Management of Salinity in Agriculture; Iranian Experience

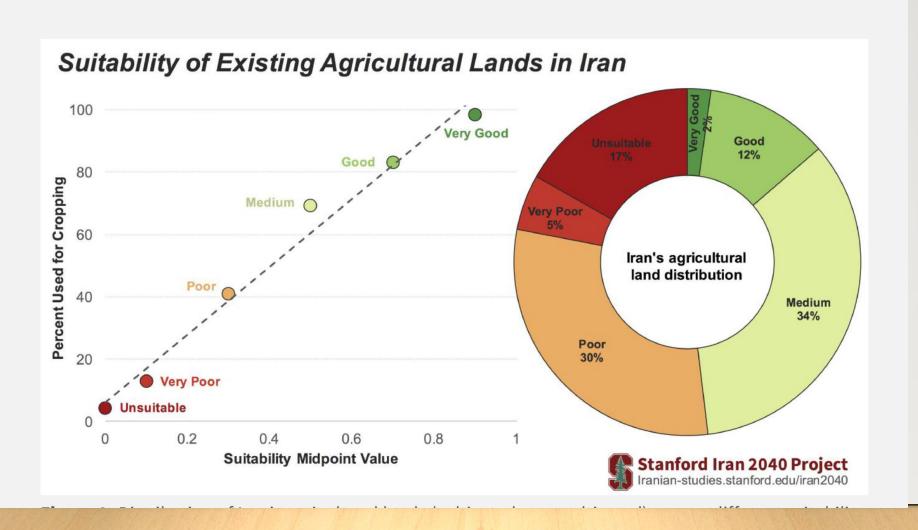
MOHAMMAD H. EMADI

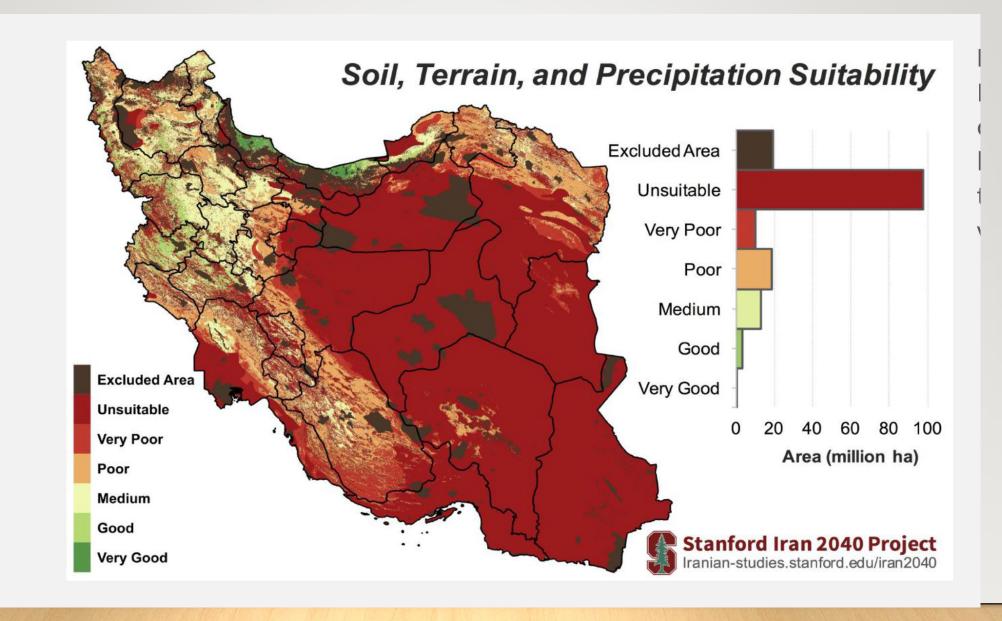
CONSULTATION MEETING ON SALINE AGRICULTURE

