Understanding Antimicrobial Resistance and Biosecurity in Aquaculture

FAO candidate Reference Centers on AMR and Aquaculture Biosecurity

Date: 20-21 December 2021 Time:13:00-16:00 PM Rome time

WANG Qing

Pearl River Fisheries Research Institute (PRFRI), CAFS, Guangzhou, China

Email: wangqing@prfri.ac.cn

CONTENT

- 1 Why fish needs vaccines?
- 2 What vaccines can we choose?
- **3** How to use fish vaccines?
- 4 Vaccine development in the future

PART

1

Why fish needs vaccines?

1. Production of major species in the finfish aquaculture of world

	2010	2012	2014	2016	2018	2018 share
			ousand tonnes			(percentage
Finfish		(Th	e State of Worl	d Fisheries and A	Aquaculture 202	(o)
Grass carp, Ctenopharyngodon idellus	4 213.1	4 590.9	5 039.8	5 444.5	5 704.0	10.5
Silver carp, Hypophthalmichthys molitrix	3 972.0	3 863.8	4 575.4	4 717.0	4 788.5	8.8
Nile tilapia, Oreochromis niloticus	2 657.7	3 342.2	3 758.4	4 165.0	4 525.4	8.3
Common carp, Cyprinus carpio	3 331.0	3 493.9	3 866.3	4 054.7	4 189.5	7.7
Bighead carp, Hypophthalmichthys nobilis	2 496.9	2 646.4	2 957.6	3 161.5	3 143.7	5.8
Catla, Catla catla	2 526.4	2 260.6	2 269.4	2 509.4	3 041.3	5.6
Carassius spp.	2 137.8	2 232.6	2 511.9	2 726.7	2 772.3	5.1
Freshwater fishes nei,1 Osteichthyes	1 355.9	1 857.4	1 983.5	2 582.0	2 545.1	4.7
Atlantic salmon, Salmo salar	1 437.1	2 074.4	2 348.1	2 247.3	2 435.9	4.5
Striped catfish, Pangasianodon hypophthalmus	1 749.4	1 985.4	2 036.8	2 191.7	2 359.5	4.3
Roho labeo, Labeo rohita	1 133.2	1 566.0	1 670.2	1 842.7	2 016.8	3.7
Milkfish, Chanos chanos	808.6	943.3	1 041.4	1 194.8	1 327.2	2.4
Torpedo-shaped catfishes nei, <i>Clarias</i> spp.	343.3	540.8	867.0	961.7	1 245.3	2.3
Tilapias nei, <i>Oreochromis</i> (=Tilapia) spp.	472.5	693.4	960.8	972.6	1 030.0	1.9
Rainbow trout, Oncorhynchus mykiss	752.4	882.1	794.9	832.1	848.1	1.6
Wuchang bream, Megalobrama amblycephala	629.2	642.8	710.3	858.4	783.5	1.4
Marine fishes nei, Osteichthyes	467.7	567.2	661.0	688.3	767.5	1.4
Black carp, Mylopharyngodon piceus	409.5	450.9	505.7	680.0	691.5	1.3
Cyprinids nei, Cyprinidae	639.8	601.1	628.0	596.1	654.1	1.2
Yellow catfish, Pelteobagrus fulvidraco	177.8	233.7	302.7	434.4	509.6	0.9
Other finfishes	6 033.9	6 869.3	7 730.0	8 217.1	8 900.2	16.4
Finfish total	37 745.1	42 338.2	47 219.1	51 078.0	54 279.0	100

- In 2018, aquaculture fish production was dominated by finfish (54.3 million tonnes – 47 million tonnes from inland aquaculture and 7.3 million tonnes from marine and coastal aquaculture. (FAO, 2020)
- In 2018, aquaculture fish production was 27 million tonnes, occupied 49.7% of world aquaculture fish (China Fishery Statistical yearbook, 2019)

2. Production decline could be caused by some factors

Thousands of tonnes of sardines and other marine life wash up on Baja coast

Above normal ocean temperatures as high as 30 C were responsible, said a fisheries official

Published on Wednesday, July 14, 2021

Bacterium Probable Cause of Local Massive Fish Kills

are most likely caused by a bacterial infection affecting the fishes' nervous system. Courtesy Rick Swansor

Disease outbreak

Environmental pollution

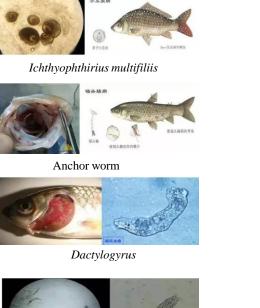
Climate change

Massive death of fish

vatandaşlar arasında paniğe neden oldu.

