Climate change and aquaculture

Sena S. De Silva
Network of Aquaculture Centers in Asia Pacific, Bangkok, Thailand
and
School of Life and Environmental Sciences, Deakin University, Australia
Organization

- **Fish food needs**
 - Changes in patterns of production and consumption
 - Role of aquaculture in the supplies
- **Aquaculture production**
 - Climatic/ environmental
 - climatic/ geographical distribution
- **Major climatic change influences on aquaculture**
 - Direct
 - Indirect
 - Adaptive measures
- **Carbon emissions**
 - Comparison with other food production sectors
 - Positive role of aquaculture
Major, global changes taking place in the fishery sector

- Change from a developed country dominated sector to a developing country dominated sector
- This trend is being further consolidated

Data based on Delgado et al. (2003)
Contributions to total fish supplies

- Capture fisheries almost static
- Contribution from aquaculture increasing
Contribution of aquaculture to total, inland and marine fish production

- Aquaculture contributes about 35% to global fish supplies
- The contribution is on the increase

A newly emerged activity in Myanmar: Rohu culture; $84 million exports in 2006
Food fish needs: under different scenarios

- Overall a considerable increase in food fish will be required to meet the increasing demand

| Table 2. Projected global food fish demands (modified after Brugère and Ridler, 2004). |
|---------------------------------|---------------|----------------------------------|
| Forecasts | Needs | Estimated needs from aquaculture \(\times 10^6\) tonnes |
| | Per caput consumption (kg/ yr) | Total demand \(\times 10^8\) t | Fisheries |
| | | | Growing (0.7%) | Stagnating |
| Baseline\(^a\) | 17.1 | 130 | 53.6 (1.8%) | 68.6 (3.5%) |
| Lowest | 14.2 | 108 | 41.2 (0.4%) | 48.6 (1.4%) |
| Highest | 19.0 | 145 | 69.5 (3.2%) | 83.6 (4.6%) |
| 2010\(^b\) | 17.8 | 121 | 51.1 (3.4%) | 59.7 (5.3%) |
| 2050 | 30.4 | 271 | 177.9 (3.2) | 209.5 (3.6%) |
| 1999\(^c\) | 15.6 | 127 | 45.5 (0.6%) | 65.1 (2.0%) |
| 2030 | 22.5 | 183 | 102.0 (3.5%) | 121.6 (4.2%) |

a- Delgado et al. (2003), to 2020; b- Wijkstrom, 2003; c- Ye, 1999
Food fish demands: role of aquaculture

- Approximately an increase of 30 million tonnes needed

<table>
<thead>
<tr>
<th>Continent</th>
<th>Food fish demand-2020 (t)</th>
<th>Aq. Production 2003 (t)(^a)</th>
<th>Aqiculture Demand-2020 (t)(^b)</th>
<th>Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>9,580,553</td>
<td>520,806</td>
<td>3,035,058</td>
<td>482.8</td>
</tr>
<tr>
<td>Asia</td>
<td>44,130,913</td>
<td>8,686,136</td>
<td>16,304,098</td>
<td>87.8</td>
</tr>
<tr>
<td>China</td>
<td>36,452,838</td>
<td>28,892,005</td>
<td>31,659,237</td>
<td>9.6</td>
</tr>
<tr>
<td>Europe</td>
<td>14,156,188</td>
<td>2,203,747</td>
<td>1,937,833</td>
<td>-12.1</td>
</tr>
<tr>
<td>L. America & Caribbean</td>
<td>5,869,204</td>
<td>1,001,588</td>
<td>1,930,947</td>
<td>92.8</td>
</tr>
<tr>
<td>N. America</td>
<td>6,487,500</td>
<td>874,618</td>
<td>1,642,600</td>
<td>87.8</td>
</tr>
<tr>
<td>Oceania</td>
<td>894,907</td>
<td>125,241</td>
<td>259,860</td>
<td>107.5</td>
</tr>
<tr>
<td>World</td>
<td>123,519,591</td>
<td>42,304,141</td>
<td>60,448,307</td>
<td>42.9</td>
</tr>
</tbody>
</table>

