VIRTUAL COURSE

Design of an Active Surveillance for Tilapia Lake Virus (TILV) Disease and Its Implementation

TCP/INT/3707: Strengthening biosecurity (policy and farm level) governance to deal with Tilapia lake virus

26 March to 15 April 2021
INTRODUCTION

Understanding aquatic diseases using epidemiological principles and tools

Nihad Fejzic
nihad.fejzic@vfs.unsa.ba

TCP/INT/3707: Strengthening biosecurity (policy and farm level) governance to deal with Tilapia lake virus
Learning objectives

• Why do we need knowledge on epidemiology of aquatic diseases?

• Definitions of epidemiology and its approaches

• Purpose and aims of disease surveillance
Learning objectives

• Main principles of different types of surveillance

• Surveillance standards

• Surveillance planning
Case 1

• Country would like to enable investment / to invest in aquaculture sector

• What can happen if disease situation is unknown or in case of presence of disease such as TiLV?

• What competent authority needs to do before?
Case 2

• Country X would like to export life fish/products thereof to other countries/SADC/EU...

• Authority of importing countries is requesting Animal health certification in compliance with WTO/OIE or EU/OIE rules

• What does it mean for exporting country?

• What must be done before certification?
Case 3

• Country X import live fish from country Y

• What importing country will request from CA of exporting country?

• What can happen if disease X (TiLV) will enter into disease free zone or country?
Case 4

• Country X has disease (TiLV) confirmed in several outbreaks

• Would like to start disease control program

• How?
Definitions of Epidemiology

• **Epidemiology offers insight** of knowledge necessary for finding the most effective ways to treat and prevent diseases

• The term “Epidemiology” springs directly from *epidemic*, which originally referred to communicable disease outbreaks in a *population* and in turn is derived from the Greek roots “epi” (upon) and “demos” (population)

• The third component of epidemiology, the Greek root “logos”, means study
Definitions of Epidemiology

• Epidemiology is the study of a disease patterns in populations in order to determine prevention and control strategies.

• Epidemiology is concerned with disease prevention and “succession of events which result in the exposure of specific types of individual to specific type of environment”

• To identify exposures and evaluate their associations with various outcomes of interests (health, welfare, production)

• Epidemiology is about association
Contributions of Epidemiology to health of aquatic animals

• Investigate epidemics (occurrence) of diseases.
• Study the biological spectrum of a disease.
• Systematically record disease occurrence.
• Prioritize disease control strategies.
• Develop disease detection strategies

What are some examples of epidemiology in the field of veterinary medicine?
The Epidemiological Approach

Collection, analysis and interpretation of data to determine:
• Distribution of diseases in time and space
• Presence or absence of disease

Tool for decision-making
• Directed at the control and eradication of diseases
The key components of epidemiological approach

• Focuses on populations
• Defines disease broadly
• Applies knowledge of interrelationships among host, agent, environment
The key components of epidemiological approach

• Describes disease patterns

• Determines the role of chance in observed disease frequencies

• Provides observational and experimental approaches to study disease

• Incorporates systematic and critical evaluation of the scientific literature
Population based approaches

- Individual Level
- Herd Level
- Macro Epidemiology
<table>
<thead>
<tr>
<th>Scope of interest</th>
<th>CLINICAL</th>
<th>LABORATORY</th>
<th>EPIDEMIOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diseased animal</td>
<td>Dead animal or sample</td>
<td>Population (dead, moribund, diseased, healthy)</td>
</tr>
<tr>
<td>Location</td>
<td>Field or clinic</td>
<td>Laboratory</td>
<td>Field and office</td>
</tr>
<tr>
<td>Aim/objective</td>
<td>Treatment</td>
<td>Treatment and prevention</td>
<td>Disease mitigation (control and prevention)</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>Symptoms/laboratory findings</td>
<td>Identification of agent</td>
<td>Measurement of frequency and association</td>
</tr>
<tr>
<td>Questions</td>
<td>What is that? How to treat?</td>
<td>What is disease mechanism? How that cause disease?</td>
<td>What, Who, When, Why...</td>
</tr>
<tr>
<td>Scope of interest</td>
<td>Diseased animal</td>
<td>Dead animal or sample</td>
<td>Population (dead, moribund, diseased, healthy)</td>
</tr>
</tbody>
</table>
Components of Veterinary Epidemiology