3. Main fish diseases caused by pathogens

According to the China Fisheries Statistics Yearbook, disease outbreaks caused a direct production loss to Chinese aquaculture of 205 000 tonnes, worth USD 401 million (CNY 2.6 billion) (FA0, 2020).


HSRV

Bacteria

•

Gyrodactylus

Parasite

Fungus

Saprolegnia

epizootic ulcerative syndrome, EUS

Major pathogens of farmed fish in global aquaculture

Disease	Pathogen	Major Fish Host				
Bacterial diseases						
Bacterial kidney disease (BKD)	Renibacterium salmoninarum	Salmonids				
Edwardsiellosis/Redpest	Edwardsiella tarda	Salmon, catfish, carps, turbot, flounder, eel, tilapia				
Edwardsiellosis/Enteric septicemia	Edwardsiella ictaluri	Channel catfish, freshwater catfish, striped catfish, brown bullhead, Donio spp.				
Flavobacteriosis/Columnaris	Flavobacterium columnare, Flavobacterium maritimu	us Cyprinids, salmonids, catfish carp, trout, perch, tilapia				
Furunculosis	Aeromonas salmonicida	Salmons, trout, flounder, turbot, carp, tilapia, sole				
Lactococcosis	Lactococcus garvieae	Salmonids, seabream, seabass, Seriola spp.				
Motile Aeromonas Septicaemia	Aeromonas hydrophila, Aeromonas salmonicida	Salmonids, bass, carp, trout, eel, sturgeon, tilapia				
Pasteurellosis	Photobacterium. damselae spp. piscicida	Seabream, seabass, ayu, yellowtail, carp, sturgeon, hybrid striped bass, tuna, cobia, snakehead				
Piscirickettsiosis/Rickettsial septicem	nia Piscirickettsia salmonis	Salmonids, trout, seabass, tilapia				
Streptococcosis	Streptococcus agalactiae, Streptococcus iniae, Streptococcus dysgalactiae, Streptococcus parauberis, Streptococcus phocae	Grouper, salmonids, turbot, flounder, sturgeon, amberjack, yellow tail, red porgy, barramundi, rabbitfish, seabass, seabream, hybrid striped bass, catfish, mullet, pomfret, tilapia, koi, carp				
Vibriosis	Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus, Vibrio anguillarum	Most marine fish, salmonids, groupers, cods, red seabream, gilt-head sea bream, Japanese flounder, summer flounder, amberjack, halibut, yellowtail, seabass, seriolla, milkfish, horse mackerel, cobria, sole, eel, tilapia				
Yersiniosis/Enteric redmouth	Yersinia ruckeri	Salmonids, trout, eel, minnows, tilapia				
Wound Disease	Moritella viscosa	Salmonids				
Tenacibaculosis	Tenacibaculum maritimum	Turbot				

Modified from doi: 10.14202/vetworld.2019.1806-1815

Disease	Pathogen	Major Fish Host	OIE listed (2020
	Viral Disease	98	
Infectious hematopoietic necrosis	IHNV	Salmonids, Trout, Cod, Pike, Sturgeon	Yes
Infectious pancreatic necrosis	IPNV	Salmonids, sea bass, sea bream, turbot, Pacific cod,Carp,Goldfish	No
Infectious salmon anemia	ISAV	Atlantic salmon	Yes
Pancreatic disease virus	SAV	Salmonids	Yes
Spring viremia of carp virus	SVCV	Common carp, Grass carp, Bighead carp, Silver carp,Goldfish	Yes
Red seabream iridoviral disease	RSIV	Red sea bream, black porgy, amberjack	Yes
Epizootic hematopoietic necrosis	EHNV	Redfin perch, rainbow trout,macquarie perch, silver perch	Yes
Koi herpesvirus disease	KHV,CyHV-3	Koi, Common Carp	Yes
Infectious spleen and kidney necrosis	ISKNV	Mandarin fish,Asian seabass, grouper, Japanese yellowtail	No
Grass Carp Hemorrhage	GCRV	Grass carp,Black carp	No
	Parasitic disea	ses	
Mastigophora	Amyloodinium ocellatum;Trypanosoma		
Sporozoan	Myxosporidia	freshwater fish and marine fish	No
Infusorian	Ichthyophthirius multifiliis;Cryptocaryon irritans	freshwater fish and marine fish	No
Monogenean	Dactylogyrus sp.;Benedenia sp.; Gyrodactylus salaris	freshwater fish and marine fish	Yes(G. Salaris
Digenea	Sanguinicola spp.	freshwater fish and marine fish	No
	Fungal diseas	ses	
Saprolegniasis	S. monoica;S. parasitica;S. diclina	All freshwater fish species	No
Branchiomycosis	B. sanguinis;B. demigrans	Grass carp,Black carp	No
Aphanomyces	A. pisiciidia;A. laevis;A. invadans	Grass carp,goldfish,Sliver carp,Bighead carp	Yes(A. invadan

