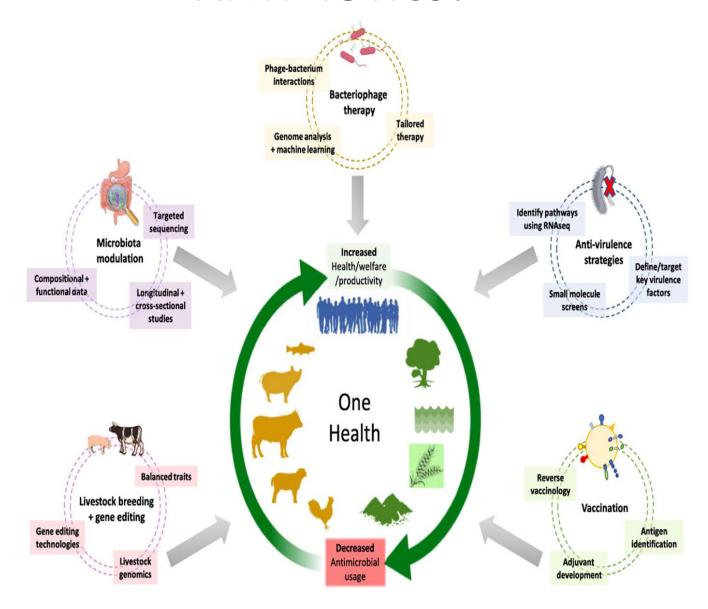


International Technical Seminar on Understanding Antimicrobial Resistance & Biosecurity in Aquaculture

Alternatives to Antimicrobials in Aquaculture

Indrani Karunasagar Nitte University Mangalore, India



#10YearsChallenge

2009 2019

WHAT WILL REPLACE OUR FAILING ANTIBIOTICS?

ANTIBIOTIC

- Secondary metabolites produced by microorganisms that inhibit or kill a wide spectrum of other microorganisms
- Antibiotics are effective only against bacteria
- They are ineffective against viruses, & parasites or most true fungi
- Disease prevention measures Proactive
- Eg: Regular monitoring of water, larval tanks for bacterial counts, levels of luminous / other bacteria
- Chemotherapy- Reactive
- Only after finding definite evidence of bacterial disease
- Backed up by data on antibiotic sensitivity of causative agent

BACTERIAL RESISTANCE TO ANTIMICROBIAL AGENTS

Use of antibiotics in aquaculture results in

Prolonged persistence of drugs in products intended for human consumption

Release of drugs/metabolites to aquatic environment.

Prolonged and indiscriminate use causes

Ineffectiveness of the drug due to the development of resistance and tolerance by the bacteria.

Transfer of antibiotic resistance from aquaculture system to water borne human pathogens.

When do we consider a microorganism RESISTANT?

A bacteria can be termed resistant, if it has the ability to function, survive or persist in the presence of higher conc. of an antimicrobial agent than the members of the population from which it emerged (Smith, 1994)

Intrinsic resistance

Expressed by chromosomal genes

Extrinsic resistance

Acquired, selective pressure exerted on bacteria during antibiotic administration

Results from

Mutation in chromosomal region Acquisition of plasmids and transposons

WHY ARE WE LOOKING FOR ALTERNATIVES?

Emergence of resistant pathogens

Build up of pathogens

Chemical residues in shrimp meat

Destroys useful microorganisms

Effectivity in seawater - questionable

Chemicals overused to compensate ineffectivity

Environmental deterioration due to residues

- Diseases are many and our interventions are even more
- Sometimes rational, most often irrational
- Driven by avaracious individuals for quick & maximum returns
- No end to greed disease is an outcome.

DISEASE MANAGEMENT MEASURES

- Biofloc- the buzz word today
- Probiotics, Bioremediators, Bioaugmentors
- Immunostimulants
- Bacteriophages or phages
- Herbal preparations
- Feed and pond water management most crucial
- Genetic selection PL quality, Brood stock quality

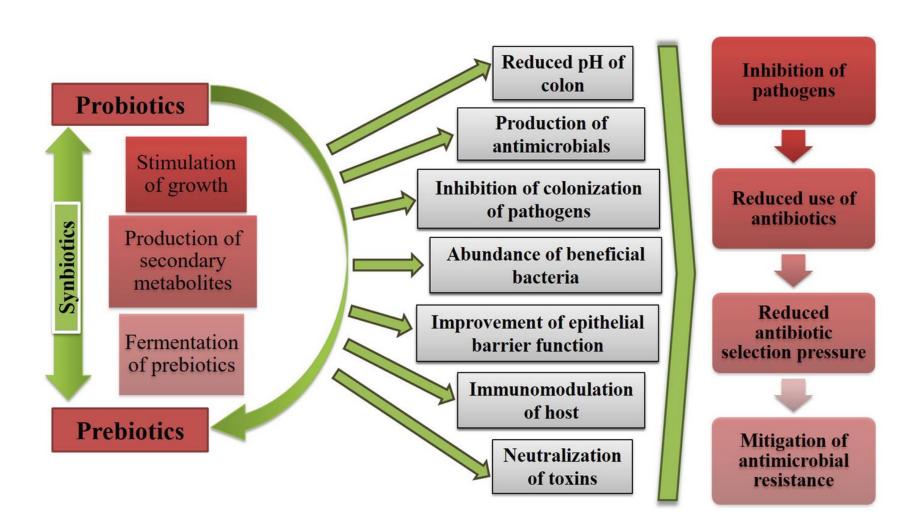
Microbiota Modulation

Pre-biotics

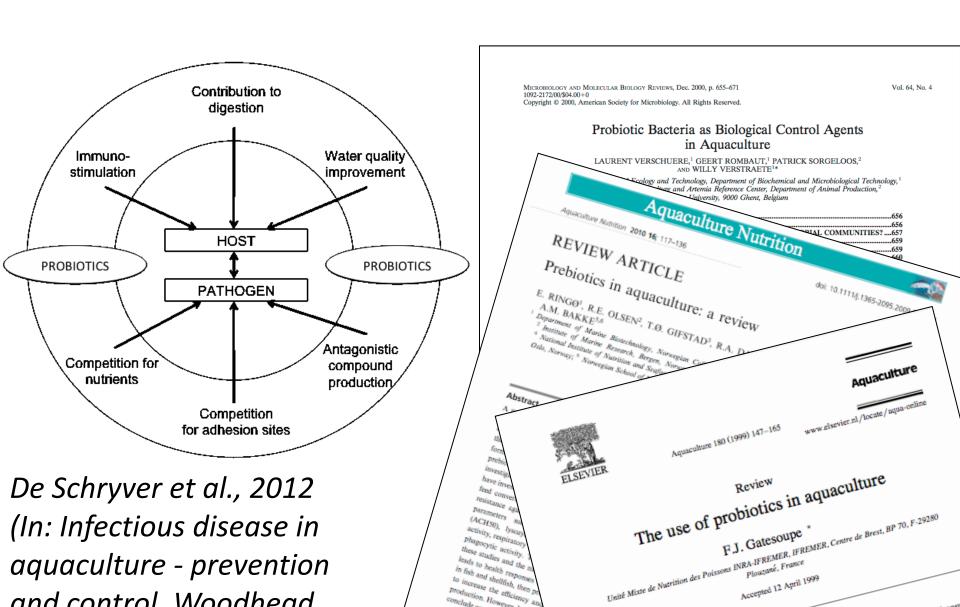
Food for bacteria!

