GLOBAL LIVESTOCK ENVIRONMENTAL ASSESSMENT MODEL

Version 3.0
Data reference year: 2015

December 2022
Model description
GLOBAL LIVESTOCK ENVIRONMENTAL ASSESSMENT MODEL

Model Description

Version 3.0
TABLE OF CONTENTS

1. **CHAPTER 1 - INTRODUCTION** ... 1
 1.1 – **MODEL OVERVIEW** .. 1
 1.2 – **GLEAM AND THE LCA FRAMEWORK** .. 1
 1.3 – **SOURCES OF EMISSIONS** .. 5
 1.4 – **DATA RESOLUTION** .. 6
 1.5 – **LIVESTOCK DISTRIBUTION AND PRODUCTION SYSTEMS** .. 6
2. **CHAPTER 2 – HERD MODULE** .. 10
 2.1 – **HERD MODULE: LARGE RUMINANTS** .. 13
 2.2 – **HERD MODULE: SMALL RUMINANTS** .. 17
 2.3 – **HERD MODULE: PIGS** ... 20
 2.4 – **HERD MODULE: CHICKENS** .. 23
3. **CHAPTER 3 – FEED RATION AND INTAKE MODULE** ... 30
 3.1 – **TRACING IMPACTS THROUGH TRADE MATRICES** .. 30
 3.2 – **CROP YIELDS AND PASTURE PRODUCTIVITY** .. 30
 3.3 – **RUMINANTS’ FEED RATIONS** .. 31
 3.4 – **MONOGASTRICS’ FEED RATION** .. 44
 3.5 – **NUTRITIONAL VALUES** ... 52
 3.6 – **ENERGY REQUIREMENTS** .. 53
 3.7 – **FEED INTAKE** ... 64
4. **CHAPTER 4 – ANIMAL EMISSIONS MODULE** ... 65
 4.1 – **MANURE MANAGEMENT SYSTEMS** ... 65
 4.2 – **METHANE EMISSIONS FROM ENTERIC FERMENTATION** .. 69
 4.3 – **METHANE EMISSIONS FROM MANURE MANAGEMENT** .. 69
 4.4 – **NITROGEN FLOWS FROM MANURE MANAGEMENT** .. 71
 4.5 – **AGGREGATING GREENHOUSE GAS AT HERD OR FLOCK LEVEL** .. 86
5. **CHAPTER 5 – MANURE MODULE** ... 87
 5.1 – **Totalization of the nitrogen available** .. 87
 5.2 – **Manure-N deposited on other natural areas from ruminants** .. 89
 5.3 – **Manure-N applied on croplands** ... 90
 5.4 – **Manure-N applied or deposited on grasslands** ... 90
 5.5 – **Manure-N application or deposition rates** .. 92
6. **CHAPTER 6 – FEED EMISSIONS MODULE** ... 94
LIST OF TABLES

Table 1.1 GWP-100 values reported in the 6th IPCC Assessment Report ... 2
Table 1.2 Emission sources covered in GLEAM ... 5
Table 1.3 Spatial resolution of the main GLEAM input variables .. 6
Table 1.4 Characteristics of livestock production systems for ruminant species used in GLEAM 7
Table 1.5 Characteristics of livestock production systems for monogastric species used in GLEAM 7
Table 2.1 Summary of cohorts in GLEAM .. 10
Table 2.2 Cattle and buffaloes input data and parameters .. 13
Table 2.3 Cattle and buffaloes output variables ... 13
Table 2.4 Sheep and goats input data and parameters .. 17
Table 2.5 Sheep and goats output variables .. 18
Table 2.6 Pigs input data and parameters ... 20
Table 2.7 Pigs output variables ... 21
Table 2.8 Chickens input data and parameters ... 23
Table 2.9 Chickens output variables ... 24
Table 3.1 List of feed materials for ruminant species .. 33
Table 3.2 Feeding groups for ruminant species ... 33
Table 3.3 Net yield equations, gross yields, FUE and MFA for each feed material for ruminant species 38
Table 3.4 Partitioning of grass fraction .. 41
Table 3.5 List of feed materials for monogastrics .. 45
Table 3.6 Net yield equations, gross yields, FUE and MFA for each feed material for monogastric species 49
Table 3.7 Equations used to estimate GE for ruminant species .. 54
Table 3.8 Coefficient for calculating NE_{main} ... 54
Table 3.9 Activity coefficients for different feeding situations ... 55
Table 3.10 Constants for calculating NE_{pro} in large ruminants .. 56
Table 3.11 Constants for calculating NE_{pro} in small ruminants .. 56
Table 3.12 Equations used to estimate ME for pigs ... 59
Table 3.13 Average live weight for maintenance energy requirements for pigs ... 59
Table 3.14 Equations used to estimate ME for chickens ... 62
Table 3.15 Temperature regression function for maintenance energy requirements ... 63
Table 3.16 Growth coefficient for chickens .. 63
Table 4.1 Manure management systems definitions .. 65
Table 4.2 Categories of use or disposal of manure after the storage and treatment phase .. 66
Table 4.3 Updated manure management systems .. 66
Table 4.4 Solid or liquid manure management systems .. 67
Table 4.5 Classification of confinement, daily spread and pit storage categories of MMS .. 67
Table 4.6 Methane conversion factors for different species and cohorts ... 69
Table 4.7 N-NH₃ emissions factors from manure management systems, proportion of TAN .. 71
Table 4.8 Emission factors for direct N₂O emissions by animal species .. 71
Table 4.9 Emission factors for N₂ and N₂O by manure type .. 71
Table 4.10 Nitrogen retention formulas for species and cohorts .. 72
Table 4.11 The proportion of mineralization of organically bound nitrogen in manure .. 74
Table 6.1 List of datasets used to derive deforestation for soybean and pasture in Brazil and associated net CO₂ emissions in 2015 .. 99
Table 6.2 Parameters for allocation of emissions to feed materials of ruminant species .. 103
Table 6.3 Parameters for allocation of emissions to feed materials of monogastric species 104
Table 6.4 Parameters for the estimation of biological nitrogen fixation by crop type .. 108
Table 6.5 Maximum runoff fraction for different slope classes (Reuter et al., 2007) ... 110
Table 6.6 Reduction factor for different precipitation classes (Harris et al., 2014) .. 110
Table 8.1 Post-farm emission factors (kg CO₂/kg product) for packaging and processing for animal products in GLEAM ... 118
Table 9.1 Bone-free-meat to carcass weight ratio and protein content ... 123
Table 9.2 Example of allocation between products from cattle dairy production ...127
Table 9.3 Example of allocation between products from sheep dairy production ..127
Table 9.4 Example of allocation of emissions from rearing and finishing phases to feedlot systems128
Table 9.5 Example of allocation between edible products for chickens ..128

LIST OF FIGURES

Figure 1.1 Overview of GLEAM structure ..3
Figure 1.2 System boundary used in GLEAM ...4
Figure 2.1 Schematic representation of the herd dynamics for ruminants ..11
Figure 2.2 Schematic representation of the herd dynamics for pigs and broiler chickens ..11
Figure 2.3 Schematic representation of the herd dynamics for backyard and layer chickens ..12
Figure 3.1 Representation of a hypothetical example of feed ration estimation for ruminant species in industrialized countries ..34
Figure 3.2 Representation of a hypothetical example of feed ration estimation for cattle in developing countries35
Figure 3.3 Representation of a hypothetical example of feed ration estimation for buffaloes and small ruminants in developing countries ..36
Figure 3.4 Representation of a hypothetical example of feed ration estimation for pigs ..46
Figure 3.5 Representation of a hypothetical example of feed ration estimation for chickens ..47
Figure 3.6 Schematic representation of the energy requirement and feed intake for ruminants ..53
Figure 3.7 Schematic representation of the energy requirement and feed intake for monogastrics54
Figure 4.1 Schematic representation of the animal emissions module ..68
Figure 5.1 Schematic representation of the manure module ...87
Figure 6.1 Schematic representation of the feed emissions module ...95
Figure 9.1 Schematic representation of the allocation module for ruminant species ...121
Figure 9.2 Schematic representation of the allocation module for monogastric species ...122
The Global Livestock Environmental Assessment Model (GLEAM) is being developed in FAO since 2009, in collaboration with partners from other organizations.

The GLEAM version 3 development and analysis team was composed of Alessandra Falcucci, Giuseppe Tempio, Giuseppina Cinardi, Timothy Robinson, Monica Rulli, Juliana Cristina Lopes, Armando Rivera, Almable Uwizeye, and Dominik Wisser.

Former versions of GLEAM and applications were supported by Pierre Gerber, Henning Steinfeld, Benjamin Henderson, Jeroen Dijkstra, Michael MacLeod, Theun Vellinga, Harinder Makkar, Anne Mottet, Carolyn Opio, Rubén Martínez Rodríguez, Juliana Cristina Lopes, and Félix Teillard.

Significant inputs were received from Giulia Conchedda, Laura D'Alieiti, Klaas Dietze, Guya Gianni, Marius Gilbert, Mirella Salvatore, Olaf Thieme and Viola Weiler.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄</td>
<td>Methane</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CO₂-eq</td>
<td>Carbon dioxide equivalents</td>
</tr>
<tr>
<td>DM</td>
<td>Dry Matter</td>
</tr>
<tr>
<td>EE</td>
<td>Eastern Europe</td>
</tr>
<tr>
<td>EFA</td>
<td>Economic Fraction Allocation</td>
</tr>
<tr>
<td>ESEA</td>
<td>East Asia and South-East Asia</td>
</tr>
<tr>
<td>FUE</td>
<td>Feed Use Efficiency</td>
</tr>
<tr>
<td>GAEZ</td>
<td>Global Agro-Ecological Zones</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GLEAM</td>
<td>Global Livestock Environmental Assessment Model</td>
</tr>
<tr>
<td>GLW</td>
<td>Gridded Livestock of the World</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>LAC</td>
<td>Latin America and the Caribbean</td>
</tr>
<tr>
<td>LCA</td>
<td>Life-Cycle Assessment</td>
</tr>
<tr>
<td>LUC</td>
<td>Land-use change</td>
</tr>
<tr>
<td>MFA</td>
<td>Mass Fraction Allocation</td>
</tr>
<tr>
<td>MMS</td>
<td>Manure management system</td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous oxide</td>
</tr>
<tr>
<td>NA</td>
<td>North America</td>
</tr>
<tr>
<td>NENA</td>
<td>Near East and North Africa</td>
</tr>
<tr>
<td>OCE</td>
<td>Oceania</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Cooperation and Development</td>
</tr>
<tr>
<td>RUS</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SA</td>
<td>South Asia</td>
</tr>
<tr>
<td>SSA</td>
<td>Sub-Saharan Africa</td>
</tr>
<tr>
<td>VS</td>
<td>Volatile solids</td>
</tr>
<tr>
<td>WE</td>
<td>Western Europe</td>
</tr>
</tbody>
</table>
1 CHAPTER 1 - INTRODUCTION

The Global Livestock Environmental Assessment Model (GLEAM) was developed to address the need for a comprehensive tool to assess interactions between livestock and the environment. GLEAM supports stakeholders in their efforts towards adopting more sustainable practices that ensure higher efficiency, improved livelihoods for farmers and mitigation of environmental impacts.

The present document describes the latest version of the model, GLEAM 3.0. It includes several improvements, updates and methodological changes compared to the previous version GLEAM 2.0. The most important updates and methodological changes include:

- New crop layers: GLEAM 3.0 incorporates GAEZ 2015+ Data set (Frolking et al., 2020) for crops used as feed, this new release uses national-scale data on the fractional change in crop harvested area and production from 2010 to 2015, based on statistics for 160 crops from FAOSTAT and at a spatial resolution of approximately 10 km x 10 km at the equator.
- Update of the methods to calculate emissions to the latest 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
- Nitrogen modeling along the livestock supply chain based on material flows analysis and mass principle and closing of the nitrogen balance; total nitrogen inputs are equivalent to total nitrogen outputs (products, losses and stock change), taking into account loops and recycling of nitrogen (crop residues; manure application to cropland or grassland).
- Updated methodology to calculate the emissions associated with land-use change related to soy, palm and pasture.
- New methodology to represent animals in feedlots.
- Adjustment of emissions, inputs and parameters for the production of internationally traded feed items using updated bilateral trade data for commodities.
- Updated distances and emissions for the international sea transport of traded feed items.
- New method to calculate postfarm emissions for domestic and international transport as well as primary processing.

1.1 - MODEL OVERVIEW

GLEAM is a process-based model based on a Life Cycle Assessment (LCA) framework that simulates greenhouse gas emissions along livestock systems and allocates those to different commodities. It covers 11 main livestock commodities at global scale, namely meat and milk from cattle, sheep, goats and buffalo; meat from pigs; and meat and eggs from chickens. The calculations are generally performed for individual animal cohorts (TIER2). GLEAM runs in a Geographic Information System (GIS) environment and provides spatially explicit estimates on greenhouse gas (GHG) emissions and commodity production by production system, thereby enabling the calculation of the emission intensity for any combination of commodity and farming systems at different spatial scales. The highest spatial resolution considered by the model is defined by squared cells of approximately 10 km x 10 km at the equator. The calculations in GLEAM are done for each of those pixels, all of which have values (such as crop yields or animal numbers) associated with them.

GLEAM is built on six modules, each of which with a specific function that uses outputs from other modules in a specific sequence: the herd module, the feed ration and intake module, the animal emissions module, the manure module, the feed emissions module and the allocation module. The overall structure and the calculation sequence are shown in Figure 1.1. Each module is explained in detail in its corresponding chapter.

1.2 - GLEAM AND THE LCA FRAMEWORK

The LCA framework is defined in ISO standards 14040 and 14044 (ISO, 2006a, 2006b). It is a method widely accepted in agriculture and other industries to evaluate the environmental impact of products. It is also used to estimate the resource use and identify hotspots of environmental impact within a product’s life cycle. The main strength of LCA lies in its ability to provide a holistic assessment of production processes in terms of resource use, pressures, and environmental impacts (ISO, 2006a, 2006b). The LCA approach also provides a framework to broadly identify effective approaches to reduce environmental...
burdens and is recognized for its capacity to evaluate the effect of a change within a production process on the overall life-cycle balance of environmental burdens. This approach enables the identification and exclusion of measures that simply shift environmental problems from one phase of the lifecycle to another.

1.2.1 – Functional unit
The functional units used to report GHG emissions in GLEAM are expressed as “kg of carbon dioxide equivalents (CO\textsubscript{2}-eq) per kg of protein in animal product”. This choice allows the comparison between different livestock products. For the conversion of non-CO\textsubscript{2} gases, GLEAM uses the global warming potential over a 100-year period (GWP-100; Table 1.1) published in the 6th IPCC Assessment Report (Forster et al., 2021).

\textit{Table 1.1 GWP-100 values reported in the 6th IPCC Assessment Report}

<table>
<thead>
<tr>
<th>Greenhouse gas</th>
<th>100 Year Time Period</th>
<th>AR4 2007</th>
<th>AR5 2014</th>
<th>AR6 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SAR 1995</td>
<td>AR5 cc fb 2014</td>
<td>AR6 2021</td>
<td></td>
</tr>
<tr>
<td>CO\textsubscript{2}</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CH\textsubscript{4} fossil origin</td>
<td>21</td>
<td>25</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>CH\textsubscript{4} non fossil origin</td>
<td>29.8</td>
<td>27.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N\textsubscript{2}O</td>
<td>310</td>
<td>298</td>
<td>265</td>
<td>298</td>
</tr>
</tbody>
</table>
Figure 1.1 Overview of GLEAM structure

- **HERD MODULE**
 - Calculation of herd structure and dynamics
 - Total animal population
 - Herd parameters
 - Number of animals in each cohort
 - Average bodyweights
 - Growth rates

- **FEED RATION & INTAKE MODULE**
 - Calculation of:
 - ration composition
 - nutritional values
 - animal's energy requirements
 - animal's feed intake
 - Feed intake at cohort level
 - Average digestibility of ration
 - Average nitrogen content of ration

- **ANIMAL EMISSIONS MODULE**
 - Calculation of:
 - animal's nitrogen and volatile solids excretion rate
 - total herd’s emission from manure (\(N_2O, CH_4\))
 - total herd’s emission from enteric fermentation
 - manure-nitrogen available for recycle
 - Nitrogen excretion
 - Manure-nitrogen available
 - Feed intake at cohort level

- **MANURE MODULE**
 - Calculation of manure application and deposition rate to arable land and pastures
 - kg N per ha
 - Feed intake at cohort level

- **FEED EMISSIONS MODULE**
 - Calculation of emissions per kg DM:
 - \(N_2O\) from nitrogen inputs to soil
 - \(CO_2\) from field operations
 - \(CO_2\) from fertilizer production
 - \(CO_2\) from pesticides production
 - \(CO_2\) from processing and transport
 - \(CO_2\) from feed blending
 - \(CH_4\) from rice cultivation
 - Totalization of the herd’s emission from the source above

- **MANURE MODULE**
 - Calculation of:
 - feed emissions per kg DM:
 - \(N_2O\) from nitrogen inputs to soil
 - \(CO_2\) from field operations
 - \(CO_2\) from fertilizer production
 - \(CO_2\) from pesticides production
 - \(CO_2\) from processing and transport
 - \(CO_2\) from feed blending
 - \(CH_4\) from rice cultivation
 - Totalization of the herd’s emission from the source above

- **ALLOCATION MODULE**
 - Calculation of:
 - total production of meat, milk and eggs
 - totalization of emission from different sources
 - emissions allocated to products
 - emission intensities per commodity

- **Total animal emissions

- **Share of different manure management systems
 - CH4 and N2O emission factors for manure systems
 - Climatic zones
 - B coefficients

- **Crop yields
 - Nutritional values of feed materials
 - Coefficients for animal energy requirements

- **Crop yields
 - Emission factors for nitrogen glows
 - Energy use in field operations
 - Emissions factors for feed processing and transport
 - Emissions factors for fertilizer and pesticide production
 - Synthetic fertilizer application rates
 - Emission factors for land-use change

- **Calculation sequence
 - Intermediate calculations within GLEAM
 - Input data from literature, existing databases and expert knowledge

- **Total feed emissions

- **Calculation sequence
 - Direct energy use
 - Indirect energy use
 - Post farm activities

- **Share of different manure management systems
 - Carcass to bone-free-meat
 - Dressing percentages
 - Fiber yield
 - Protein content (milk, meat, eggs)
 - Animal’s energy requirements

- **Input data from literature, existing databases and expert knowledge
 - Maximum applied or deposited nitrogen
 - Share of manure managed in pastures

- **Ecological zones
 - B coefficients

- **MANURE MODULE
 - Calculation of manure application and deposition rate to arable land and pastures
 - Share of different manure management systems
 - CH4 and N2O emission factors for manure systems
 - Climatic zones
 - B coefficients

- **Synthetic fertilizer application rates
 - Emission factors for land-use change

- **Total animal population
 - Herd parameters
 - Calculation of herd structure and dynamics
1.2.2 – System boundary

GLEAM covers the entire livestock production chain, from feed production to the processing point (Figure 1.2). The system boundary is defined from “Cradle-to-processing point”. All emissions occurring at the final consumption are outside the defined system boundary and are thus excluded from this assessment. Livestock supply chains are complex, with a number of interacting unit processes that include crop and pasture production, manure management systems, feed processing and transport, animal breeding and management, and others. The LCA approach models the flow of all products through processes on-farm but also off-farm such as feed imports and exports of animal products or live animals. The model also covers other external inputs such as energy, fertilizers, pesticides and machinery use.

All of these do not only represent different activities in the supply chains, but also define the inter-linkages among production processes such as the link between animal performance, animal feed requirements (energy and protein requirements) and production of outputs such as manure, edible and non-edible products, services and emissions.

Figure 1.2 System boundary used in GLEAM
1.3 – SOURCES OF EMISSIONS

GLEAM estimates emissions of the three major GHGs associated with livestock supply chains, namely methane (CH$_4$), nitrous oxide (N$_2$O) and carbon dioxide (CO$_2$). Table 1.2 shows the emission sources that are included in GLEAM.

Table 1.2 Emission sources covered in GLEAM

<table>
<thead>
<tr>
<th>Source of emissions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed CO$_2$</td>
<td></td>
</tr>
<tr>
<td>field operations</td>
<td>CO$_2$ emissions arising from the use of fossil fuels during field operations</td>
</tr>
<tr>
<td>fertilizer production</td>
<td>CO$_2$ emissions from the manufacture and transport of synthetic nitrogenous, phosphate and potash fertilizers</td>
</tr>
<tr>
<td>pesticide production</td>
<td>CO$_2$ emissions from the manufacture, transport and application of pesticides</td>
</tr>
<tr>
<td>processing and transport</td>
<td>CO$_2$ generated during the processing of crops for feed and the transport by land and/or sea</td>
</tr>
<tr>
<td>blending and pelleting</td>
<td>CO$_2$ arising from the blending of concentrate feed</td>
</tr>
<tr>
<td>Feed land-use change CO$_2$</td>
<td></td>
</tr>
<tr>
<td>soybean cultivation</td>
<td>CO$_2$ emission due to LUC associated with the expansion of soybean</td>
</tr>
<tr>
<td>palm kernel cake</td>
<td>CO$_2$ emission due to LUC associated with the expansion of palm oil plantations</td>
</tr>
<tr>
<td>pasture expansion</td>
<td>CO$_2$ emission due to LUC associated with the expansion of pastures</td>
</tr>
<tr>
<td>Feed N$_2$O</td>
<td></td>
</tr>
<tr>
<td>Rice production</td>
<td>CH$_4$ emissions arising from the cultivation of rice used as feed</td>
</tr>
<tr>
<td>Enteric fermentation CH$_4$</td>
<td>CH$_4$ emissions caused by enteric fermentation</td>
</tr>
<tr>
<td>Manure management CH$_4$</td>
<td>CH$_4$ emissions arising from manure storage and management</td>
</tr>
<tr>
<td>Manure management N$_2$O</td>
<td>N$_2$O emissions arising from manure storage and management</td>
</tr>
<tr>
<td>Direct energy use CO$_2$</td>
<td>CO$_2$ emissions arising from energy use on-farm for ventilation, heating, etc.</td>
</tr>
<tr>
<td>Embedded energy use CO$_2$</td>
<td>CO$_2$ emissions arising from energy use during the construction of farm buildings and equipment</td>
</tr>
<tr>
<td>Postfarm CO$_2$</td>
<td>CO$_2$ emissions from the processing and transport of livestock products</td>
</tr>
</tbody>
</table>
1.4 - DATA RESOLUTION

Data availability, quality vary greatly for different regions and depending on the parameters. Basic input data such as animal numbers, herd parameters, mineral fertilizer application rates, temperature, are typically taken from the literature and specific surveys. Intermediate calculations generate outputs and are used in subsequent calculations in GLEAM. They include data on growth rates, animal cohort (or groups), feed rations, animal energy requirements, and others. In some cases, these data sets are available at high level of details for small administrative units, in other cases only at regional level. The spatial resolution of the main input variables in GLEAM is summarized in Table 1.3.

