Real-time Bayesian Data Assimilation and Prediction for Livestock Epidemics

Chris Jewell ${ }^{1}$, Will Probert ${ }^{2}$, Mike Tildesley ${ }^{2}$

${ }^{1}$ CHICAS, Lancaster University, c.jewell@lancaster.ac.uk
${ }^{2}$ Life Sciences, University of Warwick

27th October, 2016
(1) Aims of model-based analysis
(2) Application: Japan foot and mouth disease 2010
(3) Epidemic model
(4) Inference
(5) Results

Aims

During an epidemic, we wish to use a model for...

- Nowcasting:
- What is the current extent of the epidemic?
- What puts a farm at high risk?
- Is our current control strategy working?
- Forecasting:
- Where will the disease go next?
- What is the best control decision, given imperfect knowledge?

Japanese foot and mouth disease, 2010
Muroga et al. (2012)

- Miyazaki prefecture
- First detection late March 2010
- Day $0=$ date of first detection
- 290 IPs
- 948 non-IP culls
- 10 km vaccination implemented days 60-64
- DC culls mostly $>$ day 84

Nowcasting questions

At each stage of the epidemic:

- Evaluate control policy
- Vaccine efficacy
- What was the true extent of the outbreak?
- Where are the undetected, or occult infections?
- Vaccination strategy
- Cull strategy
- Target surveillance

Available data

I think like a statistician: data \Longrightarrow model!

- Population data (explanatory variables):
- Location of each farm: centroid, UTM coordinates
- Number of cattle, pigs
- Date of vaccination (∞ if not vaccinated)
- Epidemiological data (response variable(s)):
- Detection (notification) date
- Cull date
- Infection date not observed \Longrightarrow censored

SINR model

- Farm as epidemiological unit
- Infections determined by relationship to other infectives
- Infection times are censored (unobserved)
- Undetected occult infections

Transmission model - quickly!

Keeling et al. 2001

Spatial SINR Model

Spatial transmission (proxy for network)

Model-based inference

- Simulation moves forward in time
- Parameters unknown

- Prior to simulation, we need parameter inference

Inference

- Parameter inference looks backward in time
- Done in real-time during epidemic
- Inference requirements
- Parameters estimated with full measurement of uncertainty
- Account for censored and occult infection times
- Easy to feed forward into simulation

Bayesian Inference

(1) Incorporation of prior information
(2) Machinery to account for missing data

- Censored infection times
- occult (undetected) infections
(3) Fully likelihood-based
- We know what we're getting from our model! (cf. $A B C$)
- Likelihood fast to compute (cf. simulation)
- GPU accelerated MCMC \rightarrow results overnight!
(1) Results provided as (posterior) probability distributions
- Suitable for decision making under uncertainty
- Don't be over-confident!

Vaccine efficacy

How effective was vaccination?

- Vaccine efficacy: θ parameter

$$
s(j ; t, \zeta, \phi)=(1-\theta)^{\left[y_{j}<t\right]}\left(\tilde{c}_{j} \phi_{c}+\zeta \tilde{p}_{j}^{\phi_{p}}\right)
$$

- Vaccine efficacy tested $4,8,16$ days post vaccination
- Results from weekly analyses during outbreak
- N.B. results from epidemic model avoids bias due to non-independence of infections

Vaccine efficacy

4 days post-vaccination

Efficacy 4 days post vaccination

Vaccine efficacy

8 days post-vaccination

Efficacy 8 days post vaccination

Vaccine efficacy

14 days post-vaccination

Efficacy 14 days post vaccination

Vaccination timing

- Was vaccination performed in time?

Vaccination timing

- Was vaccination performed in time?
- What was the probability that herds were already infected when they were vaccinated? (Preliminary results!)

Extent of the epidemic

- Was vaccination and/or DC culling keeping up with the epidemic?
- Nowcasting of undetected infections can tell us... Show movie now...

Conclusions

Methods

- Likelihood-based inference is fast: nowcast information $\approx 1 \mathrm{~h}$
- Suitable for epidemic management if data comes in promptly!
- Work on automated data pipeline to improve this
- Joint parameter posterior provides basis for forecasting
- See Will Probert's talk up next...
- GPU-enabled code available at
http://fhm-chicas-code.lancs.ac.uk/groups/InFER/
- Help provided to compile and/or develop the model!

Conclusions

Japan 2010

- Apparent vaccine efficacy highly sensitive to delay between dose and immunity
- Vaccine takes time to work - need to be ahead of the epidemic!
- Eventual efficacy around 85%, but epidemic escapes vaccine delivery.
- Knowledge of spatial extent of the epidemic required
- Optimise vaccine delivery, culling
- Occult probabilties: prioritise active surveillance (see Jewell et al (2012) Biostatistics)
- More precise results: we need to to negative testing results as well as positive

The end

Transmission model - less quickly!

Susceptible \rightarrow Infected

$$
\begin{array}{lr}
\lambda_{i j}(t)=\gamma_{1} q(i ; \boldsymbol{\xi}, \boldsymbol{\psi}) s(j ; \boldsymbol{\zeta}, \phi) K(i, j ; \delta) & i \in \mathcal{I}, j \in \mathcal{S} \\
\lambda_{i j}^{*}(t)=\gamma_{2} \beta_{i j}(t) & i \in \mathcal{N}, j \in \mathcal{S}
\end{array}
$$

$$
\begin{aligned}
\epsilon_{t} & = \begin{cases}\epsilon_{1} & \text { if } t<\mu \\
\epsilon_{1} \epsilon_{2} & \text { otherwise }\end{cases} \\
q(i ; t, \boldsymbol{\xi}, \boldsymbol{\psi}) & =\mathbf{1}[t-l i>4]\left(\tilde{c}_{i}^{\psi_{1}}+\xi \tilde{p}_{i}^{\psi_{p}}\right) \\
s(j ; t, \boldsymbol{\zeta}, \phi) & =(1-\theta)^{\left[j_{j}<t\right]}\left(\tilde{c}_{j}^{\phi_{c}}+\zeta \tilde{p}_{j}^{\phi_{p}}\right)
\end{aligned}
$$

$\tilde{c}, \tilde{p}=$ cattle, pigs; $\epsilon_{2}=$ movt ban; $\gamma_{2}=$ notification $v=$ vaccine effect date; $\theta=$ farm-level vaccine efficacy