Epidemiological Activities

- Disease Investigations
- Surveillance
- Data Services
- Risk/Benefit Analysis
- Risk Management/Policy
- Population-based Research
- Risk Communication

TCP/INT/3707: Strengthening biosecurity (policy and farm level) governance to deal with Tilapia lake virus

25 March 2021
Importance of Appropriate Data

• What type of data would be collected using a “macro” approach? (country level)

• What type of data would be collected using a “micro” approach? (farm or pond/tank level)
Epidemiological triad

Host

Agent

Environment

Population

Health

Disease
Macro-epidemiology

Social, Economic, Political, and Religious Factors

Agent

Environment

Host

TCP/INT/3707: Strengthening biosecurity (policy and farm level) governance to deal with Tilapia lake virus
Surveillance

• Membership in OIE promoted need for development of international standards

• SPS agreement of WTO gave importance and legal status (disputes) to international standards

• Surveillance – tools for decision making
Surveillance

• Surveillance system will produce/result in disease and health event reporting (international requirements and domestic need)

• Surveillance is an economic activity
Link between OIE standards and the WTO SPS Agreement

• SPS Agreement - Art 2: Basic right

• Members have the right to take sanitary and phytosanitary measures necessary for the protection of human, animal or plant life or health, provided that such measures are not inconsistent with the provisions of this Agreement’
OIE standards
Increased demands

• Disease freedom
 • Initial declaration
 • Maintenance

• Zoning and compartmentalization
 • Surveillance

• Outbreak investigation and mitigation

• Large number of samples
 • Increased loads on surveillance systems and Dx laboratories
• **Commodity** - means aquatic animals, aquatic animal products, biological products and pathological material.

• **Compartment** - means one or more aquaculture establishments under a common biosecurity management system containing an aquatic animal population with a distinct health status with respect to a specific disease or diseases for which required surveillance and control measures are applied and basic biosecurity conditions are met for the purpose of international trade. Such compartments must be clearly documented by the Competent Authority(ies).

• **Competent Authority** - means the Veterinary Authority or other Governmental Authority of a Member Country having the responsibility and competence for ensuring or supervising the implementation of aquatic animal health and welfare measures, international health certification and other standards and recommendations in the Aquatic Code in the whole territory.
• **Emerging disease** - means a newly recognized *infection* resulting from the evolution or change of an existing *pathogenic agent*, a known *infection* spreading to a new geographic area or population, or a previously unrecognized *pathogenic agent* or a *disease* diagnosed for the first time and which has a significant impact on *aquatic animal* or public health.

• **Epidemiological unit** - means a group of animals that share approximately the same *risk* of exposure to a *pathogenic agent* with a defined location. This may be because they share a common aquatic environment (e.g. fish in a pond, caged fish in a lake), or because management practices make it likely that a *pathogenic agent* in one group of animals would quickly spread to other animals (e.g. all the ponds on a farm, all the ponds in a village system).
The challenges

• SPS measures under the spotlight

• Increasing demands on the animal and aquatic health infrastructure

• Need to demonstrate the animal health status

• Effective surveillance systems central to the process

However

• Reduction of public spending

• Veterinary and aquatic services often not priorities

• Decreasing budgets for aquatic animal health services

• Weak infrastructure and difficulties to obtain funds for surveillance
Common understanding of our tasks and activities

• Monitoring
• Surveillance
• Survey
Common understanding of our tasks and activities

• Disease control program (DCP)

• Disease eradication program (DEP)

• Disease notification and reporting
Definition of animal disease surveillance

• Often interchangeably with monitoring – NOT THE SAME

• Can use same tools
 • distinction more in objectives than techniques

• Monitoring can be part of surveillance (not visa verse)
Definition of animal disease surveillance