Table 1.3 Spatial resolution of the main GLEAM input variables

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Cell¹</th>
<th>Sub-national</th>
<th>National</th>
<th>Regional²</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal numbers</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live weights</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality, fertility and replacement data</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen losses rates</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Management system data</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Leaching rates</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop yields</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvested area</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N, P and K fertilizer application rate</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pesticides application rate</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanization level</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen crop residues</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed ration</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Digestibility and energy content of feedstuffs</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nitrogen content of feedstuffs</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Energy in field operations and transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Transport distances</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Land-use change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soybean</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Palm kernel cake</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Pasture</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal productivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield (milk, eggs, fibers)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dressing percentage</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Fat and protein content</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Postfarm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport distances of animals or products</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Annual average temperature</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climatic zones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Direct and indirect energy</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

The spatial resolution varies geographically and depends on the data availability. For each input, the spatial resolution of a given area is defined at the finest level possible.

¹ Approximately 10 km × 10 km at the equator.
² Geographic regions or climatic zones, or groups of countries.

1.5 - LIVESTOCK DISTRIBUTION AND PRODUCTION SYSTEMS

1.5.1 - Animal populations and spatial distribution

National inventory for all major livestock species (cattle, buffaloes, sheep, goats, pigs and chickens) are aligned with FAOSTAT data for 2015. The geographic distribution is based on the Gridded Livestock of the World (GLW) model Version 4 (modified from Gilbert et al., 2018). Density maps from GLW are built on observed densities and explanatory variables such as climatic data, land cover and demographic parameters.
1.5.2 – Livestock production systems

G莱AM distinguishes between three production systems for cattle (grassland-based, mixed farming systems and feedlots), two for buffaloes, sheep and goats (grassland-based and mixed farming systems) (Table 1.4). For monogastric species, the model distinguishes three production systems for pigs (backyard, intermediate and industrial) and three for chickens (backyard, layers and broilers; the last two being industrial) (Table 1.5). Livestock production systems are further classified according to the agroecological zones as defined by Seré and Steinfeld (1996):

- **Temperate** includes temperate regions, where at least one or two months a year the temperature falls below 5°C; and tropical highlands, where the daily mean temperature in the growing season ranges from 5 °C to 20 °C.
- **Arid** includes arid and semi-arid tropics and subtropics, with a growing period of less than 75 days and 75–180 days, respectively.
- **Humid** includes humid tropics and sub-humid tropics where the length of the growing period ranges from 181–270 days or exceeds 271 days, respectively.

Table 1.4 Characteristics of livestock production systems for ruminant species used in GLEAM

<table>
<thead>
<tr>
<th>Production system</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruminant species</td>
<td></td>
</tr>
<tr>
<td>Grassland based (or grazing) systems</td>
<td>Livestock production systems found in areas dominated by pastures and rangelands with short growing period (<60 days) or very low human density (<20 people per km²), in which more than 10% of the dry matter fed to animals is farm-produced and in which annual average stocking rates are less than 10 livestock units per hectare of agricultural land.</td>
</tr>
<tr>
<td>Mixed farming systems</td>
<td>Livestock production systems found in areas dominated by cropland or areas with growing period >60 days and human density >20 people per km², in which more than 10% of the dry matter fed to animals comes from crop by-products and/or stubble or more than 10% of the value of production comes from non-livestock farming activities.</td>
</tr>
<tr>
<td>Feedlots</td>
<td>Specialized, fully market-oriented operations where animals are fed with a specialized diet that is intended to stimulate weight gain. This period typically lasts for six to nine months, depending on the starting and targeted live weight (for some countries it lasts 3–4 months). Diets are generally composed of highly energetic and protein-rich feedstuffs, such as corn and cakes, respectively. Although it can vary among different operations, animals are kept in fully enclosed areas to facilitate the fattening process.</td>
</tr>
</tbody>
</table>

Source: authors based on Seré and Steinfeld (1996) and Robinson et al. (2011).

Table 1.5 Characteristics of livestock production systems for monogastric species used in GLEAM

<table>
<thead>
<tr>
<th>Production system</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigs</td>
<td></td>
</tr>
<tr>
<td>Backyard</td>
<td>Mainly subsistence driven or for local markets; level of capital inputs reduced to the minimum; herd performance lower than commercial systems; feed contains maximum 20% of purchased non-local feed; high shares of swill, scavenging and locally-sourced feeds.</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Fully market-oriented; medium capital input requirements; reduced level of overall herd performance (compared with industrial); locally-sourced feed materials constitute 30% to 50% of the ration.</td>
</tr>
<tr>
<td>Industrial</td>
<td>Fully market-oriented; high capital input requirements (including infrastructure, buildings, equipment); high level of overall herd performance; purchased non-local feed in diet or on-farm intensively produced feed.</td>
</tr>
<tr>
<td>Housing</td>
<td>Partially enclosed: no concrete floor, or if any pavement is present, made with local material. Roof and support made of local materials (e.g. mud bricks, thatch or timber).</td>
</tr>
<tr>
<td>Chicken</td>
<td></td>
</tr>
<tr>
<td>Backyard</td>
<td>Animals producing meat and eggs for the owner and local market, living freely. Diet consists of swill and scavenging (20% to 40%) while locally-produced feed constitutes the rest.</td>
</tr>
<tr>
<td>Layers</td>
<td>Fully market-oriented; high capital input requirements; high level of overall flock productivity; purchased non-local feed or on-farm intensively produced feed.</td>
</tr>
<tr>
<td>Housing</td>
<td>Simple housing using local wood, bamboo, clay, leaf material and handmade construction resources for supports plus scrap wire netting walls and scrap iron for roof.</td>
</tr>
<tr>
<td>Housing</td>
<td>Layers housed in a variety of cage, barn and free-range systems, with automatic feed and water provision.</td>
</tr>
</tbody>
</table>

7
Broilers

- Fully market-oriented; high capital input requirements; high level of overall flock productivity; purchased non-local feed or on-farm intensively produced feed.

- Broilers assumed to be primarily loosely housed on litter, with automatic feed and water provision.

Source: authors based on Seré and Steinfeld (1996) and Robinson et al. (2011).

1.5.2.1 – Ruminant systems

The distinction between grazing and mixed systems was updated following the methodology developed by Robinson et al. (2011), using the above-mentioned predictors: hybrid coverage agriculture (Fritz et al., 2012), Global length of growing period (Wint, 2018) and Climate Change Initiative (CCI) Land Cover (ESA, 2017).

The further classification of feedlot systems was based on the existence of such systems in the countries as reported in the literature and in national census. Input data were collected through literature reviews and expert opinion and, depending on the availability, at national or sub-national level. Sources of information include national statistics (USDA, 2012; EUROSTAT, 2010; MLA, 2011), literature research (Agribenchmark, 2013; Scholtz et al., 2008) and direct consultations with national experts.

The countries, for which data on feedlots system were collected, are 17: Argentina, Brazil, Uruguay, Mexico, United States of America, Canada, South Africa, Botswana, Namibia, Australia, Spain, Ireland, China, Indonesia, Philippines, Thailand, and Japan. The system is included in the beef sector, except for few countries, in particular Japan, Namibia, South Africa, and Botswana, for which part of the animals fattened come from the dairy sector.

1.5.2.2 – Pigs

The distinction of production systems for pigs was performed using the methodology described in Gilbert et al. (2015). The authors developed a model based on national reported data on the share of ‘backyard’ pigs and data on gross domestic product (GDP) per capita (in purchase power parity for 2015; PPP2010). This model was then used to estimate the proportion of backyard pigs in countries where this proportion was unavailable. Finally, the estimated numbers of backyard animals were spatially distributed according to the distribution of the human rural population, with areas of high rural population corresponding to higher density of backyard pigs. The distinction between ‘intermediate’ and ‘industrial’ systems was done on the basis of reported data supplemented by expert opinion.

1.5.2.3 – Chickens

The same procedure based on Gilbert et al. (2015) was followed for chickens to distinguish between ‘backyard’ and ‘industrial’ systems. Animals in the industrial systems were further subdivided into layers and broilers, in three steps combining production data of meat and eggs from FAOSTAT and productivity figures from GLEAM (Box 1). Then, adjustments to the resulting fractions were done so that the proportions of meat and egg protein production in GLEAM correspond as close as possible to those reported by FAOSTAT.
Box 1 – Disaggregation of Industrial Chickens into Layers and Broiler Systems

The procedure to disaggregate industrial systems (CHK_{ind}) into layers (CHK_{lyr}) and broilers (CHK_{BRL}) was done in three steps:

Step 1. Average yields for eggs and meat were calculated for all chicken in each country, using the backyard and industrial yields calculated from GLEAM parameters and weighting the averages by the shares of backyard and industrial animals from Gilbert et al. (2015).

\[
\begin{align*}
\text{EGG yield} &= (CHK_{BCK} \times \text{EGGYield}_{BCK} + CHK_{IND} \times \text{EGGYield}_{LYR}) \\
\text{MEAT yield} &= (CHK_{BCK} \times \text{MEAYield}_{BCK} + CHK_{IND} \times \text{MEAYield}_{BRL})
\end{align*}
\]

Where:
- \(\text{EGGYield} \) = flock's weighted average egg yield, kg eggs × head⁻¹
- \(\text{MEAYield} \) = flock's weighted average meat yield, kg CW × head⁻¹
- \(CHK_{BCK} \) = share of backyard systems taken from Gilbert <i>et al</i>., fraction
- \(CHK_{IND} \) = share of industrial systems taken from Gilbert <i>et al</i>., fraction
- \(\text{EGGYield}_{BCK} \) = egg yield for backyard animals calculated from GLEAM parameters, kg eggs × head⁻¹
- \(\text{EGGYield}_{LYR} \) = egg yield for layer animals calculated from GLEAM parameters, kg eggs × hen⁻¹
- \(\text{MEAYield}_{BCK} \) = meat yield for backyard animals calculated from GLEAM parameters, kg CW × head⁻¹
- \(\text{MEAYield}_{BRL} \) = meat yield for broiler animals calculated from GLEAM parameters, kg CW × head⁻¹

Step 2. The average yields were combined with production data from FAOSTAT to calculate the share of animals producing meat in the total flock.

\[
\text{MEATshare} = \frac{\text{FAOSTAT}_{meat}/\text{MEAYield}}{(\text{FAOSTAT}_{meat}/\text{MEAYield}) + (\text{FAOSTAT}_{eggs}/\text{EGGYield})}
\]

Where:
- \(\text{MEATshare} \) = share of animals producing meat in the flock, fraction
- \(\text{FAOSTAT}_{meat} \) = chicken meat production from FAOSTAT, kg CW
- \(\text{FAOSTAT}_{eggs} \) = eggs production from FAOSTAT, kg eggs
- \(\text{EGGYield} \) = flock's weighted average egg yield, kg eggs × head⁻¹

Step 3. The share of meat producing animals was applied to the industrial animals to estimate the number of “broilers”, while the share of “layers” was calculated as the difference.

\[
\begin{align*}
\text{CHK}_{BRL} &= CHK_{IND} \times \text{MEATshare} \\
\text{CHK}_{LYR} &= CHK_{IND} - \text{CHK}_{BRL}
\end{align*}
\]

Where:
- \(\text{CHK}_{BRL} \) = share of broiler animals in the flock, fraction
- \(CHK_{IND} \) = share of industrial systems taken from Gilbert <i>et al</i>., fraction
- \(\text{MEATshare} \) = share of animals producing meat in the flock, fraction
- \(CHK_{LYR} \) = share of layer animals in the flock, fraction
2 CHAPTER 2 – HERD MODULE

The first step towards the estimation of production and impacts of livestock supply chains is the characterization of animal populations, which is the function of the herd module.

In particular, the use of the IPCC (2019) Tier 2 methodology requires animal populations to be categorized into distinct cohorts based on animal type, weight, phase of production and feeding situation. This characterization supports the calculation of country-specific age structure, animal performance, feed intake and related emissions. Table 2.1 summarizes the cohorts used in GLEAM, their definition and the sections of the model description where they are calculated. For the schematic representation of the herd dynamics, see Figure 2.1 to Figure 2.3.

Table 2.1 Summary of cohorts in GLEAM

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Description</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATTLE</td>
<td></td>
<td>2.1.2</td>
</tr>
<tr>
<td>AF</td>
<td>Adult females, producing milk and calves</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>Replacement females, to replace culled and dead adult females</td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Adult males, used for reproduction and draught power</td>
<td></td>
</tr>
<tr>
<td>RM</td>
<td>Replacement males, to replace culled and dead adult males</td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>Meat female animals not fattened in feedlots</td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>Meat male animals not fattened in feedlots</td>
<td></td>
</tr>
<tr>
<td>MFr</td>
<td>Meat female animals from weaning to age at fattening in feedlots</td>
<td>2.1.2, 2.2.2, 2.2.2</td>
</tr>
<tr>
<td>MMr</td>
<td>Meat male animals from weaning to age at fattening in feedlots</td>
<td></td>
</tr>
<tr>
<td>MFf</td>
<td>Meat females, surplus animals fattened for meat production in feedlots</td>
<td></td>
</tr>
<tr>
<td>MMf</td>
<td>Meat males, surplus animals fattened for meat production in feedlots</td>
<td></td>
</tr>
<tr>
<td>BUFFALOES, SHEEP, GOATS</td>
<td></td>
<td>2.1.2, 2.2.2, 2.2.2</td>
</tr>
<tr>
<td>AF</td>
<td>Adult females, producing milk and calves/lambs/kids</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>Replacement females, to replace culled and dead adult females</td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Adult males, used for reproduction and draught power (buffaloes only)</td>
<td></td>
</tr>
<tr>
<td>RM</td>
<td>Replacement males, to replace culled and dead adult males</td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>Meat female animals</td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>Meat male animals</td>
<td></td>
</tr>
<tr>
<td>PIGS</td>
<td></td>
<td>2.3.2</td>
</tr>
<tr>
<td>AF</td>
<td>Adult females, producing piglets</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>Replacement females, to replace culled and dead adult females</td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Adult males, used for reproduction</td>
<td></td>
</tr>
<tr>
<td>RM</td>
<td>Replacement males, to replace culled and dead adult males</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>Meat animals, female and male fattening animals for meat production</td>
<td></td>
</tr>
<tr>
<td>CHICKENS</td>
<td></td>
<td>2.4.2</td>
</tr>
<tr>
<td>BACKYARD SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>Adult females, used for reproduction</td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Adult males, used for reproduction</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>Replacement females, to replace culled and dead adult females</td>
<td></td>
</tr>
<tr>
<td>RM</td>
<td>Replacement males, to replace culled and dead adult males</td>
<td></td>
</tr>
<tr>
<td>MF1, MF2</td>
<td>Growing and adult surplus females</td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>Surplus males, sold for meat</td>
<td></td>
</tr>
<tr>
<td>LAYERS</td>
<td></td>
<td>2.4.3</td>
</tr>
<tr>
<td>AF</td>
<td>Adult females, used for reproduction</td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Adult males, used for reproduction</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>Replacement females, to replace culled and dead adult females</td>
<td></td>
</tr>
<tr>
<td>RM</td>
<td>Replacement males, to replace culled and dead adult males</td>
<td></td>
</tr>
<tr>
<td>MF1</td>
<td>Growing laying females</td>
<td></td>
</tr>
<tr>
<td>MF2</td>
<td>Adult laying females during the first laying period</td>
<td></td>
</tr>
<tr>
<td>MF3</td>
<td>Adult laying females during the molting period</td>
<td></td>
</tr>
<tr>
<td>MF4</td>
<td>Adult laying females during the second laying period</td>
<td></td>
</tr>
<tr>
<td>MM</td>
<td>Surplus males, sold for meat</td>
<td></td>
</tr>
<tr>
<td>BROILERS</td>
<td></td>
<td>2.4.4</td>
</tr>
<tr>
<td>AF</td>
<td>Adult females, used for reproduction</td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Adult males, used for reproduction</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>Replacement females, to replace culled and dead adult females</td>
<td></td>
</tr>
<tr>
<td>RM</td>
<td>Replacement males, to replace culled and dead adult males</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>Adult female and male broiler animals</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2.1 Schematic representation of the herd dynamics for ruminants

Figure 2.2 Schematic representation of the herd dynamics for pigs and broiler chickens
In some countries, the surplus males of the Layers system are killed immediately. Where this is the case, all values for this cohort are null.

In some countries, the laying females of the Layers system are kept for a second laying period after a molting phase. Where this is not the case, they are sold after the first laying period and all values for this section are null.
2.1 – HERD MODULE: LARGE RUMINANTS

This section provides the description of parameters and equations for cattle and buffaloes. Input data and parameters are described in Section 2.1.1. Equations are provided in Section 2.1.2.

2.1.1 – Input and output data and variables

Table 2.2 and Table 2.3 provide the list of input data and parameters and output variables, respectively. Regional values for selected variables are provided on the GLEAM dashboard (https://www.fao.org/gleam/dashboard/).

Table 2.2 Cattle and buffaloes input data and parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCOWS</td>
<td>Total number of cattle per cell from GLW</td>
<td>heads</td>
</tr>
<tr>
<td>NBUFF</td>
<td>Total number of buffaloes per cell from GLW</td>
<td>heads</td>
</tr>
<tr>
<td>FNUM</td>
<td>National animal numbers that go into feedlots in a year</td>
<td>heads</td>
</tr>
<tr>
<td>Ckg</td>
<td>Live weight of calves at birth</td>
<td>kg</td>
</tr>
<tr>
<td>AFkg</td>
<td>Live weight of adult cows</td>
<td>kg</td>
</tr>
<tr>
<td>AMkg</td>
<td>Live weight of bulls</td>
<td>kg</td>
</tr>
<tr>
<td>MFSkg</td>
<td>Live weight of female fattening animals at slaughter</td>
<td>kg</td>
</tr>
<tr>
<td>MMSkg</td>
<td>Live weight of male fattening animals at slaughter</td>
<td>kg</td>
</tr>
<tr>
<td>LWSTARTF,</td>
<td>Live weight of feedlot female fattening animals at the beginning and at the</td>
<td>kg</td>
</tr>
<tr>
<td>LWENDF</td>
<td>end of the fattening period, respectively</td>
<td></td>
</tr>
<tr>
<td>LWSTARTM,</td>
<td>Live weight of feedlot male fattening animals at the beginning and at the</td>
<td>kg</td>
</tr>
<tr>
<td>LWENDM</td>
<td>end of the fattening period, respectively</td>
<td></td>
</tr>
<tr>
<td>DR1</td>
<td>Death rate female calves</td>
<td>percentage</td>
</tr>
<tr>
<td>DR1M</td>
<td>Death rate male calves</td>
<td>percentage</td>
</tr>
<tr>
<td>DR2</td>
<td>Death rate other animals than calves</td>
<td>percentage</td>
</tr>
<tr>
<td>DF</td>
<td>Death rate animals in feedlots</td>
<td>percentage</td>
</tr>
<tr>
<td>FR</td>
<td>Fertility rate of adult female animals</td>
<td>percentage</td>
</tr>
<tr>
<td>FRRF</td>
<td>Rate of fertile replacement females. Note: a default value of 0.95 is used in</td>
<td>fraction</td>
</tr>
<tr>
<td></td>
<td>all situations</td>
<td></td>
</tr>
<tr>
<td>RRF</td>
<td>Replacement of adult cows</td>
<td>percentage</td>
</tr>
<tr>
<td>AFC</td>
<td>Age at first calving</td>
<td>year</td>
</tr>
<tr>
<td>FATTDAY</td>
<td>Length of fattening period in feedlot operations</td>
<td>days</td>
</tr>
<tr>
<td>DCR</td>
<td>Dairy cow to total stock of population ratio</td>
<td>fraction</td>
</tr>
<tr>
<td>MFR</td>
<td>Bull to cow ratio</td>
<td>fraction</td>
</tr>
</tbody>
</table>

Table 2.3 Cattle and buffaloes output variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>Adult females, producing milk and calves</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>RF</td>
<td>Replacement females, to replace culled and dead adult females</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>AM</td>
<td>Adult males, used for reproduction and draught power</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>RM</td>
<td>Replacement males, to replace culled and dead adult males</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>MF</td>
<td>Meat female animals not fattened in feedlots (cattle) or meat female animals (buffaloes)</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>MM</td>
<td>Meat male animals not fattened in feedlots (cattle) or meat male animals (buffaloes)</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>CF</td>
<td>Female calves</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>CM</td>
<td>Male calves</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>MFt</td>
<td>Total meat female animals, both feedlot and non-feedlot (only cattle)</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>MFF</td>
<td>Meat females, surplus animals fattened for meat production in feedlots (only cattle)</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>MFr</td>
<td>Meat female animals from weaning to age at fattening in feedlots</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>MMt</td>
<td>Total meat male animals, both feedlot and non-feedlot (only cattle)</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>MMF</td>
<td>Meat males, surplus animals fattened for meat production in feedlots (only cattle)</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>MMr</td>
<td>Meat male animals from weaning to age at fattening in feedlots</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>ceexit</td>
<td>Number of sold animals for meat production from cohort c</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>cin</td>
<td>Number of animals entering cohort c</td>
<td>heads × year⁻¹</td>
</tr>
<tr>
<td>Description</td>
<td>Unit</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Number of dead animals in cohort c</td>
<td>heads(\times)year(^{-1})</td>
<td></td>
</tr>
<tr>
<td>Live weight of cohort c</td>
<td>kg(\times)head(^{-1})</td>
<td></td>
</tr>
</tbody>
</table>