Prebiotics are substances that can only be metabolised by the gut bacteria, and not the human host.

Syn-biotics


Synbiotics are a combination of both pro and prebiotics.

Pro-biotics


Live bacteria!

Probiotics are active bacterial cultures.

Mode of Action

Probiotics in aquaculture

Ecological theory PROMOTE useful MICROBES rather than KILL them. Join them rather than beat them – Peter Schryver

REVIEW

The Application of Ecological Theory Toward an Understanding of the **Human Microbiome**

Elizabeth K. Costello, 1 Keaton Stagaman, 2 Les Dethlefsen, 1,3 Brendan J. M. Bohannan, David A. Relman 1,3,4s

The human-microbial ecosystem plays a variety of important roles in human health and disease. Each person can be viewed as an island-like "patch" of habitat occupied by microbial assemblages formed by the fundamental processes of community ecology: dispersal, local diversification, environmental selection, and ecological drift. Community assembly theory, and metacommunity theory in particular, provides a framework for understanding the ecological dynamics of the human microbiome, such as compositional variability within and between hosts. We explore three core scenarios of human microbiome assembly: development in infants, representing assembly in previously unoccupied habitats; recovery from antibiotics, representing assembly after disturbance; and invasion by pathogens, representing assembly in the context of invasive species. Judicious

NATURE[Vol 459]14 May 2009[doi:10.1038/nature08058

REVIEW INSIGHT

Microbial community structure and its functional implications

Jed A. Fuhrman¹

Marine microbial communities are engines of globally important processes, such as the marine carbon, nitrogen and sulphur cycles. Recent data on the structures of these communities show that they adhere to universal biological rules. Co-occurrence patterns can help define species identities, and systems-biology tools are revealing networks of interacting microorganisms. Some microbial systems are found to change predictably,

ARTICLE

Ecology Letters, (2006) 9: 485-498

doi: 10.1111/j.1461-0248.2006.0088

under

its role

Ecolog

The e

provi

huma

revier

level

acros

diver

muniti

and e

erywl

DO:W6

REVIEWS AND SYNTHESIS

Effects of species diversity on disease risk

F. Keesing, 1,3 R. D. Holt2 and R. S. Ostfeld³

¹Department of Biology, Bard College, PO Box 5000, Annandale, NY 12504, USA ²Department of Zoology, University of Florida, Gainesville, FL 32611-8525, USA 3Institute of Ecosystem Studies, PO Box AB, Route 44A, Millbrook, NY 12545, USA *Correspondence: E-mail: keesing@bard.edu

Abstract

The transmission of infectious diseases is an inherently ecological process involved interactions among at least two, and often many, species. Not surprisingly, then, species diversity of ecological communities can potentially affect the prevalence infectious diseases. Although a number of studies have now identified effects of diver on disease prevalence, the mechanisms underlying these effects remain unclear in m cases. Starting with simple epidemiological models, we describe a suite of mechanis through which diversity could increase or decrease disease risk, and illustrate potential applicability of these mechanisms for both vector-bome and non-vector-bo diseases, and for both specialist and generalist pathogens. We review examples of h these mechanisms may operate in specific disease systems. Because the effects diversity on multi-host disease systems have been the subject of much recent research and controversy, we describe several recent efforts to delineate under what gen conditions host diversity should increase or decrease disease prevalence, and illustrated these with examples Both models and literature reviews suggest that high host dive

Structure, function and diversity of the healthy human microbiome

The Human Microbiome Project Consortium*

Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat's signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81-99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome

A total of 4,788 specimens from 242 screened and phenotyped adults involving microbiome samples collected from healthy volunteers at

(129 males, 113 females) were available for this study, representing the two distinct geographic locations in the United States, we have defined majority of the target Human Microbiome Project (HMP) cohort of the microbial communities at each body habitat, encountering 81-99% 300 individuals. Adult subjects lacking evidence of disease were of predicted genera and saturating the range of overall community recruited based on a lengthy list of exclusion criteria; we will refer configurations (Fig. 1, Supplementary Fig. 1 and Supplementary to them here as 'healthy', as defined by the consortium clinical Table 1; see also Fig. 4). Oral and stool communities were especially

Aquaculture

Aquaculture 128 (1994) 203-209

Mass mortality of *Penaeus monodon* larvae due to antibiotic-resistant *Vibrio harveyi* infection

I. Karunasagar*, R. Pai, G.R. Malathi, Indrani Karunasagar
Department of Fishery Microbiology, University of Agricultural Sciences, College of Fisheries,
Mangalore 575002, India

Accepted 21 August 1994

Abstract

The cause of mass mortality in *Penaeus monodon* larvae in a hatchery was investigated. Antibiotic-resistant *Vibrio harveyi* could be isolated from all the infected larvae. These bacteria were absent in healthy eggs and nauplii. Although the intake seawater had *V. harveyi*, these strains were sensitive to antibiotics. The results suggest that antibiotic-resistant *V. harveyi* had been colonising larval tanks. The isolates from moribund larvae showed much lower LD₅₀ values than isolates from natural seawater, thus indicating their higher virulence.

Keywords: Antibiotic-resistant bacteria; Vibrio harveyi; Penaeus monodon; Diseases and their control — crustaceans

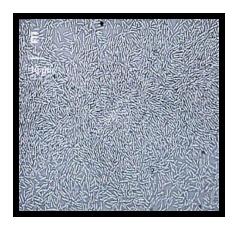
Antibiotics	Sensitivity of isolates from:						
	SW1	SW1	PL ₂ T ₁₂	PL ₃ T ₈	L ₂ T ₈		
Co-trimoxazole	S	S	R	R	R		
Erythromycin	R	R	R	R	R		
Streptomycin	S	S	R	R	R		
Oxytetracycline	S	S I	S	S	S		
Neomycin	S Dan Se	S	S	S	S		
Chlorampheniol	S	S	R	R	R		
Gentamicin	S	S	S	S	S		

	I. Ka	runasagar e	t al. / Aqua	iculture 12	8 (1994) 203	3–209		207
Table 4 Survival of <i>V. harveyi</i> isol	ates fro	m larval tan	ks in seaw	ater contain	ning various	antibiotics		
Antibacterial agent	Survival at concentration (µg/ml)						off	
	10	25	50	75	100	500	750	1000
Chloramphenicol	+	HE 11-01 -0	717 5H)	noddas .	I(s turine	DEST SEST	l opnotic	12 WOI
Erythromycin	+	and restaure	one to un	o minimum	cause of r	odranov	admiği hek il	d mont
Neomycin	400	o Julia piece	ank Ina	t begind n	ersisting i	a need o	and Tarre	200
Oxytetracycline	1412	mil #moo			ence-than		+	-
Furazolidone	+	+	+		4	1 - 1	************	+11
Nifurpirinol	+	+	+	+	# 314 V 1	ui n± and	s affe ± inng see of †b hei	SID±112