IHNV: Infectious hematopoietic necrosis virus; IPNV: Infectious pancreatic necrosis virus; ISAV: Infectious salmon anemia virus; SAV:alphavirus alphavirus; SVCV: Spring viremia of carp virus;RSIV: Red sea bream iridovirus;KHV: Koi herpesvirus;EHNV:Epizootic hematopoieticnecrosis virus;CyHV-3:Cyprinid herpesvirus-3; ISKNV: Infectious spleen and kidney necrosis virus;GCRV:Grass carp reovirus

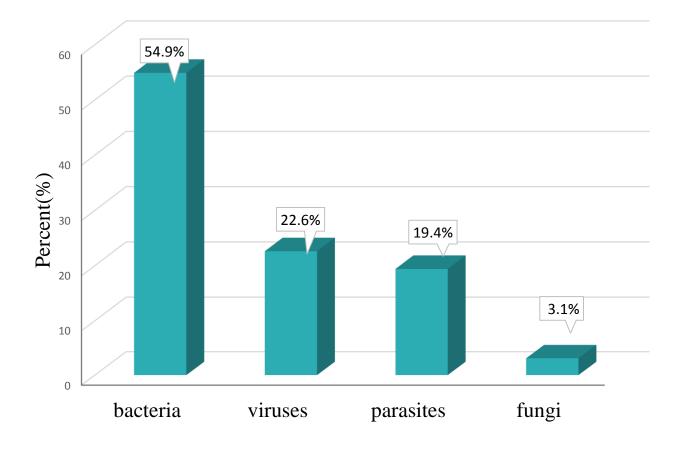


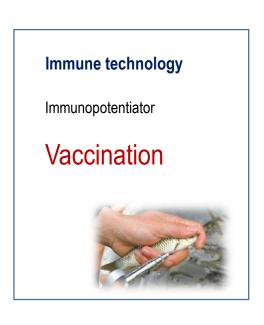
Fig 1. The proportion of various pathogens in global cultured fish Modified from doi:10.1007/s13337-013-0186-4

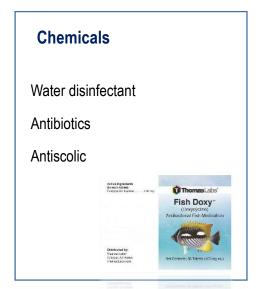
The major causative agents of infectious diseases in finfish aquaculture include

- bacteria (54.9 %)
- viruses (22.6 %)
- parasites (19.4 %)
- fungi (3.1 %).

The World Health Organization (WHO) has stated that "Antimicrobials are vital medicines for the treatment of bacterial infections in both human and animals".

•





4. How to control diseases outbreak and lower antibiotics use

prevention

control

Integrated Control Technology

•

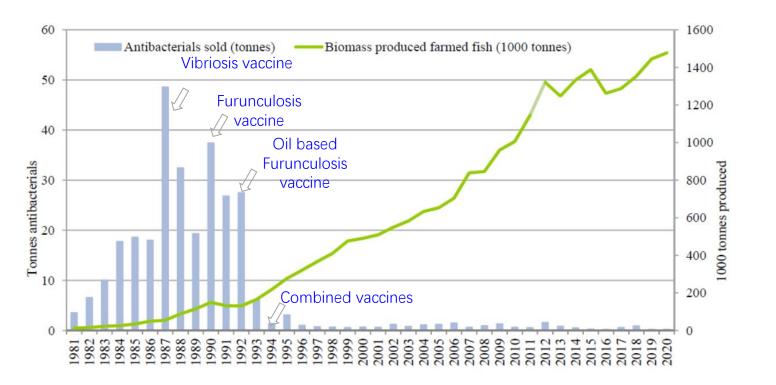
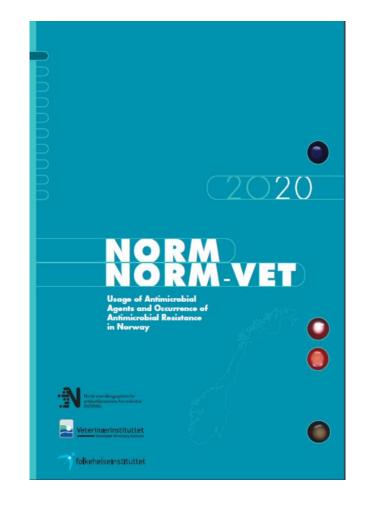



FIGURE 8. Sales, in tonnes of active substance, of antibacterial veterinary medicinal products for therapeutic use in farmed fish (including cleaner fish) in Norway in 1981-2020 versus tonnes produced (slaughtered) farmed fish. For the years 1981-2012 the data represent sales data provided by Norwegian Institute of Public Health; for 2013-2020 data represent prescription data obtained form the Veterinary Prescription Register. Data on slaughtered biomass farmed fish were obtained from Norwegian Directorate of Fisheries (https://www.fiskeridir.no/Akvakultur/Tall-og-analyse/Akvakulturstatistikk-tidsserier).