ANIMAL NUMBERS SUBTOTALS

- **DCATTLE**: Total animal numbers in the cattle dairy herd
- **DBUFFALO**: Total animal numbers in the buffalo dairy herd
- **M_HERD**: Total fattening animals from dairy and beef herds

DAILY WEIGHT GAINS

- **DWGF**: Average daily weight gain of female animals from calf to adult weight
- **DWGM**: Average daily weight gain of male animals from calf to adult weight
- **DWGFF**: Average daily weight gain of female animals in feedlots (only cattle)
- **DWGMF**: Average daily weight gain of male animals in feedlots (only cattle)

OTHER VARIABLES

- **ASF**: Age at slaughter of non-feedlot female animals
- **ASM**: Age at slaughter of non-feedlot male animals
- **AFD**: Adult female animals from dairy herd

2.1.2 – Herd equations – Large ruminants

2.1.2.1 – Dairy herd - Female section

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>(DCR \times NCOWS) or (DCR \times NBUFF) (^1)</td>
</tr>
<tr>
<td>AFin</td>
<td>(AF \times (RRF / 100))</td>
</tr>
<tr>
<td>AFx</td>
<td>(AF \times (DR2 / 100))</td>
</tr>
<tr>
<td>AFexit</td>
<td>(AF \times (RRF / 100) - AFx)</td>
</tr>
<tr>
<td>CFin</td>
<td>(AF \times ((1 - (DR2 / 100)) \times (FR / 100) + (RRF / 100)) \times 0.5 \times (1 - (DR1 / 100)))</td>
</tr>
<tr>
<td>CMin</td>
<td>(AF \times ((1 - (DR2 / 100)) \times (FR / 100) + (RRF / 100)) \times 0.5 \times (1 - (DR1M / 100)))</td>
</tr>
<tr>
<td>RFin</td>
<td>((AF \times (RRF / 100)) / (FRRF) / (1 - (DR2 / 100))^{ASC})</td>
</tr>
<tr>
<td>RFexit</td>
<td>((AF \times (RRF / 100)) / (FRRF) - AFin)</td>
</tr>
<tr>
<td>RFx</td>
<td>(RFin - (AFin + RFexit))</td>
</tr>
<tr>
<td>RF</td>
<td>((RFin + AFin) / 2 \times AFC)</td>
</tr>
<tr>
<td>MFin</td>
<td>(CFin - RFin)</td>
</tr>
</tbody>
</table>

Unit: heads\(\times\)year\(^{-1}\)

ASF

\[ASF = AFC \times (MFSkg - Ckg) / (AFkg - Ckg)\]

Unit: year

Equations for cattle

- **MFin**
- **MFin**
- **MFin**
- **MFin**

\(^1\) Use NCOWS or NBUFF for cattle and buffalo respectively
Unit: *heads × year*\(^{-1}\)

Equations for buffaloes

\[
\begin{align*}
\text{MF}_{\text{exit}} & = \text{MF}_{\text{in}} \times (1 - (\text{DR}_2 / 100))^{\text{ASF}} \\
\text{MF}_{\text{x}} & = \text{MF}_{\text{in}} - \text{MF}_{\text{exit}} \\
\text{MF} & = (\text{MF}_{\text{in}} + \text{MF}_{\text{exit}}) / 2 \times (\text{AFC} \times (\text{MF}_{\text{Skg}} - \text{Ckg}) / (\text{AF}_{\text{kg}} - \text{Ckg})) \\
\end{align*}
\]

Unit: *heads × year*\(^{-1}\)

2.1.2.2 – Dairy herd - Male section

\[
\begin{align*}
\text{AM} & = \text{AF} \times \text{MFR} \\
\text{AM}_{\text{x}} & = \text{AM} \times (\text{DR}_2 / 100) \\
\text{AM}_{\text{exit}} & = \text{AM} / \text{AFC} - \text{AM}_{\text{x}} \\
\text{AM}_{\text{in}} & = \text{AM} / \text{AFC}^2 \\
\text{RM}_{\text{in}} & = \text{AM}_{\text{in}} / (1 - (\text{DR}_2 / 100))^{\text{AFC}} \\
\text{RM}_{\text{x}} & = \text{RM}_{\text{in}} - \text{AM}_{\text{in}} \\
\text{RM} & = (\text{RM}_{\text{in}} + \text{AM}_{\text{in}}) / 2 \times \text{AFC} \\
\text{MM}_{\text{in}} & = \text{C}_{\text{Min}} - \text{RM}_{\text{in}} \\
\text{ASM} & = \text{AFC} \times (\text{MM}_{\text{Skg}} - \text{Ckg}) / (\text{AM}_{\text{kg}} - \text{Ckg}) \\
\end{align*}
\]

Unit: *heads × year*\(^{-1}\)

Equations for cattle

\[
\begin{align*}
\text{MM}_{\text{exit}} & = \text{MM}_{\text{in}} \times (1 - (\text{DR}_2 / 100))^{\text{ASM}} \\
\text{MM}_{\text{x}} & = \text{MM}_{\text{in}} - \text{MM}_{\text{exit}} \\
\text{MM}_t & = (\text{MM}_{\text{in}} + \text{MM}_{\text{exit}}) / 2 \times (\text{AFC} \times (\text{MM}_{\text{Skg}} - \text{Ckg}) / (\text{AM}_{\text{kg}} - \text{Ckg})) \\
\text{MM}_{\text{td}} & = \text{MM}_t \\
\text{MM}_{\text{tin}} & = \text{MM}_{\text{in}} \\
\text{DCATTLE} & = \text{AF} + \text{RF} + \text{MF} + \text{AM} + \text{RM} + \text{MM}_t \\
\text{AFD} & = \text{AF} \\
\end{align*}
\]

Unit: *heads × year*\(^{-1}\)

Equations for buffaloes

\[
\begin{align*}
\text{MM}_{\text{exit}} & = \text{MM}_{\text{in}} \times (1 - (\text{DR}_2 / 100))^{\text{ASM}} \\
\text{MM}_{\text{x}} & = \text{MM}_{\text{in}} - \text{MM}_{\text{exit}} \\
\text{MM} & = (\text{MM}_{\text{in}} + \text{MM}_{\text{exit}}) / 2 \times (\text{AFC} \times (\text{MM}_{\text{Skg}} - \text{Ckg}) / (\text{AM}_{\text{kg}} - \text{Ckg})) \\
\text{DBUFFALO} & = \text{AF} + \text{RF} + \text{MF} + \text{AM} + \text{RM} + \text{MM} \\
\text{AFD} & = \text{AF} \\
\end{align*}
\]

Unit: *heads × year*\(^{-1}\)

2.1.2.3 – Beef herd

Equations for cattle

\[
\begin{align*}
\text{BCATTLE} & = \text{NCOWS} - \text{DCATTLE} \\
\text{IF} & \text{DCATTLE} = 0 \\
\text{AF} & = \text{NCOWS} \times (1 - \text{MFR}) \\
\end{align*}
\]

For cattle and buffalos, bulls are replaced in relation to the age at first calving. This is done to prevent inbreeding, that is, bulls serving their own daughters.
AF = (AFD / DCATTLE) × BCATTLE
Unit: heads×year⁻¹

Equations for buffaloes

BBUFFALO = NBUFF − DBUFFALO
IF DBUFFALO = 0
 AF = NBUFF × (1 − MFR)
ELSE
 AF = (AFD / DBUFFALO) × BBUFFALO
Unit: heads×year⁻¹

Once AF in non-dairy herd is estimated, the model follows the same equations shown in Section 2.1.2.1 and Section 2.1.2.2.

2.1.2.4 – Feedlot animals

In the feedlot system, there are 2 phases:

- Rearing phase that includes animals born and grown outside of feedlots from weaning to age at fattening in feedlots. The animals in this phase are indicated by the suffix r.
- Fattening phase during which the animals entered the feedlots are fattened there for a certain number of days. The animals in this phase are indicated by the suffix f.

The animals not included in the feedlots system do not have a suffix. The calculation starts in the beef herd and, only if necessary, the same has been done for the dairy herd.

M_Ftb = Female fattening animals from beef herd
M_Mtb = Male fattening animals from beef herd
M_HERD = M_Ftb + M_Mtb
Unit: heads×year⁻¹

BM_Ffrac = M_Ftb / M_HERD
BM_Mfrac = M_Mtb / M_HERD
Unit: fraction

M_Ffb = FNUM × BM_Ffrac
M_Mfb = FNUM × BM_Mfrac
Unit: heads×year⁻¹

AFF = (LWSTARTF − Ckg) / (AFkg − Ckg) × AFC
ASFF = AFF + FATTDAY / 365
Unit: year

AFM = (LWSTARTM − Ckg) / (AMkg − Ckg) × AFC
ASFM = AFM + FATTDAY / 365
Unit: year

For clarity purposes, the suffixes ...b are omitted in all the steps in Female and Male sections below.

Female section

M_Ffin = M_Ffb × (365 / FATDAY) / ((1 − (DR2 / 100))AFF)
M_Ffin = M_Ftint − M_Ffin
\[\text{MFFexit} = \text{MF} \times (365 / \text{FATDAY}) \times (1 - \text{DRf} / 100)\]

\[\text{MFexit} = \text{MFexit} - \text{MFFexit}\]

\[\text{MFr} = (\text{MFFin} \times (365 / \text{FATDAY} - 1) / (365 / \text{FATDAY}) + \text{MFFexit} \times (365 / \text{FATDAY} - 1)) / 2 \times \text{AFF}\]

Unit: \textit{heads\texttimes year}^2

Male section

\[\text{MMfin} = \text{MMfb} \times (365 / \text{FATDAY}) / ((1 - (\text{DR2} / 100))^{\text{AFM}})\]

\[\text{MMin} = \text{MMtin} - \text{MMfin}\]

\[\text{MMfexit} = \text{MMfb} \times (365 / \text{FATDAY}) \times (1 - \text{DRf} / 100)\]

\[\text{MMr} = (\text{MMfin} \times (365 / \text{FATDAY} - 1) / (365 / \text{FATDAY}) + \text{MFFexit} \times (365 / \text{FATDAY} - 1)) / 2 \times \text{AFM}\]

Unit: \textit{heads\texttimes year}^2

In case the animals in the surplus categories of the beef sector are not enough to fulfill the feedlots’ requirements, the share between surplus animals in beef and dairy sectors is calculated and applied to the feedlots animals. Then the calculation above is done for both the sectors.

2.1.2.5 – Average weights and growth rates

\[\text{RFkg} = (\text{AFkg} - \text{Ckg}) / 2 + \text{Ckg}\]

\[\text{RMkg} = (\text{AMkg} - \text{Ckg}) / 2 + \text{Ckg}\]

\[\text{MFkg} = (\text{MFSkg} - \text{Ckg}) / 2 + \text{Ckg}\]

\[\text{MMkg} = (\text{MMSkg} - \text{Ckg}) / 2 + \text{Ckg}\]

\[\text{MFFkg} = ((\text{LWSTARTF} - \text{Ckg}) / 2 + \text{Ckg}) \times \text{AFF} + ((\text{LWENDF} - \text{LWSTARTF}) / 2 + \text{LWSTARTF}) \times (\text{FATTDAY} / 365)) / \text{ASFF}\]

\[\text{MMfkg} = ((\text{LWSTARTM} - \text{Ckg}) / 2 + \text{Ckg}) \times \text{AFM} + ((\text{LWENDM} - \text{LWSTARTM}) / 2 + \text{LWSTARTM}) \times (\text{FATTDAY} / 365)) / \text{ASFM}\]

Unit: \textit{kg\texttimes head}^2

\[\text{DWGF} = (\text{AFkg} - \text{Ckg}) / (365 \times \text{AFC})\]

\[\text{DWGM} = (\text{AMkg} - \text{Ckg}) / (365 \times \text{AFC})\]

\[\text{DWGFF} = (\text{DWGF} \times \text{AFF} + ((\text{LWENDF} - \text{LWSTARTF}) / \text{FATTDAY}) \times (\text{FATTDAY} / 365)) / \text{ASFF}\]

\[\text{DWGFM} = (\text{DWGM} \times \text{AFM} + ((\text{LWENDM} - \text{LWSTARTM}) / \text{FATTDAY}) \times (\text{FATTDAY} / 365)) / \text{ASFM}\]

Unit: \textit{kg\texttimes animal}^1\texttimes day^1

2.2 – HERD MODULE: SMALL RUMINANTS

This section provides the description of parameters and equations for sheep and goats. Input data and parameters are described in Section 2.2.1. Equations are provided in Section 2.2.2.

2.2.1 – Input and output data and variables

Table 2.4 and Table 2.5 provide the list of input data and parameters and output variables, respectively. Regional values for selected variables are provided on the GLEAM dashboard (https://www.fao.org/gleam/dashboard).

Table 2.4 Sheep and goats input data and parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL AGGREGATED ANIMAL NUMBERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSHEEP</td>
<td>Total number of sheep, per cell from GLW</td>
<td>heads</td>
</tr>
<tr>
<td>NGOAT</td>
<td>Total number of goats, per cell from GLW</td>
<td>heads</td>
</tr>
<tr>
<td>LIVE WEIGHTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ckg</td>
<td>Live weight of lambs or kids at birth</td>
<td>kg</td>
</tr>
<tr>
<td>AFkg</td>
<td>Live weight of adult female animals</td>
<td>kg</td>
</tr>
<tr>
<td>AMkg</td>
<td>Live weight of adult male animals</td>
<td>kg</td>
</tr>
<tr>
<td>MFSkg</td>
<td>Live weight of female fattening animals at slaughter</td>
<td>kg</td>
</tr>
<tr>
<td>MMSkg</td>
<td>Live weight of male fattening animals at slaughter</td>
<td>kg</td>
</tr>
</tbody>
</table>
Table 2.5 Sheep and goats output variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>COHORTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>Adult females, producing milk and lambs or kids</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RF</td>
<td>Replacement females, to replace culled and dead adult females</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>AM</td>
<td>Adult males, used for reproduction</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RM</td>
<td>Replacement males, to replace culled and dead adult males</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>MF</td>
<td>Meat females <1 year, surplus animals fattened for meat production</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>MM</td>
<td>Meat males <1 year, surplus animals fattened for meat production</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>C</td>
<td>Lambs or kids</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RF1</td>
<td>Replacement females at the end of first year</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RFA</td>
<td>Replacement females in the midst of first year</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RFB</td>
<td>Replacement females in the midst of the second year</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RMA</td>
<td>Replacement males at the end of first year</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RMB</td>
<td>Replacement males in the midst of the second year</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>COHORT SPECIFIC DATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cexit</td>
<td>Number of sold animals for meat production from cohort c</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>cin</td>
<td>Number of animals entering cohort c</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>cx</td>
<td>Number of dead animals in cohort c</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>ckg</td>
<td>Live weight of cohort c</td>
<td>kg×head⁻¹</td>
</tr>
<tr>
<td>ANIMAL NUMBERS SUBTOTALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSHEEP</td>
<td>Total animal numbers in the sheep dairy herd</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>DGOAT</td>
<td>Total animal numbers in the goats dairy herd</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>DAILY WEIGHT GAINS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWGF</td>
<td>Average daily weight gain of female animals from lamb or kid to adult weight</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>DWGM</td>
<td>Average daily weight gain of male animals from lamb or kid to adult weight</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>OTHER VARIABLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASF</td>
<td>Age at slaughter of non-feedlot female animals</td>
<td>year</td>
</tr>
<tr>
<td>ASM</td>
<td>Age at slaughter of non-feedlot male animals</td>
<td>year</td>
</tr>
<tr>
<td>AFD</td>
<td>Adult female animals from dairy herd</td>
<td>heads×year⁻¹</td>
</tr>
</tbody>
</table>

2.2.2 – Herd equations - Small ruminants

2.2.2.1 Dairy herd - Female section

\[
AF = DSR \times NSHEEP \text{ or } DSR \times NGOAT
\]

\[
AFin = AF \times \left(\frac{RF}{100}\right)
\]

\[
AFx = AF \times \left(\frac{DR2}{100}\right)
\]

\[
AFexit = AF \times \left(\frac{RF}{100}\right) - AFx
\]

\[
Cin = AF \times \left((1 - \left(\frac{DR2}{100}\right)) \times \left(\frac{365 \times FR}{LINT} \times 100\right) \times LITSIZE + \left(\frac{RRF}{100}\right)\right)
\]

\[
RFin = \left(\frac{AF \times \left(\frac{RF}{100}\right)}{FRRF}\right) / \left((1 - \left(\frac{DR1}{100}\right)) \times (1 - \left(\frac{DR2}{100}\right))^{(AFC - 1)}\right)
\]

\[
RExit = \left(\frac{AF \times \left(\frac{RF}{100}\right)}{FRRF} - AFin\right)
\]

\[
RFx = RFin - (AFin + RExit)
\]

\[
RF1 = RFin \times \left(1 - \left(\frac{DR1}{100}\right)\right)
\]

\[
RFA = \frac{(RFin + RF1)}{2}
\]
RFB = (RF1 + AFin) / 2 × (AFC – 1)
RF = ((RFin + RF1) / 2) + (AFC × (RF1 + AFin) / 2 × (AFC – 1))
MFin = Cin / 2 – Rfin
Unit: heads/year²

ASF = AFC × (MFSkg – Ckg) / (AFkg – Ckg)
Unit: year

MFexit = MFin × (1 – (DR1 / 100))²
MFx = MFin – MFexit
MF = (MFin + MFexit) / 2 × ASF
Unit: heads/year²

2.2.2.2 – Dairy herd - Male section

AM = AF × MFR
AMx = AM × (DR2 / 100)
AMexit = AM / (3 × AFC)³ – AMx
AMin = AM / (3 × AFC)
RMn = AMin / ((1 – (DR1 / 100)) × (1 – (DR2 / 100))²)
RM1 = RMin × (1 – (DR1 / 100))²
RMA = (RM1 + RMin) / 2
RMexit = RMin – AMin
RM = (RM1 + AMin) / 2 + (RM1 + AMin) / 2 × (AFC – 1)
MMin = Cin / 2 – RMin
Unit: heads/year²

ASM = AFC × (MMSkg – Ckg) / (AMkg – Ckg)
Unit: year

MMexit = MMin × (1 – (DR1 / 100))²
MMx = MMin – MMexit
MM = (MMin + MMexit) / 2 × ASM
Unit: heads/year²

Equations for sheep

DSHEEP = AF + RF + MF + AM + RM + MM
AFD = AF
Unit: heads/year²

Equations for goats

DGOAT = AF + RF + MF + AM + RM + MM
AFD = AF

³ For cattle, bulls are replaced in relation to the age of first calving. This is done to prevent inbreeding, bulls serving their own daughters. In the case of sheep, farmers tend to exchange rams. It is assumed that a ram is exchanged twice, which means that he can serve for three periods, so the replacement rate is only one third of what it would be based on the AFC.
2.2.2.3 – Non-dairy herd

Equations for sheep

\[
BSHEEP = NSHEEP - DSHEEP
\]

IF \(DSHEEP = 0 \)

\[
AF = NSHEEP \times (1 - MFR)
\]

ELSE

\[
AF = (AFD / DSHEEP) \times BSHEEP
\]

Unit: \(\text{heads} \times \text{year}^{-1} \)

Equations for goats

\[
BGOAT = NGOAT - DGOAT
\]

IF \(DGOAT = 0 \)

\[
AF = NGOAT \times (1 - MFR)
\]

ELSE

\[
AF = (AFD / DGOAT) \times BGOAT
\]

Unit: \(\text{heads} \times \text{year}^{-1} \)

Once \(AF \) in non-dairy herd is estimated, the model follows the same equations shown in Section 2.2.2.1 and Section 2.2.2.2.

2.2.2.4 – Average weights and growth rates

\[
RFkg = (AFkg + Ckg) / 2
\]

\[
RF1kg = Ckg + ((AFkg - Ckg) / AFC)
\]

\[
RFAkg = (Ckg + RF1kg) / 2
\]

\[
RFBkg = (RF1kg + AFkg) / 2
\]

\[
RMkg = (AMkg + Ckg) / 2
\]

\[
RM1kg = Ckg + ((AMkg - Ckg) / AFC)
\]

\[
RMAkg = (Ckg + RM1kg) / 2
\]

\[
RMBkg = (RM1kg + AMkg) / 2
\]

\[
MFkg = (MFSkg - Ckg) / 2 + Ckg
\]

\[
MMkg = (MMSkg - Ckg) / 2 + Ckg
\]

Unit: \(\text{kg} \times \text{head}^{-1} \)

\[
DWGF = (AFkg - Ckg) / (365 \times AFC)
\]

\[
DWGM = (AMkg - Ckg) / (365 \times AFC)
\]

Unit: \(\text{kg} \times \text{head}^{-1} \times \text{day}^{-1} \)

2.3 – HERD MODULE: PIGS

This section provides the description of parameters and equations for pigs. Input and output data and parameters are described in Section 2.3.1. Equations are provided in Section 2.3.2.

2.3.1 – Input and output data and variables

Table 2.6 and Table 2.7 provide the list of input data and parameters and output variables, respectively. Regional values for selected variables are provided on the GLEAM dashboard (https://www.fao.org/gleam/dashboard).

