dietary burden suitable for STMR estimates for milk.

F Highest mean poultry-layer dietary burden suitable for STMR estimates for poultry meat and eggs.

^b Highest residue for tissues and milk cream

^c Mean residues for tissues and milk cream

	TRRs						
				Fat	Skin	Muscle	Liver
Dose level from metabolism study	10.8	0.156	10.8	0.158	0.09	0.006	0.17
Dietary burden and high residue estimate	1.49	0.0004	1.49	0.0004	0.0002	0.00001	0.0004
Dietary burden and mean residue estimate	1.0	0.00027	1.0	0.00027	0.00013	0.000007	0.00027

The Meeting estimated maximum residue levels of 0.01(*) mg/kg for eggs and poultry fats, meat and edible offal and STMRs of 0 for these poultry commodities.

RECOMMENDATIONS

On the basis of the data from supervised trials the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI and IESTI assessment.

Definition of the residue for compliance with the MRL for plant and animal commodities: *cyclaniliprole*.

Definition of the residue for dietary risk assessment for plant commodities: *cyclaniliprole* + 3-bromo-2-((2-bromo-4H- pyrazolo[1,5-d]pyrido[3,2-b]-[1,4]oxazin-4-ylidene)amino)-5-chloro-N-(1-cyclopropylethyl)benzamide (NK-1375), expressed as cyclaniliprole equivalents. The molecular weight conversion factor to express NK-1375 in cyclaniliprole equivalents = 1.064.

Definition of the residue for dietary risk assessment for animal commodities: *cyclaniliprole* The residue is fat-soluble.

The Meeting maintained its previous recommendation for the maximum residue level of 0.45 mg/kg (dw) in straw and fodder, dry of cereal grains (AS 0081).

Table 42 Residue levels suitable for establishing maximum residue limits and for IEDI and IESTI assessments

CCN	Commodity name	Maximum residue levels (mg/kg)		STMR (-P)	HR (-P) (mg/kg)
		New	Previous	(mg/kg)	
TN 0660	Almonds	0.03		0.019	
AM 0660	Almond hulls	6		Median: 1.7	
FB 2006	Subgroup of Bush berries	1.5		0.275	
FB 0267	Elderberries	1.5		0.275	
FB 2254	Guelder rose	1.5		0.275	
FB 2005	Subgroup of Cane berries	0.8		0.27	
FS 0013	Subgroup of Cherries	0.7	0.9	0.14	-
VB 0041	Cabbages, head	0.7		0.0325	
VO 2700	Cherry Tomato	W	0.1		-
FC 0001	Group of Citrus fruit	0.4	-	0.087	

