

UNIVERSITY of GLASGOW

Advances and gaps in vaccine modelling *Richard Reeve* Boyd Orr Centre for Population and Ecosystem Health University of Glasgow

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2013

In disease-free countries, the decision may be difficult...

In conclusion, we explored the effect of several factors that influence the benefits of implementing a reactive vaccinationto-live policy when facing epidemics of infectious disease such as FMD in Scotland. We have shown that the decision to vaccinate, or not, is not straightforward and strongly depends on the spatial variation in the farm-level basic reproductive ratio values R_i , illustrated here by the differences between the southern and northern counties of Scotland. However, if a decision to vaccinate is made, we have shown that delaying its implementation in the field may markedly reduce its benefit.

And in endemic countries the problem is often no easier...

In many FMD-endemic countries livestock movement restrictions and biosecurity measures are difficult to implement. In this situation FMD control becomes heavily dependent upon vaccine protection. However, the extent to which FMD can be controlled by vaccination alone remains an unanswered question of global importance.

Knight-Jones et al. Scientific Reports (2016)

- Vaccine models that investigate:
 - -Vaccine efficacy
 - -Vaccine selection

UNIVERSITY of GLASGOW

Vaccine efficacy

How well will my vaccine work?

- What do vaccines do?
 - Increase protection against infection / disease
 - At herd level, reduce individual exposure to FMDV because of fewer infected individuals
 - At a metapopulation level, reduce herd exposure to FMDV because of reduced virus excretion from vaccinated herds

UNIVERSITY

of

GLASGOW

Unter Berücksichtigung der genannten Gesichtspunkte wurde, nachdem die Angelegenheit auch mit Herrn Prof. B. Behrens (Heidelberg) mehrfach erörtert worden war, folgende Formel den Berechnungen zugrunde gelegt:

$$(aM) = D_m - \frac{\sum (z \cdot d)}{m}.$$

Es bedeutet dabei: (aM) = arithmetisches Mittel; $D_m =$ Dosis, bei der alle Tiere reagieren; z = halbe Summe der je bei zwei aufeinanderfolgenden Dosen reagierenden Tiere; d = Differenz der Zahlenwerte je zwei aufeinanderfolgender Dosen; m = Anzahl der Tiere in jeder Gruppe.

PD50 test: 5 animals at a full dose, 5 at 1/4 dose, 5 at 1/16 dose

Spearman *Brit J Psych* (1908) Kärber, *N-S Arch Ex Path Ph* (1931)

Will the vaccine protect against disease?

Will the vaccine protect against disease?

Will the vaccine protect against disease?

Predicting protection using VNT and LPBE without controls

Predicting protection for a titre of 1

Predicting protection for a titre of 1

Will the vaccine protect against disease?

titre

Will the vaccine protect against disease?

Sample No.	27	5_1	275	5_2	275	_3	282	2_1	28	2_2	28	2_3		
Titre	1	16	1	1	3	2	17	78	1	.78	1	.28	Reading	
	-	-	-	-	-	-	-	-	-	-	-	-		Plate number
	-	-	-	-	-	-	-	-	-	-	-	-		
	1	-	-	-	-	-		-	-	+	-	+		Lab Batch
	-	+	+	+	-	-	-	-	-	-	-	+		
	+	+	+	+	-	+	+	+	+	-	+	-		Virus
	+	+	+	+	+	+	+	+	+	+	+	+	A/MA	Y/02/2011 dilution 3.2
	+	+	+	+	+	+	+	+	+	+	+	+		Virus dose
	+	+	+	+	+	+	+	+	+	+	+	+		
	+	+	+	+	+	+	+	+	+	+	+	+		
	+	+	+	+	+	+	+	+	+	+	+	+		
	+	+	+	+	+	+	+	+	+	+	+	+		
	+	+	+	+	+	+	+	+	+	+	+	+		
Sample No.	27	5_1	275	5_2	275	_3	282	2_1	28	2_2	28	2_3		
Titre		32	2	2	3	2	53	12	5	12	3	55	Reading	
	-	-	-	-	-	-	-	-	-	-	-	-		Plate number
	-	-	-	-	-	-	-	-	-	-	-	-		
	-	-	-	-	-	-	-	-	-	-	-	-		Lab Batch
	+	-	+	-	-	-	-	-	-	-	-	-		
	+	-	-	+	-	+	-	-	-	-	+	-		Virus
	+	-	+	+	+	+	-	+	-	+	+	-	A/MA	Y/02/2011 dilution 3.8
	+	+	+	+	+	+	+	+	+	+	+	+		Virus dose
	+	+	+	+	+	+	+	+	+	+	+	+		
	+	+	+	+	+	+	+	+	+	+	+	+		
	+	+	+	+	+	+	+	+	+	+	+	+		
	+	+	+	+	+	+	+	+	+	+	+	+		
	+	+	+	+	+	+	+	+	+	+	+	+		