The significant decrease in the usage of antibacterial agents in Norwegian aquaculture from 1987 is mainly attributed to the introduction of effective vaccines against bacterial diseases in Atlantic salmon and rainbow trout but also prevention of bacterial diseases and their spread.

PART
2

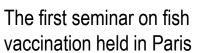
What vaccines can we choose?

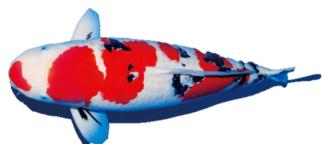
1. Development history of aquatic vaccines

Present

Step 04

1984

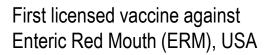

Step 03


Industry scale

More than 210 licensed vaccines

1976

Fish vaccine industry forming



1942

Research beginning

Successfully prepared vaccine against Aeromonas salmonicida

Production beginning

•

2. The status of global fish vaccines

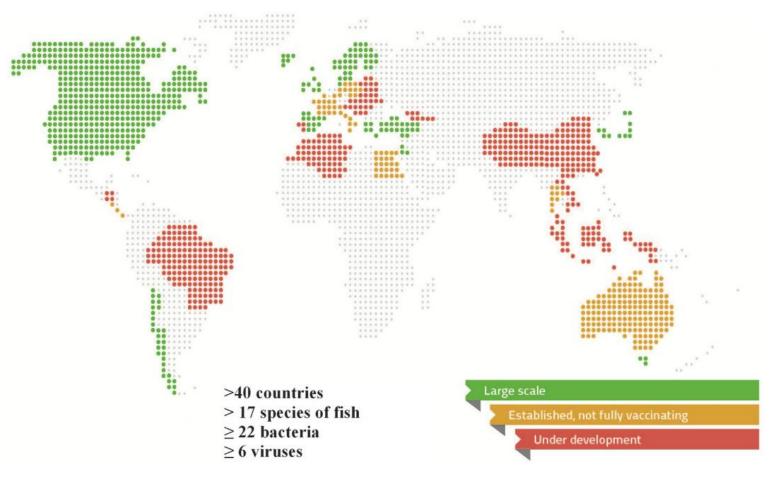


Figure 1. Figure 1. A categorisation of the countries according to the use and implementation of finfish vaccination. Green shows countries where vaccination is commonly used. Yellow are countries where vaccination is used, but not fully implemented. Red are countries where finfish vaccination is under development. (For interpretation of the references to colour in this fifigure legend, the reader is referred to the web version of this article.) (Brudeseth BE, et al., 2013)

Vaccines are available for more than 17 species of fish and protect against more than 22 different bacterial diseases and 6 viral diseases. Vaccines are available in more than 40 countries.

Currently 19 major companies market fish vaccines globally and many small companies also exist.(Adams,2019)

Table 1. Incomplete statistics of production validation of fishery vaccine in global

Country	licensed number				
Country	(statistical year)				
USA	26 (By 2012)				
Canada	47 (By 2012)				
Norway	26 (By 2019)				
Chile	45 (By 2019)				
Japan	29 (By 2018)				
Korea	29 (By 2019)				
China	7 (By 2020)				
	1 (Israel), 1(Vietnam),				
Other countries	1 (Singapore)·····				
Total	>210				

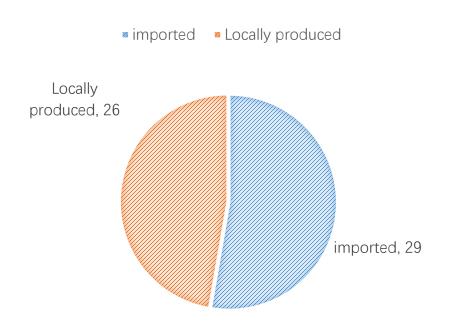
@

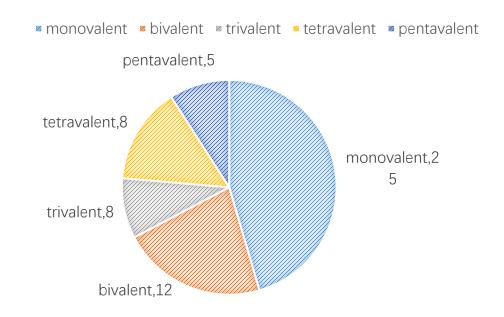
3. Overview of licensed fish vaccines that have been used in global aquaculture

