

A RISK BASED MODEL TO GUIDE DECISIONS ON ZONIFICATION TO STOP VACCINATION IN A FREE COUNTRY WITH VACCINATION

O. Daza, N. Guzman, D. Gareca, J.L. Gonzales

Bolivia

Geographical regions

Amazons Chaco Valleys Highlands

Area: 1.098.581 Km²

8 637 358 cattle

2 572 226 camelids

5 386 939 Sheep

1 722 606 goats

FMD situation

- Eradication programme (started 2000) based on surveillance, control of movements and mass vaccination of the cattle population
- The goal is to gradually extend the free without vaccination zones in a risk based manner

Objective

To develop a model to quantify the risk of FMD introduction into zones where vaccination is discontinued and evaluate the efficacy of control measures to minimise this risk.

Parameters	Description	Reference
Vaccination	Province vaccination coverage - Proportion	SENASAG
Herd level infection	Prevalence = 0.015 Design prevalence used for surveillance	SENASAG
Risk of infection	Adjusted relative risk for non- vaccinated Vs vaccinated	Gonzales et al 2014. Vaccine
Anima level infection	Within herd prevalence 0.29 (0.04-0.50)	Gonzales et al 2014. Vaccine

Parameters	Description	Reference
Movement inspections	Proportion of animals inspected at road control posts 0.10 (0.05-0.015)	SENASAG.
Clinical inspection	Sensitivity clinical inspection 0.35 (0.25 – 0.40)	Gonzales et al 2014. Vaccine
Purpose of movement	Proportion of cattle moved for breeding	SENASAG – Movement records

Zones

No vaccination

No Vaccination

Once per year

Twice per year

One Mass vaccination + One < 24 months

Two zones as examples

Yearly probability of introduction

Monthly probability of introduction

Conclusions

- Clear differences in risk of introduction in different regions/zones can be observed
- This differences can be used to stop vaccination or target vaccination to specific zones
- Cattle moved from areas free with vaccination are considered the main risk for areas where vaccination is not applied
- Work is being done on improving data collection on inspection parameters from control posts and fairs in the country
- Future work: Combine risk of introduction with risk of transmission

Thank you

Jose.gonzales@wur.nl

