

The value of *in vitro* antigen matching in predicting vaccine protection

Wilna Vosloo, Jacq Horsington, Tim Bowden, Nagendra Singanallur

To vaccinate or not......

- Options for disease control during an outbreak – impact on return to freedom without vaccination (OIE)
 - Stamp out all infected animals
 - 3 month waiting period
 - Vaccinate and remove all the vaccinated animals
 - 3 month waiting period
 - Vaccinate and keep the vaccinates
 - 6 month waiting period

Which vaccine to use....

Tools to predict vaccine matching

- In vitro matching
 - Rapid and laboratory based
 - No need for live animals (once reagents are produced)
 - Variability
 - Difficult to predict protection with heterologous challenge

- In vivo matching
 - Gold standard
 - Inherently variable
 - Costly
 - High containment animal rooms
 - Ethical considerations
 - Time consuming

In vitro vaccine matching

- Compare field and vaccine viruses using VNT and/or ELISA
- The results are expressed as the relative homology (r₁) value

```
r_1 = \frac{heterologous\ titre\ of\ vaccinal\ serum\ against\ field\ isolate}{homologous\ titre\ of\ vaccinal\ serum\ against\ vaccine\ strain}
```

An r₁ value >0.3 (by VNT) is considered homologous

r ₁ value (ELISA)	Relative homology	Predicted vaccine efficacy
< 0.20	Heterologous (distantly related)	Unlikely to be protective
0.20 - 0.39	Intermediate	Might be suitable if a closer vaccine match can't be found
> 0.39	Homologous (closely related)	Likely to be protective

O/ME-SA/Ind-2001 Sequence data indicates that there have been multiple "escapes" from the Indian subcontinent Iran (2009) **UAE(2014)** North Africa **UAE(2015)** Laos (2015) Tunisia 2014 Libya 4 Vietnam (2015) Algeria Morocco Saudi Arabia (2013) **Myanmar (2016)** Bahrain (2015x2) ⁻ www.pirbright.ac.uk Sri Lanka stituto Zooprofilattico Sperimentale le Lombardia e der Emilia Romagna Mauritius (2016)

ICAR

VIT 4/2010 VIT 14/2010 VIT 15/2011 CAM 1/2012 CAM 4/2012 LAO 10/2012 LAO 13/2012 LAO 11/2012 TAI 28/2013 TAI 29/2012 TAI 30/2013 TAI 33/2013 TAI 36/2013 TAI 44/2013 TAI 42-2/2014 TAI 94/1/2014 TAI 145/2014 TAI 148/2014 TAI 154/2014 TAI 164/2014 TAI 11/2015 TAI 17/2015 TAI 19/2015 LAO 3/2015

O1 Manisa BVS

16.83%

23.76%

VIT 12/2010 VIT 13/2010
VIT 16/2010 VIT 4/2011
VIT 6/2011 VIT 14/201
VIT 31/2011 LAO 11/2012
LAO 19/2012 LAO 20/2012
VIT 7/2012 VIT/8/2012
TAI 36/2013 TAI 42-2/2014
TAI 125/2014 TAI 164/2014
TAI 19/2015

VIT 9/2008 VIT 6/2010 VIT 3/2011 VIT 8/2011 VIT 17/2011 VIT 22/2011 VIT 25/2011 VIT 26/2011 VIT 27/2011 VIT 28/2011 VIT 29/2011 VIT 30/2011 VIT 32/2011 VIT 34/2011 VIT 35/2011 CAM 1/2012 CAM 4/2012 LAO 14/2012 LAO 18/2012 LAO 21/2012 TAI 29/2012 VIT 2/2012 VIT 9/2012 VIT 11/2012 VIT 14/2012 VIT 21/2012 TAI 2/2013 TAI 27/2013 TAI 30/2013 TAI 33/2013 TAI 35/2013 TAI 38/2013 TAI 44/2013 TAI 49-1/2013 TAI 51/2013 VIT 12/2013 VIT 14/2013 VIT 40/2013 VIT 16/2013 TAI 49/1/2014 TAI 69/1/2014 TAI 123/1/2014 TAI 125/2014 TAI 145/2014 TAI 154/2014 TAI 146/2014 VIT 13/2014 LAO 2/2015 LAO 3/2015 TAI 10/1/2015 TAI 13/1/2015 TAI 15/1/2015 TAI 17/2015 59.41%

VIT 12/2010 VIT 4/2010 VIT 10/2010 VIT 13/2010 VIT 14/2010 VIT 16/2010 VIT 3/2011 VIT 6/2011 VIT 8/2011 VIT 14/2011 VIT 17/2011 VIT 26/2011 VIT 28/2011 VIT 31/2011 VIT 32/2011 VIT 34/2011 LAO 10/2012 LAO 11/2012 LAO 12/2012 LAO 13/2012 LAO 14/2012 LAO 18/2012 LAO 20/2012 LAO 21/2012 TAI 29/2012 VIT 9/2012 TAI 27/2013 TAI 33/2013 TAI 28/2013 TAI 30/2013 TAI 36/2013 TAI 44/2013 VIT 40/2013 TAI 42-2/2014 TAI 94/1/2014 TAI 125/2014 TAI 145/2014 TAI 148/2014 TAI 154/20 TAI 164/2014 LAO 3/2015 TAI 11/20 TAI 17/2015 TAI 19/2015