28 MAY 2018

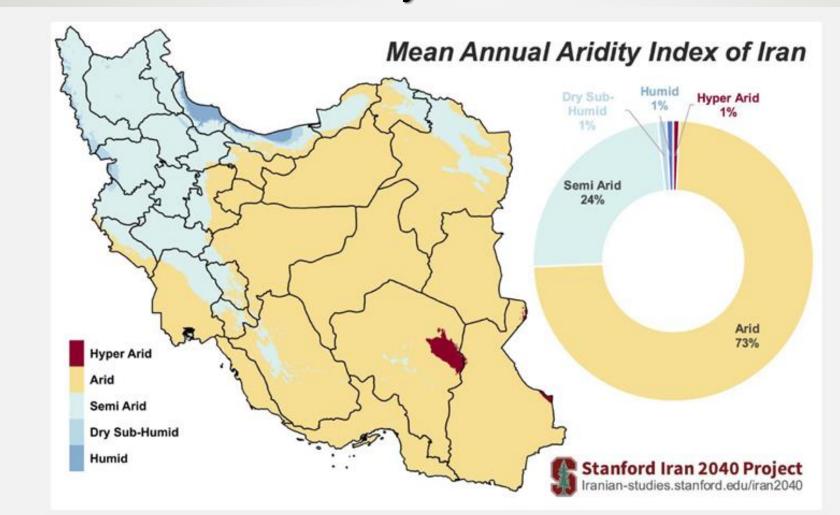
FAO ROME

Challenges, Experiences and lesson learned

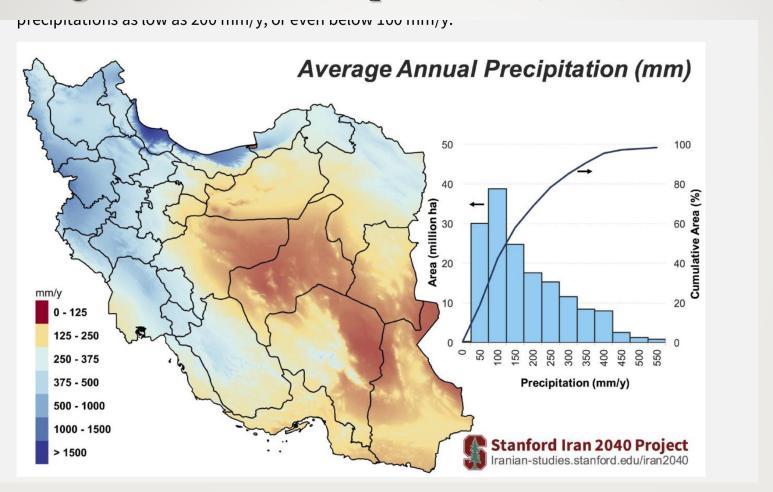

- Source and importance of Salinity in Iran.
- Historical background and traditional adjustment strategy by farmers,
- Current status and future trend of salinity,
- Contemporary interventions, practices and activities by state,
- Lesson learned and challenges ahead.


Importance of Salinity for Agriculture in Iran

- Degrading Agricultural production and productivity,
- Soil fertility,
- Water scarcity,



Suitably of Agricultural Land in Iran

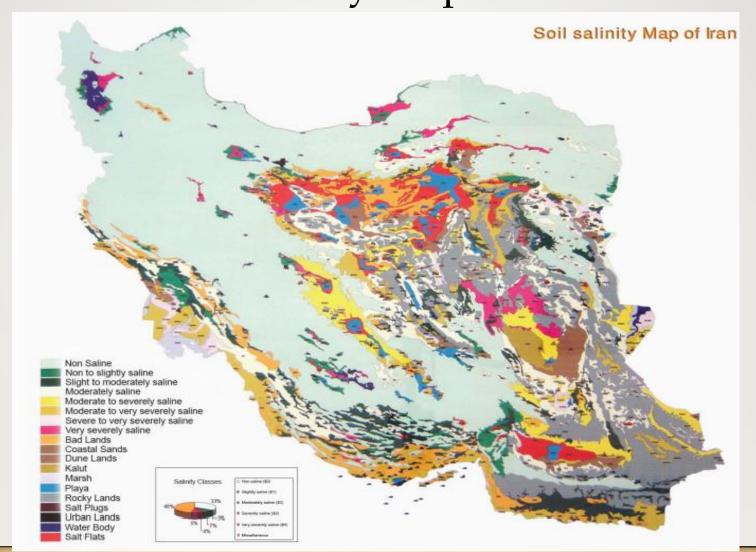


Mean Annual Aridity of Iran

Average Annual Precipitation (mm)

Source of Salinity

- Iran faces enormous challenges of widespread **land and water** resources degradation as a consequence of salinity and sodicity of these resources.
- water tables resulting from the inadequate management of irrigation practices have caused waterlogging problems in many areas.