Isolate	Mortality in t	Mortality in tanks containing bacteria/ml						
	102	10 ³	104	105	106	Nil		
V. harveyi	2/50a	16/50	35/50	50/50	50/50	1/50		
from larval tank			remaind shirt	Designation vis	20/30	1/30		
V. harveyi	3/50	5/50	12/50	22/50	40/50	2/50		
from seawater			F 1 7 7 19	bratznić viste.	10/30	2/30		
Non-luminous bacterial	isolates							
PL ₁ Pseudomonas	2/50	3/50	8/50	10/50	20/50	2/50		
PL ₂ Pseudomonas	3/50	2/50	6/50	12/50	22/50	3/50		
PL ₃ Vibrio sp.	4/50	3/50	5/50	14/50	18/50	1/50		

Aquaculture

Aquaculture 140 (1996) 241-245


Biofilm formation by Vibrio harveyi on surfaces

I. Karunasagar *, S.K. Otta, Indrani Karunasagar

Department of Fishery Microbiology, University of Agricultural Sciences, College of Fisheries, Mangalore-575 002, India

Accepted 26 September 1995

	on by V. harveyi on diff				
Type of	Control	Levels of chlo	orine and exposure time	s V. harvevi.	1 22
substrate		20 nnm	100 nnm	200	

**		zerois of cinor	me and exposure time		
substrate		20 ppm 10 min	100 ppm 10 min	200 ppm 10 min	
Cement slab	8.49×10^{6}	6.62×10 ⁵	5.67×10 ⁴	4.36×10^{3}	Referen
Plastic (HDPE)	5.34×10 ⁷	2.44×10 ⁵		M.C.L Leivil	
Steel coupon mon	batelo 2.44×10 ⁶ qz .V	3.88×10^3	trol of luminous bacter		

244

I. Karunasagar et al. / Aquaculture 140 (1996) 241-245

Table 3 Biofilm formation by V. harveyi (CFU cm⁻²) in the presence of the antibiotics tetracycline and chloramphenical (both added at 50 ppm)

Type of substrate	Control	Tetracycline	Chloramphenicol
Plastic S Ton A (2	5.34×10^7	5.59×10 ⁷	3.08×10 ⁶
Cement slab	1.23×10^{7}	1.17×10^{7}	1.14×10^7
Steel coupon	2.44×10^{6}	7.18×10^{6}	1.08×10 ⁷

Bacterial replacement therapy:

 In the natural environment, shrimp eggs and larvae survive and develop in an environment that is rich in bacterial populations

How do they survive there?

-eggs are colonised by commensal flora that are antagonistic to pathogens

What are probiotics?

- Live microbial feed supplement that improves the health of the animals
- Also act as biocontrol agents: Pathogen control in the environment
- Also as bioremediator: sludge and waste degradation treatment

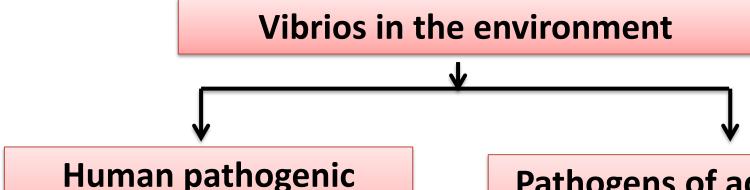
This alteration in definition is because:

- •Microbes added to the water body during their intrusion through the intestinal tract may survive there
- •The gastrointestinal biota of fish/ shellfish is a reflection of the water biota as a large volume of water passes through/ filtered by them

Most probiotic preparations belong to:

- **Bacillus spp.**
- **■** Family vibrionaceae
- **■** The pseudomonads
- Lactic acid bacteria
- Yeasts
- Nitrosomonas
- Nitrobacter
- Sulphide oxidisers

SUCCESSFUL PROBIOTIC:


- Colonise the gut
- Antagonistic activity to pathogens
- Afford resistance to disease causing agents
- Competitieve exclusion of the pathogen by competing for nutrients or adhesion sites
- Immunostimulatory activity

How do probiotics work?

Enzymatic secretions

Competition for nutrients and space

Degradation of organic matter

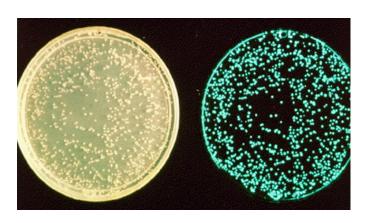
V. cholerae

V. parahaemolyticus

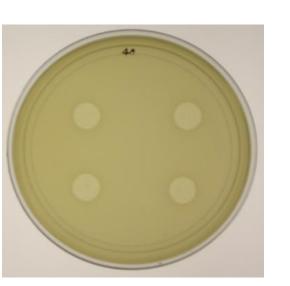
Vibrios

V. vulnificus

Pathogens of aquatic animals


Vibrio harveyi
Vibrio anguillarum
Alivibrio
salmonicida
Vibrio penaecida
Vibrio vulnificus
Vibrio owensii

Vibrio harveyi clade includes eleven species:


V. harveyi, V. alginolyticus, V.parahaemolyticus, V. campbellii, V. rotiferianus, V. mytili, V. natriegens, V. azureus, V. sagamiensis, V. owensii, V. jasicida

- Some pathogenic bacteria occur naturally in coastal waters worldwide
- A few cause disease outbreaks, depending on specific environmental conditions.
 - A good example: Vibrio parahaemolyticus
- Autochthonous to estuarine, marine, and coastal environments.
- Occupies a variety of niches
- Can exist in a free-swimming state or sessile, attached to inert and animate surfaces such as suspended particulate matter, zooplankton, fish, and shellfish
- Distribution of *V. parahaemolyticus* related to water temperature
- Rarely isolated from seawater until the temperature rises to 15°C and higher

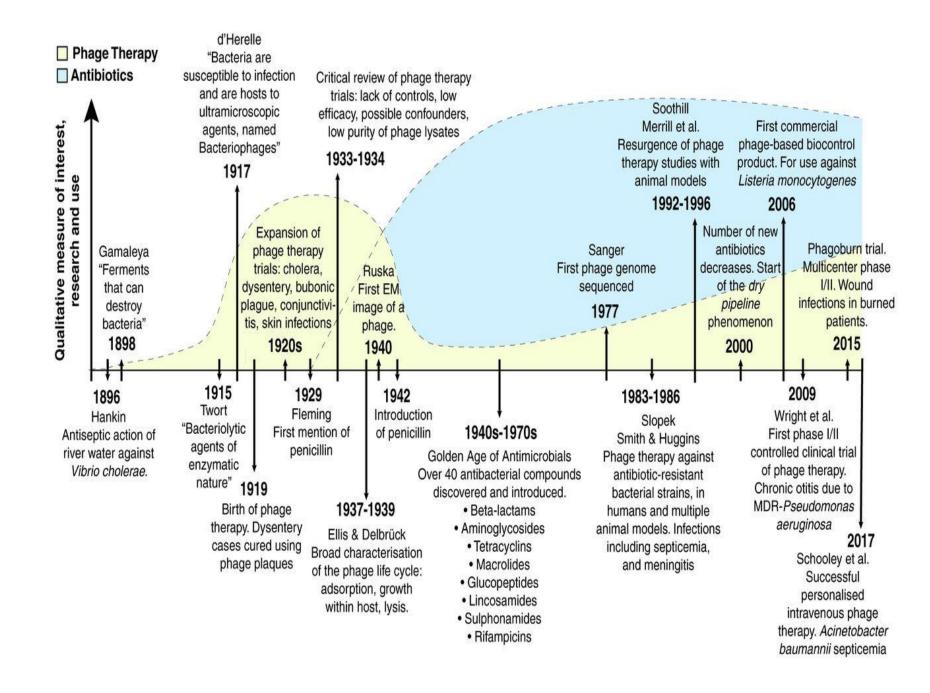
Luminous Bacterial Disease- Harveyi clade