Table 2.6 Pigs input data and parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL AGGREGATED ANIMAL NUMBERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPIGS</td>
<td>Total animal number, per cell and production system</td>
<td>(\text{heads} \times \text{year}^{-1})</td>
</tr>
<tr>
<td>LIVE WEIGHTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ckg</td>
<td>Live weight of piglets at birth</td>
<td>kg</td>
</tr>
<tr>
<td>Wkg</td>
<td>Live weight of piglets at weaning age</td>
<td>kg</td>
</tr>
</tbody>
</table>
AFkg | Live weight of adult female animals | kg
AMkg | Live weight of adult male animals | kg
M2Skg | Live weight of fattening animals at slaughter | kg

DEATH, FERTILITY AND REPLACEMENT RATES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR1</td>
<td>Death rate of piglets before weaning age</td>
<td>percentage</td>
</tr>
<tr>
<td>DRR2A</td>
<td>Death rate of replacement animals between weaning and adult ages</td>
<td>percentage</td>
</tr>
<tr>
<td>DRR2B</td>
<td>Death rate of adult animals</td>
<td>percentage</td>
</tr>
<tr>
<td>DRF2</td>
<td>Death rate of fattening animals</td>
<td>percentage</td>
</tr>
<tr>
<td>FR</td>
<td>Annual parturitions per sow</td>
<td>parturition×year⁻¹</td>
</tr>
<tr>
<td>FRRF</td>
<td>Rate of fertile replacement females.</td>
<td>fraction</td>
</tr>
<tr>
<td>RRF</td>
<td>Replacement rate female animals</td>
<td>percentage</td>
</tr>
<tr>
<td>RRM</td>
<td>Replacement rate male animals</td>
<td>percentage</td>
</tr>
</tbody>
</table>

OTHER INPUT VARIABLES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF_frac</td>
<td>Sows to total herd ratio.</td>
<td>fraction</td>
</tr>
<tr>
<td>WA</td>
<td>Weaning age</td>
<td>days</td>
</tr>
<tr>
<td>LITSIZE</td>
<td>Litter size, number of piglets per parturition</td>
<td>heads×parturition⁻¹</td>
</tr>
<tr>
<td>MFR</td>
<td>Boar to sow ratio</td>
<td>fraction</td>
</tr>
<tr>
<td>DWG2</td>
<td>Average daily weight gain of fattening animals</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
</tbody>
</table>

Table 2.7 Pigs output variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>Adult females, producing piglets</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RF</td>
<td>Replacement females, to replace culled and dead adult females</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>AM</td>
<td>Adult males, used for reproduction</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RM</td>
<td>Replacement males, to replace culled and dead adult males</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>M2</td>
<td>Meat animals, female and male fattening animals for meat production</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>C</td>
<td>Piglets</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>cexit</td>
<td>Number of sold animals for meat production from cohort c</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>cin</td>
<td>Number of animals entering cohort c</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>cx</td>
<td>Number of dead animals in cohort c</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>ckg</td>
<td>Live weight of cohort c</td>
<td>kg×head⁻¹</td>
</tr>
<tr>
<td>DWGF</td>
<td>Average daily weight gain of female young replacement animals</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>DWGM</td>
<td>Average daily weight gain of male young replacement animals</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>AFCF</td>
<td>Age at first parturition calculated in basis of the daily weight gain</td>
<td>year</td>
</tr>
<tr>
<td>AFCM</td>
<td>Age at which boars are considered adults in the basis of the daily weight gain</td>
<td>year</td>
</tr>
<tr>
<td>A2S</td>
<td>Length of fattening period for meat animals</td>
<td>year</td>
</tr>
</tbody>
</table>

2.3.2 – Herd equations – Pigs

2.3.2.1 – Female section

AF = NP1GS × AF_frac
AFin = AF × (RRF / 100)
AFX = AF × (DRR2B / 100)
AFexit= AF × (RRF / 100) − AFx
Cin = AF × ((1 − (DRR2B / 100)) × FR × LITSIZE + (RRF / 100) × LITSIZE) × (1 − (DR1 / 100))

Unit: heads×year⁻¹

DWGF = (AFkg − Wkg) / (365 × DWG2) + (WA / 365)
Unit: kg×head⁻¹×year⁻¹

AFCF = WHERE
Unit: year

RFin = ((AF × (RRF / 100)) / FRRF) / (1 − (DRR2A / 100))^{AFCF}

21
RFexit = ((AF × (RRF / 100)) / FRRF) – AFin
RFx = RFin – (AFin + RFexit)
RF = (RFin + AFin) / 2 × ((AFkg – Wkg) / (365 × DWGF) + (WA / 365))
MFin = Cin / 2 – RFin
Unit: heads/year²

2.3.2.2 – Male section
AM = AF × MFR
AMx = AM × (DRR2B / 100)
Unit: heads/year²

DWGM = AMkg / ((AFkg + AMkg) / 2) × DWG2
Unit: kg/head/year²

AFCM = (AMkg – Wkg) / (365 × DWGM) + (WA / 365)
Unit: year
AMexit = AM × RRM / 100 – AMx
AMin = AM × RRM / 100
RMin = AMin / (1 – (DRR2A / 100))ÅFCM
RMx = RMin – AMin
RM = (RMin + AMin) / 2 × ((AMkg – Wkg) / (365 × DWGM) + (WA / 365))
MMin = Cin / 2 – RMin
Unit: heads/year²

2.3.2.3 – Fattening section
M2in = MFin + MMin
Unit: heads/year²

A2S = (M2Skg – Wkg) / (365 × DWG2)
Unit: year

M2exit = M2in × (1 – (DRF2 / 100))Å2S
M2x = M2in – M2exit
M2 = (M2in + M2exit) / 2 × ((M2Skg – Wkg) / (365 × DWG2))
Unit: heads/year²

2.3.2.4 – Average weights
RFkg = (AFkg – Wkg) / 2 + Wkg
RMkg = (AMkg – Wkg) / 2 + Wkg
M2kg = (M2Skg – Wkg) / 2 + Wkg
Unit: kg/head²
2.4 – HERD MODULE: CHICKENS

This section provides the description of parameters and equations for chicken. Input and output data and parameters are described in Section 2.4.1. Equations are provided in Section 2.4.2 to Section 2.4.4.

2.4.1 – Input and output data and variables

Table 2.8 and Table 2.9 provide the list of input data and parameters and output variables, respectively. Regional values for selected variables are provided on the GLEAM dashboard (https://www.fao.org/gleam/dashboard).

Table 2.8 Chickens input data and parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFC</td>
<td>Age at first laying (hens) or reproduction (roosters)</td>
<td>days</td>
</tr>
<tr>
<td>NCHK</td>
<td>Total number of chickens per cell and production system</td>
<td>heads</td>
</tr>
<tr>
<td>LW</td>
<td>LIVE WEIGHTS</td>
<td></td>
</tr>
<tr>
<td>Ckg</td>
<td>Live weight of chicks at birth</td>
<td>kg</td>
</tr>
<tr>
<td>ALL SYSTEMS</td>
<td>AF2kg</td>
<td>Live weight of females at the end of the laying period</td>
</tr>
<tr>
<td></td>
<td>AM2kg</td>
<td>Live weight of males at the end of the laying period</td>
</tr>
<tr>
<td>BAKKARD SYSTEMS</td>
<td>M25kg</td>
<td>Live weight of surplus animals at slaughter</td>
</tr>
<tr>
<td>LAYERS AND BROILERS</td>
<td>AF1kg</td>
<td>Live weight of female reproductive animals at the start of the laying period</td>
</tr>
<tr>
<td></td>
<td>AF2kg</td>
<td>Live weight of female reproductive animals at the end of the laying period</td>
</tr>
<tr>
<td></td>
<td>M2Skg</td>
<td>Live weight at slaughter of female and male broiler animals</td>
</tr>
<tr>
<td>DEATH, FERTILITY AND REPLACEMENT RATES</td>
<td>DR1</td>
<td>Chick mortality rate during the first 16–17 weeks. Not an annual rate</td>
</tr>
<tr>
<td>ALL SYSTEMS</td>
<td>FRRF</td>
<td>Fertility rate of replacement female animals. Note: a default value of 0.95 is used in all situation</td>
</tr>
<tr>
<td>BACKYARD SYSTEMS</td>
<td>DRL2</td>
<td>Death rate of adult females and males</td>
</tr>
<tr>
<td>LAYERS</td>
<td>DRM</td>
<td>Death rate during the molting period. Note: a default value of 15 is used in all situation</td>
</tr>
<tr>
<td>BROILERS</td>
<td>DRB2</td>
<td>Death rate of broiler animals</td>
</tr>
<tr>
<td></td>
<td>DRL2</td>
<td>Death rate of laying animals during the laying period</td>
</tr>
<tr>
<td>OTHER INPUT VARIABLES</td>
<td>MFR</td>
<td>Rooster to hen ratio per production system</td>
</tr>
<tr>
<td>ALL SYSTEMS</td>
<td>EGGSyear</td>
<td>Annual laid eggs per hen per production system</td>
</tr>
<tr>
<td></td>
<td>EGWght</td>
<td>Average egg weight</td>
</tr>
<tr>
<td></td>
<td>HATCH</td>
<td>Hatchability, fraction of laid eggs that actually give a chick</td>
</tr>
<tr>
<td>BACKYARD SYSTEMS</td>
<td>AFS</td>
<td>Age at which adult surplus females are slaughtered</td>
</tr>
<tr>
<td>CYCLE</td>
<td>Number of reproductive laying cycles</td>
<td>cycles</td>
</tr>
<tr>
<td>CLTSIZE</td>
<td>Laid eggs per cycle per reproductive hen</td>
<td>eggs × cycle⁻¹</td>
</tr>
<tr>
<td>LAYERS</td>
<td>LAY1weeks</td>
<td>Length of the first laying period</td>
</tr>
<tr>
<td></td>
<td>LAY2weeks</td>
<td>Length of the second laying period. Note: a default value of 30 is used in all situation</td>
</tr>
<tr>
<td></td>
<td>MOLTweeks</td>
<td>Length of the molting period. Note: a default value of 6 is used in all situation</td>
</tr>
<tr>
<td>BROILERS</td>
<td>A2S</td>
<td>Age at slaughter for meat animals</td>
</tr>
<tr>
<td></td>
<td>BIDLE</td>
<td>Idle days between two production cycles. Note: a default value of 14 is used in all situation</td>
</tr>
<tr>
<td></td>
<td>LAYweeks</td>
<td>Length of the laying period</td>
</tr>
</tbody>
</table>
Table 2.9 Chickens output variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINCIPAL COHORTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACKYARD SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>Adult females, used for reproduction</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RF</td>
<td>Replacement females, to replace culled and dead adult females</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>AM</td>
<td>Adult males, used for reproduction</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RM</td>
<td>Replacement males, to replace culled and dead adult males</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>MF1, MF2</td>
<td>Growing and adult surplus females</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>MM</td>
<td>Surplus males, sold for meat</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>C</td>
<td>Chicks</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>LAYERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>Adult females, used for reproduction</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RF</td>
<td>Replacement females, to replace culled and dead adult females</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>AM</td>
<td>Adult males, used for reproduction</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RM</td>
<td>Replacement males, to replace culled and dead adult males</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>MF2</td>
<td>Adult laying females during the first laying period</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>MF3</td>
<td>Adult laying females during the molting period</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>MF4</td>
<td>Adult laying females during the second laying period</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>MM</td>
<td>Surplus males, sold for meat</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>C</td>
<td>Chicks</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>BROILERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>Adult females, used for reproduction</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RF</td>
<td>Replacement females, to replace culled and dead adult females</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>AM</td>
<td>Adult males, used for reproduction</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>RM</td>
<td>Replacement males, to replace culled and dead adult males</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>M2</td>
<td>Surplus female and male broiler animals, sold for meat</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>C</td>
<td>Chicks</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>COHORT SPECIFIC DATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cexit</td>
<td>Number of sold animals for meat production from cohort c</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>cin</td>
<td>Number of animals entering cohort c</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>cx</td>
<td>Number of dead animals in cohort c</td>
<td>heads×year⁻¹</td>
</tr>
<tr>
<td>ckg</td>
<td>Live weight of cohort c</td>
<td>kg×head⁻¹</td>
</tr>
<tr>
<td>DAILY WEIGHT GAINS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACKYARD SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWGF1</td>
<td>Average daily weight gain of all hens in their youth period</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>DWGF2</td>
<td>Average daily weight gain of reproductive and surplus hens in their laying and fattening period</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>DWGM1</td>
<td>Average daily weight gain of all male chickens in their youth period</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>DWGM2</td>
<td>Average daily weight gain of reproductive roosters in their reproductive period</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>LAYERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWGF1</td>
<td>Average daily weight gain of all hens in their youth period</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>DWGF2</td>
<td>Average daily weight gain of layers and reproductive hens in their laying period</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>DWGM1</td>
<td>Average daily weight gain of all male chickens in their youth period</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>DWGM2</td>
<td>Average daily weight gain of reproductive roosters in their reproductive period</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>BROILERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWGF0</td>
<td>Average daily weight gain of reproductive female animals</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>DWGMO</td>
<td>Average daily weight gain of reproductive male animals</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>DWGB</td>
<td>Average daily weight gain of broiler animals</td>
<td>kg×head⁻¹×day⁻¹</td>
</tr>
<tr>
<td>OTHER VARIABLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACKYARD SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF1kg, AM1kg</td>
<td>Live weight of female and male reproductive animals at the start of the laying period</td>
<td>kg×head⁻¹</td>
</tr>
<tr>
<td>AF1kg, AM1kg</td>
<td>Average live weight of adult females and males, respectively</td>
<td>kg×head⁻¹</td>
</tr>
<tr>
<td>MSKkg</td>
<td>Live weight of male surplus animals at slaughter</td>
<td>kg×head⁻¹</td>
</tr>
<tr>
<td>EGConsAF</td>
<td>Number of eggs used for human consumption by reproductive hen</td>
<td>egg×head⁻¹×year⁻¹</td>
</tr>
<tr>
<td>LAYERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AF1kg, AM1kg</td>
<td>Live weight of female and male reproductive animals at the start of the laying period</td>
<td>kg×head⁻¹</td>
</tr>
<tr>
<td>AF2kg, AM2kg</td>
<td>Live weight of female and male reproductive animals at the end of the laying period</td>
<td>kg×head⁻¹</td>
</tr>
<tr>
<td>AF1kg, AM1kg</td>
<td>Average live weight of adult females and males, respectively</td>
<td>kg×head⁻¹</td>
</tr>
<tr>
<td>MF11kg, MF22kg</td>
<td>Average live weight of laying hens during their growing and laying period, respectively</td>
<td>kg×head⁻¹</td>
</tr>
</tbody>
</table>
Average live weight of surplus male animals \(\text{kg per head}^{-1}\)

Live weight of male reproductive at the start and the end of the reproductive period \(\text{kg per head}^{-1}\)

2.4.2 – Herd equations – Backyard chickens

2.4.2.1 – Reproductive female section

AF = \(N\text{CHK} / 100\)

Unit: \(\text{heads per year}^1\)

RRF = \(365 / (\text{AFS} - \text{AFC})^4\)

Unit: \(\text{fraction}\)

AFin = AF \times RRF

AFx = AF \times (\text{DR2} / 100)

AFexit = AF \times RRF - AFx

Unit: \(\text{heads per year}^2\)

EGGSrepro = \(\text{CYCLE} \times \text{CLTSIZE}\)

Unit: \(\text{eggs per year}^1\)

IF EGGSrepro > EGGSyear

EGGSrepro = EGGSyear

EGGconsAF = EGGSyear - EGGSrepro

Unit: \(\text{eggs per year}^1\)

Cin = \((\text{AF} \times (1 - (\text{DR2} / 100))) \times \text{EGGSrepro}\) \times \text{HATCH}\)

RFin = \((\text{AF} \times \text{RRF}) / \text{FRRF}) / (1 - (\text{DR1} / 100))\)

RFexit = \((\text{AF} \times \text{RRF}) / \text{FRRF}) - \text{AFin}\)

RFX = RFin - (AFin + RFexit)

RF = (RFin + AFin) / 2 \times (\text{AFC} / 365)

MF1in = Cin / 2 - RFin

Unit: \(\text{heads per year}^2\)

2.4.2.2 – Reproductive male section

AM = \(\text{AF} \times \text{MFR}\)

Unit: \(\text{heads per year}^2\)

RRM = RRF

Unit: \(\text{fraction}\)

AMx = AM \times (\text{DR2} / 100)

AMexit = AM \times \text{RRM} - AMx

AMin = AM \times \text{RRM}

\(^4\) The replacement rate is defined as the inverse of the productive lifespan expressed in years. The productive lifespan is the period that goes from the age at which animals are reproductive (AFC) to the age at which they are slaughtered (AFS). It is assumed that replacement rate for roosters (RRM) is the same as for hens (RRF).
RM\text{in} &= \frac{A\text{Min}}{1 - (D\text{R1} / 100)} \\
RM\text{x} &= RM\text{in} - AM\text{in} \\
RM &= \frac{(RM\text{in} + AM\text{in})}{2} \times (AFC / 365) \\
M\text{Min} &= \frac{C\text{in}}{2} - RM\text{in} \\
Unit: heads\times\text{year}^{-1}

2.4.2.3 – Male fattening section

\begin{align*}
M\text{Mexit} &= M\text{Min} \times (1 - (D\text{R1} / 100)) \\
M\text{Mx} &= M\text{Min} - M\text{Mexit} \\
MM &= \frac{(M\text{Min} + M\text{Mexit})}{2} \times (AFC / 365)
\end{align*}

Unit: heads\times\text{year}^{-1}

2.4.2.4 – Female fattening and egg production section

Growing period

\begin{align*}
M\text{F1x} &= M\text{F1in} \times (D\text{R1} / 100) \\
M\text{F1exit} &= (M\text{F1in} - M\text{F1x}) \times (1 - F\text{RRF}) \\
M\text{F2in} &= (M\text{F1in} - M\text{F1x}) \times F\text{RRF} \\
M\text{F1} &= \frac{(M\text{F1in} + M\text{F2in})}{2} \times (AFC / 365)
\end{align*}

Unit: heads\times\text{year}^{-1}

Laying period

\begin{align*}
M\text{F2exit} &= M\text{F2in} \times (1 - (D\text{R2} / 100)) \times (A\text{FS} - AFC) / 365 \\
M\text{F2x} &= M\text{F2in} - M\text{F2exit} \\
M\text{F2} &= \frac{(M\text{F2in} + M\text{F2exit})}{2} \times ((A\text{FS} - AFC) / 365)
\end{align*}

Unit: heads\times\text{year}^{-1}

\begin{align*}
E\text{GGconsMF} &= E\text{GGSyear}
\end{align*}

Unit: eggs\times\text{year}^{-1}

2.4.2.5 – Average characteristics

\begin{align*}
A\text{F1kg} &= M\text{2Skg} \times (A\text{F2kg} / ((A\text{F2kg} + A\text{M2kg}) / 2)) \times (AF\text{kg} / (AF\text{kg} + AM\text{kg}) / 2) \\
A\text{M1kg} &= M\text{2Skg} \times (A\text{M2kg} / ((A\text{F2kg} + A\text{M2kg}) / 2)) \\
M\text{F1Skg} &= A\text{F1kg} \\
M\text{F2Skg} &= A\text{F2kg} \\
M\text{MMSkg} &= M\text{2Skg} \times (A\text{M2kg} / ((A\text{F2kg} + A\text{M2kg}) / 2)) \\
R\text{Fkg} &= (A\text{F1kg} - C\text{kg}) / 2 + C\text{kg} \\
R\text{Mkg} &= (A\text{M1kg} - C\text{kg}) / 2 + C\text{kg} \\
A\text{Fkg} &= (A\text{F2kg} - A\text{F1kg}) / 2 + A\text{F1kg} \\
A\text{Mkg} &= (A\text{M2kg} - A\text{M1kg}) / 2 + A\text{M1kg} \\
M\text{F1kg} &= R\text{Fkg} \\
M\text{F2kg} &= A\text{Fkg} \\
M\text{Mkg} &= (M\text{MMSkg} - C\text{kg}) / 2 + C\text{kg}
\end{align*}

Unit: kg\times\text{head}^{-1}

\begin{align*}
D\text{WG1} &= (A\text{F1kg} - C\text{kg}) / AFC \\
D\text{WG2} &= (A\text{F2kg} - A\text{F1kg}) / (A\text{FS} - AFC) \\
D\text{WGM1} &= (A\text{M1kg} - C\text{kg}) / AFC \\
D\text{WGM2} &= (A\text{M2kg} - A\text{M1kg}) / (A\text{FS} - AFC)
\end{align*}

Unit: kg\times\text{head}^{-1}\times\text{day}^{-1}

2.4.3 – Herd equations – Layers

2.4.3.1 – Lay time

\begin{align*}
\text{IF molting is not done}
\end{align*}
LAYtime = LAY1weeks / 52

IF molting is done
LAYtime = (LAY1weeks + LAY2weeks + MOLTweeks) / 52

Unit: year

2.4.3.2 – Reproductive female section

AF = NCHK / 100
AFin = AF / LAYtime
AFX = AF × (152 × DRL2 / LAY1weeks) / 100
AFexit = AF / LAYtime − AFX
Cin = AF × (1 − (DRL2 / 100)) × EGGSyear × HATCH
RFin = ((AF / LAYtime) / FRRF) / (1 − (DR1 / 100))
RFexit = ((AF / LAYtime) / FRRF) − AFin
RFX = RFin − (AFin + RFexit)
RF = (RFin + AFin) / 2 × (AFC / 365)
MF1in = Cin / 2 − RFin

Unit: heads/year²

2.4.3.3 – Male reproduction section

AM = AF × MFR
AMx = AM × (152 × DRL2 / LAY1weeks) / 100
AMexit = AM / LAYtime − AMx
AMin = AM / LAYtime
RMin = AMin / (1 − (DR1 / 100))
RMx = RMin − AMin
RM = (RMin + AMin) / 2 × (AFC / 365)
MMin = Cin / 2 − RMin

Unit: heads/year²

2.4.3.4 – Laying section

Growing period
MF2in = MF1in × (1 − (DR1 / 100))
MF1x = MF1in − MF2in
MF1 = ((MF1in + MF2in) / 2) × (AFC / 365)

Unit: heads/year²

Laying period
MF2exit = MF2in × (1 − (DRL2 / 100))
MF2x = MF2in − MF2exit
MF2 = ((MF2in + MF2exit) / 2) × (LAY1weeks / 52)
IF molting is not done
MF4exit = MF2exit
MF3 = 0
MF4 = 0

Unit: heads/year²

IF molting is done
\[
\begin{align*}
MF3exit^5 &= MF2exit \times (1 - (DRM / 100)) \\
MF3 &= MF2exit - MF3exit \\
MF3 &= ((MF2exit + MF3exit) / 2) \times (MOLTweeks / 52) \\
MF4exit &= MF3exit \times (1 - (DRL2 / 100)) \\
MF4 &= MF3exit - MF4exit \\
MF4 &= ((MF3exit + MF4exit) / 2) \times (LAY2weeks / 52)
\end{align*}
\]