Surveillance is:

All regular activities aimed at ascertaining the health status of a given population with the aim of early detection and control of animal diseases of importance to national economies, food security and trade

FAO Manual of livestock disease surveillance and information system
http://www.fao.org/docrep/004/x3331e/X3331E00.htm
Definition of animal disease surveillance

Monitoring is:

All activities aimed at detecting changes in the epidemiological parameters of a specified disease

FAO Manual of livestock disease surveillance and information system
http://www.fao.org/docrep/004/x3331e/X3331E00.htm
Definitions

<table>
<thead>
<tr>
<th>Textbook</th>
<th>Monitoring</th>
<th>Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin et al. 1986</td>
<td>Animal disease monitoring describes the ongoing efforts directed to assessing the health and disease status of a given population</td>
<td>The term “disease surveillance” is used to describe a more active system and implies that some form of directed action will be taken if the data indicate a disease level above a certain threshold.</td>
</tr>
<tr>
<td>Thrusfiled, 1995</td>
<td>Monitoring is the making of routine observations on health, productivity, and environmental factors and the recording and transmission of those observations.</td>
<td>Surveillance is a more intensive form of data recording than monitoring.</td>
</tr>
</tbody>
</table>
Definitions

<table>
<thead>
<tr>
<th>Textbook</th>
<th>Monitoring</th>
<th>Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrusfiled, 1995</td>
<td>The routine collection of information on disease, productivity, and other characteristics possibly related to them in population</td>
<td>An intensive form of monitoring. Designed so that action can be taken to improve the health status of a population; therefore, it is frequently used in disease control campaigns.</td>
</tr>
<tr>
<td>Noordhuizen et al. 1997</td>
<td>Monitoring refers to a continuous, dynamic process of collecting data about health and disease and their determinants in a given population over a defined time period (descriptive epidemiology)</td>
<td>Surveillance refers to a specific extension of monitoring where obtained information is used and measures are taken if certain threshold values related to disease status have been passed. It, therefore, is part of disease control programs.</td>
</tr>
</tbody>
</table>
Surveillance versus monitoring

• Surveillance means the continuous investigation of a given population to detect occurrence of disease for control purposes, which may involve testing of a part of population.

• Monitoring constitutes on-going programs directed at detection of changes in the prevalence of disease in a given population and its environment.
Surveillance and surveys

• **Passive** surveillance is a system in which CA make no active efforts to collect disease information; they just wait for disease report to come to them. Statutory case reporting is the most broadly used passive surveillance.

• **Active** surveillance uses structured disease surveys to collect high quality disease information quickly and inexpensively. CA make active efforts to collect the information needed.
Surveillance and surveys

• Surveillance system typically involves a number of data collection approaches, and also incorporates data management, analysis and reporting system.

• Structured survey may be one component of a surveillance system.
Risk based surveillance

• **Risk based** surveillance: A surveillance program in the design of which exposure and risk assessment methods have been applied together with traditional design approaches in order to assure appropriate and cost effective data collection.

• RBS similar with **targeted** surveillance (OIE: selected sections of the population in which disease is more likely to be introduced or found).
Surveillance in our case

The systematic, continuous or repeated, measurement, collection, analysis, interpretation, and timely dissemination of animal health and welfare related data from defined populations. These data are then used to describe health hazard occurrence and to contribute to the planning, implementation and evaluation of risk mitigation action. (Hoinville et al, 2013)
Interventions and Strategy