- Problem in shrimp hatcheries & farms
- **4** Causative agent : *Vibrios*
- **4** Autochthonous flora of coastal waters
- **4** Association with crustaceans
- **4** Animals show luminescence
- **4** Bacteria also show luminescence

Other diseases caused by bacteria of Harveyi clade - AHPND

New shrimp disease – a global threat

Early Mortality Syndrome (EMS) - old name
Acute Hepatopancreatic Necrosis Syndrome

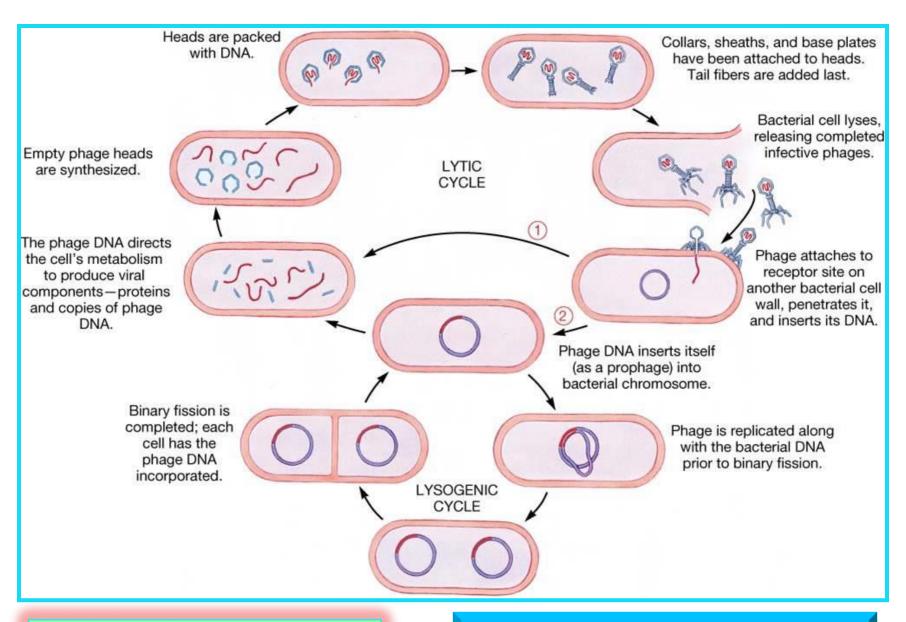

Identified as a member of *Harveyi* clade related to *V.* parahaemolyticus

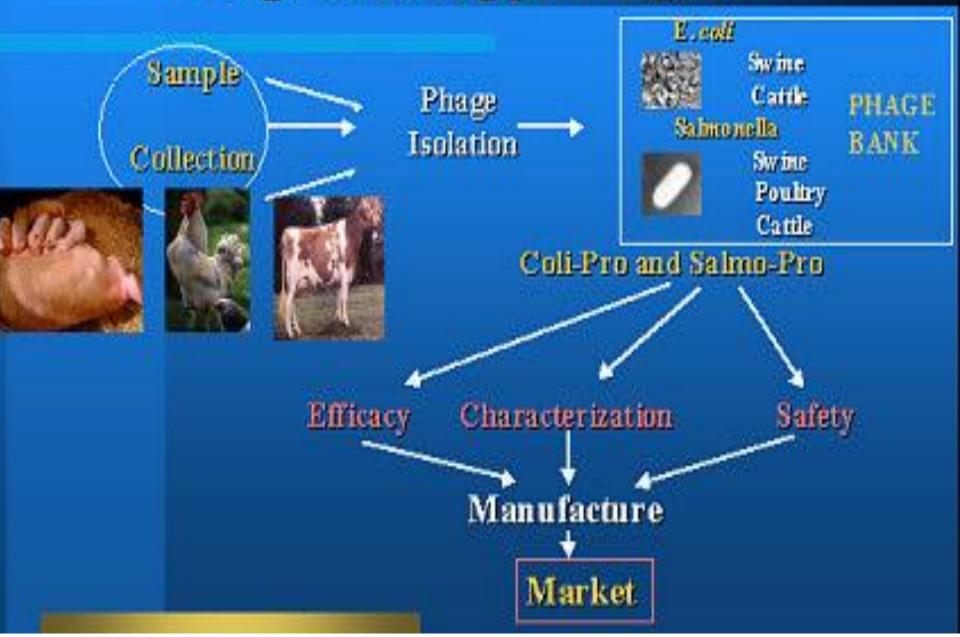
Phage therapy – the novel approach

What are phages?

- viruses that infect bacteria
- have lytic and lysogenic life cycle
- lytic phages are good candidates for antibacterial therapy
- highly specific to one (rarely another) bacterial species
- nontoxic to animals and plants

EMERGENCE OF PATHOGENIC BACTERIA RESISTANT TO MOST OF THE ANTIMICROBIAL AGENTS HAS BECOME A CRITICAL PROBLEM




Fig.- Bacteriophage life cycle

Source: http://faculty.irsc.edu/FACULTY/TF ischer/images/bacteriophage life cycle.jpg

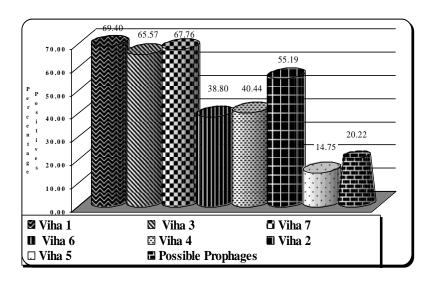
Attributes of phages that supports its therapeutic respons

The issue	Limitations of antibiotics	Advantages of phages
Fate of drug molecule	Metabolic destruction of molecule as it works	Exponential growth
Concentration of the drug	High conc is required	All or none effect
Resistance by bacteria	Antibiotics become obsolete over time	Co-evolve to overcome bacterial mutation
Spread of bacterial resistance	Broad spectrum	Host specific, do not cross species boundaries