\(^a\) FAO Stats; \(^b\) 2020 fish demand minus estimated current fisheries production
Aquaculture is becoming increasingly important to the GDP

- In Asia its importance exceeds that from fisheries

<table>
<thead>
<tr>
<th></th>
<th>Capture Fisheries</th>
<th>Aquaculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>1.884</td>
<td>2.688</td>
</tr>
<tr>
<td>PR China</td>
<td>1.132</td>
<td>2.618</td>
</tr>
<tr>
<td>Indonesia</td>
<td>2.350</td>
<td>1.662</td>
</tr>
<tr>
<td>Lao PDR</td>
<td>1.432</td>
<td>5.775</td>
</tr>
<tr>
<td>Malaysia</td>
<td>1.128</td>
<td>0.366</td>
</tr>
<tr>
<td>Philippines</td>
<td>2.184</td>
<td>2.633</td>
</tr>
<tr>
<td>Thailand</td>
<td>2.044</td>
<td>2.071</td>
</tr>
<tr>
<td>Vietnam</td>
<td>3.702</td>
<td>3.497</td>
</tr>
</tbody>
</table>
Summary on food fish needs etc.

- Major changes in the production and consumption over the last three decades
- World will need an extra \(\sim 40-60 \times 10^6 \) t of food fish by 2020
- Aquaculture production has increased \(\sim 33\% \) to total fish supplies
 - Accounts for \(\sim 45\% \) of current global consumption
- Aquaculture expected to meet the future demand for food fish supplies (reaching \(\sim 50-60\% \))
- Aquaculture increasing contribution (by passing that from fisheries) to GDP of some nations; mainly in Asia
Aquaculture production: by climatic regions

- Great bulk of aquaculture occurs in tropical & sub-tropical regions
- With some commodities the contribution from temperate regions have declined; why?
Aquaculture production: by climatic regions/ environment

- For all commodities highest production in tropics & sub tropics and in fw (except seaweeds)
Aquaculture production: by climatic regions/continents

- **Fish**
 - Tropical: 12,000,000
 - Subtropical: 8,000,000
 - Temperate: 2,000,000

- **Molluscs**
 - Tropical: 8,000,000
 - Subtropical: 7,000,000
 - Temperate: 5,000,000

- **Crustaceans**
 - Tropical: 3,000,000
 - Subtropical: 2,500,000
 - Temperate: 1,500,000

- **Seaweeds**
 - Tropical: 8,000,000
 - Subtropical: 7,000,000
 - Temperate: 1,000,000
An example of contribution of different commodities to aquaculture production, 2005

- Fin fish the highest contributor to aquaculture production
- Fin fish culture in fw is still the most dominant
- Crustacean production is relatively low; but high value
Summary on aquaculture production: current status

- Aquaculture production is concentrated in tropical & sub-tropical areas
- Minor contribution from temperate areas- but high valued species
- Amongst former main concentration is Asia
- Predominant commodity: fin fish 40 %
- Fin fish: ~ 90 % in fw
- Many emerging practices
- Mari-culture highest growth potential
Climate change impacts?

• Climate change impacts
 – Direct
 – Indirect

• All cultured aquatic organisms are poikilotherms
 – Hence any temperature change impacts on production
 • More impacts on temperate species
 – Possibility of being higher than the optimal temperature range
 • Tropics: positive; higher growth & production
 – Will need more feed inputs
Climate change impacts? Elements of Direct impact

- **Global warming**
 - Inland waters
 - Eutrophication
 - Increased stratification
- **Sea level rise**
 - Saline water intrusion
 - Increased acidification
- **Overall decline in ocean productivity**
- **Change in monsoonal patterns & extreme weather events**
- **Water stress**
Global warming: temperature rises

• **All cultured aquatic organisms are poikilotherms**
 – Hence any temperature change impacts on production
 • More impacts on temperate species
 – Possibility of being higher than the optimal temperature range
 • Tropics: positive; higher growth & production

