Real-time Bayesian Data Assimilation and Prediction for Livestock Epidemics

Chris Jewell¹, Will Probert², Mike Tildesley²

¹CHICAS, Lancaster University, c.jewell@lancaster.ac.uk ²Life Sciences, University of Warwick

27th October, 2016

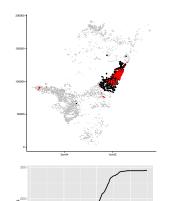
- Aims of model-based analysis
- Application: Japan foot and mouth disease 2010
- 3 Epidemic model
- 4 Inference
- Results

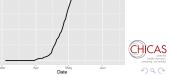
Aims

During an epidemic, we wish to use a model for...

- Nowcasting:
 - What is the current extent of the epidemic?
 - What puts a farm at high risk?
 - Is our current control strategy working?
- Forecasting:
 - Where will the disease go next?
 - What is the best control decision, given imperfect knowledge?

- Miyazaki prefecture
- First detection late March 2010
- Day 0 = date of first detection
- 290 IPs
- 948 non-IP culls
- 10km vaccination implemented days 60-64
- DC culls mostly > day 84





Nowcasting questions

At each stage of the epidemic:

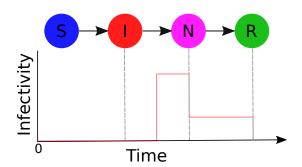
- Evaluate control policy
 - Vaccine efficacy
- What was the true extent of the outbreak?
 - Where are the undetected, or occult infections?
 - Vaccination strategy
 - Cull strategy
 - Target surveillance

Available data

I think like a statistician: data \implies model!

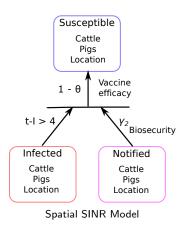
- Population data (explanatory variables):
 - Location of each farm: centroid, UTM coordinates
 - Number of cattle, pigs
 - Date of vaccination (∞ if not vaccinated)
- Epidemiological data (response variable(s)):
 - Detection (notification) date
 - Cull date
- Infection date not observed ⇒ censored

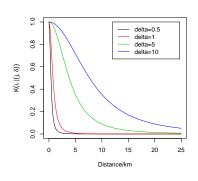
SINR model



- Farm as epidemiological unit
- Infections determined by relationship to other infectives
- Infection times are censored (unobserved)
 - Undetected occult infections

Transmission model – quickly! Keeling et al. 2001

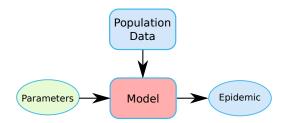




Spatial transmission (proxy for network)

Model-based inference

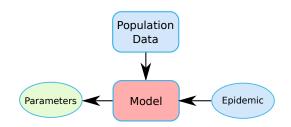
- Simulation moves forward in time
- Parameters unknown



• Prior to simulation, we need parameter inference

Inference

- Parameter inference looks backward in time
- Done in real-time during epidemic
- Inference requirements
 - Parameters estimated with full measurement of uncertainty
 - Account for censored and occult infection times
 - Easy to feed forward into simulation



Bayesian Inference

- Incorporation of prior information
- Machinery to account for missing data
 - Censored infection times
 - occult (undetected) infections
- Fully likelihood-based
 - We know what we're getting from our model! (cf. ABC)
 - Likelihood fast to compute (cf. simulation)
 - GPU accelerated MCMC → results overnight!
- Results provided as (posterior) probability distributions
 - Suitable for decision making under uncertainty
 - Don't be over-confident!

Vaccine efficacy

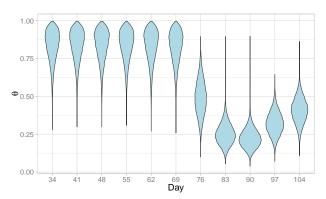
How effective was vaccination?