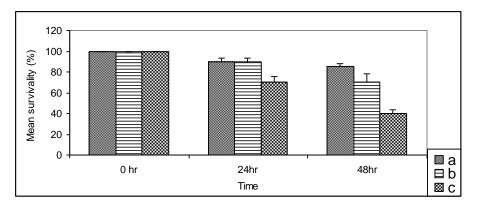
Phage Therapy Program

Plaque Assay

VP Phage A

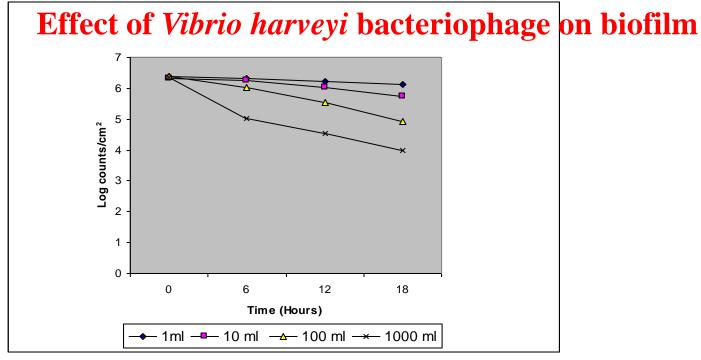

VP Phage C

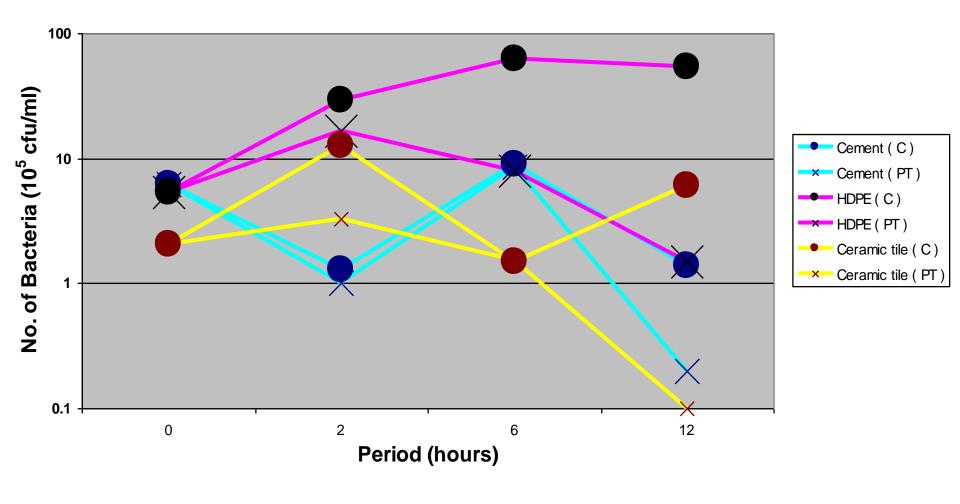
VP Phage B


Use of phages to control aquatic diseases is promising. Why?

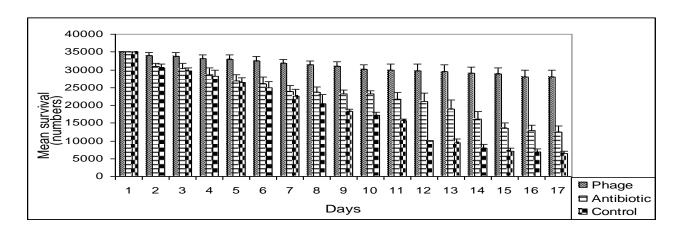
- Both bacteria and phages are in suspension similar to the lab conditions
- •Therapeutic phage can have intimate contact with the pathogens of fish, crustacea and molluscs
- Advantages of Phage as a Biocontrol Agent
- Normal inhabitant of marine environment
- Specific
- Once host population disappears, phages also disappear
- •Harmless to other normal flora, do not affect useful bacteria associated with larvae, animals or pond
- •Therefore, an ecofriendly management measure

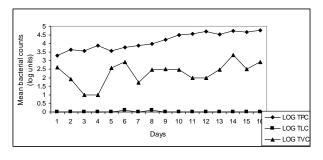
Lytic spectrum of *V. harveyi* phages

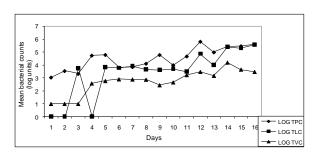

Mean survival of *Penaeus monodon* larvae and standard error for 3 replicate tanks for 48 hr after being challenged with strains of pathogenic *Vibrio harveyi* and treated with bacteriophage

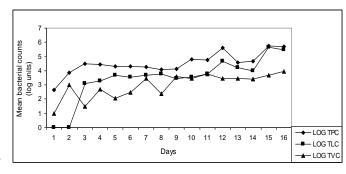

- a- treated with two dosage of $100 \mu l$ phage for every 24 hr
- b- treated with one dosage of 100 µl phage
- **c- control**

Effect of Vibrio harveyi bacteriophage on biofilm


Vol of phage Time (hr)	1μΙ	10μΙ	100μΙ	1000μl	Control
0	2.36 × 10 ⁶	2.16 × 10 ⁶	2.43 × 10 ⁶	2.19 × 10 ⁶	2.81×10 ⁶
6	2.06× 10 ⁶	1.75 × 10 ⁶	1.06 × 10 ⁶	1.06 × 10 ⁵	2.87×10 ⁶
12	1.76 × 10 ⁶	1.03 × 10 ⁶	3.9 × 10 ⁵	3.5 × 10 ⁴	2.78×10 ⁶
18	1.38× 10 ⁶	5.5 × 10 ⁵	8.3 × 10 ⁴	9.4 × 10 ³	2.74×10 ⁶


Effect of Phage Treatment on V. harveyi Biofilm Cells on Various Surfaces


Mean survival of *Penaeus monodon* larvae and standard error for 3 replicate tanks of 35000 naupli larvae 17 reared for days (from zoea to post larvae) with 2 different treatments (Bacteriophage and antibiotic) and a control


Mean bacterial counts of 3 replicate tanks treated with Bacteriophage

Mean bacterial counts of 3 replicate tanks treated with antibiotic

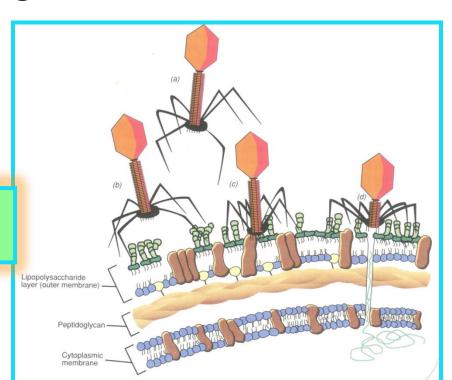
Mean bacterial counts of 3 replicate untreated tanks (control)

Issues in phage therapy

Standardization of the dose of phage to be applied under various environmental variables

Salinity (ppt)
 20, 25 and 30

Temperature 20°C, 30°C and 37°C


pH
 6, 7 and 8

Total disssolved solids

- Phage therapy in Aquaculture –Lysozyme helps overcome phage resistance
- Role of lysozyme on phage activity
 Lysozyme alone
 Phage alone
 Lysozyme and phage together

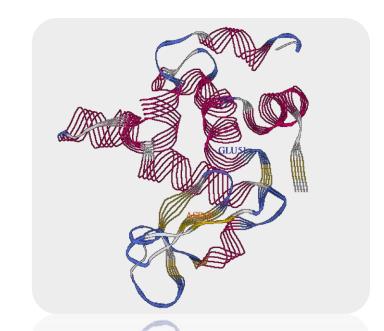
Attachment of bacteriophage particle to cell wall of bacteria

Madigan et al., 1997

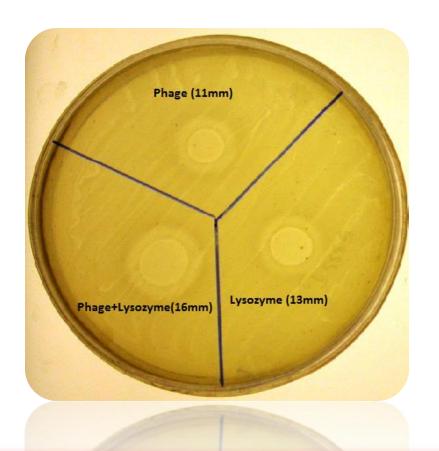
Madigan et al., 1997

The penetration of phage DNA inside the bacteria is promoted by lysozyme produced by the phage

Tyagi et al., 2007


Recombinant lysozyme expressed from black tiger shrimp reduced *V. harveyi* in sea water by 3 log units in 1 hour

We surmised that phage penetration might increase in the presence of our recombinant shrimp lysozyme.