Disease	Pathogen	Major Fish Host	Vaccine Type	Antigens/Targets	Delivery Methods	Country/Region*	Further Information
				Viral Diseases			
Infectious hematopoietic necrosis	IHNV Rhabdovirus	Salmonids	DNA	G Glycoprotein	IM	Canada	https://www.dfo- mpo.gc.ca/aquaculture/rp-pr/acrdp- pcrda/projects-projets/P-07-04-010- eng.html
			Inactivated	Inactivated IPNV	IΡ	Norway, Chile, UK	www.pharmaq.no
Infectious pancreatic necrosis	IPNV Birnavirus	Salmonids, sea bass, sea bream,	Subunit	VP2 and VP3 Capsid Proteins	Oral	Canada, USA	www.aquavac-vaccines.com
Hoorosic	Dirilavirus	turbot, Pacific cod	Subunit	VP2 Proteins	IP	Canada, Chile, Norway	http://www.msd-animal-health.no/
Infectious salmon anemia	ISAV Orthomyxovir us	Atlantic salmon	Inactivated	Inactivated ISAV	IΡ	Norway, Chile, Ireland, Finland, Canada	www.pharmaq.no
Pancreatic disease virus	SAV alphaviruses	Salmonids	Inactivated	Inactivated SAV	IP	Norway, Chile, UK	https://www.merck-animal-health.co
Spring viremia of carp	SVCV	Corn	Subunit	G Glycoprotein	IΡ	Belgium	doi: 10.1007/s13337-013-0186-4
virus	Rhabdovirus	Carp	Inactivated	Inactivated SVCV	ΙP	Czech Republic	Dixon P. et al.,2017
Koi herpesvirus disease	KHV Herpesvirus	Carp	Attenuated	Attenuated KHV	IMM or IP	Israel	doi: 10.1007/s13337-013-0186-4
Infectious spleen and kidney necrosis	ISKNV Iridovirus	Asian seabass, grouper, Japanese yellowtail	Inactivated	Inactivated ISKNV	ΙP	Singapore	https://www.aquavac-vaccines.com/
Grass Carp Hemorrhage	GCRV	Carp	Attenuated	Attenuated GCRV	ΙP	China	

viral vaccine

IHNV: Infectious hematopoietic necrosis virus; IPNV: Infectious pancreatic necrosis virus; ISAV: Infectious salmon anemia virus; SVCV: Spring viremia of carp virus; KHV: Koi herpesvirus; ISKNV: Infectious spleen and kidney necrosis virus; GCRV:Grass carp reovirus; IM: Intramuscular injection; IP: Intraperitoneal injection; IMM: Immersion; * denotes country or region where the vaccine is licensed and sold.