Citrus oil, edible So	CCN	Commodity name	Maximum res		STMR (-P)	HR (-P) (mg/kg)
No. Citrus oil, edible 50				1		(mg/kg)
No. No.	OR 0001	Citrus oil, edible		110 / 10 000	10.1	
DV 0448 Tomato, dried 0.35 0.4 0.11 -		<u>'</u>	0.05	0.06		-
MO 0105 Edible offal (mammalian) 0.2 0.01(*) Kidney: 0.052 Liver: 0.061 VO 2046 Subgroup of Eggplants 0.15 0.1 0.0525 - PE 0112 Eggs 0.01(*) 0 - VB 0042 Subgroup of Flowerhead Brassicas 0.8 1 0.28 - FB 0269 Grapes 0.6 0.8 0.12 - VL 2050 Subgroup of Head Brassicas W 0.7 - - VL 0540 Subgroup of Leafy greens 7 2.4 - - - VL 0054 Subgroup of Leaves of Brassicaceae 10 15 3.5 - VL 0054 Subgroup of Leaves of Brassicaceae 10 15 3.5 - FB 2009 Subgroup of Leaves of Brassicaceae 10 15 3.5 - FB 2009 Subgroup of Leaves of Brassicaceae 10 15 3.5 - FB 2009 Subgroup of Melons, pumpkins and winter squashes 0.1 0.15 0.041 - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>						-
VO 2046 Subgroup of Eggplants 0.15 0.1 0.0525 -	MO 0105	· · · · · · · · · · · · · · · · · · ·	0.2	0.01(*)	0.052 Liver:	-
PE 0112 Eggs	VO 2046	Subgroup of Eggplants	0.15	0.1		
VB 0042 Subgroup of Flowerhead Brassicas 0.8 1 0.28 -		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.1		
FB 0269 Grapes 0.6 0.8 0.12 - VB 2036 Subgroup of Head Brassicas W 0.7 - VL 2050 Subgroup of Leafy greens 7 2.4 VL 0054 Subgroup of Leaves of Brassicaceae 10 15 3.5 - MM 0095 Meat (from mammals other than marine mammals) 0.25 (fat)			` ′	1	-	
VB 2036 Subgroup of Head Brassicas W 0.7 -		0 1				_
VL 2050 Subgroup of Leafy greens 7 2.4 VL 0054 Subgroup of Leaves of Brassicaceae 10 15 3.5 - MM 0095 Meat (from mammals other than marine mammals) 0.25 (fat) 0.01(*) Muscle: 0.016 Fat: 0.064 - FB 2009 Subgroup of Low growing berries, except cranberries 0.4 0.12 - VC 2040 Subgroup of Melons, pumpkins and winter squashes 0.1 0.15 0.041 - MF 0100 Mammalian fats (except milk fats) 0.25 0.01(*) 0.064 - ML 0106 Milks 0.01 0.01(*) 0.004 - FM 0183 Milk fats 0.2 0.01(*) 0.108 - VO 0051 Subgroup of Peppers (excluding Martynia, Okra and Roselle) 0.15 0.2 0.0525 - HS 0444 Peppers, Chili, dried 1.5 2 0.525 - FS 2001 Subgroup of Peaches (including Apricots and Nectarines) 0.3 0.3 0.053 FP 0009 Group of Pome fruits W					0.12	
VL 0054 Subgroup of Leaves of Brassicaceae 10 15 3.5 - MM 0095 Meat (from mammals other than marine mammals) 0.25 (fat) 0.01(*) Muscle: 0.016 Fat: 0.064 - FB 2009 Subgroup of Low growing berries, except cranberries 0.4 0.12 - VC 2040 Subgroup of Melons, pumpkins and winter squashes 0.1 0.15 0.041 - MF 0100 Mammalian fats (except milk fats) 0.25 0.01(*) 0.064 - ML 0106 Milks 0.01 0.01(*) 0.004 - FM 0183 Milk fats 0.2 0.01(*) 0.108 - VO 0051 Subgroup of Peppers (excluding Martynia, Okra and Roselle) 0.15 0.2 0.0525 - HS 0444 Peppers, Chili, dried 1.5 2 0.525 - FS 2001 Subgroup of Peaches (including Apricots and Nectarines) 0.3 0.3 0.053 FP 0009 Group of Pome fruits W 0.3 - - FS 0014 Subgroup of Pome fr				0.7	2.4	