Expression of the recombinant shrimp lysozyme

Tyagi *et al.,* 2007

- Recombinant *E. coli* grown in 200 ml of LB broth until the OD₆₀₀ was 0.5-0.7
- 1mM concentrations of IPTG added and incubated for 4 hr at 37°C with constant agitation at 150 rpm
- Cells harvested by centrifugation at 11,000 × g for 5 min
- Polyacrylamide gel electrophoresis performed

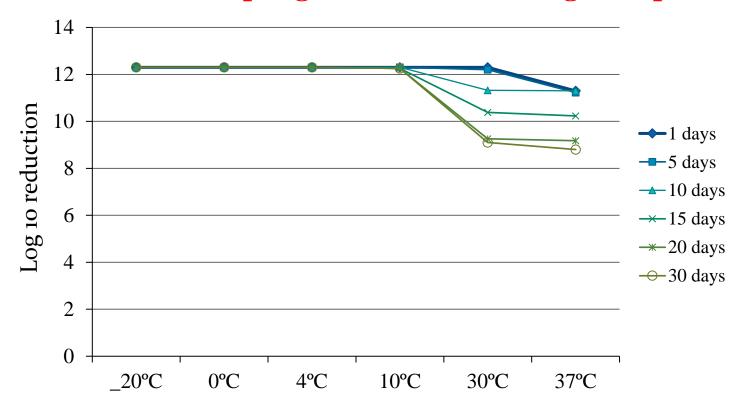
3 D structure of shrimp lysozyme

Zone of inhibition on Solid phase assay by phage alone, lysozyme alone and phage + lysozyme together.


Phage isolates with respective host bacteria and source

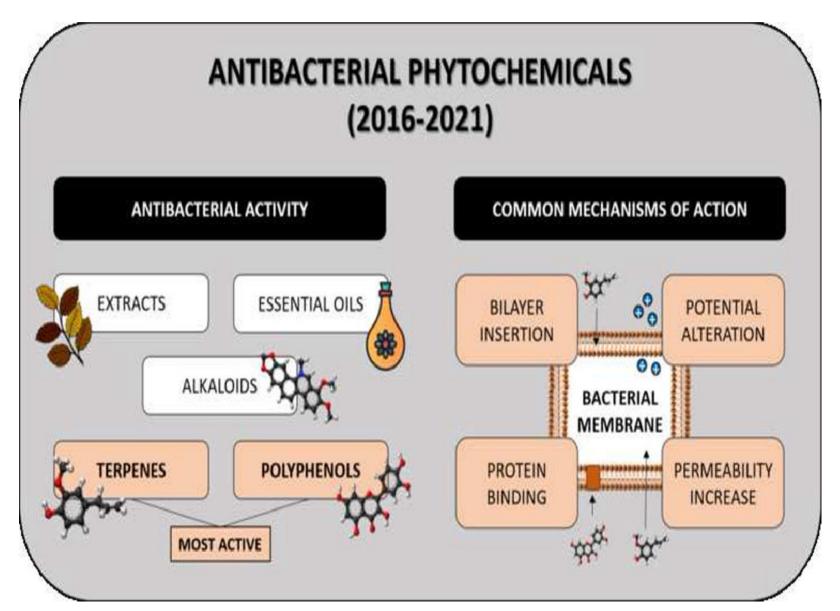
Phages	Host bacteria ^a	Source
$\mathbf{V}\mathbf{f}$	V. fischeri	Shrimp farm water
Va	V. alginolyticus	Shrimp hatchery water
$\mathbf{V}\mathbf{h}$	V. harveyi	Shrimp hatchery water
$\mathbf{V}\mathbf{p}$	V. parahaemolyticus	Oysters
$\overline{\mathbf{V}\mathbf{v}}$	V. vulnificus	Oysters

^aBacterial isolates from our own culture collection


Zones of clearing due to phage isolate from *V. parahaemolyticus*

Plaques formed by *V. parahaemolyticus* phage on soft agar

Titre values of phage at different storage temperatures


No change in titer of phage at low storage temperatures Only at 30 and 37°C, reduction in titer observed.

Results demonstrate promise for transport and field application

APPLICATION

- As prophylactic to prevent build up of vibrio pathogens in hatcheries.
- To treat luminous bacterial disease in hatcheries and ponds.
- To treat broodstock, eggs, nauplii by dipping in phage
- To tackle biofilm formation by vibrios

Phytochemicals as antimicrobials-mode of action and their effectiveness

Herbal applications in aquaculture

Name of Plant/product	Immunostimulatory activity on fish	Sources
Immunostimulant effect	Atlantic salmon, Channel	Gildberg et al., 1996
of Spirulina	catfish, Tilapia.	Duncan and Klesius,
		1996; Park and
		Jeong,1996
Immunostimulant effect	Enhanced antibody response	Dinakaran, 2001
of <i>Ocimum sanctum</i> leaf	to A. hydrophila.	Dinakaran, 2001
extract <i>Azadirachta</i>	Increase in antibody	Venkatalakshmi and
indica, Piper betle,	response and increase in	Dinakaran Michael, 2001
Crossandra	neutrophil activity in	
infundibuliformis	Oreochromis mossambicus	
Sodium benzoate	Enhanced neutrophil activity	
preserved extracts	in Tilapia.	
Acetone extract of	Enhanced the antiSRBC	Hemapriya, 1997
Phyllanthus niruri,	antibody response in Tilapia	
Ocimum sanctum and		
Acalypha indica		

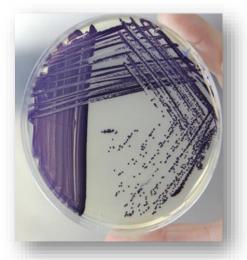
Herbal applications in aquaculture

Name of Plant/product	Immunostimulatory activity on fish	Sources
Catheranthus roseus, Calotropis gigantea and Datura stromoneum	Immunostimulatory effect on Cyprinus carpio	Kiran Kumar, 2001
Aqueous extract of neem	Enhance immune response of Balb-c mice to sheep red blood cells.	Nirjo and Kofi- Tsekpo, 1999
Leaf extract of neem	Higher IgM and IgG levels along with increased titer of antiovalbumin antibody.	Ray et al., 1996
Neem oil	Activate cell-mediated immune mechanisms to elicit an enhanced response to subsequent mitogenic or antigenic challenge.	Upadhyay et al., 1993
Achyranthes aspera	Stimulates immunity and increases resistance to infection in Indian major carps.	Chakrabarti, R. and Y.V. Rao (2006).