• **Inland aquaculture:**
 – Exacerbate
 • Stratification
 – upwelling: deeper deoxygenated water
 • Eutrophication
 – Fish kills in dawn hours
Global warming: temperature rises
Inland aquaculture

- **Mostly cage culture: in static waters**
- **Exacerbate**
 - stratification
 - Eutrophication
- **Fish kills**
- **Adaptive measures:**
 - Practices to conform to carrying capacity
 - Do not localize to small areas:
 - spread activity through the water body
 - Regular monitoring
Sea level rise/ Saline water intrusion

- Major aquaculture activities in deltaic areas of the tropics, mainly Asia
 - Upstream freshwater species
 - E.g. catfish (tra), rohu
 - River mouth & estuaries, shrimp & euryhaline fin fish
Sea level rise/ Saline water intrusion

• **Fw fish; could be moved further upstream**
 – Pond space/ facilities become available
 • Use for euryhaline species, including shrimp
 – Increased aquaculture production/ income

• **Some areas become unsuitable for terrestrial agriculture**
 – Provide alternative livelihoods through aquaculture
 – Will require
 • Policy changes
 • Capacity building amongst agriculture farmers
 • Infrastructure developments
 – E.g. new hatchery facilities to meet increase demands; markets
Sea level rise/ Saline water intrusion/ acidification

- Could impact on mollusc (15 million t) culture
 - Shell formation
- Reduce its contribution to carbon sequestration
Change in patterns and extreme weather events

- Loss of infrastructure
- Loss of stock
- Recent unusual snow storms in southern China
 - Estimated 0.5×10^6 loss of stock
 - Large number of escapees
 - Possible impacts on biodiversity?
Change in weather patterns and extreme events

• In Asia, the highest aquaculture activity:
 – small scale farmers
 • Often family owned and family run
 • Clustered together in areas conducive to aquaculture
 • Therefore impacts on many households; livelihoods
Change in weather patterns and extreme events

- **Adaptive measures:**
 - Not many available

- **However:**
 - Encourage cluster insurance
 - Enables a resurrection of the businesses
 - Impacts on production temporary
• **The predicted stress**

 – decrease in water availability in major rivers in Central, South, East and South-East Asia (IPCC, 2007)

 – areas where there is major aquaculture activities at present

 • the deltaic areas of some of the major rivers/ intense aquaculture activity

 – E.g., Mekong, the Meghna-Brahmaputra and Ayeyarwaddy,
Water stress:

- water availability in major river systems has to be considered in conjunction with
 - saline water intrusion arising from sea level rise (Hughes et al., 2003)
 - the expected changes in precipitation/monsoon patterns (Goswami et al., 2005).

Table 7. Specific water demand (m³/t) for different animal food products (data from Zimmer and Renault, 2003) and comparison with needs for aquaculture.

<table>
<thead>
<tr>
<th>Product</th>
<th>Water demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef, mutton, goat meat</td>
<td>13500</td>
</tr>
<tr>
<td>Pig meat</td>
<td>4600</td>
</tr>
<tr>
<td>Poultry</td>
<td>4100</td>
</tr>
<tr>
<td>Milk</td>
<td>790</td>
</tr>
<tr>
<td>Butter + fat</td>
<td>18000</td>
</tr>
<tr>
<td>Common carp (intensive/ponds)</td>
<td>21000</td>
</tr>
<tr>
<td>Tilapia (extensive/ponds)</td>
<td>11500</td>
</tr>
<tr>
<td>Pellet fed ponds a)</td>
<td>30100</td>
</tr>
</tbody>
</table>

a- Muir, 1995; b- Verdegem et al., 2006

From Nguyen & De Silva, 2006; based on data from Shiklomanov, 1998
Water stress:

Major modelling attempt incorporating the variables for deltaic regions
 e.g. Mekong, Meghna- Brahamputra in Bangladesh and Ayeyarwaddy in Myanmar
 amongst others needed to determine more accurately:
 - The degree of sea water intrusion in the / adjoining wetlands
 - Assessment of agricultural activity likely to be lost
 - The potential impacts on spawning migrations
 • changes in seed availability for subsistence cage farming
 - Overall socio-economic impacts of the resulting events.