Unit: \textit{heads\times year}2

2.4.3.5 – Male meat production section

IF Country is OECD
\[
\begin{align*}
MMexit &= 0 \\
MMx &= 0 \\
MM &= 0 \\
\end{align*}
\]

Unit: \textit{heads\times year}2

IF Country is not OECD
\[
\begin{align*}
MMexit &= MMin \times (1 - (DR1 / 100)) \\
MMx &= MMin - MMexit \\
MM &= ((MMin + MMexit) / 2) \times (AFC / 365)
\end{align*}
\]

Unit: \textit{heads\times year}2

2.4.3.6 – Average weight and growth rates

AF1kg = MF1kg \\
AF2kg = MF2kg \\
AM1kg = 1.3 \times MF1kg \\
AM2kg = 1.3 \times MF2kg \\
MM1kg = 1.3 \times MF1kg \\
MF11kg = (MF1kg - Ckg) / 2 + Ckg \\
RFkg = MF11kg \\
MF22kg = (MF2kg - MF1kg) / 2 + MF1kg \\
AFkg = MF22kg \\
AMkg = (AM2kg - AM1kg) / 2 + AM1kg \\
RMkg = (AM1kg - Ckg) / 2 + Ckg \\
MMkg = (MM1kg - Ckg) / 2 + Ckg
\]

Unit: \textit{kg\times head}2

\[
\begin{align*}
DWGF1 &= (MF1kg - Ckg) / AFC \\
DWGF2 &= (MF2kg - MF1kg) / (7 \times LAY1weeks) \\
DWGF3 &= 0 \\
DWGF4 &= 0 \\
DWGM1 &= (AM1kg - Ckg) / AFC \\
DWGM2 &= (AM2kg - AM1kg) / (365 \times (LAY1weeks / 52))
\end{align*}
\]

Unit: \textit{kg\times head}2\times day2

\(^5\) If molting is done, the only variable accounting for the number of adult laying females sold for meat production is MF4exit. In these cases, MF2exit and MF3exit represent the number of laying females moving, in one year, from cohort MF2 to MF3 and from cohort M3 to MF4, respectively.
2.4.4 – Herd equations – Broilers

2.4.4.1 – Reproductive female section

\[\text{AF} = \frac{\text{NCHK}}{100} \]
\[\text{AFin} = \frac{\text{AF}}{\text{(LAYweeks} / 52)} \]
\[\text{AFx} = \frac{\text{AF} \times (\text{(52} \times \text{DRL2} / \text{LAYweeks}))}{100} \]
\[\text{AFexit} = \frac{\text{AF}}{\text{(LAYweeks} / 52)} - \text{AFx} \]
\[\text{Cin} = \frac{\text{AF} \times (1 - (\text{DRL2} / 100)) \times \text{EGGSyear} \times \text{HATCH}}{\text{(AF} / \text{(LAYweeks} / 52)) / \text{FRRF} / (1 - (\text{DR1} / 100))} \]
\[\text{RFin} = \frac{\text{((AF} / \text{(LAYweeks} / 52)) / \text{FRRF} / (1 - (\text{DR1} / 100))} - \text{AFin} \]
\[\text{RFx} = \text{RFin} - (\text{AFin} + \text{RFexit}) \]
\[\text{RF} = \frac{(\text{RFin} + \text{AFin}) / 2 \times (\text{AFC} / 365)}{2} \]
\[\text{MFin} = \frac{\text{Cin}}{2} - \text{RFin} \]

Unit: heads/year²

2.4.4.2 – Male reproduction section

\[\text{AM} = \frac{\text{AF} \times \text{MFR}}{2} \]
\[\text{AMx} = \frac{\text{AM} \times (\text{LAYweeks} / 52)) / 100} \]
\[\text{AMexit} = \frac{\text{AM} / (\text{LAYweeks} / 52)} - \text{AMx} \]
\[\text{AMin} = \frac{\text{AM} / (\text{LAYweeks} / 52)} \]
\[\text{RMin} = \frac{\text{AMin} / (1 - (\text{DR1} / 100))} \]
\[\text{RMx} = \frac{\text{RMin} - \text{AMin}}{2} \]
\[\text{RM} = \frac{((\text{RMin} + \text{AMin}) / 2) \times (\text{AFC} / 365)}{2} \]
\[\text{MMin} = \frac{\text{Cin}}{2} - \text{RMin} \]

Unit: heads/year²

2.4.4.3 – Broilers section

\[\text{M2in} = \frac{\text{MFin} + \text{MMin}}{2} \]
\[\text{M2exit} = \frac{\text{M2in} \times (1 - (\text{DRB2} / 100))} \]
\[\text{M2x} = \frac{\text{M2in} - \text{M2exit}}{2} \]
\[\text{M2} = \frac{((\text{M2in} + \text{M2exit}) / 2) \times ((\text{A2S} + \text{BIDLE}) / 365)}{2} \]

Unit: heads/year²

2.4.4.4 – Average weight and growth rates

\[\text{AFkg} = \frac{\text{(AF2kg} + \text{AF1kg})}{2} \]
\[\text{RFkg} = \frac{\text{(AF1kg} - \text{Ckg})}{2} + \text{Ckg} \]
\[\text{AM1kg} = 1.3 \times \text{AF1kg} \]
\[\text{AM2kg} = 1.3 \times \text{AF2kg} \]
\[\text{AMkg} = 1.3 \times \text{AFkg} \]
\[\text{RMkg} = \frac{\text{(AM1kg} - \text{Ckg})}{2} + \text{Ckg} \]
\[\text{M2kg} = \frac{\text{(M2Skg} - \text{Ckg})}{2} + \text{Ckg} \]

Unit: kg/head²

\[\text{DWGF0} = \frac{\text{(AF1kg} - \text{Ckg})}{\text{AFC}} \]
\[\text{DWGM0} = \frac{\text{(AM1kg} - \text{Ckg})}{\text{AFC}} \]

Unit: kg/head²/day⁻¹

\[\text{DWG2B} = \frac{\text{(M2Skg - Ckg})}{\text{A2S}} \]

Unit: kg/head²/day⁻¹
3 CHAPTER 3 – FEED RATION AND INTAKE MODULE

Animal diets are one of the most important aspects of livestock production. They largely determine animal productivity, land use and emissions from enteric fermentation, manure and feed production. Feed intake (kg of dry matter per animal) depends on the energy requirement of animals. Feed intake is calculated for each species and cohort based on the feed ration, its nutritional value and energy requirement of animals.

The functions of the ‘Feed ration and intake’ module are to:

- Define the composition of the ration for each species and production system;
- Calculate the nutritional values of the ration per kilogram of dry matter, and;
- Calculate the average energy requirement and the related feed intake of each animal.

The schematic representation of this chapter is composed of different figure: for ruminants refer to Figure 3.1, Figure 3.2, Figure 3.3 for the composition of the ration and Figure 3.6 for the energy requirement and feed intake calculation; for the monogastrics refer to Figure 3.4 and Figure 3.5 for ration composition, and Figure 3.7 for the energy requirement and feed intake calculation.

3.1 – TRACING IMPACTS THROUGH TRADE MATRICES

Many of the environmental impacts of feed production occur at the place where the feed crop is produced, and not at the place where feed is consumed by the animal. It is therefore necessary to trace all feed crops from the place of consumption (determined by the distribution of animals) to the place of production, using bidirectional trade data for different commodities, to account for yields, inputs and associated impacts in the feed producing countries.

Considering only imports and re-exports of traded commodities is not sufficient. In many countries, raw products are imported, modified, and exported to a third country. For example, a country without any soybean production might import raw soybeans, process them and export soy cakes for feed. In this case, the environmental impacts associated with the production of soybeans must be estimated according to the yield, inputs and production features of the country that produces soybeans and not of the country where the crops are processed. To do this, we used a tracing algorithm method (Kastner et al., 2011) that implicitly solves the problem associated with re-exports and indicates the “actual” origin of a product along entire trading chain. It requires that all commodities are converted to primary equivalents using extraction fractions derived from FAOSTAT commodity balance sheets. Production values were taken from the GAEZ 2015+ Data set (Frolking et al., 2020).

The use of the traded commodities in the receiving country is determined by the allocation to different uses, reported in FAOSTAT commodity balance sheets, expressed in primary equivalents. To smooth out variability, we used a three-year average around the year 2015 for all FAOSTAT data.

The resulting trade matrix for all was then used to calculate weighted average yields, production inputs and emission factors in each consuming countries, from the local average values in the exporting country.

3.2 – CROP YIELDS AND PASTURE PRODUCTIVITY

Crops are used as animal feed in three main forms: 1) as the main crop (e.g. grains or whole crops such as grass or silage); 2) as crop residues (such as straw) or 3) as agro-industrial by-products (e.g. brans and cakes).

Data on fresh matter yields per hectare of main crops and their respective land area were taken from GAEZ 2015+ Data set (Frolking et al., 2020) and data on dry matter productivity modified from Copernicus Global Land Service (2021) to estimate the above-ground net primary productivity for pasture. These data are used for two main purposes: 1) estimating the local availability of feed for livestock (see Section 3.3.1) and 2) allocating the emissions associated with feed production between the crop and the crop co-products (crop residues and by-products) according to the kind of feed materials used by the animals (see Chapter 6, Section 6.1.3).
To this scope, a first step is the conversion of the fresh matter of each crop to dry matter, to allow for comparability between different materials in terms of mass and emission intensity. To do so, default dry matter (DM) contents for each crop are used from existing database, literature review and expert opinion, following Equation 3.1:

Equation 3.1 (Crops)

\[
\text{DMYG}_{\text{crop}} = \frac{\text{FMYG}_{\text{crop}} \times \text{DM}_{\text{crop}}}{100}
\]

Where:

- \(\text{DMYG}_{\text{crop}} \) = gross dry matter yield of each crop, kg DM\(\times \)ha\(^{-1}\)
- \(\text{FMYG}_{\text{crop}} \) = fresh matter yield of each crop, kg DM\(\times \)ha\(^{-1}\). Input spatial grids from GAEZ 2015+ Data set (Frolking et al., 2020).
- \(\text{DM}_{\text{crop}} \) = dry matter content of each crop, percentage. Values are given in Table S.3.1 (Supplement S1).

This equation is not necessary for all the grass items as the data used is already expressed in DM. In those cases where the crop residues are needed, either as feed material or for allocation purposes, the yield is calculated, in a second step, using the IPCC formulae (IPCC, 2019, Chapter 11, Table 11.2), as shown in Equation 3.2:

Equation 3.2 (Crop residues)

\[
\text{DMYG}_{\text{cr}} = \text{DMYG}_{\text{crop}} \times \text{Slope}_{\text{crop}} + \text{Intercept}_{\text{crop}}
\]

Where:

- \(\text{DMYG}_{\text{cr}} \) = gross dry matter yield of the crop residues of each crop, kg DM\(\times \)ha\(^{-1}\)
- \(\text{DMYG}_{\text{crop}} \) = gross dry matter yield of each crop, kg DM\(\times \)ha\(^{-1}\)
- \(\text{Slope}_{\text{crop}} \) = slope from IPCC equation for each crop. Values are given in Table S.3.1 (Supplement S1).
- \(\text{Intercept}_{\text{crop}} \) = intercept from IPCC equation for each crop. Values are given in Table S.3.1 (Supplement S1).

For feed items that are internationally traded, weighted average yields are calculated for each country, based on the national yields of the feed producing countries (including domestic production) and the trade matrices described in Section 3.1.

3.3 - RUMINANTS’ FEED RATIONS

Typically, for ruminant species, the major feed ingredients include:

- **Grass**: ranges from natural pasture and roadsides to improved and cultivated grasslands.
- **Feed crops**: crops specially grown to feed livestock, e.g. maize silage or grains.
- **Tree leaves**: browsed in forests or collected and carried to livestock.
- **Crop residues**: plant material left over from food or other crops, such as straw or stover, left over after harvesting the crop.
- **Agro-industrial by-products and wastes**: by-products from the processing of crops such as oilseeds, cereals, sugarcane, and fruit. Examples include cottonseed cakes, rapeseed cakes and brans.
• Concentrates: Any feed containing relatively low fibre (< 20%) and high total digestible nutrients (> 60%). These are feed materials used with other components, to improve the nutritive balance of the complete feed, and intended to be further diluted and mixed to produce a supplement or a complete feed.

The feed ingredients above are grouped in four broad categories: roughages, cereals, by-products and concentrates. Cereals, by products and concentrates are assumed to be internationally traded (see Section 3.1 and Section 3.2). The complete list of feed materials considered in GLEAM is shown in Table 3.1.

In all livestock production systems, the feed materials, present in the ration, depend on the presence of pasture and fodder, the crops grown and their respective yields. The fraction of concentrates in the ration varies widely, according to the need to complement locally available feed, the purchasing power of farmers, and access to markets. The balance of forage, crops and by-products must be reasonable in order to match animal performance. The proportion of each feed material is determined differently for industrialized and developing regions, for two main reasons. First, while in the industrialized countries, based on literature review and expert consultation, it was possible to completely define the feed ration composition, in terms of the proportions of each feed material, this was not the case for the rest of the world. Second, we assume that the feed ration composition, at least the forage part, is strictly related to what is available on the ground. For further details see Section 3.3.2 and Section 3.3.3.

For ruminant species, three feeding groups of animals are defined due to their distinctive feeding necessities: adult females (AF), replacement animals (RF, RM) and adult males (AM), and surplus males and female animals (MF, MM). A specific group is also defined for animals raised in feedlot (Table 3.2).

To help the reader in understanding the GLEAM methodology for estimating the feed ration composition, a schematic representation with hypothetical figures has been drawn for ruminant species in Figure 3.1, Figure 3.2 and Figure 3.3.

Average values for the feed rations for ruminant species at regional level are available on the GLEAM dashboard (https://www.fao.org/gleam/dashboard/en/)

6 A complete feed is a nutritionally adequate feed for animals, compounded by a specific formula to be fed as the sole ration and capable of maintaining life and promoting production without any additional substance being consumed except water.
Table 3.1 List of feed materials for ruminant species

<table>
<thead>
<tr>
<th>Number</th>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roughages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GRASSF</td>
<td>Any type of natural or cultivated fresh grass grazed or fed to the animals.</td>
</tr>
<tr>
<td>2</td>
<td>GRASSH</td>
<td>Hay (grass is cut, dried and stored) or silage (grass is cut and fermented) from any natural or cultivated grass.</td>
</tr>
<tr>
<td>3</td>
<td>GRASSH2</td>
<td>Hay from adjacent areas.</td>
</tr>
<tr>
<td>4</td>
<td>GRASSLEGF</td>
<td>Fresh mixture of any type of grass and leguminous plants that is fed to the animals.</td>
</tr>
<tr>
<td>5</td>
<td>GRASSLEGH</td>
<td>Hay or silage produced from a mixture of any type of grass and leguminous plants.</td>
</tr>
<tr>
<td>6</td>
<td>FDDRSIL</td>
<td>Hay or silage from alfalfa (Medicago sativa). Silage from whole barley (Hordeum vulgare), oat (Avena sativa), buckwheat (Fagopyrum esculentum), fonio (Digitaria spp.), plants and whole maize (Zea mays) plants.</td>
</tr>
<tr>
<td>7</td>
<td>RSTRAW</td>
<td>Fibrous residual plant material such as straw, brans, leaves, etc. from rice (Oryza spp.) cultivation.</td>
</tr>
<tr>
<td>8</td>
<td>WSTRAW</td>
<td>Fibrous residual plant material such as straw, brans, leaves, etc. from wheat (Triticum spp.) cultivation.</td>
</tr>
<tr>
<td>9</td>
<td>BSTRAW</td>
<td>Fibrous residual plant material such as straw, brans, leaves, etc. from barley (Hordeum vulgare), rye (Secale cereale) or oat (Avena sativa) cultivation.</td>
</tr>
<tr>
<td>10</td>
<td>ZSTOVER</td>
<td>Fibrous residual plant material such as straw, brans, leaves, etc. from maize (Zea mays) cultivation.</td>
</tr>
<tr>
<td>11</td>
<td>MSTOVER</td>
<td>Fibrous residual plant material such as straw, brans, leaves, etc. from millet (Pennisetum glaucum, Eleusine coracana, Panicum miliaceum, etc) cultivation.</td>
</tr>
<tr>
<td>12</td>
<td>SSTOVER</td>
<td>Fibrous residual plant material such as straw, brans, leaves, etc. from sorghum (Sorghum spp.) cultivation.</td>
</tr>
<tr>
<td>13</td>
<td>TOPS</td>
<td>Top portion of sugarcane (Saccharum spp.) plants, consisting of green leaves, bundle sheath and variable proportions of immature cane.</td>
</tr>
<tr>
<td>14</td>
<td>LEAVES</td>
<td>Leaves from natural, uncultivated vegetation found in trees, forest, lanes etc.</td>
</tr>
<tr>
<td>15</td>
<td>FDDRBEET</td>
<td>Fodder beet (Beta vulgaris), also known as mangel beet or field beet, used as a nimal feed.</td>
</tr>
<tr>
<td>Cereals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>GRAINS</td>
<td>Grains from barley (Hordeum vulgare), oat (Avena sativa), buckwheat (Fagopyrum esculentum) and fonio (Digitaria spp.) .</td>
</tr>
<tr>
<td>17</td>
<td>CORN</td>
<td>Grains from maize (Zea mays) plant.</td>
</tr>
<tr>
<td>By-products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>MLSOY</td>
<td>By-product from soy (Glycine max) oil production, commonly referred to as ‘soy cakes’ or ‘soybean meal’.</td>
</tr>
<tr>
<td>19</td>
<td>MLRAPE</td>
<td>By-product from rape (Brassica napus) oil production, commonly referred to as ‘rape cakes’ or ‘rapeseed meal’.</td>
</tr>
<tr>
<td>20</td>
<td>MLCTTN</td>
<td>By-product from cottonseed (Gossypium spp.) oil production, commonly referred to as ‘cottonseed meal’.</td>
</tr>
<tr>
<td>21</td>
<td>PKEXP</td>
<td>By-products from the production of kernel palm oil (Elaeis guineensis), commonly referred to as ‘kernel cake’.</td>
</tr>
<tr>
<td>22</td>
<td>MZGLTM</td>
<td>By-product from maize processing. It is a protein-rich feed, with about 65% crude protein content.</td>
</tr>
<tr>
<td>23</td>
<td>MZGLTF</td>
<td>By-product from maize processing. Unlike the gluten meal, its protein content is lower, of about 25% crude protein content.</td>
</tr>
<tr>
<td>24</td>
<td>BPULP</td>
<td>Also known as ‘beet pulp’, is the remaining material after the juice extraction for sugar production from the sugar beet (Beta vulgaris).</td>
</tr>
<tr>
<td>25</td>
<td>MOLASSES</td>
<td>By-product from the sugarcane sugar extraction.</td>
</tr>
<tr>
<td>26</td>
<td>GRNBYDRY</td>
<td>‘Dry’ by-products of grain industries such as brans, middlings, etc.</td>
</tr>
<tr>
<td>27</td>
<td>GRNBYWET</td>
<td>‘Wet’ by-products of grain industries such as biofuels, distilleries, breweries, etc.</td>
</tr>
<tr>
<td>Concentrates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>CONC</td>
<td>Concentrate feed from feed mills.</td>
</tr>
</tbody>
</table>

Table 3.2 Feeding groups for ruminant species

<table>
<thead>
<tr>
<th>Animal category</th>
<th>GLEAMcohorts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle and Buffaloes</td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>AF</td>
</tr>
<tr>
<td>Group 2</td>
<td>AM, RF, RM</td>
</tr>
<tr>
<td>Group 3</td>
<td>MF, MM</td>
</tr>
<tr>
<td>Group f</td>
<td>MF, MMf (applies to feedlot animals only)</td>
</tr>
<tr>
<td>Small ruminants</td>
<td></td>
</tr>
<tr>
<td>Group 1</td>
<td>AF</td>
</tr>
<tr>
<td>Group 2</td>
<td>AM, RF, RM, RFA, RFB, RMA, RMB</td>
</tr>
<tr>
<td>Group 3</td>
<td>MF, MM</td>
</tr>
</tbody>
</table>
Figure 3.1 Representation of a hypothetical example of feed ration estimation for ruminant species in industrialized countries

INPUT DATA

- Roughages share:
 - GRASSF = 10
 - GRASSH = 2
 - GRASSL = 4
 - GRASSLEG = 7
 - GRASSLEGH = 3
- FDRSIL = 15
- FDRSI = 7
- WSRAW = 4
- BSTRAW = 1
- MSTOVER = 3

INTERMEDIATE CALCULATION

- Share of each roughage feed material in the ration (in percentage):
 - GRASSF = 10%
 - RSTRAW = 7%
 - STOVER = 5%
 - BSTRAW = 4%
 - MSTOVER = 1%
 - LEAVES = 5%
 - FDRSIL = 3%
 - MSTOVER = 5%
 - FDRSI = 0%

OUTPUT FEED RATION

- Share of each cereal or by-product feed material in the ration, fed individually or in concentrate (in percentage):
 - GRAINS = 1%
 - KEXP = 1%
 - GRNBYD = 2%
 - GRNBYWET = 1%
 - CORN = 3%
 - LGTM = 0%
 - LGT = 3%
 - BULP = 2%
 - MLTNTN = 4%
 - MOLASSES = 1%

Concentrate share: Total share of concentrate feed as input from existing database and expert opinion (in percentage).

Concentrate composition: Composition of concentrate feed as input from existing database and expert opinion (in percentage).

1 Specific by country and feeding group
2 Specific by continent and species
Figure 3.2 Representation of a hypothetical example of feed ration estimation for cattle in developing countries

INPUT DATA

Roughages share: total share of roughage feed materials as input from existing database and expert opinion (in percentage).

Total Roughages = 70%

Roughages availability: total dry matter of roughages available (in kg). Leaves and imported hay are added if necessary.