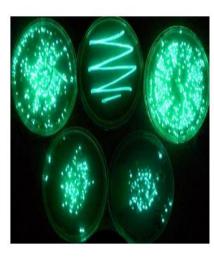
Herbal applications in aquaculture

Name of Plant/product	Immunostimulatory activity on fish	Sources
Holy basil, Tulsi Ocimum	Enhanced immunostimulatory	Das et al .,
sanctum	action in Rohu fish Labeo rohita.	2013
Chinese herbs	non-specific immune response of	Yin et al., 2006
(Astragalus radix and	tilapia, Oreochromis niloticus	
Scutellaria radix)	(feeding period of 3 weeks)	
aqueous extracts of	rainbow trout (<i>Oncorhynchus</i>	Dügenci et al.,
mistletoe (Viscum	mykiss)	2003
album), nettle (Urtica		
dioica), and ginger		
(Zingiber officinale)		
water and hexane	nonspecific immune mechanisms	Divyagnanesw
soluble fractions of the	and disease resistance in	ari et al., 2007
Indian medicinal plant,	Oreochromis mossambicus	
Solanum trilobatum		
Aloe vera crude extract	Indian common carp (Cyprinus	Alishahi et al.,
	carpio)	2010

 Novel antipathogenic compounds with anti-Quorum Sensing (anti-QS) property as an alternate to antibiotics to prevent aquatic diseases caused by antibiotic resistant bacterial pathogens.

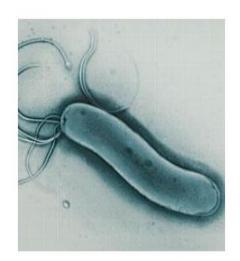

Quorum Sensing

Cell density dependent signalling system in bacteria that controls the expression of various genes

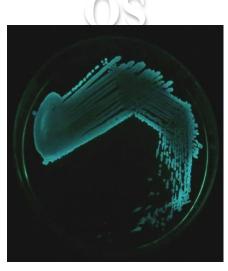

Importance of studying QS system:

QS governs:

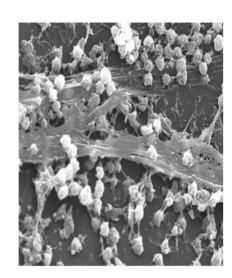
- Bioluminescence
- Biofilm formation
- Virulence factors production
- Sporulation
- Antibiotic production
- Cell spreading
- Competence
- Production of exotoxins & lytic enzymes



Chromobacterium violaceum



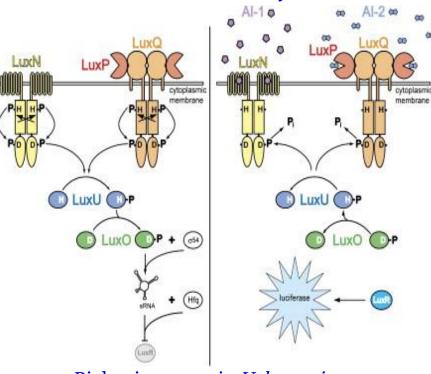
Vibrio harveyi


Factors controlled by

Virulence

Bioluminescence

Biofilms

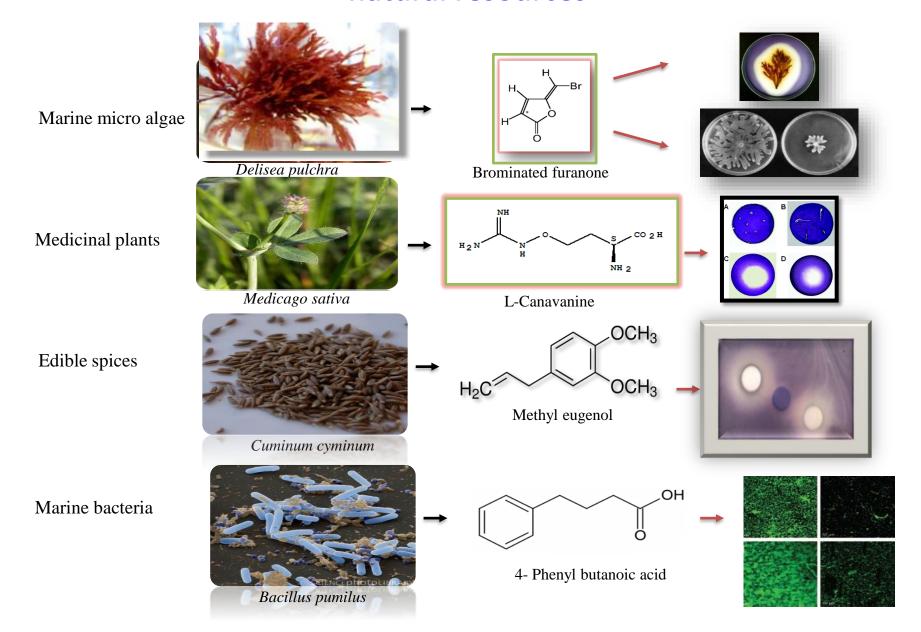


Motility

Pigment

QS in Vibrio harveyi

Bioluminescence in *V. harveyi*


Signalling molecules in *V. harveyi*

Furanosyl borate diester

QS controlled phenomena in aquatic bacterial pathogens

- **❖** Bioluminescence, protease and chitinase production in *Vibrio harveyi*
- Exoproteases and exotoxin production in Aeromonas hydrophila
- Serine metalloprotease and pigment production in V. anguillarum
- **❖** Biofilm formation in *V. harveyi*, *V. anguillarum*, *V. vulnificus* and *A. hydrophila*

Anti-QS compounds from various natural resources

Experimental and Clinical Chemotherapy

Pharmacology

Evaluation of Anti-Quorum-Sensing Activity of Edible Plants and Fruits through Inhibition of the N-Acyl-Homoserine Lactone System in *Chromobacterium violaceum* and *Pseudomonas aeruginosa*

K. Syed Musthafa, A. Veera Ravi, A. Annapoorani, I. Sybiya Vasantha Packiavathy,

S. Karutha Pandian

J. Biosci. 36(1), March 2011, 55–67 pa University, Karaikudi, India

Antipathogenic potential of marine *Bacillus* sp. SS4 on *N*-acyl-homoserine-lactone-mediated virulence factors production in *Pseudomonas aeruginosa* (PAO1)

K Syed Musthafa, V Saroja, S Karutha Pandian and A Veera Ravi*

Department of Biotechnology, Alagappa University, Karaikudi 630 003, India

*Corresponding author (Fax, +91-4565-225202; Email, aveeraravi@rediffmail.com)

Food Research International 45 (2012) 85-92

Contents lists available at SciVerse ScienceDirect

Food Research International

journal homepage: www.elsevier.com/locate/foodres

POOD RESEARCH INTERNATIONAL

Antibiofilm and quorum sensing inhibitory potential of *Cuminum cyminum* and its secondary metabolite methyl eugenol against Gram negative bacterial pathogens

