

Emerging practices from Agricultural Water Management in Africa and the Near East

Thematic Workshop

Dr. Tobias Siegfried

28 August 2017

PRESENTATION OUTLINE

- Background
- discharge.ch Technology
- Implementation
- Results
- Outcomes & Findings
- Discussion & Conclusions
- Special Thanks

Emerging practices from Agricultural Water Management in Africa and the Near East

Thematic Workshop

Theme 5

Technology

Alternative techniques to canal measurements

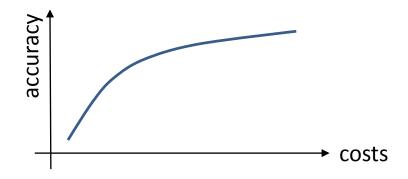
28 August 2017

BACKGROUND

iMoMo Innovation Project

- Fostering innovation in low-cost, high-tech, nontraditional, people-centered observations and monitoring.
- Modernization of pathway from observation to decision-support.
- Long-term support by the Swiss Agency for Development and Cooperation (SDC)

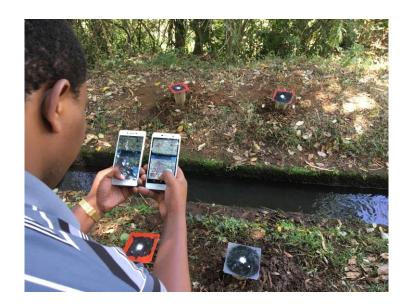
BACKGROUND


Looking Beyond Traditional Monitoring

- Traditional station data (static observation network)
- Remotely sensed data (auxiliary data)
- Non-traditional, crowd-sourced data (dynamic observation network)

BACKGROUND

Traditional Observations	Non-traditional Observations
+ Automatic / Autonomous	- Human Factor
+ High Accuracy	- Less Accuracy
+ High Frequency	- Intermittent Data
- Costly	+ Low-cost & scalable
- Requires expert knowledge	+ Amateur proof
- Vandalism	+ Vandalism not an issue

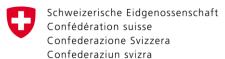

BACKGROUND

Definitions

 Crowd-sourced data collection is monitoring conducted, in whole or in part, by amateurs

and/or non-professionals.

 Crowd-sensing is crowdsourced, participatory monitoring.

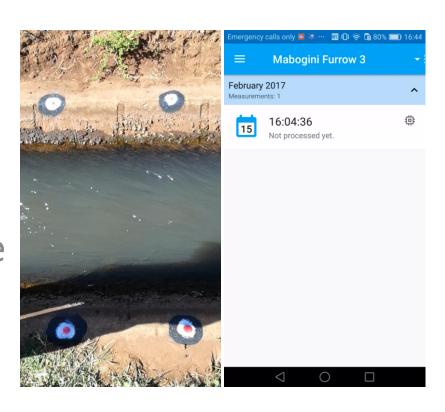


TECHNOLOGY

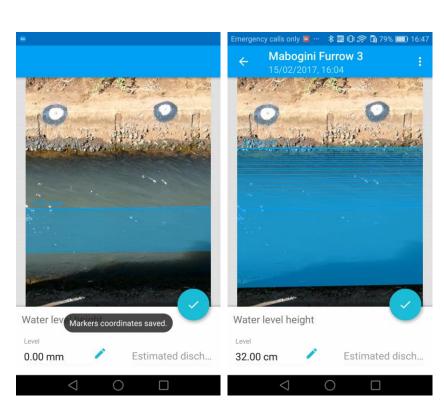
Measuring Discharge with a Smartphone

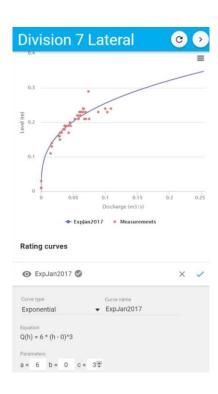
Swiss Agency for Development and Cooperation SDC

TECHNOLOGY


- Site identification, setup and calibration
- Measure
- Synchronize with Cloud
- Manage data on website

TECHNOLOGY


- Site identification, setup and calibration
- Measure
- Synchronize with Cloud
- Manage data on website

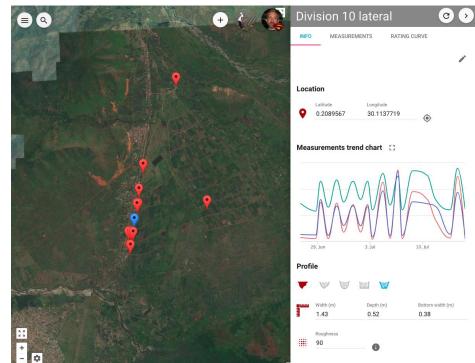

TECHNOLOGY

- Site identification, setup and calibration
- Measure
- Synchronize with Cloud
- Manage data on website