MM 0095 Meat (from mammals other than marine mammals) 0.25 (fat) 0.01(*) (fat) Muscle: 0.016 Fat: 0.064 FB 2009 Subgroup of Low growing berries, except cranberries 0.4 0.12 VC 2040 Subgroup of Melons, pumpkins and winter squashes 0.1 0.15 0.041 - MF 0100 Mammalian fats (except milk fats) 0.25 0.01(*) 0.064 - ML 0106 Milks 0.01 0.01(*) 0.004 - FM 0183 Milk fats 0.2 0.01(*) 0.108 - VO 0051 Subgroup of Peppers (excluding Martynia, Okra and Roselle) 0.15 0.2 0.0525 - HS 0444 Peppers, Chili, dried 1.5 2 0.525 - FS 2001 Subgroup of Peaches (including Apricots and Nectarines) 0.3 0.3 0.053 FP 0009 Group of Pome fruits W 0.3 - FP 00109 Group of Pome fruits (excluding Japanese persimmons) 0.2 - 0.057 FS 0014 Subgroup of Plums 0.15 0.2				15		-
FB 2009 Subgroup of Low growing berries, except cranberries 0.4 0.12 VC 2040 Subgroup of Melons, pumpkins and winter squashes 0.1 0.15 0.041 - MF 0100 Mammalian fats (except milk fats) 0.25 0.01(*) 0.064 - ML 0106 Milks 0.01 0.01(*) 0.004 - FM 0183 Milk fats 0.2 0.01(*) 0.108 - VO 0051 Subgroup of Peppers (excluding Martynia, Okra and Roselle) 0.15 0.2 0.0525 - HS 0444 Peppers, Chili, dried 1.5 2 0.525 - FS 2001 Subgroup of Peaches (including Apricots and Nectarines) 0.3 0.3 0.053 FP 0009 Group of Pome fruits W 0.3 - FP 0009 Group of Pome fruits (excluding Japanese persimmons) 0.2 - 0.057 FS 0014 Subgroup of Plums 0.15 0.2 0.052 - PO 0111 Poultry, edible offal 0.01(*) 0 -			0.25	0.01(*)	Muscle: 0.016	-
VC 2040 Subgroup of Melons, pumpkins and winter squashes 0.1 0.15 0.041 - MF 0100 Mammalian fats (except milk fats) 0.25 0.01(*) 0.064 - ML 0106 Milks 0.01 0.01(*) 0.004 FM 0183 Milk fats 0.2 0.01(*) 0.108 - VO 0051 Subgroup of Peppers (excluding Martynia, Okra and Roselle) 0.15 0.2 0.0525 - HS 0444 Peppers, Chili, dried 1.5 2 0.525 - FS 2001 Subgroup of Peaches (including Apricots and Nectarines) 0.3 0.3 0.053 FP 0009 Group of Pome fruits W 0.3 - FP 0009 Group of Pome fruits (excluding Japanese persimmons) 0.2 - 0.057 FS 0014 Subgroup of Plums 0.15 0.2 0.052 - PO 0111 Poultry, edible offal 0.01(*) 0 0 0.052 - PM 0100 Poultry, fats 0.01(*) 0 0 0.01(*	FR 2009	Subgroup of Low growing berries except crapherries	0.4			
MF 0100 Mammalian fats (except milk fats) 0.25 0.01(*) 0.064 - ML 0106 Milks 0.01 0.01(*) 0.004 FM 0183 Milk fats 0.2 0.01(*) 0.108 - VO 0051 Subgroup of Peppers (excluding Martynia, Okra and Roselle) 0.15 0.2 0.0525 - HS 0444 Peppers, Chili, dried 1.5 2 0.525 - FS 2001 Subgroup of Peaches (including Apricots and Nectarines) 0.3 0.3 0.053 FP 0009 Group of Pome fruits W 0.3 - FP 0019 Group of Pome fruits (excluding Japanese persimmons) 0.2 - 0.057 FS 0014 Subgroup of Plums 0.15 0.2 0.052 - PO 0111 Poultry, edible offal 0.01(*) 0 0 PF 0111 Poultry, fats 0.01(*) 0 0 PM 0110 Poultry, meat 0.01(*) 0 12.5 VO 2045 Subgroup of Tomatoes 0.08 <t< td=""><td></td><td></td><td>-</td><td>0.15</td><td></td><td>_</td></t<>			-	0.15		_