GRASSF = 7
BSTRAW = 3
GRASSH = 3
FDDRSIL = 8
WSTRAW = 9

Roughages availability = 57 kg

Leaves and hay: in case of diet deficiency, LEAVES and GRASSH2 are added to fulfill feed requirements according to the live weights of the animals (in kg).

LEAVES = 1
GRASSH2 = 2
Roughages, leaves and hay = 60 kg

By-products share: total share of by-products fed individually (in percentage).

Total By-products = 20%

By-products availability: total dry matter of by-products available (in kg).

MLSOY = 6
MLCTTN = 7
MLCCL = 9
MLRAPE = 4
PKEXP = 3

By-products availability = 31 kg

Concentrate share: total share of compound feed (in percentage).

Total Concentrate = 10%

Concentrate composition: composition of concentrate feed as input from existing database and expert opinion (in percentage).

GRAINS = 6
CORN = 3
MLCCL = 10
MLRAPE = 5

Total = 100%

INTERMEDIATE CALCULATION

Shares of available roughages: share of each roughage feed material (fraction).

GRASSF = 7 / 60 = 0.12
GRASSH = 3 / 60 = 0.05
FDDRSIL = 9 / 60 = 0.02
WSTRAW = 9 / 60 = 0.15
ZSTOVER = 2 / 60 = 0.03
MSTOVER = 6 / 60 = 0.10
SSTOVER = 5 / 60 = 0.08
TOPS = 4 / 60 = 0.07
FDDRSIB = 2 / 60 = 0.03
LEAVES = 1 / 60 = 0.02
GRASSH2 = 2 / 60 = 0.03

By-products disaggregation: share of each by-product feed material fed individually in the total feed ration (in percentage).

MLSOY = 20 * 6 / 31 = 3.8
MLCCL = 20 * 4 / 31 = 2.6
MLCCTT = 20 * 7 / 31 = 4.6
PKEXP = 20 * 3 / 31 = 2
MLCCL = 20 * 9 / 31 = 5.8
GRNBDY = 20 * 2 / 31 = 1.2

Concentrate disaggregation: share of each concentrate feed material in the total feed ration (in percentage).

GRAINS = 10 * 6 / 100 = 0.6
M2GLT = 10 * 9 / 100 = 0.9
CORN = 10 * 8 / 100 = 0.8
M2GLT = 10 * 5 / 100 = 0.5
MLSOY = 10 * 10 / 100 = 1
BPUP = 10 * 8 / 100 = 0.8
MLRAPE = 10 * 5 / 100 = 0.5
MASS = 10 * 9 / 100 = 0.9
MLCCTT = 10 * 7 / 100 = 0.7
GRNBDY = 10 * 11 / 100 = 1.1
PKEXP = 10 * 12 / 100 = 1.2
GRNBDY = 10 * 10 / 100 = 1

OUTPUT FEED RATION

Share of each roughage feed material in the ration (in percentage).

GRASSF = 70 * 0.12 = 8.2%
GRASSH = 70 * 0.05 = 3.5%
FDDRSIL = 70 * 0.15 = 10.5%
WSTRAW = 70 * 0.10 = 7%
ZSTOVER = 70 * 0.08 = 5.8%
MSTOVER = 70 * 0.10 = 7%
TOPS = 70 * 0.07 = 4.7%
FDDRSIB = 70 * 0.03 = 2.3%
LEAVES = 70 * 0.02 = 1.4%
GRASSH2 = 70 * 0.03 = 2.3%

1 Specific by country and feeding group
2 Calculated from the yield and harvested area of each material (see equation 3.8)
3 Specific by continent and species
Figure 3.3 Representation of a hypothetical example of feed ration estimation for buffaloes and small ruminants in developing countries

INPUT DATA

- Roughages share: total share of roughage feed materials as input from existing database and expert opinion (in percentage).
 - Total Roughages = 70%
- Roughages availability: total dry matter of roughages available (in kg). Leaves and imported hay are added if necessary.
 - GRASSF = 7
 - WSTRAW = 5
 - DSTRAW = 5
 - ZSTOVER = 5
 - SSTOVER = 5
 - SSTRAW = 5
 - MSTOVER = 6
- Roughages availability = 57 kg
 - Leaves and hay: in case of diet deficiency, LEAVES and GRASSH2 are added to fulfill feed requirements according to the live weight of the animals (in kg).
 - LEAVES = 1
 - GRASSH2 = 2
 - Roughages, leaves and hay = 00 kg

INTERMEDIATE CALCULATION

- Shares of available roughages: share of each roughage feed material (fraction).
 - GRASSF/7 = 0.12
 - GRASSH3/3 = 0.05
 - FODRIL/9 = 0.15
 - RSTRAW/7 = 0.12
 - WSTRAW/5 = 0.10
 - BSTRAW/3 = 0.05
 - ZSTOVER/2 = 0.03
 - SSTOVER/6 = 0.10
 - LEAVES/1 = 0.02
 - GRASSH2/2 = 0.03

OUTPUT FEED RATION

- Share of each roughage feed material in the ration (in percentage).
 - GRASSF = 70 * 0.12 = 8.42%
 - GRASSH3 = 70 * 0.05 = 3.5%
 - FODRIL/9 = 70 * 0.15 = 10.5%
 - RSTRAW/7 = 70 * 0.12 = 8.42%
 - WSTRAW/5 = 70 * 0.10 = 7%
 - BSTRAW/5 = 70 * 0.05 = 3.5%
 - ZSTOVER/6 = 70 * 0.03 = 2.13%
 - SSTOVER/6 = 70 * 0.03 = 2.13%
 - LEAVES/1 = 70 * 0.02 = 1.42%
 - GRASSH2/2 = 70 * 0.03 = 2.13%

- By-products share: total share of by-products fed individually (in percentage).
 - Total by-products = 20%
- By-product composition: standard assumption in all situations (in percentage).
 - MLCTN = 10
 - GRNBYDRT = 90
- Concentrate share: total share of concentrate fed (in percentage).
 - Total concentrate = 10%
- Concentrate composition: composition of concentrate feed as input from existing database and expert opinion (in percentage).
 - MLCTN = 10
 - GRNBYDRT/10 = 2

- Concentrate share: composition of each concentrate feed material in the total feed ration (in percentage).
 - MLCTN = 10 * 9 / 100 = 9%
 - MLCTN = 10 * 9 / 100 = 9%
 - MLCTN = 10 * 9 / 100 = 9%
 - MLCTN = 10 * 9 / 100 = 9%
 - MLCTN = 10 * 9 / 100 = 9%
 - MLCTN = 10 * 9 / 100 = 9%
 - MLCTN = 10 * 9 / 100 = 9%
 - MLCTN = 10 * 9 / 100 = 9%
 - MLCTN = 10 * 9 / 100 = 9%
 - MLCTN = 10 * 9 / 100 = 9%

- Share of each cereal or by-product feed material in the ration, fed individually or in concentrate (in percentage).
 - GRAINS = 0.3%
 - CORN = 0.7%
 - MLOCC = 1.1%
 - MLRAPE = 0.6%
 - MLCTN = 1 - 2 = 2.9%
 - PKEP = 1.2%
 - MZGLTF = 0.8%
 - MZGLTF = 0.8%
 - GRNBYDRT = 18.8%
 - GRNBYDRT = 1.1%

1 Specific by country and feeding group
2 Calculated from the yield and harvested area of each material (see Equation 3.8)
3 Specific by continent and species
3.3.1 – Calculation of the net dry matter yields

The net dry matter yield of each feed material in a given area defines the yield that is available as feed for the animals. For the purpose of estimating the animal ration it is used as a main input in those cases where the calculation of the local availability of feed is required, that is in the developing regions and, therefore, it is calculated only for the roughages and by-products (see Section 3.3.2).

In general, the gross dry matter yield (of the crop or crop residues, depending on the feed material; Equation 3.2) is corrected by the Feed Use Efficiency (FUE), which is the fraction of the yield that is effectively ingested and used as feed by the animals. For silages produced by cereals, it is assumed that the total above-ground biomass production is used, so both the crop and crop residues yields must be considered. Moreover, for some feed materials, the yield of the respective parental crop is also multiplied by the Mass Fraction Allocation (MFA) factor of the material. The latter is a default factor accounting for the feed material mass as a fraction of the total mass of the crop.

Calculations are shown in Equation 3.3. Table 3.3 summarizes the specific equation and input used for each feed material for the calculation of the net dry matter yield.

Equation 3.3

\[
\text{DMYN}_i = \text{DMYG}_i \times FUE_i \times MFA_i \\
\text{for } i = 1, 6 \text{ to } 13, 15, 18 \text{ to } 21, 25, 26
\]

Where:

- **DMYN** = net dry matter yield of feed material \(i\), kg DM ha\(^{-1}\)
- **DMYG** = crop gross dry matter yield for feed material \(i\), kg DM ha\(^{-1}\). It can either be the yield of the crop, crop residues or, for feed materials 7 and 8, the sum of both. See Table 3.3
- **FUE** = feed use efficiency for feed material \(i\), i.e. fraction of the gross yield that is effectively used as feed, fraction. See Table 3.3
- **MFA** = mass fraction allocation of feed material \(i\), i.e. feed material mass as a fraction of the total mass of the crop, fraction. Values are given in Table 3.3. It is not used for feed materials 9 to 15.
Table 3.3 Net yield equations, gross yields, FUE and MFA for each feed material for ruminant species

<table>
<thead>
<tr>
<th>Number</th>
<th>Material</th>
<th>Gross dry matter yields</th>
<th>Net yield equation</th>
<th>FUE</th>
<th>MFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roughages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GRASS</td>
<td>Grass</td>
<td>Equation 3.3</td>
<td>Table S.3.2 (Supplement S1)*</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>GRASSH</td>
<td>Grass</td>
<td>Same as GRASS</td>
<td>Table S.3.2 (Supplement S1)*</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>GRASSH2</td>
<td>Grass</td>
<td>Same as GRASS</td>
<td>Table S.3.2 (Supplement S1)*</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>GRASSLEFG</td>
<td>Grass</td>
<td>Same as GRASS</td>
<td>Table S.3.2 (Supplement S1)*</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>GRASSLEGH</td>
<td>Grass</td>
<td>Same as GRASS</td>
<td>Table S.3.2 (Supplement S1)*</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>FDGR</td>
<td>Fodder crops</td>
<td>Equation 3.3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>RSTRAW</td>
<td>Rice (crop residues)</td>
<td>Equation 3.3</td>
<td>Table S.3.2 (Supplement S1)*</td>
<td>Equation 6.10a</td>
</tr>
<tr>
<td>8</td>
<td>WSTRAW</td>
<td>Wheat (crop residues)</td>
<td>Equation 3.3</td>
<td>Table S.3.2 (Supplement S1)*</td>
<td>Equation 6.10a</td>
</tr>
<tr>
<td>9</td>
<td>BSTRAW</td>
<td>Barley (crop residues)</td>
<td>Equation 3.3</td>
<td>Table S.3.2 (Supplement S1)*</td>
<td>Equation 6.10a</td>
</tr>
<tr>
<td>10</td>
<td>ZTOVER</td>
<td>Maize (crop residues)</td>
<td>Equation 3.3</td>
<td>Table S.3.2 (Supplement S1)*</td>
<td>Equation 6.10a</td>
</tr>
<tr>
<td>11</td>
<td>MTOVER</td>
<td>Millet (crop residues)</td>
<td>Equation 3.3</td>
<td>Table S.3.2 (Supplement S1)*</td>
<td>Equation 6.10a</td>
</tr>
<tr>
<td>12</td>
<td>STOVER</td>
<td>Sorghum (crop residues)</td>
<td>Equation 3.3</td>
<td>Table S.3.2 (Supplement S1)*</td>
<td>Equation 6.10a</td>
</tr>
<tr>
<td>13</td>
<td>TOPS</td>
<td>Sugarcane (crop residues)</td>
<td>Equation 3.3</td>
<td>Table S.3.2 (Supplement S1)*</td>
<td>Equation 6.10a</td>
</tr>
<tr>
<td>14</td>
<td>LEAVES</td>
<td>NA</td>
<td>NA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>FDDBEET</td>
<td>Sugar beet</td>
<td>Equation 3.3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cereals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>GRAINS</td>
<td>Barley and other cerealsb</td>
<td>NA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>CORN</td>
<td>Maize</td>
<td>NA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>By-products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>MLOSOY</td>
<td>Soybean</td>
<td>Equation 3.3</td>
<td>1</td>
<td>0.80</td>
</tr>
<tr>
<td>19</td>
<td>MLRAPE</td>
<td>Rapeseed</td>
<td>Equation 3.3</td>
<td>1</td>
<td>0.58</td>
</tr>
<tr>
<td>20</td>
<td>MLCNTT</td>
<td>Corn</td>
<td>Equation 3.3</td>
<td>1</td>
<td>0.45</td>
</tr>
<tr>
<td>21</td>
<td>PKXP</td>
<td>Oil palm fruit</td>
<td>Equation 3.3</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>22</td>
<td>MZGLMT</td>
<td>Maize</td>
<td>NA</td>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>23</td>
<td>MZGLTF</td>
<td>Maize</td>
<td>NA</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>24</td>
<td>BPULP</td>
<td>Sugar beet</td>
<td>NA</td>
<td>1</td>
<td>0.19</td>
</tr>
<tr>
<td>25</td>
<td>MOLASSE</td>
<td>Sugarcane</td>
<td>Equation 3.3</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>26</td>
<td>GRNBYDRY</td>
<td>Grains average yielda</td>
<td>Equation 3.3</td>
<td>1</td>
<td>0.17</td>
</tr>
<tr>
<td>27</td>
<td>GRNBYWET</td>
<td>Barley</td>
<td>NA</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* For these feed materials the FUE is spatially explicit.

b Average yield of barley and other cereals, excluding wheat, maize, millet, sorghum and rice.

c For these feed materials, the MFA is only used for the allocation of the emissions from feed production (see Chapter 6, Section 6.5) and is calculated with a specific equation.

d To account for the high level of international trade of these feed materials, average country specific yields were calculated based on trade matrices, as described in Section 3.1 and Section 3.2.

e Average yield of wheat, maize, barley, millet, sorghum, rice and other cereals.

3.3.2 Feed rations in industrialized countries

The feed rations in industrialized countries are taken from country national inventory reports, literature and targeted surveys. The share of each individual feed material is calculated using Equation 3.4.

Equation 3.4

\[
\text{FEED}_{fg,T} = \text{FEEDIND}_{fg,T} \\
\text{for } i = 1 \text{ to } 15 \\
\text{FEED}_{fg,T} = \text{FEEDIND}_{fg,T} + \text{CONC}_{fg,T} \times CF_{fg,T} \\
\text{for } i = 16 \text{ to } 27
\]

Where:

\[
\text{FEED}_{fg,T} = \text{fraction of feed material } i \text{ in the ration for feeding group } fg, \text{ species and system } T, \text{ fraction}
\]
3.3.3 – Feed rations in developing countries

The ration in developing countries is based on the proportion of by-products and concentrates in the ration, which are defined through surveys, literature and expert knowledge, and the availability of roughages in a given cell.

3.3.3.1 – Proportion and availability of roughages

First, the total proportion of roughages in the diet for all ruminant species in a given area (Equation 3.5) is calculated based on the average ‘by-products’ and ‘concentrate’ fractions (Equation 3.6 and Equation 3.7, respectively).

Equation 3.5

\[
RFRAC_{avg,T} = 1 - (BY_{avg,T} + CONC_{avg,T})
\]

Where:

- \(RFRAC_{avg,T}\) = weighted average fraction of roughages in the diet for ruminant species \(T\), fraction
- \(BY_{avg,T}\) = weighted average fraction of by-products in the diet for species \(T\), fraction. \(BY_{avg}\) is calculated in Equation 3.6.
- \(CONC_{avg,T}\) = weighted average fraction of concentrates in the diet for species \(T\), fraction. \(CONC_{avg}\) is calculated in Equation 3.7.

Equation 3.6

\[
BY_{avg,T} = \left(BY_{1,T} \times (AF_{T} \times AFkg_T) + BY_{2,T} \times (RF_{T} \times RFkg_T + RM_{T} \times RMkg_T + AM_{T} \times AMkg_T) + BY_{3,T} \times (MF_{T} \times MFkg_T + MM_{T} \times MMkg_T) \right) \div \left(AF_{T} \times AFkg_T + RF_{T} \times RFkg_T + MF_{T} \times MFkg_T + AM_{T} \times AMkg_T + RM_{T} \times RMkg_T + MM_{T} \times MMkg_T \right)
\]

Where:

- \(BY_{avg,T}\) = weighted average fraction of by-products in the diet for species \(T\), fraction
- \(BY_{1,T}\) = fraction of by-products in the diet for the feeding group 1, species and system \(T\), fraction
- \(BY_{2,T}\) = fraction of by-products in the diet for the feeding group 2, species and system \(T\), fraction
- \(BY_{3,T}\) = fraction of by-products in the diet for the feeding group 3, species and system \(T\), fraction
- \(AF_{T}\), \(RF_{T}\),... = animal numbers from the different cohorts as calculated in the herd module for species and system \(T\), heads×year \(^{-1}\)
- \(AFkg_T\), \(RFkg_T\),... = average live weights for animals within each cohort as calculated in the herd module for species and system \(T\), kg×head \(^{-1}\)

The fraction of by-products for each feeding group (\(BY_{1}\), \(BY_{2}\) and \(BY_{3}\)) are defined for each species and system based on literature reviews, expert opinion and surveys.

Equation 3.7

\[
CONC_{avg,T} = \left(CONC_{1,T} \times (AF_{T} \times AFkg_T) + CONC_{2,T} \times (RF_{T} \times RFkg_T + RM_{T} \times RMkg_T + AM_{T} \times AMkg_T) + CONC_{3,T} \times (MF_{T} \times MFkg_T + MM_{T} \times MMkg_T) \right) \div \left(AF_{T} \times AFkg_T + RF_{T} \times RFkg_T + MF_{T} \times MFkg_T + AM_{T} \times AMkg_T + RM_{T} \times RMkg_T + MM_{T} \times MMkg_T \right)
\]

Where:

- \(CONC_{avg,T}\) = weighted average fraction of concentrates in the diet for ruminant species \(T\), fraction
- \(CONC_{1,T}\) = fraction of concentrates in the diet for the feeding group 1, species and system \(T\), fraction
- \(CONC_{2,T}\) = fraction of concentrates in the diet for the feeding group 2, species and system \(T\), fraction
- \(CONC_{3,T}\) = fraction of concentrates in the diet for the feeding group 3, species and system \(T\), fraction
AF_T, RF_T, ... = animal numbers from the different cohorts as calculated in the herd module for species and system T, heads × year⁻¹

AFkg_T, RFkg_T, ... = average live weights for animals within each cohort as calculated in the herd module for species and system T, kg × head⁻¹

The fraction of concentrate for each feeding group (CONC₁, CONC₂ and CONC₃) is defined for each species and system based on literature reviews, expert opinion and surveys.

Once the total proportion of roughages in the diet for a given cell is calculated, GLEAM estimates the total available dry matter of roughages from the total dry matter yields and harvested areas of pasture, fodder and crop residues (Equation 3.8).

Equation 3.8

\[\text{RFEEDKG} = \sum (\text{DMYN}_i \times \text{Area}_i) \]

for i = 1, 6 to 13, 15

Where:

- **RFEEDKG** = total dry matter of roughages available per cell, kg
- **DMYN_i** = net dry matter yield of feed material <i>i</i>, kg × ha⁻¹
- **Area_i** = harvested area of feed material <i>i</i>, ha
- **i** = feed material <i>i</i> from Table 3.2

In a following step, the available amount of roughages per cell is compared with the animal requirements in that same cell, in order to add leaves and hay in case of feed deficiency. Following IPCC guidelines, GLEAM assumes that daily feed intake, expressed in terms of dry matter, must be between 2% and 3% of live weight. Two conditions are defined based on this criterion and the fraction of roughages in the diet calculated in Equation 3.5: sufficient (when roughages are sufficient to sustain a ratio of daily feed intake to bodyweight equal or higher than 2%) and deficiency conditions (when roughages are only sufficient to sustain a ratio of daily feed intake to bodyweight below 2%).

Sufficiency conditions

\[\frac{\text{RFEEDKG}}{\text{LWTOT}} \geq (0.02 \times 365) \times \text{RFRAC}_{\text{avg}, T} \]

Deficiency conditions

\[\frac{\text{RFEEDKG}}{\text{LWTOT}} < (0.02 \times 365) \times \text{RFRAC}_{\text{avg}, T} \]

Where:

- **RFEEDKG** = total dry matter of roughages available per cell, kg
- **LWTOT** = total live weight of ruminant species, kg. Calculated in Equation 3.9.
- **RFRAC_{avg,T}** = weighted average fraction of roughages in the diet for ruminant species <i>T</i>, fraction
- **0.02** = daily intake as fraction of body weight.

Equation 3.9

\[\text{LWTOT} = \sum T \left[\sum_c (N_{T,c} \times \text{LW}_{T,c}) \right] \]

Where:

- **LWTOT** = total live weight of ruminant species, kg
- **N_{T,c}** = number of animals of species <i>T</i> and cohort <i>c</i>, heads
- **LW_{T,c}** = average live weights of animals of species <i>T</i> and cohort <i>c</i>, kg × heads⁻¹

In situations of deficiency, leaves and hay from adjacent areas are included in the ration in two subsequent steps (Equation 3.10). First, leaves are added to an equivalent of 0.3% of daily intake. Second, hay from adjacent areas is added until reaching the 2% bodyweight equivalent defined previously.

Equation 3.10
LEAVES\textsubscript{T} = (0.003 \times 365) \times \text{LWTOT}

IF \frac{(\text{RFEEDKG} + \text{LEAVES}\textsubscript{T})}{\text{LWTOT}} > (0.02 \times 365) \times \text{RFRAc}\textsubscript{avg,T}

No extra material is needed and the ration is completed following step 5.