Jamaliah Senawi, UoG/Pirbright PhD student

Will the vaccine protect against disease?

Will the vaccine protect against disease?

But what about (sub-clinical) infection?

Gonzales et al. Vaccine (2014)

UNIVERSITY

of

GLASGOW

But what about (sub-clinical) infection?

Date of reported	Spring 2011	August 2011	July 2012	June 2013
outbreak				
Herd managers'	Mild	Severe	Less severe	Unknown
perception of				
outbreak severity				
Number of animals	100	96	96	51
in herd at time				
Number of animals	NA	18	10	7
with photographic				
evidence of lesions				
or lesion material				
submitted to WRL				
Serotype	0	SAT2	SAT1	A
Predicted infection	Uninfected = 35	Uninfected = 6	Uninfected = 23	Uninfected = 16
status model 2B	Infected = 65	Infected = 90	Infected =73	Infected = 35

Miriam Casey *PhD Thesis* (2016)

Why should we care?

Matthews et al. PNAS (2013)

How do we induce it?

Rate of infection per	FMDV infectious	(TCID ₅₀) aerosol
-----------------------	-----------------	-------------------------------

	Rate	LCL	UCL
Infection	0.027	0.016	0.045
Disease	0.005	0.003	0.009

60% cow infectious dose (TCID	50)
-------------------------------	-----

	Dose	LCL	UCL
Infection	1.4	1.1	1.6
Disease	2.1	1.8	2.3

				-		
Initial proportion	of cattle infected		Herd type	Herd	Prevalence	Reproduction ratio
2%	5%	10%	Beef	1	0.91 (0.78-0.99)	2.68 (1.94-4.92)
ko cattle				2	0.26 (0.05-0.56)	1.15 (1.03–1.47)
77 (67, 82)	38 (26, 63)	44 (40, 49)		3	0.10 (0.01-0.33)	1.06 (1.00-1.21)
29 23, 32)	21 (16, 25)	18 (15, 22)		4	0.72 (0.57-0.86)	1.77 (148-2.28)
20 (16, 25)	19 (16, 24)	15 (13, 20)		5	0.90 (0.79-0.99)	2.57 (1.96-4.36)
38 (28, 46)	29 (22, 36)	23 (16, 35)		6	0.46 (0.28-0.65)	1.35 (1.18-1.62)
23 (8, 27)	19 (15, 23)	17 (12, 21)		7	0.56 (0.30-0.81)	1.47 (1. 9–2.05)
20 (14, 25)	15 (12, 19)	13 (10, 16)		8	0.38 (0.24–0.53)	1.26 (1. 5-1.42)
55 (50, 60)	19(16, 27)	14(11,19)		9	0.58(0.44 - 0.71)	1.50(1.32 - 1.75)
21(18, 23) 16(14, 10)	15(13, 18) 14(11, 16)	11(9, 13) 10(8, 11)		10	0.40(0.25-0.56)	1.27(1.15-1.46)
10(14, 19)	14(11, 10) 17(14, 22)	10(0, 11) 13(10, 19)		11	0.04(0.00-0.13)	1.02(1.00-1.07)