41.90%

O-3039 BVS

VIT/9/2008 VIT/13/2011 VIT/29/2011 CAM 1/2012 CAM 4/2012 LAO 10/2012 LAO 14/2012 LAO 19/2012 LAO 18/2012 LAO 20/2012 LAO 21/2012 VIT/7/2012 TAI 2/2013 VIT/11/2012 TAI 27/2013 TAI 33/2013 TAI 35/2013 TAI 51/2013 TAI 38/2013 TAI 44/2013 VIT/12/2013 TAI 42/3/2014 TAI 49/1/2014 TAI 69/1/2014 TAI 123/1/2014 TAI 145/2014 TAI 154/2014 TAI 148/2/2014 TAI 146/2014 VIT 27/2014 TAI 11/2015 TAI 10/1/2015 TAI 13/1/2015 TAI 17/2015 TAI 15/1/2015 LAO 2/2015

VIT 6/2010 VIT 4/2011 VIT 15/2011 VIT 22/2011 VIT 23/2011 VIT 25/2011 VIT 27/2011 VIT 30/2011 VIT 35/2011 VIT 2/2012 VIT 8/2012 VIT 14/2012 VIT 21/2012 TAI 36/2013 TAI 49-1/2013 VIT 14/2013 TAI 42-2/2014 TAI 125/2014 TAI 164/2014 VIT 13/2014 TAI 19/2015

36.19%

21.90%

Serotype O vaccines against O/Ind/2001d lineage

Vaccine	0-3	039	O-3030 / O1 Manisa				
Species	Cattle						
Challenge dpv	7	21	7	21			
Route	IDL	IDL	IDL	IDL			
Challenge virus	O/ALG	6/2014	O/ALG/2014				
Protection %	60	100	80	100			
r-values	<0.19						

Summary of serotype A vaccine testing

Vaccine	A May 97					A22 Iraq				A May 97 + A22 Iraq			
Species	Pi	gs	Cattle Pigs		Cattle Sheep		Pigs		Pigs				
Challenge (dpv)	4	7	7	21	7	21	7	21	4	7	21	7	21
Route	НВ	НВ	IDL	IDL	НВ	НВ	IDL	IDL	INP	НВ	НВ	НВ	НВ
Challenge virus	VIT/2	2005	VIT/	2012	TAI/	2014	VIT/	2012	VIT/12	TAI/2	2014	TAI/	2014
Protection %	100	75	80	100	0	20	60	100	83	0	20	0	80
r-values	0.5	51	0.	17	0.	10		0.16		0.0	05	0.	05

Bivalent serotype A vaccine in pigs

Vaccine	A22	Iraq	A M	ay 97	A May 97 + A22 Iraq		
Species	Pi	gs	Pi	gs	Pigs		
Challenge dpv	7	21	7	21	7	21	
Route	НВ	НВ	НВ	НВ	НВ	НВ	
Challenge virus	TAI/2014		TAI/	2014	TAI/2014		
Protection %	0	20	0	20	0	80	
r ₁ -values	0.05		0.	10			

Summary of serotype Asia-1 vaccine testing

Vaccine	Asia1 Shamir						
Species	Sheep						
Challenge dpv	4	7	21				
Route	INP						
Challenge virus	Asia-1/PAK/2014						
Protection %	80	100	100				
r ₁ -values	0.18						

Factors that impact on in vivo results

- Study design, number of animals (impact on statistical analysis)
- Facility design
- Challenge route (direct inoculation versus natural infection)
 - Impact on carriers and NSP testing
- Breed and condition of animals
- Extrapolation to real farming systems challenging

Vaccine efficacy studies in cattle, pigs and sheep Conclusions and recommendations

- A poor match in vitro does not always equate to no protection in vivo with high potency vaccines
 - Highlights the importance of combined approaches (e.g. sequencing, monitoring) when determining which vaccine will be most effective
 - Consider combinations of strains?
- High-potency vaccines for emergency use during an outbreak will slow spread (reduced virus excretion) and fully/partially protect cattle and sheep, but pigs to a lesser extent
 - New approaches to pig vaccination are required
 - Time of challenge post vaccination will be important

Thank you

Health and Biosecurity (AAHL)

Wilna Vosloo Principal Research Scientist / Team Leader

t +61 3 5227 5015

e wilna.vosloo@csiro.au

w www.csiro.au

Acknowledgements

- National Centre for Foreign Animal Disease
- Central Veterinary Laboratory
- Plum Island Animal Diseases Centre
- The Pirbright Institute
- SENASA
- NAVETCO
- RAHO6
- SEA OIE Regional Reference Laboratory
- Istituto zooprofilattico sperimentale

HEALTH AND BIOSECURITY

www.csiro.au