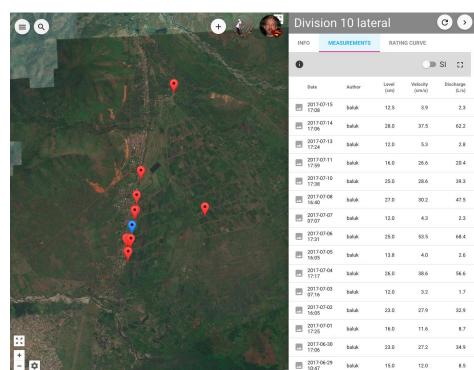
TECHNOLOGY

- Site identification, setup and calibration
- Measure
- Synchronize with Cloud
- Manage data on website

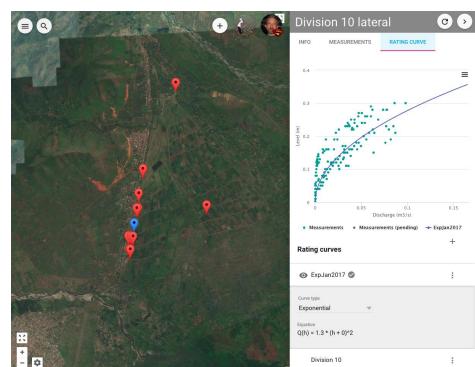
TECHNOLOGY


- Site identification, setup and calibration
- Measure
- Synchronize with Cloud
- Manage data on website

TECHNOLOGY


- Site identification, setup and calibration
- Measure
- Synchronize with Cloud
- Manage data on website

TECHNOLOGY


- Site identification, setup and calibration
- Measure
- Synchronize with Cloud
- Manage data on website

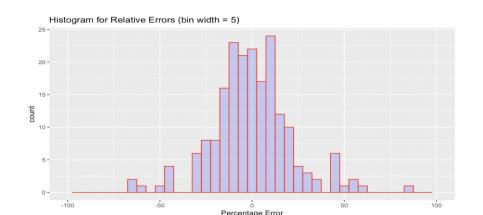
TECHNOLOGY

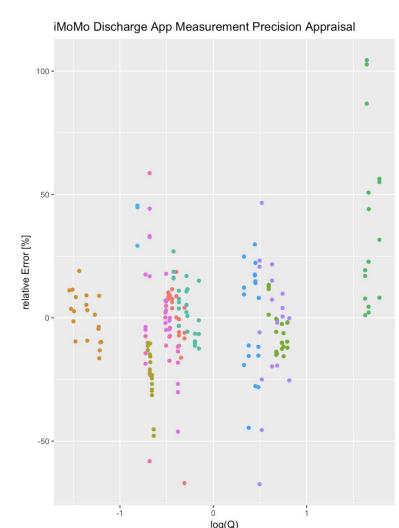
- Site identification, setup and calibration
- Measure
- Synchronize with Cloud
- Manage data on website

TECHNOLOGY

Application

- Irrigation canals
- Intakes
- Small to mediumsized rivers




TECHNOLOGY

Measurement Precision*

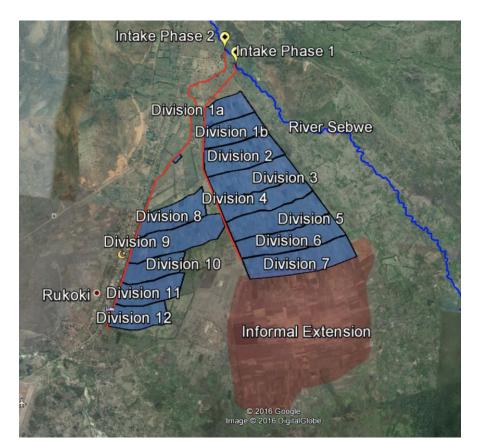
- 21.3% of data within ± 5% rel. error
- 42.1% of data within ± 10% rel. error
- 75.1% of data within ± 20% rel. error

*: Campaign carried out in free profile settings in June 2017 in South Germany jointly with SEBA

TECHNOLOGY

Summary: Value Proposition

- Fast, non-contact, representative measurements and on-site evaluation, even by non-experts
- Scalable (1:n, $n \gg 1$)
- Vandalism-proofed technology
- Error-free data transmission
- Offline measurements and synchronization later possible
- Evidence-based measurements



IMPLEMENTATION

Mubuku Irrigation Scheme, Kasese, Western UG

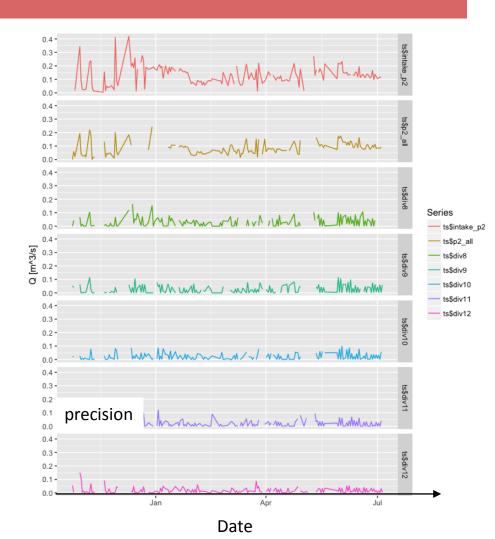
- 560 ha, 160 farmers, 13 blocks served under fixed rotation schedule.
- Several indicators of ineffective water use (over irrigation, water logging, informal scheme extension.
- Neither intake nor on-farm canal measurements due to lack of measurement technology before project start.