• Encourage (=adaptive measures)
 - reduction in water usage in aquaculture (e.g. pond culture)
 - Encourage non-water consumption (direct) aquaculture (apart for feeds)
 • Culture based fisheries
 • Stock enhancement
Climate change: indirect impacts on aquaculture:

- **In 2003, globally:**
 - aquaculture sector consumed 2.94 million tonnes of fish meal (53.2 percent of global fish meal production)
 - equivalent to
 - 14.95 to 18.69 million tonnes of forage fish/trash fish/low valued fish, primarily pelagics
 - production based on pelagics in the sub-tropical and temperate regions

- **Ocean productivity in the North Atlantic will plummet 50 percent and world wide by 20 percent** (Schmittner, 2003).

- **El Niño influences on the Peruvian sardine and anchovy landings**
 - consequently on global fish meal and fish oil supplies and prices (Pike and Barlow, 2002).

- **Changes in the North Atlantic Oscillation winter index** (Schmittner, 2003),
 - higher winter temperatures
 - could influence sandeel (*Ammodytes* spp.) recruitment.
Climate change: indirect impacts on aquaculture: Fish meal & oil usage in aquaculture
Climate change: indirect impacts on aquaculture: Fish meal & oil usage in aquaculture

- The return for unit use of the resources is much higher in culturing fish feeding lower in the food chain
- Adaptive measures
 - encourage a shift
 - Alternative ingredients
 - Better feed management

![Graph showing production per tonne of fish meal usage and fish oil usage for different fish species]
Trash fish/ low valued fish/ forage fish supplies
A potential problem in mariculture in the tropics

• In the Asia-Pacific region:
 – uses 1,603,000 to 2,770,000 tonnes of trash fish/ low valued fish as a feed source directly.
 – The low and high predictions for year 2010 are 2,166,280- 3,862,490 tonnes

• Indian Ocean
 – most rapidly warming ocean; Could bring about major changes
 • land primary productivity
 • changes in current patterns (Gianni et al., 2003).
 • further exacerbated by extreme climatic events such as changes in monsoonal rain patterns (Goswami et al., 2006)
 – Most supplies from subsistence fishers/ fishing
 – small scale artisanal
 • subsistence and other small-scale fishers
 – lack mobility and alternatives
 – often the most dependent on specific fisheries
 – will suffer disproportionately from changes and occurrence of such changes have been rated at Medium Confidence by the IPCC (2007).

 – influence inshore fish productivity
 • overall impact on the supplies of trash fish/ low valued fish.
Climate change: indirect impacts on aquaculture
Impacts on diseases

• On human health and the associated risks well documented (e.g. Epstein et al., 1998; McMichael, 2003; Epstein, 2005)
 – general consensus
 • incidence of terrestrial vector borne and diarrhoeal diseases will increase.
 – the potential trends on climatic change on aquatic organisms less well documented
 • primarily concentrated on coral bleaching and associated changes

• climatic change may influence selection of different life-history traits
 – affecting parasite transmission and
 – potentially, virulence (Marcogliese, 2001).

• increase in the rate of eutrophication in some oceans
 – filter feeding molluscs- shell fish poisoning
 – harmful effects on cage culture operations of salmon for example
Climate change: indirect impacts on aquaculture
Impacts on diseases

• **Possibility enabling competitive species to spread to new areas**
 – the Pacific oyster (*Crassostrea gigas*) and associated pathogenic species (Diederich *et al.*, 2005).