Source of Salt in Iran soil: A-Natural

- Geological composition of the parent material of the soils. Iran is rich in the distribution of naturally occurring materials such as halite (NaCl) and gypsum (CaSO4)
- In-stream salinity, mainly due to natural conditions, is one of the main causes of salt accumulation in the soils of the Central Plateau.
- Wind-borne salinity resulting from strong winds, blowing most of the year in the Central Plateau,
- Seawater intrusion, which occurs mostly in coastal areas where saline seawater enters the inland channels or inundates coastal lowlands due to tidal waves.
- Low rainfall and high potential evapotranspiration as a consequence of extreme temperatures

Source of Salt in Iran soil B- Anthropogenic

- poor irrigation management with freshwater, such as over-irrigation;
- irrigation with saline and/or sodic waters in areas of extreme water scarcity without adequate management practices;
- lack of suitable drainage infrastructure, which is the key to appropriate disposal and re-use of agricultural drainage water;
- unsustainable pumping of groundwater resources by over-exploitation and tapping of saline aquifers;
- overgrazing of the pastures and other vegetation resulting in exposure of soils to greater risks of salinization;
 and
- inadequate water quality monitoring programs to collect data from areas with potential for secondary salinization.

Soil Salinity map of Iran

Extent of salt-affected soils under irrigated agriculture in Iran.

Source	Irrigated area (× 10 ⁶ ha)	Salt-affected area under irrigated agriculture (× 10 ⁶ ha)	Share of salt-affected area to total irrigated area (%)
ICID (1977)	4.00	1.50	38
FAO (1989)	5.74 ¹	1.72	30
Ghassemi et al. (1995)	5.74^{2}	2.20	38
ICID (2002)	8.103	4.054	50 ⁵

¹ FAO (1989) estimates based on the datasets for 1987.

² Irrigated area was considered the same as reported by FAO (1989).

³ Based on the datasets for 2002.

⁴Calculated from the extent of irrigated area as reported by ICID and the percentage of salt-affected area under irrigated agriculture as reported by the Cheraghi (2004).

⁵ Based on the estimates of Cheraghi (2004) considering 50 percent of irrigated area affected by salinity and sodicity.

Estimates of the annual income loss as a consequence of salt-related land degradation under irrigated agriculture in Iran.

Year of estimation	Salt-affected area under irrigated	Estimated loss (US\$ ha ⁻¹) agriculture (× 10 ⁶ ha)	Annual income loss (US\$ million)
1989	1.721	250 ²	430
1995	2.20^{3}	250	550
2004	4.054	250	1013

¹Based on irrigated area as reported by FAO (1989).

³ Based on the income loss values per unit area of land degradation as reported by Dregne et al. (1991).

³ Based on salt-affected area under irrigated agriculture as reported by Ghassemi et al. (1995).

⁴Calculated from the estimates of the Cheraghi (2004) considering 50 percent of irrigated area as salt-affected.

Indigenous knowledge of farmers and adjustment strategies

For thousands of years Iranian farmers were continuing their efforts for the management of salt-prone land and water resources. Their efforts were based on their indigenous knowledge which included multi-dimentional practices and interventions:

- Saline agriculture by using resistant crop selection and rotation, **Biologica**l practices, Organic matter application and Green manuring,
- Soil management, levelling, Sanding Improving planting techniques, removing salty layer and **physical** practices,
- Farm and Water **management practices**, different Irrigation methods and technics, safe disposal of saline waters by irrigation.
- Chemical interventions, soil conditioning mineral and ash fertilizer

APPROACHES USED IN CONTEMPORARY IRAN FOR THE IMPROVEMENT OF SALT-PRONE SOILS

- Leaching and drainage management approaches,
- Crop-based management approaches,
- Chemical amendments for reclaiming sodic soils,

Leaching and drainage management approaches

Crop-based management approaches

Crop-based management approaches

Lesson learned and challenges ahead

- Confronting salinity needs more comprehensive approach to integrate soil and water management and appropriate crop resistance to salinity with new agricultural practices as a package of 'saline agriculture'.
- Integration of saline agronomy with small ruminant animal husbandry and particular horticulture with saline aquaculture showing new hope and future.
- Combating salinity needs regional and global cooperation to exchange emerging new challenges and innovative solutions.
- Learning from agricultural heritage and traditional approach of saline agriculture also needs to be considered as a source of wisdom.