IF \frac{(\text{RFEEDKG} + \text{LEAVES}\textsubscript{T})}{\text{LWTOT}} < (0.02 \times 365) \times \text{RFRAc}\textsubscript{avg,T}

Hay from adjacent areas is added as:

\text{GRASSH2}\textsubscript{T} = \text{LWTOT} \times ((0.02 \times 365) \times \text{RFRAc}\textsubscript{avg,T} - ((\text{RFEEDKG} + \text{LEAVES}) / \text{LWTOT}))

Where:

\text{LEAVES}\textsubscript{T} = \text{total dry matter of 'leaves' available for species and system} \ T, \text{kg}

\text{GRASSH2}\textsubscript{T} = \text{total dry matter of 'hay from adjacent areas' available for species and system} \ T, \text{kg}

The final amount of available roughages is calculated as:

\textbf{Equation 3.11}

\text{RFEEDKG}\textsubscript{FINAL}\textsubscript{T} = \text{RFEEDKG} + \text{LEAVES}\textsubscript{T} + \text{GRASSH2}\textsubscript{T}

Where:

\text{RFEEDKG}\textsubscript{FINAL}\textsubscript{T} = \text{total dry matter of roughages available per cell for species and system} \ T, \text{kg}

\text{RFEEDKG} = \text{total dry matter available from roughages per cell, kg}

\text{LEAVES}\textsubscript{T} = \text{total dry matter of 'leaves' available for species and system} \ T, \text{kg}

\text{GRASSH2}\textsubscript{T} = \text{total dry matter of 'hay from adjacent areas' available for species and system} \ T, \text{kg}

3.3.3.2 – Share of individual roughage feed materials

The estimation of individual shares of roughages in animal diets is accomplished in two steps. The first one (from Equation 3.12 to Equation 3.14) calculates the share of each roughage material in the total dry matter of roughages available for each species. The second step (Equation 3.15) determines the share of each material in relation to the overall diet.

The share of grass and the distinction between fresh grass and hay is done as follows:

\textbf{Equation 3.12}

\text{GRASSfrac}\textsubscript{T} = \frac{\text{DMYN}1 \times \text{Area}1}{\text{RFEEDKG}\textsubscript{FINAL}\textsubscript{T}}

Where:

\text{GRASSfrac}\textsubscript{T} = \text{fraction of grass (both fresh and hay) in the total dry matter of roughages available per cell for species and system} \ T, \text{fraction}

\text{DMYN}1 = \text{net dry matter yield of 'grass', kg} \times \text{ha}^{-1}

\text{Area}1 = \text{grazed or harvested area of 'grass', ha}

\text{RFEEDKG}\textsubscript{FINAL}\textsubscript{T} = \text{total dry matter of roughages available per cell for species and system} \ T, \text{kg}

The fraction of grass is then divided between fresh grass and hay depending on the agroecological zone and the grazing time of animals as shown in Table 3.4. The share of 'Pasture' manure management system is used as proxy for the grazing time.

\textbf{Table 3.4 Partitioning of grass fraction}

<table>
<thead>
<tr>
<th>Agro-ecological zone</th>
<th>Partitioning of grass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arid and hyper-arid</td>
<td>$\text{Fresh grass: FEEDfrac}{1,T} = \text{GRASSfrac}{T}$</td>
</tr>
<tr>
<td></td>
<td>$\text{Grass hay: FEEDfrac}_{2,T}^b = 0$</td>
</tr>
<tr>
<td>Temperate and tropical highlands</td>
<td>$\text{Fresh grass: FEEDfrac}{1,T} = \text{GRASSfrac}{T} \times \text{MMS}_{\text{pasture,T}} / 100$</td>
</tr>
<tr>
<td></td>
<td>$\text{Grass hay: FEEDfrac}{2,T} = \text{GRASSfrac}{T} \times (100 - \text{MMS}_{\text{pasture,T}}) / 100$</td>
</tr>
<tr>
<td>Humid</td>
<td>$\text{Fresh grass: FEEDfrac}{1,T} = \text{GRASSfrac}{T}$</td>
</tr>
<tr>
<td></td>
<td>$\text{Grass hay: FEEDfrac}_{2,T} = 0$</td>
</tr>
</tbody>
</table>

$^a\text{FEEDfrac}_{1,T} = \text{fraction of fresh grass in the total dry matter of roughages available per cell for species and system} \ T, \text{fraction}$

$^b\text{FEEDfrac}_{2,T} = \text{fraction of hay grass in the total dry matter of roughages available per cell for species and system} \ T, \text{fraction}$

The share of imported hay and leaves is calculated in Equation 3.13 below:

\textbf{Equation 3.13}
FEEDfrac_{3,T} = \frac{\text{GRASSH2}_{T}}{\text{RFEEDKGFINAL}_{T}}

FEEDfrac_{14,T} = \frac{\text{LEAVES}_{T}}{\text{RFEEDKGFINAL}_{T}}

Where:

FEEDfrac_{3,T} = \text{fraction of hay imported from adjacent areas in the total dry matter of roughages available per cell for species and system } T, \text{ fraction}

FEEDfrac_{14,T} = \text{fraction of leaves in the total dry matter of roughages available per cell for species and system } T, \text{ fraction}

GRASSH2_{T} = \text{total dry matter of ‘hay from adjacent areas’ available for species and system } T, \text{ kg}

LEAVES_{T} = \text{total dry matter of ‘leaves’ available for species and system } T, \text{ kg}

RFEEDKGFINAL_{T} = \text{total dry matter of roughages available per cell for species and system } T, \text{ kg}

For the rest of “Roughages”, the fraction is calculated as shown in Equation 3.14.

\textbf{Equation 3.14}

FEEDfrac_{i,T} = \frac{\text{DMYN}_{i} \times \text{Area}_{i}}{\text{RFEEDKGFINAL}_{T}}

for \ i = 6 \text{ to } 13, 15

Where:

FEEDfrac_{i,T} = \text{fraction of feed material } i \text{ in the total dry matter of roughages available per cell for species and system } T, \text{ fraction}

DMYN_{i} = \text{net dry matter yield of feed material } i, \text{ kg} \times \text{ha}^{-1}

\text{Area}_{i} = \text{grazed and/or harvested area of feed material } i, \text{ ha}

RFEEDKGFINAL_{T} = \text{total dry matter of roughages available per cell for species and system } T, \text{ kg}

\text{i} = \text{feed material } i \text{ from Table 3.2}

The final step is to estimate the individual shares of roughage materials in the overall animal diet for each feeding group following Equation 3.15.

\textbf{Equation 3.15}

\text{FEED}_{i,fg,T} = \text{FEEDfrac}_{i,T} \times (1 - (\text{BY}_{fg,T} + \text{CONC}_{fg,T}))

for \ i = 1 \text{ to } 15, \text{ excluding } 4 \text{ and } 5

Where:

\text{FEED}_{i,fg,T} = \text{fraction of feed material } i \text{ in the ration for feeding group } fg, \text{ species and system } T, \text{ fraction}

\text{FEEDfrac}_{i,T} = \text{fraction of feed material } i \text{ in the total dry matter of roughages available per cell for species and system } T, \text{ fraction}

\text{BY}_{fg,T} = \text{fraction of by-products in the diet for the feeding group } fg, \text{ species and system } T, \text{ fraction}

\text{CONC}_{fg,T} = \text{fraction of concentrates in the diet for the feeding group } fg, \text{ species and system } T, \text{ fraction}

\text{i} = \text{feed material } i \text{ from Table 3.2}

\textbf{3.3.3.3 – Share of individual by-product feed materials}

The estimation of individual share of by-products is done by combining the available yields of feed materials and the data on the share of ‘by-products’ feed category.

\textbf{Equation 3.16 – Cattle}

\text{BYFEEDKG} = \sum (\text{DMYN}_{i} \times \text{Area}_{i})

for \ i = 18, 19, 20, 21, 25, 26

\text{FEEDBY}_{i,fg,T} = \frac{\text{BY}_{fg,T} \times \text{DMYN}_{i} \times \text{Area}_{i}}{\text{BYFEEDKG}}

for \ i = 18, 19, 20, 21, 25, 26

Where:

\text{BYFEEDKG} = \text{total dry matter of by-products available per cell, kg}
DMYN_i = net dry matter yield of ‘by-product’ feed material i, kg x ha^{-1}
Area_i = harvested area of feed material i, ha
FEED_{BY,i,f,g,T} = fraction of ‘by-product’ feed material i for feeding group f_g, species and system T, fraction
BY_{f,g,T} = fraction of ‘by-products’ in the diet for the feeding group f_g, species and system T, fraction
i = feed material i from Table 3.2

Equation 3.17 – Buffaloes and small ruminants
FEED_{BY,20,f,g,T} = BY_{f,g,T} \times 0.1
FEED_{BY,26,f,g,T} = BY_{f,g,T} \times 0.9

Where:
FEED_{BY,i,f,g,T} = fraction ‘cottonseed meal’ for feeding group f_g, species and system T, fraction
FEED_{BY,26,f,g,T} = fraction ‘dry by-products of grain industries’ for feeding group f_g, species and system T, fraction
BY_{f,g,T} = fraction of by-products in the diet for the feeding group f_g, species and system T, fraction

3.3.3.4 – Share of individual concentrate feed materials
Concentrate feed consists of a number of by-products that can be fed as a separate product and as part of a mixed compound feed. The final step, in the estimation of animal diets, is the distribution of that concentrate among individual feed materials.

Equation 3.18
FEED_{i,f,g,T} = \text{FEED}_{i,f,g,T}
\text{for } i = 1 \text{ to } 15
FEED_{i,f,g,T} = \text{FEED}_{BY,i,f,g,T} + \text{CONC}_{f,g,T} \times CF_{i,T}
\text{for } i = 16 \text{ to } 27

Where:
FEED_{i,f,g,T} = fraction of feed material i in the ration for feeding group f_g, species and system T, fraction
CONC_{f,g,T} = fraction of concentrates in the diet for the feeding group f_g, species and system T, fraction
CF_{i,T} = fraction of feed material i in the composition of concentrate feed for species and system T, fraction
FEED_{BY,i,f,g,T} = fraction of ‘by-product’ feed material i for feeding group f_g, species and system T, fraction
i = feed material i from Table 3.2
3.4 – MONOGASTRICS’ FEED RATION

Feed materials for monogastric species are divided into three main categories:

- Swill and feed from scavenging: domestic (and commercial) food waste and feed from scavenging, used in backyard pig and chicken systems and, to a lesser extent, in some intermediate pig systems.
- Non-local feed materials: these are concentrated feed materials that are blended at a feed mill. The materials are sourced from various locations, and there is little link between the location where the feed material is produced and where it is utilized by the animal. These materials are therefore assumed to be internationally traded (see Section 3.1 and Section 3.2).
- Locally produced feed materials: feeds that are produced locally and used extensively in intermediate and backyard systems.

Non-local feed materials fall into four categories: whole feed crops, where there are no harvested crop residues; by-products from brewing, grain milling, processing of oilseeds, and sugar production; grains, which have harvested crop-residues; and other non-crop derived feed materials.

The locally produced feed materials are more varied and, in addition to containing some of the crops, grains and by-products that are part of the non-local feeds, also include: second-grade crops deemed unfit for human consumption or use in concentrate feed; crop residues; and forage in the form of grass and leaves.

A complete list of the feed materials considered is shown in Table 3.5.

The proportions of swill, non-local feed and local feeds in the rations for each system and country are based on reported data and expert judgment.

One of the major differences between the local feeds and the non-local feeds is that the proportions of the individual local feed materials are not defined, but are based on what is available in the country or agroecological zone where the animals are located. The percentage of each feed material is determined by calculating the total yield of each of the crops within the country or AEZ, then assessing the fraction of that yield that is likely to be available as animal feed. The percentage of each feed material in the ration is then assumed to be equal to the proportion of the total available feed.

Finally, the total amount of local feed available is compared with the estimated local feed requirement within the cell. If the availability is below a defined threshold, small amounts of grass and leaves are added to supplement the ration.

For a schematic representation of the feed ration estimation for monogastric species see Figure 3.4 and Figure 3.5. Average values for feed ration for monogastrics at regional level are available on the GLEAM dashboard (https://www.fao.org/gleam/dashboard/en/).
Table 3.5 List of feed materials for monogastrics

<table>
<thead>
<tr>
<th>Number</th>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swill and scavenging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SWILL</td>
<td>Household food waste and other organic material used as feed.</td>
</tr>
<tr>
<td>Locally-produced feed materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GRASSF</td>
<td>Any type of natural or cultivated fresh grass grazed or fed to the animals.</td>
</tr>
<tr>
<td>3</td>
<td>PULSES</td>
<td>Leguminous beans.</td>
</tr>
<tr>
<td>4</td>
<td>PSTRAW</td>
<td>Fibrous residual plant material such as straw, from leguminous plants cultivation.</td>
</tr>
<tr>
<td>5</td>
<td>CASSAVA</td>
<td>Pellets from cassava (Manihot esculenta) roots.</td>
</tr>
<tr>
<td>6</td>
<td>WHEAT</td>
<td>Grains from wheat (Triticum aestivum).</td>
</tr>
<tr>
<td>7</td>
<td>MAIZE</td>
<td>Grains from maize (Zea mays).</td>
</tr>
<tr>
<td>8</td>
<td>BARLEY</td>
<td>Grains from barley (Hordeum vulgare).</td>
</tr>
<tr>
<td>9</td>
<td>MILLET</td>
<td>Grains from millet (P. glaucum, E. coracana, P. miliaceum, and others).</td>
</tr>
<tr>
<td>10</td>
<td>RICE</td>
<td>Grains from rice (Oryza spp.).</td>
</tr>
<tr>
<td>11</td>
<td>SORGHUM</td>
<td>Grains from sorghum (Sorghum spp.).</td>
</tr>
<tr>
<td>12</td>
<td>SOY</td>
<td>Beans from soy (Glycine max).</td>
</tr>
<tr>
<td>13</td>
<td>TOPS</td>
<td>Fibrous residual plant material from sugarcane (Saccharum spp.) cultivation.</td>
</tr>
<tr>
<td>14</td>
<td>LEAVES</td>
<td>Leaves from natural uncultivated vegetation found in trees, forest, lanes etc.</td>
</tr>
<tr>
<td>15</td>
<td>BNFRIUT</td>
<td>Fruit from banana trees (Musa spp.).</td>
</tr>
<tr>
<td>16</td>
<td>BNSTEM</td>
<td>Residual plant material such as stems from banana (Musa spp.) cultivation.</td>
</tr>
<tr>
<td>17</td>
<td>MLSOY</td>
<td>By-product from soy (Glycine max) oil production, commonly referred to as 'soy cakes' or 'soybean meal'.</td>
</tr>
<tr>
<td>18</td>
<td>MLCCTTN</td>
<td>By-product from cottonseed (Gossypium spp.) oil production, commonly referred to as 'cotton seeds cakes'.</td>
</tr>
<tr>
<td>19</td>
<td>MLOILSDS</td>
<td>By-product (cakes, meals) from oil production other than soy, cottonseed or palm oil.</td>
</tr>
<tr>
<td>20</td>
<td>GRNBYDRY</td>
<td>'Dry' by-products of grain industries such as brans, middlings, etc.</td>
</tr>
<tr>
<td>Non-local feed materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>PULSES</td>
<td>Leguminous beans.</td>
</tr>
<tr>
<td>22</td>
<td>CASSAVA</td>
<td>Pellets from cassava (Manihot esculenta) roots.</td>
</tr>
<tr>
<td>23</td>
<td>WHEAT</td>
<td>Grains from wheat (Triticum aestivum).</td>
</tr>
<tr>
<td>24</td>
<td>MAIZE</td>
<td>Grains from maize (Zea mays).</td>
</tr>
<tr>
<td>25</td>
<td>BARLEY</td>
<td>Grains from barley (Hordeum vulgare).</td>
</tr>
<tr>
<td>26</td>
<td>MILLET</td>
<td>Grains from millet (P. glaucum, E. coracana, P. miliaceum, and others).</td>
</tr>
<tr>
<td>27</td>
<td>RICE</td>
<td>Grains from rice (Oryza spp.).</td>
</tr>
<tr>
<td>28</td>
<td>SORGHUM</td>
<td>Grains from sorghum (Sorghum spp.).</td>
</tr>
<tr>
<td>29</td>
<td>SOY</td>
<td>Beans from soy (Glycine max).</td>
</tr>
<tr>
<td>30</td>
<td>RAPESEED</td>
<td>Seeds from rape (B. napus).</td>
</tr>
<tr>
<td>31</td>
<td>SOYOIL</td>
<td>Oil extracted from soybeans (Glycine max).</td>
</tr>
<tr>
<td>32</td>
<td>MLSOY</td>
<td>By-product from soy (Glycine max) oil production, commonly referred to as 'soy cakes' or 'soybean meal'.</td>
</tr>
<tr>
<td>33</td>
<td>MLCCTTN</td>
<td>By-product from cottonseed (Gossypium spp.) oil production, commonly referred to as 'cotton seeds cakes'.</td>
</tr>
<tr>
<td>34</td>
<td>MLRAPE</td>
<td>By-products from rape oil production, commonly referred to as 'canola cakes'.</td>
</tr>
<tr>
<td>35</td>
<td>PKEXP</td>
<td>By-products from the production of kernel palm oil (Elaeis guineensis), commonly referred to as 'kernel cake'.</td>
</tr>
<tr>
<td>36</td>
<td>MLOILSDS</td>
<td>By-product (cakes, meals) from oil production other than soy, cottonseed, rapeseed or palm oil.</td>
</tr>
<tr>
<td>37</td>
<td>FISHMEAL</td>
<td>By-products from the fish industries.</td>
</tr>
<tr>
<td>38</td>
<td>MOLASSE</td>
<td>By-product from the sugarcane sugar extraction.</td>
</tr>
<tr>
<td>39</td>
<td>GRNBYDRY</td>
<td>'Dry' by-products of grain industries such as brans, middlings, etc.</td>
</tr>
<tr>
<td>40</td>
<td>GRNBYWET</td>
<td>'Wet' by-products of grain industries such as biofuels, distilleries, breweries, etc.</td>
</tr>
<tr>
<td>41</td>
<td>SYNTHETIC</td>
<td>Synthetic additives such as amino acids or minerals.</td>
</tr>
<tr>
<td>42</td>
<td>LIMESTONE</td>
<td>Used as source of calcium, is given to laying hens to favor the formation of the egg shell.</td>
</tr>
</tbody>
</table>

* Feeds that are produced locally and used extensively in intermediate and backyard systems. It is a more varied and complex group of feed materials, including grains, by-products, crop residues or forages.

* Feed materials that are blended at a feed mill to produce concentrate feed. The materials are sourced from various locations and there is little link between the production site and location where are consumed by the animals.
Figure 3.4 Representation of a hypothetical example of feed ration estimation for pigs

<table>
<thead>
<tr>
<th>INPUT DATA</th>
<th>INTERMEDIATE CALCULATION</th>
<th>OUTPUT FEED RATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swill share: total share of swill as input from existing database and expert opinion.</td>
<td>Shares of available local feed: share of each local feed material (fraction).</td>
<td>Share of swill in the ration (in percentage).</td>
</tr>
<tr>
<td>Swill = 20%</td>
<td>PULSES = 7 / 83 = 0.08</td>
<td>Swill = 20%</td>
</tr>
<tr>
<td>Local availability*: total dry matter of local feed available (in kg).</td>
<td>CASSAVA = 6 / 83 = 0.10</td>
<td>CASSAVA = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>PULSES = 7</td>
<td>WHEAT = 12 / 83 = 0.14</td>
<td>WHEAT = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>CASSAVA = 8</td>
<td>MAIZE = 4 / 83 = 0.05</td>
<td>MAIZE = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>WHEAT = 12</td>
<td>BARLEY = 9 / 83 = 0.11</td>
<td>BARLEY = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>MAIZE = 4</td>
<td>MILLET = 5 / 83 = 0.06</td>
<td>MILLET = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>SOY = 4</td>
<td>RICE = 3 / 83 = 0.04</td>
<td>RICE = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>TOPS = 10</td>
<td>SOY = 4 / 83 = 0.05</td>
<td>SOY = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>Local feed availability = 83 kg</td>
<td>TOPS = 10 / 83 = 0.12</td>
<td>TOPS = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>[x]</td>
<td>BNFRIUT = 9 / 83 = 0.11</td>
<td>BNFRIUT = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>[x]</td>
<td>MLSOY = 2 / 83 = 0.02</td>
<td>MLSOY = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>[x]</td>
<td>MLCTTN = 1 / 83 = 0.01</td>
<td>MLCTTN = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>[x]</td>
<td>MLOILSDS = 3 / 83 = 0.04</td>
<td>MLOILSDS = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>[x]</td>
<td>Non-Local feed share: total share of locally produced feed materials as input from existing database and expert opinion.</td>
<td></td>
</tr>
<tr>
<td>Total Local feed = 30%</td>
<td>PULSES = 30 * 0.08 = 2.5%</td>
<td></td>
</tr>
<tr>
<td>Cassava = 30 * 0.08 = 2.5%</td>
<td>CASSAVA = 30 * 0.08 = 2.5%</td>
<td>Cassava = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>Wheat = 30 * 0.08 = 2.5%</td>
<td>MAIZE = 30 * 0.08 = 2.5%</td>
<td>Maize = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>Barley = 30 * 0.08 = 2.5%</td>
<td>MILLET = 30 * 0.08 = 2.5%</td>
<td>Millet = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>Rice = 30 * 0.08 = 2.5%</td>
<td>RICE = 30 * 0.08 = 2.5%</td>
<td>Rice = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>Soya = 30 * 0.08 = 2.5%</td>
<td>SOY = 30 * 0.08 = 2.5%</td>
<td>Soya = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>Tops = 30 * 0.08 = 2.5%</td>
<td>TOPS = 30 * 0.08 = 2.5%</td>
<td>Tops = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>BNFRIUT = 30 * 0.08 = 2.5%</td>
<td>BNFRIUT = 30 * 0.08 = 2.5%</td>
<td>BNFRIUT = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>MLSOY = 30 * 0.08 = 2.5%</td>
<td>MLSOY = 30 * 0.08 = 2.5%</td>
<td>MLSOY = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>MLCTTN = 30 * 0.08 = 2.5%</td>
<td>MLCTTN = 30 * 0.08 = 2.5%</td>
<td>MLCTTN = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>MLOILSDS = 30 * 0.08 = 2.5%</td>
<td>MLOILSDS = 30 * 0.08 = 2.5%</td>
<td>MLOILSDS = 30 * 0.08 = 2.5%</td>
</tr>
<tr>
<td>[x]</td>
<td></td>
<td>Share of each feed material in the ration (in percentage).</td>
</tr>
<tr>
<td>[x]</td>
<td></td>
<td>PULSES = 70 * 0.08 = 5.6%</td>
</tr>
<tr>
<td>[x]</td>
<td></td>
<td>CASSAVA = 70 * 0.08 = 5.6%</td>
</tr>
<tr>
<td>[x]</td>
<td></td>
<td>MAIZE = 70 * 0.08 = 5.6%</td>
</tr>
<tr>
<td>[x]</td>
<td></td>
<td>MILLET = 70 * 0.08 = 5.6%</td>
</tr>
<tr>
<td>[x]</td>
<td></td>
<td>SOY = 70 * 0.08 = 5.6%</td>
</tr>
<tr>
<td>[x]</td>
<td></td>
<td>TOPS = 70 * 0.08 = 5.6%</td>
</tr>
<tr>
<td>[x]</td>
<td></td>
<td>BNFRIUT = 70 * 0.08 = 5.6%</td>
</tr>
<tr>
<td>[x]</td>
<td></td>
<td>MLSOY = 70 * 0.08 = 5.6%</td>
</tr>
<tr>
<td>[x]</td>
<td></td>
<td>MLCTTN = 70 * 0.08 = 5.6%</td>
</tr>
<tr>
<td>[x]</td>
<td></td>
<td>MLOILSDS = 70 * 0.08 = 5.6%</td>
</tr>
</tbody>
</table>

* Specific by country and production system

* The list of feed materials is indicative. For a complete list see table 3.14

* Calculated from the yield and harvested area of each material (see Equation 3.21)

* For backyard pigs, the share of non-local feed is equally divided between MLCTTN and MLOILDS by default, in all situations (see Equation 3.26)
Figure 3.5 Representation of a hypothetical example of feed ration estimation for chickens

1 Specific by country
2 Calculated from the yield and harvested area of each material (see Equation 3.21)
3 Specific by production system. The list of feed materials is indicative. For a complete list see table 3.14
3.4.1 – Calculation of the net dry matter yields

The net dry matter yield of each feed material in a given area defines the yield that is available as feed for the animals. For the purpose of estimating the animal ration it is used as a main input in those cases where the calculation of the local availability of feed is required (see Section 3.3.2 and Section 3.3.4), therefore it is calculated only for the local feed materials. The calculation of the net dry matter yield depends on the type of material considered. In general, the gross dry matter yield (of the crop or crop residues, depending on the feed material; Equation 3.2) is corrected by the FUE, which is the fraction of the yield that is effectively ingested and used as feed by the animals. Moreover, for some feed materials the yield of the respective parental crop is also multiplied by the MFA factor of the material. The latter is a default factor accounting for the feed material mass as a fraction of the total mass of the crop.