Modified from doi: 10.3390/microorganisms7110569


	C_{Ω}	+:		
-	().)	m	m	100

bacterial vaccine

			Bac	cterial diseases			
Enteric redmouth disease (ERM)	Yersinia ruckeri	Salmonids	Inactivated	Inactivated Y. ruckeri	IMM or oral	USA, Canada, Europe	health.ie/products_ni_vet/aquavac- erm-oral/overview.aspx; https://www.msd-animal-health-
Vibriosis	Vibrio anguillarum;Vibrio ordalii;Vibrio salmonicida	Salmonids, ayu, grouper, sea bass, sea bream, yellowtail, cod, halibut	Inactivated	Inactivated Vibriosis spp.	IP or IMM	USA, Canada, Japan, Europe, Australia	https://www.merck-animal-health.com/species/aquaculture/trout.aspx;
Furunculosis	Aeromonas salmonicida subsp. salmonicida	Salmonids	Inactivated	Inactivated A. salmonicida spp.	IP or IMM	USA, Canada, Chile, Europe, Australia	https://www.msd-animal-health- me.com/species/aqua.aspx
Bacterial kidney disease (BKD)	Renibacterium salmoninarum	Salmonids	Avirulent live culture	Arthrobacter davidanieli	IP	Canada, Chile, USA	Salonius K. et al., 2005
Enteric septicemia of catfish (ESC)	Edwarsiella ictaluri	Catfish	Inactivated	Inactivated E. ictaluri	IP	Vietnam	https://www.pharmaq.no/
Columnaris disease	Flavobacterium columnaris	All freshwater finfish species, bream, bass, turbot, salmon	Attenuated	Attenuated F. columnare	IMM	USA	doi: 10.1016/j.fsi.2010.11.001
Pasteurellosis	Pasteurela piscicida	Sea bass, sea bream, sole	Inactivated	Inactivated P. pscicida	IMM	USA, Europe, Taiwan, Japan	ALPHA JECT 2000
Lactococciosis	Lactococcus garviae	Rainbow trout, amberjack, yellowtail	Inactivated	Inactivated L. garviae	IP	Spain	https://www.hipra.com/
Chrontononia			Inactivated S. agalactiae (biotype 1)	IP	Taiwan Province of	https://www.aquavac- vaccines.com/products/aquavac-strep- sa1/	
Streptococcus infections	Streptococcus spp.	rainbow trout, ayu, sea bass, sea bream	Inactivated	Inactivated S. agalactiae (biotype 2)	IP	China, Japan, Brazil, Indonesia	nttps://www.aquavac- vaccines.com/products/aquavac-strep-
		bicaiii		Inactivated S. iniae	IP or IMM		https://www.aquavac- vaccines.com/products/aquavac-strep-
Salmonid rickettsial septicemia	Piscirickettsia salmonis	Salmonids	Inactivated	Inactivated <i>P.</i> salmonis	IP	Chile	Evensen, 2016; https://www.pharmaq.no/products/inje ctable/
Motile Aeromonas septicemia (MAS)	Aeromonas spp.	Striped catfish	Inactivated	A. hydrophila (serotype A and B)	IP	Vietnam	https://www.pharmag.no/; ALPHAJECT Panga 2
Wound Disease	Moritella viscosa	Salmonids	Inactivated	Inactivated M. viscosa	IP	Norway, UK, Ireland, Iceland	https://www.pharmaq.no
Tenacibaculosis	Tenacibaculum maritimum	Turbot	Inactivated	Inactivated <i>T.</i> maritimum	IP	Spain	https://www.hipra.com/

The status of fish vaccines application in Chile

- In Chile, vaccines designed for salmonids have been licensed over the last 30 years.
- There are more than 45 registered vaccines for salmonids.
- The first vaccine against piscirickettsiosis was licensed in 1999, now 32 different vaccines with an SRS component.
- Despite the high number of different registered vaccines for different pathogens and directed for different salmonid species, not all of them are widely use in the Chilean aquaculture.
- The Chilean producers used 379,600 kg antimicrobial in 2020 (353,000 mg per tonne), 2200 times more than Norway.
- The antibiotic use maybe due to the poor efficiency of SRS vaccine that can not protects for the full farm cycle.

The status of fish vaccines application in China

			_	Stage		
Pathogen	Host	Antigens	Delivery route	The new drug certificate	Production approval	
GCRV	Grass carp	Inactivated GCRV	IP	1990	None	
GCRV	Grass carp	Attenuated GCRV	IP	2010	2011, 2014, 2019	
Aeromonas hydrophila	freshwater fish	Inactivated A. hydrophila	IP/IMM	2001	2011, 2020	
/ibrio alginolyticus,Vibrio inguillarum,Edwardsiella tarda		anti-idiotype antibody of <i>V. alginolyticus,V. anguillarum,E. tarda</i>	IP/IMM	2006	2017	
ISKNV	Mandarin fish	Inactivated ISKNV	IP	2019	None	
V. anguillarum	Scophthalmus maximus	Attenuated V. anguillarum	IP	2019	None	
E. tarda	Scophthalmus maximus	Attenuated <i>E. tarda</i>	IP	2015	2016	

IP: Intraperitoneal injection; IMM: Immersion

A total of 7 vaccines have obtained new drug certificates, of which 4 have obtained production approval.

Pictures of some fish vaccine products in China.

From http://js.xumurc.com/main/shownews_37967.html

http://www.xaskystar.com/

From http://www.winsun-gd.com/a/webbase/chanpinzhanshi/shuichanyimiaoxilie/2015/1228/469.html

•

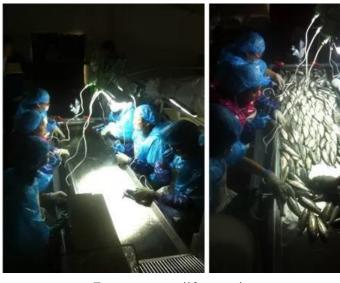
PART 3

How to use fish vaccines?