• Vaccine efficacy: θ parameter

$$s(j;t,oldsymbol{\zeta},oldsymbol{\phi}) = (1- heta)^{[v_j < t]} \left(ilde{c}_j^{\phi_c} + \zeta ilde{p}_j^{\phi_p}
ight)$$

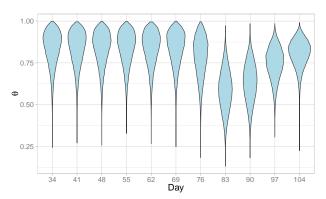
- Vaccine efficacy tested 4, 8, 16 days post vaccination
- Results from weekly analyses during outbreak
- N.B. results from epidemic model avoids bias due to non-independence of infections

Vaccine efficacy 4 days post-vaccination



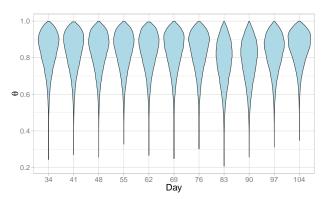
Efficacy 4 days post vaccination

Vaccine efficacy 8 days post-vaccination



Efficacy 8 days post vaccination

Vaccine efficacy 14 days post-vaccination



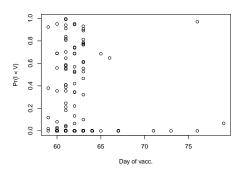
Efficacy 14 days post vaccination

Vaccination timing

• Was vaccination performed in time?

Vaccination timing

- Was vaccination performed in time?
- What was the probability that herds were already infected when they were vaccinated? (Preliminary results!)



Extent of the epidemic

- Was vaccination and/or DC culling keeping up with the epidemic?
- Nowcasting of undetected infections can tell us...
 Show movie now...

Conclusions Methods

- ullet Likelihood-based inference is fast: nowcast information pprox 1h
 - Suitable for epidemic management if data comes in promptly!
 - Work on automated data pipeline to improve this
- Joint parameter posterior provides basis for forecasting
 - See Will Probert's talk up next...
- GPU-enabled code available at http://fhm-chicas-code.lancs.ac.uk/groups/InFER/
 - Help provided to compile and/or develop the model!

Conclusions Japan 2010

- Apparent vaccine efficacy highly sensitive to delay between dose and immunity
 - Vaccine takes time to work need to be ahead of the epidemic!
 - Eventual efficacy around 85%, but epidemic escapes vaccine delivery.
- Knowledge of spatial extent of the epidemic required
 - Optimise vaccine delivery, culling
 - Occult probabilties: prioritise active surveillance (see Jewell et al (2012) Biostatistics)
- More precise results: we need to to negative testing results as well as positive

The end

Transmission model – less quickly! Susceptible → Infected

$$\lambda_{ij}(t) = \gamma_1 q(i; \boldsymbol{\xi}, \boldsymbol{\psi}) s(j; \boldsymbol{\zeta}, \boldsymbol{\phi}) K(i, j; \boldsymbol{\delta}) \qquad i \in \mathcal{I}, j \in \mathcal{S}$$

$$\lambda_{ij}^*(t) = \gamma_2 \beta_{ij}(t) \qquad i \in \mathcal{N}, j \in \mathcal{S}$$

$$egin{array}{lll} \epsilon_t &=& egin{cases} \epsilon_1 & ext{if } t < \mu \ \epsilon_1 \epsilon_2 & ext{otherwise} \ \\ q(i;t,oldsymbol{\xi},oldsymbol{\psi}) &=& \mathbf{1}[t-li>4] \left(ilde{c}_i^{\ \psi_1} + oldsymbol{\xi} ilde{
ho}_i^{\ \psi_p}
ight) \ \\ s(j;t,oldsymbol{\zeta},oldsymbol{\phi}) &=& (1- heta)^{[v_j < t]} \left(ilde{c}_j^{\ \phi_c} + \zeta ilde{
ho}_j^{\ \phi_p}
ight) \end{array}$$

 $\tilde{c}, \tilde{p} = \text{cattle, pigs; } \epsilon_2 = \text{movt ban; } \gamma_2 = \text{notification}$ $v = \text{vaccine effect date; } \theta = \text{farm-level vaccine efficacy}$