ML 0106 Milks 0.01 0.01(*) 0.004 FM 0183 Milk fats 0.2 0.01(*) 0.108 - VO 0051 Subgroup of Peppers (excluding Martynia, Okra and Roselle) 0.15 0.2 0.0525 - HS 0444 Peppers, Chili, dried 1.5 2 0.525 - FS 2001 Subgroup of Peaches (including Apricots and Nectarines) 0.3 0.3 0.053 FP 0009 Group of Pome fruits W 0.3 - FP 0009 Group of Pome fruits (excluding Japanese persimmons) 0.2 - 0.057 FS 0014 Subgroup of Plums 0.15 0.2 0.052 - PO 0111 Poultry, edible offal 0.01(*) 0 - PF 0111 Poultry, fats 0.01(*) 0 - PM 0110 Poultry, meat 0.01(*) 0 - DT 1114 Tea, green, black (black, fermented and dried) 50 12.5 VO 2045 Subgroup of Tomatoes 0.08 0.033			-			
FM 0183 Milk fats 0.2 0.01(*) 0.108 - VO 0051 Subgroup of Peppers (excluding Martynia, Okra and Roselle) 0.15 0.2 0.0525 - HS 0444 Peppers, Chili, dried 1.5 2 0.525 - FS 2001 Subgroup of Peaches (including Apricots and Nectarines) 0.3 0.3 0.053 FP 0009 Group of Pome fruits W 0.3 - FP 0019 Group of Pome fruits (excluding Japanese persimmons) 0.2 - 0.057 FS 0014 Subgroup of Plums 0.15 0.2 0.052 - PO 0111 Poultry, edible offal 0.01(*) 0 - PF 0111 Poultry, fats 0.01(*) 0 - PM 0110 Poultry, meat 0.01(*) 0 - DT 1114 Tea, green, black (black, fermented and dried) 50 12.5 VO 2045 Subgroup of Tomatoes 0.08 0.033 VR 2071 Subgroup of Tuberous and corm vegetables 0.01(*) 0 <						
VO 0051 Subgroup of Peppers (excluding Martynia, Okra and Roselle) 0.15 0.2 0.0525 - HS 0444 Peppers, Chili, dried 1.5 2 0.525 - FS 2001 Subgroup of Peaches (including Apricots and Nectarines) 0.3 0.3 0.053 FP 0009 Group of Pome fruits W 0.3 - FP 0009 Group of Pome fruits (excluding Japanese persimmons) 0.2 - 0.057 FS 0014 Subgroup of Plums 0.15 0.2 0.052 - PO 0111 Poultry, edible offal 0.01(*) 0 - PF 0111 Poultry, fats 0.01(*) 0 - PM 0110 Poultry, meat 0.01(*) 0 - DT 1114 Tea, green, black (black, fermented and dried) 50 12.5 VO 2045 Subgroup of Tomatoes 0.08 0.033 VR 2071 Subgroup of Tuberous and corm vegetables 0.01(*) 0 DF 0014 Prunes 0.6 0.8 0.19 -				1 1		-
HS 0444 Peppers, Chili, dried 1.5 2 0.525 - FS 2001 Subgroup of Peaches (including Apricots and Nectarines) 0.3 0.3 0.053 FP 0009 Group of Pome fruits W 0.3 - FP 0009 Group of Pome fruits (excluding Japanese persimmons) 0.2 - 0.057 FS 0014 Subgroup of Plums 0.15 0.2 0.052 - PO 0111 Poultry, edible offal 0.01(*) 0 0 PF 0111 Poultry, fats 0.01(*) 0 0 PM 0110 Poultry, meat 0.01(*) 0 0 DT 1114 Tea, green, black (black, fermented and dried) 50 12.5 VO 2045 Subgroup of Tomatoes 0.08 0.033 VR 2071 Subgroup of Tuberous and corm vegetables 0.01(*) 0 DF 0014 Prunes 0.6 0.8 0.19 -		Subgroup of Peppers (excluding Martynia, Okra and Roselle)		1 1		_