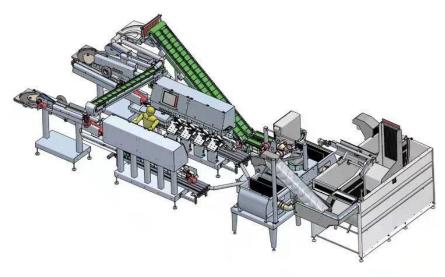
Vaccine delivery methods/routes of administration

Delivery methods	Advantages	Disadvantages
Oral vaccination	1.Easy to use:2.Saves labor:3.Not time consuming;4.Lower stress:5.Easiest method for mass vaccination of all sizes of fish.	1.Large quantities of antigen required;2.Requires all fish to be fed;3.Protection generally weak and of diffcult to determine:4.Exact dose of antigen received is difficult to determine:5.Repeated vaccination reduce cell mediated toxicity.
Injection vaccination (intramuscular vaccination,intraperitoneal vaccination)	1.Longer protection:2.Suitable for large fish;3.Highly efficient in generating both humoral and cellular cytotoxic responses;4.Multiple antigens from different pathogens can be delivered;5.Minimal wastage of vaccine;	1.Unsuitable for small fishes; Needs sophisticated machinery or highly skilled workforce; 2.Significant handling stress; Risk of post vaccination; 3.Fungal infections and local reactions; 4.Labor and time consuming; 5.Use of anesthetic is required; 6.Induce latency to eat
Immersion vaccination (dip vaccination,bath vaccination)	1.Moderate stress for fish; 2.Lower labor costs; 3.Less risk to vaccination team; 4.Cost effective for small fish; 5.High efficacy using attenuated live vaccines	1.Need large amount of vaccine; 2.Low protection with short duration; 3.Low efficacy for inactivated vaccines; 4.Cost prohibitive for large fish

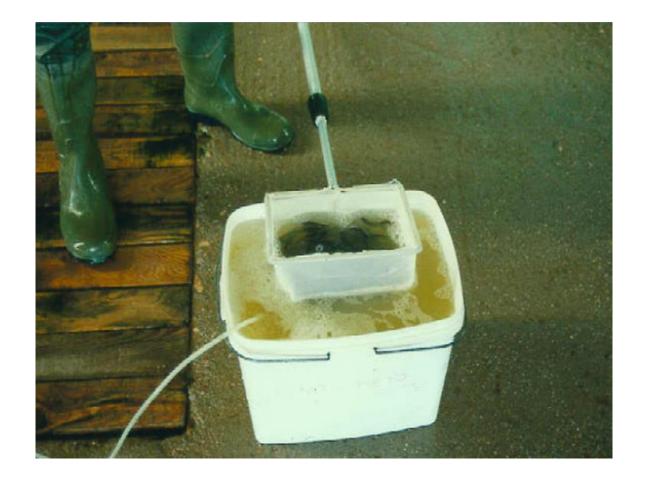
Modified from DOI: 10.1080/23308249.2016.1261277



Injection by hand



Injection by machine



From: yourvismawebsite.com/lumic-as

Fully automatic inoculating machine: en.skalamaskon.no

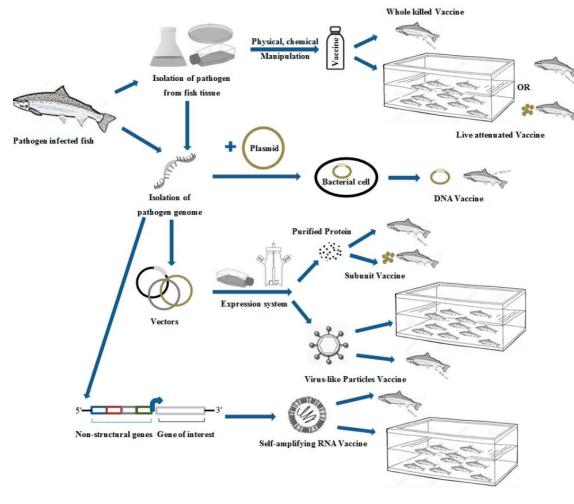
Immersion vaccination

Oral vaccination

Data from :Marian McLoughlin

PART
4

Fish vaccines development in the future



1. Fish vaccines classified by antigen form

Antigen form	Advantages	Disadvantages
	Amenable to autogenously;	
inactivated	Safe for use;	Too costly and less than
antigen	high effect	satisfactory for viruses
	Can replicate, induce cellular and	Safety concerns both in terms of
	humoral immunity;	the vaccinated animals and in
	Do not require an adjuvant Mimic	terms of environmental aspects;
	natural infection and immune	Danger for reversion to virulence;
Attenuated	response;	Not good a stimulating innate
antigen	Amenable to immersion	immunity
	Ability to produce sufficient	Disturbance in glycolysation of
Recombinat	quantities of the protective proteins;	the proteins and restoration
protein	Safe and low cost method	of the tertiary structure
	High levels of heterologous antigen	
	expression in the cytoplasm;	
	Low-level vector protein expression,	
	induction of apoptosis in infected	Lack of data regarding field
Vector technology	cells Biosafety production;	performance
Live non		
pathogenic		
recombinant		Limiting their potential used as
microorganism	Low cost of production	genetically modified organisms
		Some obstacles limiting the
		potential uses of DNA vaccines
	Induce humoral and cellular	such as some pathogens
DNA vaccine	immunity	possess non protein immunogens
Synthetic peptide	Possibility for construct a vector	Lack of data regarding field
vaccine	encoding several antigens	performance
Anti-idiotype		Lack of data regarding field
antibody vaccine	Safe for use	performance
	3.8 3.8 ·	