18 (15, 20)	17(14, 22) 12(10, 15)	9(8 11)		12	0.70(0.54-0.84)	1.72(1.45-2.16)
14(12, 16)	11 (9, 13)	8(7,9)		12		
55 (48, 67)	58 (42, 72)	51 (44, 60)	Dairy	13	0.83 (0.64-0.98)	2.15 (1.6 <mark>0–3.81</mark>)
51 (42, 62)	49 (42, 61)	46 (39, 55)		14	0.73 (0.49-0.93)	1.79 (1.37–2.87)
41 (29, 51)	44 (34, 58)	44 (31, 55)		15	0.14 (0.02-0.35)	1.08 (1.01–1.23)
42 (32, 52)	63 (53, 73)	86 (35, 135)		16	0.24 (0.11-0.41)	1.15 (1.06–1.29)
65 (41, 103)	43 (31, 68)	40 (32, 81)		17	0.87 (0.56-0.99)	2.34 (1.47-5.02)
32 (22, 42)	32 (22, 43)	34 (26, 43)		18	0.29 (0.08-0.57)	1.17 (1.05–1.48)
45 (37, 51)	45(33, 57)	33 (28, 40)		19	0.29 (0.12-0.49)	1.18 (1.07–1.37)
36 (29, 43)	36 (30, 42)	31 (28, 34)		20	0.63 (0.44-0.84)	1.59 (132-2.17)
31 (23, 39)	33 (22, 41)	29 (20, 31)		21	0.07 (0.00-0.25)	1.04 (1.00-1.15)
32(23, 41)	44 (34, 57)	36 (26, 46)		22	0.06 (0.00-0.23)	1.03 (1.00-1.14)
23 16 31)	26 (19, 21)	20(23, 27) 24(17, 30)		23	0.53 (0.32-0.75)	1.42 (1.20-1.85)
25 10, 51)	20(19, 21)	24(17,50)				

Chis Ster et al. *Epidemics* (2012) Gonzales et al. *Vaccine* (2014)

Does it help when we do?

Colenutt et al. Vet Microbiol (2016)

Does it help when we do?

Willems et al. Vaccine (2012)

UNIVERSITY of GLASGOW

Vaccine selection

- Cross-protection challenge trials
- r₁ values to measure cross-reactivity
 or just VNT / LPBE / CFT titres
- Sequence-based prediction

Table 1 Summary of challenge results

of

GLASGOW

Test	Number of protected animals vs. vaccinated animals							
Vaccine strain/challenge strain	2 ml, 1/1	0.5 ml, 1/4	0.125 ml, 1/16	Control animals	PD50 value	r-Value		
A22Iraq/A22Iraq	5/5	5/5	5/5	0/2	32			
A22Iraq/Alran96	5/5	2/5	2/5	0/2	6.06	0.09		
A22Iraq/AEgypt06	5/5	3/5	3/5	0/2	10.56	0.12		
A22Iraq/Alran99	5/5	2/5	0/5	0/2	3.84	0.04		
Alran99/Alran99	5/5	5/5	5/5	0/2	32			
Alran99/A22Iraq	5/5	4/5	3/5	0/2	13.93	0.10		
Alran99/Alran96	5/5	5/5	3/5	0/2	18.38	0.23		
Alran96/Alran99	5/5	4/5	2/5	0/2	10.56	0.12		
Alran96/A22Iraq	2/5	2/5	1/5	0/2	2	n.a.		
Alran96/A22Iraq	5/5	4/5	1/5	0/2	8	0.10		
Alran96/Alran96	5/5	5/5	5/5	0/2	32			
Overall	52/55	41/55	30/55	0/22	\bigvee	\bigvee		

n.a.: not applicable.