FP 0009 Group of Pome fruits W 0.3 - FP 0009 Group of Pome fruits (excluding Japanese persimmons) 0.2 - 0.057 FS 0014 Subgroup of Plums 0.15 0.2 0.052 - PO 0111 Poultry, edible offal 0.01(*) 0 - PF 0111 Poultry, fats 0.01(*) 0 - PM 0110 Poultry, meat 0.01(*) 0 - DT 1114 Tea, green, black (black, fermented and dried) 50 12.5 - VO 2045 Subgroup of Tomatoes 0.08 0.033 - VR 2071 Subgroup of Tuberous and corm vegetables 0.01(*) 0 - DF 0014 Prunes 0.6 0.8 0.19 -	HS 0444		1.5	2	0.525	-
FP 0009 Group of Pome fruits (excluding Japanese persimmons) 0.2 - 0.057 FS 0014 Subgroup of Plums 0.15 0.2 0.052 - PO 0111 Poultry, edible offal 0.01(*) 0 - PF 0111 Poultry, fats 0.01(*) 0 - PM 0110 Poultry, meat 0.01(*) 0 - DT 1114 Tea, green, black (black, fermented and dried) 50 12.5 - VO 2045 Subgroup of Tomatoes 0.08 0.033 VR 2071 Subgroup of Tuberous and corm vegetables 0.01(*) 0 DF 0014 Prunes 0.6 0.8 0.19 -	FS 2001	Subgroup of Peaches (including Apricots and Nectarines)	0.3	0.3	0.053	
FS 0014 Subgroup of Plums 0.15 0.2 0.052 - PO 0111 Poultry, edible offal 0.01(*) 0 0 PF 0111 Poultry, fats 0.01(*) 0 0 PM 0110 Poultry, meat 0.01(*) 0 0 DT 1114 Tea, green, black (black, fermented and dried) 50 12.5 0.033 VO 2045 Subgroup of Tomatoes 0.08 0.033 0.033 VR 2071 Subgroup of Tuberous and corm vegetables 0.01(*) 0 0 DF 0014 Prunes 0.6 0.8 0.19 -	FP 0009	Group of Pome fruits	W	0.3		-
PO 0111 Poultry, edible offal 0.01(*) 0 PF 0111 Poultry, fats 0.01(*) 0 PM 0110 Poultry, meat 0.01(*) 0 DT 1114 Tea, green, black (black, fermented and dried) 50 12.5 VO 2045 Subgroup of Tomatoes 0.08 0.033 VR 2071 Subgroup of Tuberous and corm vegetables 0.01(*) 0 DF 0014 Prunes 0.6 0.8 0.19 -	FP 0009	Group of Pome fruits (excluding Japanese persimmons)	0.2	-	0.057	
PF 0111 Poultry, fats 0.01(*) 0 PM 0110 Poultry, meat 0.01(*) 0 DT 1114 Tea, green, black (black, fermented and dried) 50 12.5 VO 2045 Subgroup of Tomatoes 0.08 0.033 VR 2071 Subgroup of Tuberous and corm vegetables 0.01(*) 0 DF 0014 Prunes 0.6 0.8 0.19 -	FS 0014	Subgroup of Plums	0.15	0.2	0.052	-
PM 0110 Poultry, meat 0.01(*) 0 DT 1114 Tea, green, black (black, fermented and dried) 50 12.5 VO 2045 Subgroup of Tomatoes 0.08 0.033 VR 2071 Subgroup of Tuberous and corm vegetables 0.01(*) 0 DF 0014 Prunes 0.6 0.8 0.19 -	PO 0111	Poultry, edible offal	0.01(*)	0		
DT 1114 Tea, green, black (black, fermented and dried) 50 12.5 VO 2045 Subgroup of Tomatoes 0.08 0.033 VR 2071 Subgroup of Tuberous and corm vegetables 0.01(*) 0 DF 0014 Prunes 0.6 0.8 0.19 -	PF 0111	Poultry, fats	0.01(*)	0		
VO 2045 Subgroup of Tomatoes 0.08 0.033 VR 2071 Subgroup of Tuberous and corm vegetables 0.01(*) 0 DF 0014 Prunes 0.6 0.8 0.19 -	PM 0110	Poultry, meat	0.01(*)	0		
VR 2071 Subgroup of Tuberous and corm vegetables 0.01(*) 0 DF 0014 Prunes 0.6 0.8 0.19 -	DT 1114	Tea, green, black (black, fermented and dried)	50		12.5	
DF 0014 Prunes 0.6 0.8 0.19 -	VO 2045	Subgroup of Tomatoes	0.08		0.033	
	VR 2071	Subgroup of Tuberous and corm vegetables	0.01(*)		0	
VO 0448 Tomato W 0.1 -	DF 0014	Prunes	0.6	0.8	0.19	-
	VO 0448	Tomato	W	0.1		-