<table>
<thead>
<tr>
<th>Type of intervention</th>
<th>Aims at control strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slaughter</td>
<td></td>
</tr>
<tr>
<td>Slaughter</td>
<td></td>
</tr>
<tr>
<td>Stamping out</td>
<td>Eradication</td>
</tr>
<tr>
<td>Therapeutic treatment</td>
<td>Eradication</td>
</tr>
<tr>
<td>Disinfection</td>
<td>Reduction</td>
</tr>
<tr>
<td>Pesticides</td>
<td>Reduction</td>
</tr>
<tr>
<td>Reduction of contact</td>
<td></td>
</tr>
<tr>
<td>Quarantine</td>
<td>Prevention</td>
</tr>
<tr>
<td>Movement restriction</td>
<td>Prevention</td>
</tr>
<tr>
<td>All in all out (batch production)</td>
<td>Prevention</td>
</tr>
</tbody>
</table>
Interventions and Strategy

<table>
<thead>
<tr>
<th>Type of intervention</th>
<th>Aims at control strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical use</td>
<td></td>
</tr>
<tr>
<td>Preventive of strategic treatment</td>
<td>Prevention</td>
</tr>
<tr>
<td>Depopulation/repopulation</td>
<td>Reduction</td>
</tr>
<tr>
<td>Test and slaughter</td>
<td>Reduction</td>
</tr>
<tr>
<td>Culling</td>
<td>Reduction</td>
</tr>
<tr>
<td>Modification of host resistance</td>
<td></td>
</tr>
<tr>
<td>Vaccination</td>
<td>Prevention</td>
</tr>
<tr>
<td>Genetic resistance</td>
<td>Prevention</td>
</tr>
</tbody>
</table>
Interventions and Strategy

<table>
<thead>
<tr>
<th>Type of intervention</th>
<th>Aims at control strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment and or management control</td>
<td></td>
</tr>
<tr>
<td>Improved husbandry</td>
<td>Prevention or reduction</td>
</tr>
<tr>
<td>Feeding</td>
<td>Prevention or reduction</td>
</tr>
<tr>
<td>Education</td>
<td>Prevention or reduction</td>
</tr>
<tr>
<td>Biological control</td>
<td>Prevention or reduction</td>
</tr>
<tr>
<td>Doing nothing</td>
<td></td>
</tr>
</tbody>
</table>
“Prevention is better than cure”

<table>
<thead>
<tr>
<th>Reactive Approach “Cure”</th>
<th>Proactive Approach “Prevention”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment in prevention</td>
<td>Direct and indirect costs</td>
</tr>
<tr>
<td>€</td>
<td>€</td>
</tr>
<tr>
<td>€</td>
<td>€</td>
</tr>
</tbody>
</table>

TCP/INT/3707: Strengthening biosecurity (policy and farm level) governance to deal with Tilapia lake virus

25 March 2021
Purpose/objective of AAD surveillance

• The objective of a surveillance system is the most influential in determining suitable design, so it should be considered before planning.

• The objective of surveillance is closely related with disease mitigation, and can be in one of three stages:
 • Sustainment (to sustain free or low prevalence status)
 • Investigation (estimation of the level of occurrence)
 • Implementation
Purpose/objective of AAD surveillance

• AAD surveillance objectives:
 • Early detection of disease
 • Demonstrating freedom of disease
 • Control/eradication of disease

• AAD monitoring – detection of disease trends
 • DEALS with endemic diseases

DEALS with Exotic diseases
Outbreak of disease (without surveillance)

Opportunity for control
Outbreak of disease (without surveillance)

Opportunity for control
Purpose and aims of disease surveillance

Scientifically based and internationally recognized disease-free status

Prevention spread and consequences of exotic diseases

Eradication of disease

Reducing/Controlling disease in populations changes in disease frequency and spread effectiveness of control measures
Main principles of different types of surveillance

• Clear purpose/aims

• Justification – priority diseases, scientifically based, international standards

• Population definition

• Methodology
Main principles of different types of surveillance

• Administrative structure/hierarchy

• Financial support

• Timeframe

• Output orientated
Main principles of different types of surveillance

• **Passive surveillance**
 - Routine reporting of disease
 - No investigation efforts
 - Difference between passive surveillance and monitoring

• **Active surveillance**
 - Purposeful collection data on disease
 - Mainly through structured and scientifically valid surveys
Uses of passive surveillance data