• **Comparable evidence of the spread of two protozoan parasites (*Perkinsus marinus* and *Haplosporidium nelsoni*) northwards from the Gulf of Mexico to Delaware Bay (Hofmann *et al.*, 2001)
 – has resulted in mass mortalities in Eastern oyster (*Crassostrea virginica*).
 – suggested that this spread is brought about by higher winter temperatures
 – the pathogens otherwise were kept in check by temperatures $<3^\circ$C.
 – With the predicted pole ward increase in temperatures
 • witness the emergence of pathogens that were kept in check by lower winter temperatures
 • impact on cultured organisms such as mollusc
Impacts on biodiversity

• the greatest impacts biodiversity
 – predicted to occur in terrestrial habitats
 – less so in aquatic habitats
 – apart from those brought about through coral bleaching
 • subsequent loss of coral habitats, one of the most diverse habitats.
• To date only the extinction of one species is clearly related to climatic change
 – golden toad (*Bufo periglenes*) from Costa Rica (Crump, 1998)
• Aquaculture:
 – heavy dependence on alien species, in all climatic regimes, continents and regions
 (Gajardo and Laikre, 2003; De Silva *et al.*, 2005)
 – Alien species:
 • Adversely affect biodiversity (?)
• climate change induced changes will not overly bring about impacts on biodiversity through aquaculture *per se*
• any new introductions for aquaculture purposes will have to take into consideration such factors in the initial risk assessments undertaken for purposes of decision making.
Impacts on biodiversity: coral reefs

• The decline of coral reefs
 – from bleaching
 – weakening of coral skeletons
 – reduced accretion of reefs,
 – estimated to be as high as 60 percent by year 2030 (Hughes et al., 2003).

• the drivers of coral reef destruction is different from the past
 – these are predominantly climate change associated drivers

• direct relevance of loss of coral reefs and biodiversity thereof to aquaculture is not immediately apparent
Impacts on biodiversity: coral reefs

- One of the coral reef destruction drivers is
 - destructive fishing methods (McManus et al., 1997; Mous et al., 2000)
 - supply the luxurious “live fish” restaurant trade (Pawiro, 2005; Scales et al., 2007) is on the decline.
 - Primarily
 - the required fish supplies being met through aquaculture, mainly the grouper species
 - possibility that the coral reef supply chain of fishes, could be almost totally replaced through aquaculture
 - removes a coral reef destruction driver,
 - contribute to conserving these critical habitats
 - hence biodiversity.
Aquaculture impacts on climate change

- **On a global scale, and in comparison to animal husbandry**
 - significant contributor to the human food basket only relatively recently
 - sector has witnessed a very strong growth rate over the last two decades
 - fastest growing primary production industry (FAO, 2007).

- **Sector blossomed during the period**
 - the world as a whole was becoming increasingly conscious and concerned about
 - sustainability
 - Prudent use of primary resources
 - environmental degradation issues
 - when sustainability, biodiversity and conservation became an integral part of all development efforts

- **Global awareness and public “policing”**
 - the sector has been targeted in many fronts
 - the use of fish meal and fish oil,
 - raw material supposedly suitable for direct human consumption, and considered to be ethically correct to do so (Naylor et al., 1998; 2000; Aldhous, 2004),
 - mangrove clearing for during the shrimp farming boom (Primavera, 1998; 2005),
Aquaculture impacts on climate change:
Comparison of carbon emissions/ contributions to green house gases from animal husbandry and aquaculture

• **US EPA recognised 14 major sources responsible for methane emission**
 − enteric fermentation and manure management from animal husbandry as the third and fifth highest emitters, respectively
 − these two animal food production sources were 117.9 and 114.8, and 31.2 and 39.8 TgCO₂ Equivalents for years 1990 and 2002

• **World’s livestock**
 − account for 18 percent of the greenhouse gases emitted,
 − more than all transport modes put together
 − of which 1.5 billion cattle contributes most (Lean, 2006)

• **The livestock sector is estimated:**
 − to account for 37 percent of all human-induced methane emissions
 − global warming potential (GWP) of methane is estimated to be 23 times that of carbon dioxide

• **Aquaculture:**
 − Data scanty; but no where near the above
Aquaculture impacts on climate change:
Comparison of carbon emissions/ contributions to green house gases from animal husbandry and aquaculture

- **The developing world**
 - the per capita meat consumption arose from 15 kg in 1982 to 28 kg in 2002
 - expected to reach 37 kg by 2030 (FAO, 2003).