Table 43 Recommendations for dietary intake only

CCN	Commodity name	New MRL (mg/kg)	Previous MRL (mg/kg)	STMR-P (mg/kg)	HR-P (mg/kg)
	Citrus juice	-	-	0.01	
JF 0226	Apple, juice	-	-	0.019	-
-	Grape, must	-	-	0.08	-
JF 0269	Grape, juice	-	-	0.04	-
-	Grape, wine	-	-	0.04	-
	Potato crisps	-	-	0	-
	Potato flakes/granules	-	-	0	-
	Tea infusion	-	-	1.8	-
-	Tomato, canned	-	-	0.005	-
VW 0448	Tomato, paste	-	-	0.04	-
JF 0448	Tomato, juice	-	-	0.03	-

Table 44 Additional recommendations for feed commodities for calculation of the dietary burdens

CNN	Commodity	MRL (mg/kg)	Previous MRL	Median (-P) residue	Highest residue (mg/kg)
			(mg/kg)	(mg/kg)	(IIIg/Kg)
AB 0001	Citrus pulp, dry	-	-	0.099	-
AB 0226	Apple pomace, wet (as received)	-	-	0.15	-
AB 0269	Grape pomace, wet (as received)	-	-	0.19	-
AB 0448	Tomato pomace, wet (as received)	-	-	0.02	-
VB 0041	Cabbages, head			0.024	0.38
AV 0480	Leaves of Brassicaceae, (based on mustard greens dataset)	-	-	3.0	4.4
	Potato, wet peels	-	-	0	-

dw-dry weight

[ar] Based on as received basis.

DIETARY RISK ASSESSMENT

Long-term dietary exposure

The ADI for cyclaniliprole is 0–0.04 mg/kg bw. The International Estimated Daily Intakes (IEDIs) for cyclaniliprole were estimated for the 17 GEMS/Food Consumption Cluster Diets using the STMR or STMR-P values estimated by the JMPR. The results are shown in Annex 3 of the 2019 JMPR Report.

The IEDIs ranged from 1-10% of the maximum ADI. The Meeting concluded that long-term dietary exposure to residues of cyclaniliprole from uses considered by the JMPR is unlikely to present a public health concern.

Acute dietary exposure

The 2017 JMPR decided that an ARfD for cyclaniliprole was unnecessary. The Meeting therefore concluded that the acute dietary exposure to residues of cyclaniliprole from the uses considered is unlikely to present a public health concern.

REFERENCES

Report No.	Author	Year	Title, Institute & report number, Submitting manufacturer, GLP/Non-GLP. Published/Unpublished
JSM0269	Brewin, S.	2012	IKI-3106 and NK-1375: Validation of Methodology for the Determination of Residues of IKI.3106 and NK-1375 in Grape, Wine, Peaches, Oilseed Rape Seed and Dry Beans
			Huntingdon Life Sciences Ltd., UK
			GLP, unpublished
IB-2015-JAM-004-01-01	McDonald, J. A.	2017a	Magnitude of Residues of IKI-3106 on Citrus-USA in 2015
			ISK Biosciences Corporation, USA;
			GLP, unpublished
IB-2015-JAM-005-01-01	McDonald, J. A.	2017b	Magnitude of Residues of IKI-3106 on Berries- USA & Canada in 2015
			ISK Biosciences Corporation, USA
			GLP, unpublished
IB-2015-JAM-003-01-01	McDonald, J. A.	2017c	Magnitude of Residues of IKI-3106 on Potatoes- USA & Canada in 2015
			ISK Biosciences Corporation, USA
			GLP, unpublished