What vaccine should I use?

Reeve et al. PLOS Comp Biol (2010)

GLASGOW

What vaccine should I use?

		•	•
Substitution(s) (H1-HA numbering)	Antigenic s	site	Antigenic impact *
	H1[5]	H3[4]	(unigenie units)
Substitutions with support across phylog	geny identified using	g Eq 3†:	
K141E	Ca	А	2.37 (2.27–2.47)
E153G	Sa	В	0.20 (0.07–0.33)
E153K	Sa	В	0.66 (0.39-0.93)
G153K	Sa	В	1.50 (0.51–2.49)
D187N	Sb	В	0.33 (0.30-0.36)
D187V	Sb	В	0.88 (0.51–2.49)
A190T	Sb	В	0.24 (0.17-0.31)
Substitutions without support across phy	ylogeny identified u	sing Eq 4†:	
S36N		С	0.66 (0.22-1.11)
S72F	Cb	E	0.81 (0.49–1.13)
E74G, E120G‡	Cb,-	E,A	0.43 (0.29–0.57)
R43L, F71I, ΔK130, S271P‡	-,Cb,-,-	C,-,A,-	3.53 (3.44–3.62)
S142N	Ca	А	0.75 (0.58–0.92)
K163N	Sa		0.67 (0.62–0.73)
S183P		В	0.61 (0.33-0.89)
N184S	Sb	В	0.51 (0.31–0.70)
W252R			0.37 (0.32-0.43)
E274K			1.31 (0.68–1.93)
R313K			1.47 (0.84–2.10)

Table 1. HA1 amino acid substitutions that correlate with antigenic change.

* k_i in Eq 3 or k'_i in Eq 4. Mean and 95% CI are shown.

† Substitutions identified by likelihood ratio test using p-value of 0.05 adjusted using Bonferroni correction. ‡ Multiple substitutions in the same branch offer alternative explanations for the associated antigenic change.

Predicted antigenic impact (antigenic units)

Harvey et al. *PLOS Pathogens* (2016)

Łuksza and Lässig Nature (2014)

Łuksza et al. WHO Influenza VCM technical report (Sept 2016)

Łuksza et al. WHO Influenza VCM technical report (Sept 2016)

- the serological assays themselves
 - and their relationship to protection
 - especially in the sense of cross-protection
- the importance of sub-clinical infection in the epidemiology of endemic disease
- factors affecting viral clade survival
 - and their implications for vaccine choice
- More sequence (and serological) data on circulating strains, especially in Africa

of *f*

University of Glasgow (UK)

Miriam Casey, Tiziana Lembo, Sarah Cleaveland, Will Harvey, Dan Haydon

The Pirbright Institute (UK)

Daryl Borley, Sasmita Upadhyaya, Fufa Bari, Mana Mahapatra, David Paton, Satya Parida, Paul Barnett

Onderstepoort Veterinary Institute (South Africa)

 Francois Maree, Azwidowi Lukhwareni, Jan Esterhuysen, **Belinda Blignaut**

MRC National Institute for Medical Research (UK)

John McCauley, Alan Hay, Rod Daniels, Victoria Gregory, ۲ **Donald Benton**

Institute for Advanced Study (USA)

Marta Łuksza

University of Cologne (Germany)

Michael Lässig

UNIVERSITY of <u>GLASGO</u>W

Acknowledgements

THE QUEEN'S ANNIVERSARY PRIZES FOR HIGHER AND FURTHER EDUCATION 2013

Vaccine matching: why should it be considered an important tool for the control of foot-andmouth disease

https://eufmd.rvc.ac.uk/course/view.php?id=87

Vaccine performance: how to evaluate effectiveness of FMD vaccines in the field?

- Wednesday 9th November 4.00 pm (EAT)/3 pm (CEST)
- http://fao.adobeconnect.com/earln_vaccineperformance/