- **Any analysis has to revolve around the human food needs and the proportionate contribution of each food producing sector to green house gas emissions.**
Aquaculture impacts on climate change

Comparison of carbon emissions/ contributions to greenhouse gases from animal husbandry and aquaculture

- Many methods available for assessing environmental cost
 - life cycle assessment
- Need for standardization
- Current data needs to be extended

Table 9. Energy used in different farming systems. Data from Bunting and Pretty, 2007; Munkung and Gheewala, 2007; Troell et al., 2004. Please refer to these authors for the original references.

<table>
<thead>
<tr>
<th>System</th>
<th>Direct energy</th>
<th>Indirect energy</th>
<th>Total</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-intensive shrimp f.</td>
<td>58</td>
<td>114</td>
<td>169</td>
<td>GJ t⁻¹</td>
</tr>
<tr>
<td>Thai shrimp</td>
<td>na</td>
<td>na</td>
<td>45.6</td>
<td>MJ kg⁻¹</td>
</tr>
<tr>
<td>Marine shrimp</td>
<td>54.2</td>
<td>102.6</td>
<td>156.8</td>
<td>MJ kg⁻¹</td>
</tr>
<tr>
<td>Salmon f.</td>
<td>9</td>
<td>99</td>
<td>105</td>
<td>GJ t⁻¹</td>
</tr>
<tr>
<td>Salmon cages intensive</td>
<td>na</td>
<td>na</td>
<td>56</td>
<td>GJ t⁻¹</td>
</tr>
<tr>
<td>Salmon</td>
<td>11.9</td>
<td>87</td>
<td>99</td>
<td>MJ kg⁻¹</td>
</tr>
<tr>
<td>Norwegian farmed salmon</td>
<td>na</td>
<td>na</td>
<td>66</td>
<td>MJ kg⁻¹</td>
</tr>
<tr>
<td>Trout ponds</td>
<td>na</td>
<td>na</td>
<td>28</td>
<td>GJ t⁻¹</td>
</tr>
<tr>
<td>Grouper/ seabass cage f.</td>
<td>na</td>
<td>na</td>
<td>95</td>
<td>GJ t⁻¹</td>
</tr>
<tr>
<td>Carps, intensive recycle</td>
<td>na</td>
<td>na</td>
<td>56</td>
<td>GJ t⁻¹</td>
</tr>
<tr>
<td>Carp, recirculating</td>
<td>22</td>
<td>50</td>
<td>50</td>
<td>MJ kg⁻¹</td>
</tr>
<tr>
<td>Carp ponds feeding & fertilizer</td>
<td>na</td>
<td>na</td>
<td>11</td>
<td>GJ t⁻¹</td>
</tr>
<tr>
<td>Carp, semi-intensive</td>
<td>26</td>
<td>61</td>
<td>27</td>
<td>MJ kg⁻¹</td>
</tr>
<tr>
<td>Catfish ponds</td>
<td>na</td>
<td>na</td>
<td>25</td>
<td>GJ t⁻¹</td>
</tr>
<tr>
<td>Catfish</td>
<td>5.4</td>
<td>108</td>
<td>114</td>
<td>MJ kg⁻¹</td>
</tr>
<tr>
<td>Tilapia</td>
<td>0</td>
<td>24</td>
<td>24</td>
<td>MJ kg⁻¹</td>
</tr>
<tr>
<td>Norwegian chicken</td>
<td>na</td>
<td>na</td>
<td>55</td>
<td>MJ kg⁻¹</td>
</tr>
<tr>
<td>Swedish beef</td>
<td>na</td>
<td>na</td>
<td>33</td>
<td>MJ kg⁻¹</td>
</tr>
</tbody>
</table>
Aquaculture impacts on climate change
Comparison of carbon emissions/contributions to greenhouse gases from animal husbandry and aquaculture

- Carp farming more “energy friendly”
- Shrimp at the lowest end
 - Why
 - Intensive
 - External energy inputs needed
 - Feed efficiency low
 - Processing cost high

Table 10. Ranking of selected foods by ratio of edible protein energy (PE) output to industrial energy (IE) inputs, expressed as a percentage. Data from Tyedmers and Pelletier, 2007. For original references please refer to these authors.