IMPLEMENTATION

Activities

- Technology presentation.
- Capacity building (App, website)
- Setup of 7 pilot measurement sites in Phase 2.
- Contracting one crowd-sender (Mr. Robert Baluku, NARO) and equipping with smartphone for long-term daily measurements at agreed-upon sites and comparison measurements with discharge at weirs
- Donation of one flow meter (propeller) for various tasks.
- Scheme Mapping (canals and blocks)

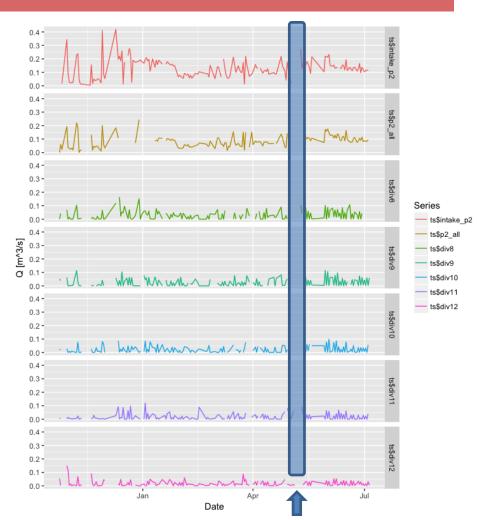
IMPLEMENTATION



RESULTS

Data

- Regular data collected at 7 sites with App and all data stored automatically on the discharge.ch site from where it can be managed, analyzed and shared.
- Qualitative analysis of time series regime change of canal discharge



RESULTS

Data

- Regular data collected at 7 sites with App and all data stored automatically on the discharge.ch site from where it can be managed, analyzed and shared.
- Qualitative analysis of time series regime change of canal discharge

Period of weir construction

OUTCOMES & FINDINGS

- Local stakeholders are able to fully utilize the discharge.ch platform for measuring canals, including setting up sites, data acquisition, management, sharing and analysis.
- Feedback from the field was important with regard to increasing technology robustness and usability. Hotline required in case of operational issues.
- Proper compensation and coverage of operational costs of crowd-senders is important (value their contributions).
- Local stakeholders declare interest for further outscaling.

DISCUSSION

Considerations for Long-Term Technology Adoption

- Proper context-specific institutional anchoring.
- Human factor.
- No free lunch! Acknowledge costs for data acquisition from the beginning, even if they are low as compared to other operational costs.
- Importance of ensuring QA / QC.

DISCUSSION

Considerations for Long-Term Technology Adoption

Community Info / Site ID / Mapping

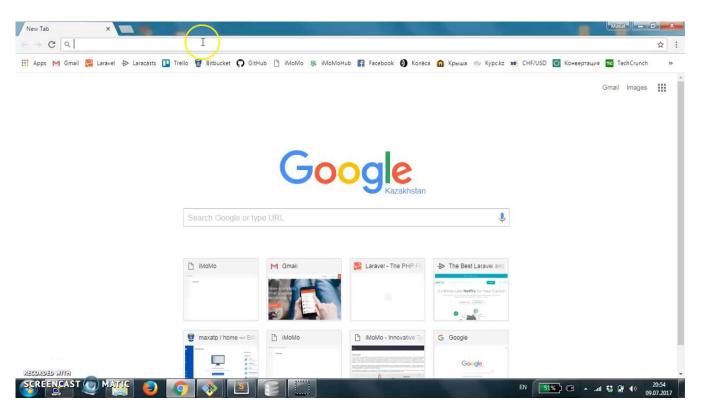
Site Instrumentation / Calibration

Collection Protocol /
Contracts & Cap. Building

Data Collection

QA/QC

DISCUSSION


Use of Non-Traditional Data

- Scheme Management
 - Water management
 - Calculating of irrigation water requirements
 - Scheduling of water deliveries
 - Keeping records of water consumption
- Scheme Administration
 - Accounting including reporting
 - Calculating water charges (volumetric, area-based, ...)
 - Performance assessment (water use efficiency, crop productivity)
 - Planning and controlling maintenance activities

DISCUSSION

iMoMo Web-Based Scheme Irrigation Management Information System

CONCLUSIONS

- Modern, crowd-sourced and cost-effective technologies allow to effectively monitor water in a complementary and integrated fashion
- Context-specific, robust deployment required
- discharge.ch technology platform can be used as standalone tool or as a bridge to other services (iMoMo Scheme Management Information Systems, iMoMo Hydrometeorological Station Administration)

SPECIAL THANKS

Special thanks go to Mr. Robert Baluku Baleke and Mr. Charles Mutumba and their dedication without which all of this could have never materialized.

SPECIAL THANKS