Issac Abraham Sybiya Vasantha Packiavathy, Palani Agilandeswari, Khadar Syed Musthafa, Shunmugiah Karutha Pandian, Arumugam Veera Ravi*

Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage; www.elsevier.com/locate/bmcl

Inhibition of quorum sensing regulated biofilm formation in *Serratia* marcescens causing nosocomial infections

Dhamodharan Bakkiyaraj, Chandran Sivasankar, Shunmugiah Karutha Pandian * Department of Biotechnology, Alagappa University, Karaikudi 630 003, India

Ann Microbiol (2012) 62:443-447 DOI 10.1007/s13213-011-0262-1

SHORT COMMUNICATIONS

Inhibition of quorum-sensing-dependent phenotypic expression in *Serratia marcescens* by marine sediment *Bacillus* spp. SS4

Syed Musthafa Khadar • Karutha Pandian Shunmugiah • Veera Ravi Arumugam

Indian J Microbiol DOI 10.1007/s12088-012-0272-0

ORIGINAL ARTICLE

Inhibition of Quorum Sensing Mediated Virulence Factors Production in Urinary Pathogen Serratia marcescens PS1 by Marine Sponges

Angusamy Annapoorani · Abdul Karim Kamil Abdul Jabbar · Syed Khadar Syed Musthafa · Shunmugiah Karutha Pandian · Arumugam Veera Ravi

Archives of Medical Research 42 (2011) 658-668

Archives of Medical Research

ORIGINAL ARTICLE

Antiquorum Sensing and Antibiofilm Potential of Capparis spinosa

Sybiya Vasantha Packiavathy Issac Abraham, Agilandeswari Palani, Babu Rajendran Ramaswamy, Karutha Pandian Shunmugiah, and Veera Ravi Arumugam

Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
Department of Environmental Biotechnology, Bharathidasan University, Truchirappalli, Tamil Nadu, India
Received for publication July 26, 2011; accepted December 8, 2011 (ARCMED-D-11-00362).

Research Paper

2,5-Piperazinedione inhibits quorum sensing-dependent factor production in Pseudomonas aeruginosa PAO1

Khadar Syed Musthafa, Krishnaswamy Balamurugan, Shunmugiah Karutha Pandian and Arumugam Veera Ravi

Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India

Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Inhibition of quorum sensing regulated biofilm formation in Serratia marcescens causing nosocomial infections

Dhamodharan Bakkiyaraj, Chandran Sivasankar, Shunmugiah Karutha Pandian* Department of Biotechnology, Alagappa University, Karaikudi 630 003, India

ORIGINAL ARTICLE

Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios in marine aquaculture

A.V. Ravi¹, K.S. Musthafa¹, G. Jegathammbal¹, K. Kathiresan² and S.K. Pandian¹

A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in

- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
- 2 CAS in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India

Biofouling Vol. 27, No. 5, May 2011, 519-528

Biofouling Vol. 27, No. 5, May 2011, 519-528

A novel compound from the marine bacterium Bacillus pumilus S6-15 inhibits biofilm formation in Gram-positive and Gram-negative species

Chari Nithya, Muthu Gokila Devi and Shunmugiah Karutha Pandian*

Department of Biotechnology, Alagappa University, Karaikudi 630003, India

(Received 21 January 2011; final version received 2 May 2011)

Chari Nithya, Muthu Gokila Devi and Shunmugiah Karutha Pandian*

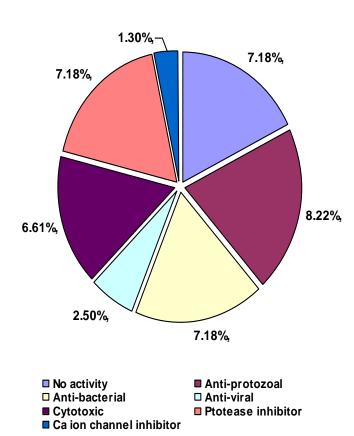
Department of Biotechnology, Alagappa University, Karaikudi 630003, India

(Received 21 January 2011; final version received 2 May 2011)

Gram-positive and Gram-negative species

Microbiol

.1007/s12088-012-0272-0


GINAL ARTICLE

Inhibition of Quorum Sensing Mediated Virulence Factors Production in Urinary Pathogen Serratia marcescens PS1 by Marine Sponges

Angusamy Annapoorani · Abdul Karim Kamil Abdul Jabbar · Sved Khadar Sved Musthafa · Shunmugiah Karutha Pandian · Arumugam Veera Ravi

Cyanobacteria

 Cyanobacteria (also known as blue—green algae) are highly diverse prokaryotic Gram negative organisms and well known for their potential bioactive compounds with various medicinal properties.

Anti-QS compounds from cyanobacteria

Tumonoic acid from marine cyanobacterium *Blennothrix* cantharidosmum against *V. harveyi* – Clark et al., (2008) J Nat Prod 71:1530–1537.

Malyngolide from the cyanobacterium *Lyngbya majuscula* against *P. aeruginosa* – Dobretsov et al., (2010) *Environ Microbiol Rep* 6:739–744.

Lyngbyoic acid from a marine cyanobacterium against *P. aeruginosa* – Kwan et al., (2011) Mol Biosyst. 7:1205-16.

Ref: Cyanobacteria: an emerging source for drug discovery, Singh et al., (2011), The Journal of Antibiotics 64, 401–412

Cyanobacteria	Compound/Activity	Reference
Microcystis aeruginosa	Microviridin Toxin BE-4, Siatoxin / Antibiotic, anticancer	Armente and Carmichael, 1996; Domingos <i>et al</i> . 1999; Shi <i>et al.</i> , 1999
Synechocystis trididemni	Didemnin / Anticancer, antiviral	Rinehart <i>et al.</i> , 1981; Chun <i>et al.</i> , 1986
Hyella caespitosa	Carazostatin / Antifungal	Cardellina et al., 1979
Phromidium ectocarpii	Hierridin, 2, 4-dimethoxy-6- heptadecyl-phenol / Antiplasmodial, antibiotic	Murakami et al., 1991
Lyngbya majuscula	Sulfolipid amide (bromo, chlor and pyrrole) fatty acid (chloro sulfo thiazoline) lipopeptides / Anti HIV, anticancer, Antifungal, antimicrobial	Gerwick et al., 1994; Luesch et al. 2000; Mynderse et al., 1988; Mitchell et al., 2000; Milligan et al., 2000
Scytonema pseudohofmanni	Scytophycine / Antifungal, Antiviral	Srivastava <i>et al.</i> , 1998, 1999
Hormothomnion enteromorphoides	Hormothomnin / Cytotoxic, antibiotic	Gerwick, 1990
Calothrix sp	Calothrixin / Antimalarial, anticancer	Issa, 1999

OPEN

Metal sensing-carbon dots loaded TiO₂-nanocomposite for photocatalytic bacterial deactivation and application in aquaculture

Rajaiah Alexpandi¹, Chandu V. V. Muralee Gopi², Ravindran Durgadevi¹, Hee-Je Kim², Shunmugiah Karutha Pandian¹ & Arumugam Veera Ravi¹¹ □

THANK YOU