<table>
<thead>
<tr>
<th>Food type including technology, environment and locality</th>
<th>% PE/IE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carp extensive, freshwater, various</td>
<td>100-111</td>
</tr>
<tr>
<td>Seaweed, mariculture, Caribbean</td>
<td>50-25</td>
</tr>
<tr>
<td>Chicken, intensive, USA</td>
<td>25</td>
</tr>
<tr>
<td>Tilapia, extensive, freshwater ponds, Indonesia</td>
<td>13</td>
</tr>
<tr>
<td>Mussels, marine long lines, Scandinavia</td>
<td>10-5</td>
</tr>
<tr>
<td>Tilapia, freshwater, Zimbabwe</td>
<td>6.0</td>
</tr>
<tr>
<td>Beef, pasture, USA</td>
<td>5.0</td>
</tr>
<tr>
<td>Beef, feed lots, USA</td>
<td>2.5</td>
</tr>
<tr>
<td>Atlantic salmon, intensive, marine net pen, Canada</td>
<td>2.5</td>
</tr>
<tr>
<td>Shrimp, semi intensive, Colombia</td>
<td>2.0</td>
</tr>
<tr>
<td>Lamb, USA</td>
<td>1.8</td>
</tr>
<tr>
<td>Seabass, intensive marine cage culture, Thailand</td>
<td>1.5</td>
</tr>
<tr>
<td>Shrimp, intensive culture, Thailand</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Aquaculture impacts on climate change

Comparison of carbon emissions/ contributions to greenhouse gases from animal husbandry and aquaculture

- Shrimp “energy expensive” product
- High foreign exchange earnings: e.g. Thailand 2.4 billion $
- Energy budgets different between species
- Asia- main center of production: controversy
 - *P. vannamei* (exotic) vs *P. monodon* (indigenous)
- Based on energy cost *P.m* preferred
- Needs to be taken into account in future introductions

Table 11. Comparative life cycle impact assessment results of block tiger prawn and IQF Pacific white-leg shrimp. #- Munkung, 2005; @- Munkung et al., 2007

<table>
<thead>
<tr>
<th>Impact category</th>
<th>Unit</th>
<th>Block (1.8 kg) of black tiger prawn</th>
<th>4 (x 453 g) pouches of IQF Pws</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiotic depletion</td>
<td>kg Sb eq</td>
<td>0.32</td>
<td>0.19</td>
</tr>
<tr>
<td>Global warming (GWP100)</td>
<td>kg CO₂ eq</td>
<td>19.80</td>
<td>27.31</td>
</tr>
<tr>
<td>Human toxicity</td>
<td>kg 1,4-DB eq</td>
<td>1.79</td>
<td>3.04</td>
</tr>
<tr>
<td>Fw aquatic ecotoxicity</td>
<td>kg 1,4-DB eq</td>
<td>0.25</td>
<td>0.41</td>
</tr>
<tr>
<td>Mar. aquatic ecotoxicity</td>
<td>kg 1,4-DB eq</td>
<td>1660.00</td>
<td>2071.00</td>
</tr>
<tr>
<td>Terrestrial ecotoxicity</td>
<td>kg 1,4-DB eq</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Acidification</td>
<td>kg SO₂ eq</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>kg PO₄ eq</td>
<td>0.22</td>
<td>0.19</td>
</tr>
</tbody>
</table>
Aquaculture impacts on climate change

- **All farming/food production needs energy inputs**
- **Aquaculture offers resilience and elasticity**
 - Most aquaculture based on organisms feeding low in the food chain
 - Some aid in direct carbon sequestration: molluscs, seaweeds