• Not reliable enough to be used to calculate rates and proportions

• However, can be used to:
 • Identify which diseases are in the country
 • Identify location
 • Respond to disease outbreak
 • Meet the basic disease reporting to OIE
Uses of passive surveillance data

• However, can not be used to:
 • Determine the level and geographic pattern of disease
 • Determine the importance of disease
 • Set priorities for the use of resources for disease control activities
 • Plan, implement and monitor disease control program
 • Demonstrate disease status to trading program
Active surveillance

Surveillance in the bigger picture
Surveillance is an essential component of aquatic animal health and biosecurity strategies, disease management and control plans.

One Health

Scenario setting
National status of the disease in question, including:
- Health status of a specific pathogen in the country
- Existence of surveillance activities
- Health status of a specific pathogen in neighboring countries and/or trading partners
- Health status of a specific pathogen in shared water sheds
- Data sources

Defining surveillance objective
Set with respect to the disease
Set with respect to the disease presence
Set with respect to the level of certification
Set with respect to the timeframe

Defining population
Populations of interest
- Definition of targeted populations
- Definition of studied populations (populations used for sampling)
- Inclusion criteria set and described
- Exclusion criteria set and described

Clustering of disease
Clustering effect of the disease considered and described
Clustering effect of the disease is accounted for in sampling/survey design and data analysis

Case definition
Case definition including different levels: clinical, laboratory, and epidemiological

Diagnostic testing
Description of tests used (procedures, interpretation of results, sensitivity and specificity), and competent laboratories

Data collection and management
Data forms (field and laboratory)
Database (design, entry and management)
Other information technology (mapping, GIS, etc.)

Study design and sampling
Description of survey design, sampling frame and sample selection process (units, methods, sample size, sampling materials)

Data analysis
Data analysis methodology described

Validation and quality assurance
Statistical estimation of the level of confidence (sensitivity of surveillance programme)
Pilot trials: expert/external evaluation (peer-review)
Audit and corrective measures

Human and financial resources and logistics requirements
Requirements described, e.g. personnel, cost of materials and field sampling, and cost of laboratory tests and analysis of data, etc.
Producer sector engaged
Surveillance standards

• National requirements

• International standards
 • OIE, EU, other

• Defining appropriate level of protection – ALOP
 • Minimum level - international requirement
 • Higher than – for exotic diseases + scientific justification
Surveillance standards

- Consistent
- Transparent
- Equivalency
Surveillance standards

- Move from input to output based standards

- Ideally, country is free from diseases if every member of the population is examined simultaneously with a perfect test with both Sn and Sp equal to 100%

- Demonstration of freedom from disease meet a defined level of confidence (95%)
Surveillance planning

• Planned and managed activities
 • Not hap-hazard action

• Transparency

• Agreed objectives
Surveillance planning

• Targets and responsibilities

• Human resources and time frames
Key answers needed for planning monitoring and surveillance system (MOSS)

• Why are disease surveillance and monitoring needed?

• Which diseases should be considered?

• What type of data should be collected?

• Who is going to use the information?

• What will be the uses of that information?
Key answers needed for planning monitoring and surveillance system (MOSS)

• Will the system have national or local coverage?

• How is the system going to be financed?

• Is the existing infrastructure adequate?

• How will the system’s efficacy be assessed?

• What is the legal basis for implementing such a system?
Our objectives

• To satisfy/balance international standards and requirements for AAH (TiLV) with national needs and available resources

• Planning and implementation of scientifically based monitoring and surveillance systems (MOSSs) for TiLV

• To support decision making processes
Thank you for your attention!

This was also made possible with the support of the Norwegian Agency for Development Cooperation under the project GCP/GLO/979/NOR Improving Biosecurity Governance and Legal Framework for Efficient and Sustainable Aquaculture Production.

TCP/INT/3707: Strengthening biosecurity (policy and farm level) governance to deal with Tilapia lake virus

Nihad Fejzic
nihad.fejzic@vfs.unsa.ba