From doi:10.3390/microorganisms7110569

Modified from DOI: 10.1080/23308249.2016.1261277

•

2. Characteristics of global fish vaccine development and application

Most of vaccines are inactivated vaccines.

Live attenuated vaccine can not to be licensed in some countries.

Few vaccines used in low-value fish, such as *Cyprinidae* and tilapia.

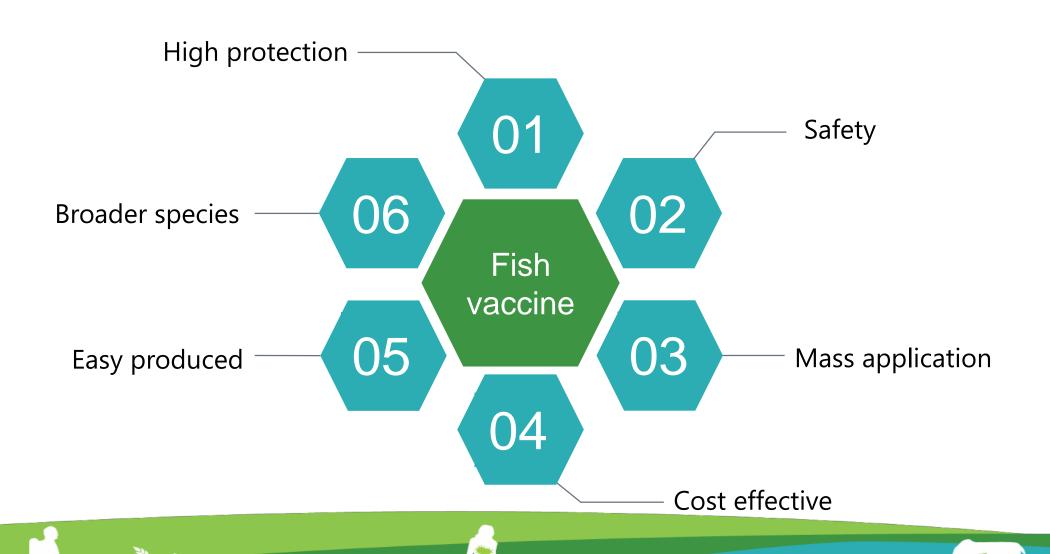
The main method of vaccine delivery is injection.

The vaccine is mainly used in highvalue fish, such as salmon.

D

В

There are few vaccines against parasites to be used.



3. The ideal fish vaccines

•

4. Future trends and technologies in fish vaccinology

- More efficient novel adjuvants and delivery systems will be developed, and the efficacy of traditional adjuvants is further improved.
- Defined genetic modifications replace the traditional random mutations in live vaccines to increase controllability and security.
- More new vaccines will be developed, such as DNA vaccine and mRNA vaccine.
- Vaccines are needed for parasites, because these pathogens controlled by chemicals that cause environmental issues and limitation for human consumption.
- Emergency, or autogenous vaccines, can be a useful alternative.

DOI: 10.1111/raq.12633

REVIEW

REVIEWS IN Aquaculture

Autogenous vaccination in aquaculture: A locally enabled solution towards reduction of the global antimicrobial resistance problem

```
Andrew C. Barnes<sup>1</sup> | Oleksandra Silayeva<sup>1</sup> | Matt Landos<sup>2</sup> | Ha Thanh Dong<sup>3</sup> | Angela Lusiastuti<sup>4</sup> | Le Hong Phuoc<sup>5</sup> | Jerome Delamare-Deboutteville<sup>6</sup>
```

The benefits of autogenous vaccination to animal welfare, transboundary biosecurity, local farmer and industry economics, and to public health, favour implementation in aquaculture as a locally enabled solution to the global problem of antimicrobial resistance.

To be vaccinated, or not to be vaccinated?

That is different!

Understanding Antimicrobial Resistance and Biosecurity in Aquaculture

FAO candidate Reference Centers on AMR and Aquaculture Biosecurity

Date: 20-21 December 2021 Time:13:00-16:00 PM Rome time