<table>
<thead>
<tr>
<th>Species</th>
<th>1995</th>
<th>2005</th>
<th>Growth %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver carp</td>
<td>2,584</td>
<td>4,153</td>
<td>60.7</td>
</tr>
<tr>
<td>Grass carp</td>
<td>2,118</td>
<td>3,905</td>
<td>84.4</td>
</tr>
<tr>
<td>Common carp</td>
<td>1,827</td>
<td>3,044</td>
<td>66.6</td>
</tr>
<tr>
<td>Bighead carp</td>
<td>1,257</td>
<td>2,209</td>
<td>75.7</td>
</tr>
<tr>
<td>Crucian carp</td>
<td>538</td>
<td>2,086</td>
<td>287.7</td>
</tr>
<tr>
<td>Nile tilapia</td>
<td>520</td>
<td>1,703</td>
<td>227.5</td>
</tr>
<tr>
<td>Rohu</td>
<td>542</td>
<td>1,196</td>
<td>120.7</td>
</tr>
<tr>
<td>Catla</td>
<td>448</td>
<td>1,236</td>
<td>175.9</td>
</tr>
<tr>
<td>Mrigal carp</td>
<td>421</td>
<td>330</td>
<td>21.6</td>
</tr>
<tr>
<td>Black carp</td>
<td>104</td>
<td>325</td>
<td>212.5</td>
</tr>
<tr>
<td>Total</td>
<td>10,359</td>
<td>20,187</td>
<td>94.9</td>
</tr>
<tr>
<td>Fw fish (net)</td>
<td>2,581</td>
<td>5,591</td>
<td>116.6</td>
</tr>
<tr>
<td>Total (fw)</td>
<td>12,940</td>
<td>25,778</td>
<td>99.2</td>
</tr>
<tr>
<td>All fin fish</td>
<td>15,616</td>
<td>31,586</td>
<td>102.2</td>
</tr>
</tbody>
</table>
Aquaculture impacts on climate change

- **Unfortunately:**
 - Aquaculture is targeted by lobby groups
 - Based on shrimp & salmon culture
 - Adoption of BMPs
 - Small scale farmers – organic farming
 - These account for < 8% of total aquaculture production
 - But high valued & visible; industrial

- **Aquaculture**
 - Possibly one of the least “energy costly” of the food production sector
 - Many questions still need to be answered
 - carp aquaculture use minimal industrial energy but have a potential significance in the carbon cycle, fixing CO\textsubscript{2} through phytoplankton
 - are fertilization and phytoplankton based aquaculture systems
 - more climate/ carbon friendly than more intensive forms which utilises considerable quantum of external energy inputs
Aquaculture impacts on climate change

- The story cannot be ended by addressing climatic change influences on aquaculture per se.
 - aquaculture does not occur in a vacuum
 - to mitigate further exacerbation of global climate change the world
 - unified action to reduce green house gas (GHG) emissions
 - one of the options is to reduce the dependence on fossil fuels as an energy source
 - do so by increasing the dependence on biofuels.

- The first generation production of biofuels
 - conversion of plant starch, sugars, oils and animal fats into an energy source that could be combusted to replace fossil fuels.
 - the most popular is bio-ethanol, produced by fermentation of a number of food crops such as maize, cassava, sugar cane and the like (Worldwatch Institute, 2006).
 - Brazilian sugarcane bio-ethanol is observed to have the highest net GHG mitigating potential (Macedo et al., 2004).
Aquaculture impacts on climate change

- **As the world looks to biofuels as an alternative**
 - ripple effect on food crops, prices, availability, access, food security and poverty, and overall impact on sustainable development (Naylor et al., 2006).

- **Aquaculture and most forms of animal husbandry depend on some of the food crops used for biofuels production for feeds, directly and indirectly.**

- **The equation on climatic changes on aquaculture therefore, is not straight forward**
 - many other factors have to built into this complex equation to bring about adaptive measures
 - not only for aquaculture but for climate change
 - has to be evolved collectively and not sector by sector.
Aquaculture impacts on climate change

- Is aquaculture overall aid carbon sequestration?