Calculations are shown in Equation 3.19. Table 3.6 summarizes the input used for each feed material, for the calculation of the net dry matter yield.

Equation 3.19

\[
\text{DMYN}_i = \text{DMYG}_i \times \text{FUE}_i \times \text{MFA}_i
\]

for \(i = 3 \) to 13, 15 to 20

Where:

- \(\text{DMYN}_i \) = net dry matter yield of feed material \(i \), kg DM ha\(^{-1}\)
- \(\text{DMYG}_i \) = gross dry matter yield for feed material \(i \), kg DM ha\(^{-1}\). It can either be the yield of the crop or crop residues. See Table 3.6.
- \(\text{FUE}_i \) = feed use efficiency for feed material \(i \), i.e. fraction of the gross yield that is effectively used as feed, fraction. See Table 3.6
- \(\text{MFA}_i \) = mass fraction allocation of feed material \(i \), i.e. feed material mass as a fraction of the total mass of the crop, fraction. Values are given in Table 3.6. It is not used for feed materials 3, 4, 6 to 11, 13, 15, 16.
Table 3.6 Net yield equations, gross yields, FUE and MFA for each feed material for monogastric species

<table>
<thead>
<tr>
<th>Number</th>
<th>Material</th>
<th>Gross dry matter yields</th>
<th>Net yield equation</th>
<th>FUE</th>
<th>MFA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>SWILL</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>GRASSF</td>
<td>Grass</td>
<td>NA</td>
<td>0.95</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>PULSES</td>
<td>Pulses</td>
<td>Equation 3.19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PSTRAW</td>
<td>Pulses (crop residues) – Equation 3.2</td>
<td>Equation 3.19</td>
<td>0.90</td>
<td>Equation 6.10b</td>
</tr>
<tr>
<td>5</td>
<td>CASSAVA</td>
<td>Cassava</td>
<td>Equation 3.19</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>WHEAT</td>
<td>Wheat</td>
<td>Equation 3.19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MAIZE</td>
<td>Maize</td>
<td>Equation 3.19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>BARLEY</td>
<td>Barley</td>
<td>Equation 3.19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>MILLET</td>
<td>Millet</td>
<td>Equation 3.19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>RICE</td>
<td>Rice</td>
<td>Equation 3.19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>SORGHUM</td>
<td>Sorghum</td>
<td>Equation 3.19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>SOY</td>
<td>Soybean</td>
<td>Equation 3.19</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>TOPS</td>
<td>Sugarcane (crop residues) – Equation 3.2</td>
<td>Equation 3.19</td>
<td>0.70</td>
<td>Equation 6.10b</td>
</tr>
<tr>
<td>14</td>
<td>LEAVES</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>15</td>
<td>BNFUIT</td>
<td>Banana fruits</td>
<td>Equation 3.19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>BNSTEM</td>
<td>Banana fruits (crop residues) – Equation 3.2</td>
<td>Equation 3.19</td>
<td>0.50</td>
<td>Equation 6.10b</td>
</tr>
<tr>
<td>17</td>
<td>MLSOY</td>
<td>Soybean</td>
<td>Equation 3.19</td>
<td>1</td>
<td>0.80</td>
</tr>
<tr>
<td>18</td>
<td>MLCITN</td>
<td>Cotton</td>
<td>Equation 3.19</td>
<td>1</td>
<td>0.45</td>
</tr>
<tr>
<td>19</td>
<td>MLOILSDS</td>
<td>Sunflower</td>
<td>Equation 3.19</td>
<td>1</td>
<td>0.60</td>
</tr>
<tr>
<td>20</td>
<td>GRNYBYDRY</td>
<td>Grains average yield</td>
<td>Equation 3.19</td>
<td>1</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>GRAINS</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Locally-produced feed materials**
- **Non-local feed materials**

* No yield is required for these feed materials: their share in the feed rations and their emission intensities are defined by default values.
* For these feed materials, the MFA is only used for the allocation of the emissions from feed production (see Chapter 6, Section 6.1.3) and is calculated with a specific equation.
* In industrialized countries, the MFA value of local MAIZE is assumed to be 1, because there is no use for the crop residues.
* These materials are sourced from various locations and there is little link between the production site and location where they are consumed by the animals. To account for the high level of international trade, average country specific yields were calculated based on trade matrices, as described in Section 3.1 and Section 3.2. Yields, FUE and MFA of these feed materials are used exclusively for the allocation of the emissions from feed production (see Chapter 6, Section 6.1.3).
* Average yield of wheat, maize, barley, millet, sorghum, rice and other cereals.
3.4.2 – Proportion of local feed materials
The first step is the calculation of the proportion of locally produced feed materials as shown in Equation 3.20.

Equation 3.20
\[
\text{LOCALFRAC}_T = 1 - (\text{SWILLFRAC}_T + \text{NONLOCALFRAC}_T)
\]

Where:
- \(\text{LOCALFRAC}_T \) = fraction of locally produced feed materials in the ration of species and system \(T \), fraction
- \(\text{SWILLFRAC}_T \) = fraction of swill in the ration of species and system \(T \), fraction
- \(\text{NONLOCALFRAC}_T \) = fraction of non-local feed materials in the ration of species and system \(T \), fraction

\(\text{SWILLFRAC}_T \) and \(\text{NONLOCALFRAC}_T \) are defined based on literature surveys and expert opinion.

3.4.3 – Total locally-produced feed available
The estimation of available local feed is based on the yield and cultivated area of several crops as shown in Equation 3.21.

Equation 3.21
\[
\text{LOCALFEEDKG} = \sum_i (\text{DMYN}_i \times \text{Frac}_i \times \text{Area}_i)
\]
for \(i = 3-13, 15-20 \) (excluding 4, 13-16 for chickens)

Where:
- \(\text{LOCALFEEDKG} \) = total dry matter of locally produced feed materials per cell, kg
- \(\text{DMYN}_i \) = net dry matter yield of feed material \(i \), kg×ha\(^{-1}\)
- \(\text{Frac}_i \) = fraction of the yield of feed material \(i \) that is harvested to be used as feed, fraction. The following default values are used: 0.1 for \(i = 3, 5\) to 12; 0.5 for \(i = 4\); 0.15 for \(i = 16\); 1 for other feed materials.
- \(\text{Area}_i \) = harvested area of feed material \(i \), ha
- \(i \) = feed material \(i \) from Table 3.6

3.4.4 – Comparison with energy requirements and total intake of local feed materials
The total amount of local feed is compared with the animal requirements on an annual basis in the case of pigs. It is assumed that there is sufficient feed when the total available amount in a year represents 10 times the bodyweight.

Deficiency conditions
\[
\frac{\text{LOCALFEEDKG}}{\text{LWTOT}} < 10
\]

Sufficiency conditions
\[
\frac{\text{LOCALFEEDKG}}{\text{LWTOT}} \geq 10
\]

Where:
- \(\text{LOCALFEEDKG} \) = total dry matter of locally produced feed materials per cell, kg
- \(\text{LWTOT} \) = total monogastric species live weight depending on locally produced feed, kg. It is calculated using Equation 3.22.

Equation 3.22
\[
\text{LWTOT} = \sum c \left[\sum_T \left(\text{N}_T c \times \text{LW}_T c \times \text{LOCALFRAC}_T \right) \right]
\]

Where:
- \(\text{LWTOT} \) = total monogastric species live weight depending on locally produced feed, kg
- \(\text{N}_T c \) = number of animals of species and system \(T \) and cohort \(c \), heads
- \(\text{LW}_T c \) = average live weight of animals of species and system \(T \) and cohort \(c \), kg×head\(^{-1}\)
- \(\text{LOCALFRAC}_T \) = fraction of locally produced feed materials in the ration of species and system \(T \), fraction
In situations of deficiency, grass and leaves are added to the diet. Grass and leaves are added in amounts equivalents to the 10% and 15% of the total locally produced dry matter.

Equation 3.23

\[
\begin{align*}
\text{GRASSF} &= 0.10 \times \text{LOCALFEEDKG} \\
\text{LEAVES} &= 0.15 \times \text{LOCALFEEDKG}
\end{align*}
\]

Where:

\[
\begin{align*}
\text{GRASSF} &= \text{total dry matter of ‘fresh grass’ feed available for monogastric species’ consumption, kg} \\
\text{LEAVES} &= \text{total dry matter of ‘leaves’ feed available for monogastric species’ consumption, kg} \\
\text{LOCALFEEDKG} &= \text{total dry matter of locally produced feed materials per cell, kg}
\end{align*}
\]

Therefore, the final amount of local feed materials is calculated as:

Equation 3.24

For pigs:

\[
\text{LOCALFEEDKGFINAL} = 1.25 \times \text{LOCALFEEDKG}
\]

For chickens:

\[
\text{LOCALFEEDKGFINAL} = \text{LOCALFEEDKG}
\]

Where:

\[
\begin{align*}
\text{LOCALFEEDKGFINAL} &= \text{total dry matter of available locally produced feed materials, kg} \\
\text{LOCALFEEDKG} &= \text{total dry matter of locally produced feed materials per cell, kg}
\end{align*}
\]

3.4.5 – Individual share of local feed materials

The estimation of individual shares of local feeds is calculated as shown in Equation 3.25.

Equation 3.25

\[
\begin{align*}
a. \quad \text{FEED}_{i,T} &= \text{LOCALFRAC}_T \times \text{GRASSF} / \text{LOCALFEEDKGFINAL} \\
&\quad \text{for } i = 2 \text{ (only for pigs)} \\
b. \quad \text{FEED}_{i,T} &= \text{LOCALFRAC}_T \times \text{LEAVES} / \text{LOCALFEEDKGFINAL} \\
&\quad \text{for } i = 14 \text{ (only for pigs)} \\
c. \quad \text{FEED}_{i,T} &= \text{LOCALFRAC}_T \times (\text{DMYN}_i \times \text{Frac}_i \times \text{Area}_i) / \text{LOCALFEEDKGFINAL} \\
&\quad \text{for } i = 3 \text{ to } 13, 15 \text{ to } 20 \text{ (excluding } 4, 13, 15, 16 \text{ for chickens)}
\end{align*}
\]

Where:

\[
\begin{align*}
\text{FEED}_{i,T} &= \text{fraction of feed material } i \text{ in the ration of species and system } T, \text{ fraction} \\
\text{LOCALFRAC}_T &= \text{fraction of locally produced feed materials in the ration of species and system } T, \text{ fraction} \\
\text{GRASSF} &= \text{total dry matter of ‘fresh grass’ feed available for monogastric species’ consumption, kg} \\
\text{LEAVES} &= \text{total dry matter of ‘leaves’ feed available for monogastric species’ consumption, kg} \\
\text{DMYN}_i &= \text{net dry matter yield of feed material } i, \text{ kg}\times\text{ha}^{-1} \\
\text{Frac}_i &= \text{fraction of the yield of feed material } i \text{ that is harvested to be used as feed, fraction. The following default values are used: } 0.1 \text{ for } i = 3, 5 \text{ to } 12; 0.5 \text{ for } i = 4; 0.15 \text{ for } i = 16; 1 \text{ for other feed materials.} \\
\text{Area}_i &= \text{harvested area of feed material } i, \text{ ha} \\
\text{LOCALFEEDKGFINAL} &= \text{total dry matter of available locally produced feed materials, kg} \\
i &= \text{feed material } i \text{ from Table 3.6}
\end{align*}
\]
3.4.6 – Individual share of non-local feed materials

The individual share of non-local materials is calculated in different ways, depending on the particular species and production system. Average feed rations for monogastric species are available in the GLEAM dashboard (https://www.fao.org/gleam/dashboard/en/).

PIGS – BACKYARD SYSTEMS

The fraction of non-local feed materials in the ration is equally shared between cottonseed cakes and oilseeds cakes.

Equation 3.26

\[\text{FEED}_i = \frac{\text{NONLOCALfrac}}{2} \]

for \(i = 33,36 \)

Where:

- \(\text{FEED}_i \) = fraction of feed material \(i \) in the ration, fraction
- \(\text{NONLOCALfrac} \) = fraction of non-local feed materials in the ration, fraction
- \(i \) = feed material \(i \) from Table 3.6

PIGS – INTERMEDIATE & INDUSTRIAL SYSTEMS

The non-local feed materials are fed to animals as part of a mixed concentrate feed. Data about the composition of concentrate feed for commercial pigs are based on literature, surveys and expert knowledge. The fraction of each non-local feed material in the total ration is calculated as follows.

Equation 3.27

\[\text{FEED}_{i,T} = \text{NONLOCALFRAC}_T \times \text{CF}_i \]

for \(i = 21 \) to 42

Where:

- \(\text{FEED}_{i,T} \) = fraction of feed material \(i \) in the ration of system \(T \), fraction
- \(\text{NONLOCALFRAC}_T \) = fraction of non-local feed materials in the ration of system \(T \), fraction
- \(\text{CF}_i \) = fraction of feed material \(i \) in the composition of concentrate feed, fraction
- \(i \) = feed material \(i \) from Table 3.6

CHICKENS

It is assumed that non-local feed materials make no contribution of to the diet of backyard animals. Therefore, the final ration for that system is already defined in Equation 3.25.

Diets for layers and broiler systems are fully characterized based on literature reviews, national consultation and expert knowledge.

3.5 – NUTRITIONAL VALUES

Feed nutritional value in GLEAM are taken from several sources including FEDEPEDIA, NRC guidelines for pigs and poultry and CVB tables from the Dutch feed board database (Stichting CVB) and are summarized in Table S.3.3 and Table S.3.4 in the supplementary information. Using nutritional information on feedstuffs, average values of digestibility, gross and metabolizable energy and nitrogen content are calculated for each species, production system and feeding group following Equation 3.28.

Equation 3.28

a. \(\text{DIET}_{DI} = \sum (\text{FEED}_i \times \text{DI}_i) \)

b. \(\text{DIET}_{GE} = \sum (\text{FEED}_i \times \text{GE}_i) \)

c. \(\text{DIET}_{ME} = \sum (\text{FEED}_i \times \text{ME}_i) \)

d. \(\text{DIET}_{Ncont} = \sum (\text{FEED}_i \times \text{Ncont}_i) \)
Where:

- \(\text{DIET}_{\text{DI}} \) = average digestibility of ration, percentage
- \(\text{DIET}_{\text{GE}} \) = average gross energy content of ration, MJ×kgDM\(^{-1}\)
- \(\text{DIET}_{\text{ME}} \) = average metabolizable energy content of ration, MJ×kgDM\(^{-1}\)
- \(\text{DIET}_{\text{Ncont}} \) = average nitrogen content of ration, gN×kg DM\(^{-1}\)
- \(\text{FEED}_i \) = fraction of feed material \(i \) in the ration, fraction
- \(\text{DI}_i \) = digestibility of feed material \(i \), percentage
- \(\text{GE}_i \) = gross energy content of feed material \(i \), MJ×kgDM\(^{-1}\)
- \(\text{ME}_i \) = metabolizable energy content of feed material \(i \), MJ×kgDM\(^{-1}\)
- \(\text{Ncont}_i \) = nitrogen content of feed material \(i \), gN×kg DM\(^{-1}\)

3.6 – ENERGY REQUIREMENTS

The gross energy requirement is the sum of the requirements for maintenance, milk production, pregnancy, animal activity, weight gain and production. The method estimates the energy requirement for maintenance as a function of live weight and the energy for activity as the energy expended in walking, grazing or scavenging. Energy requirement for production, instead, depends on the level of productivity (e.g. milk yield, live weight gain, fibre production, egg production). Requirements can also be influenced by the physiological state (pregnancy), ambient temperature and the stage of maturity of the animal. Based on production and management practices, the net energy and feed requirements of all animals are calculated. Data from the herd module (i.e. the number of animals in each category, their average weights, growth rates, fertility rates and yields) were combined with input data on: egg weight, protein/fat fraction of the milk, ambient temperature, and activity levels.

For schematic representation of the energy requirement and feed intake calculation, see Figure 3.6 and Figure 3.7.

Figure 3.6 Schematic representation of the energy requirement and feed intake for ruminants

- * Growth rates
- * Live weights
- * Fertility
- * Labour hour
- * Milk yield
- * Fiber yield
- * Age at first calving

* Calculation of ration (see Figures from 3.1 to 3.3)

* Average digestibility of ration

* Average gross energy of ration

* Intermediate calculations within GLEAM
- * Input data from literature, existing databases and expert knowledge

\(^1\) Only for the dairy sector
\(^2\) Only for cattle and buffalo, and only in Asia, S America and Africa

\(^3\) Only for sheep and goats for production of wool, cashmere and mohair
3.6.1 – Energy requirement of ruminants

GLEAM follows the IPCC Tier 2 algorithms and therefore calculates the energy requirements for each cohort individually (IPCC, 2019). Table 3.7 summarizes the equations used to estimate the daily gross energy (GE) needs:

Table 3.7 Equations used to estimate GE for ruminant species

<table>
<thead>
<tr>
<th>Metabolic function</th>
<th>Abbreviation</th>
<th>Equations for large ruminants</th>
<th>Equations for small ruminants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>NE\textsubscript{main}</td>
<td>Equation 3.29</td>
<td>Equation 3.29</td>
</tr>
<tr>
<td>Activity</td>
<td>NE\textsubscript{act}</td>
<td>Equation 3.30</td>
<td>Equation 3.31</td>
</tr>
<tr>
<td>Growth</td>
<td>NE\textsubscript{gro}</td>
<td>Equation 3.32</td>
<td>Equation 3.33</td>
</tr>
<tr>
<td>Milk production</td>
<td>NE\textsubscript{lact}</td>
<td>Equation 3.34</td>
<td>Equation 3.35</td>
</tr>
<tr>
<td>Draught power</td>
<td>NE\textsubscript{work}</td>
<td>Equation 3.36</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Production of fibre</td>
<td>NE\textsubscript{fiber}</td>
<td>Not applicable</td>
<td>Equation 3.37</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>NE\textsubscript{preg}</td>
<td>Equation 3.38</td>
<td>Equation 3.39</td>
</tr>
<tr>
<td>Ratio of net energy available in diet for maintenance to digestible energy consumed</td>
<td>REM</td>
<td>Equation 3.40</td>
<td>Equation 3.40</td>
</tr>
<tr>
<td>Ratio of net energy available in diet for growth to digestible energy consumed</td>
<td>REG</td>
<td>Equation 3.41</td>
<td>Equation 3.41</td>
</tr>
<tr>
<td>Daily gross energy</td>
<td>GE</td>
<td>Equation 3.42</td>
<td>Equation 3.42</td>
</tr>
</tbody>
</table>

3.6.1.1 – Net energy for maintenance (NE\textsubscript{main})

NE\textsubscript{main} is the net energy required for the maintenance of basal metabolic activity. It is estimated as follows:

Equation 3.29

\[
\text{NE}_{\text{main},c} = C_{\text{main},c} \times LW_c^{0.75}
\]

Where:

\(\text{NE}_{\text{main},c} \) = net energy required by animal for maintenance in cohort \(c \), MJ\times head\(^{-1}\)\times day\(^{-1}\)

\(C_{\text{main},c} \) = coefficient for NE\textsubscript{main} for each cohort \(c \), MJ\times kg\(^{0.75}\)\times day\(^{-1}\). Values are given in Table 3.9.

\(LW_c \) = average live weight of the animals in cohort \(c \), kg\times head\(^{-1}\)

Table 3.8 Coefficient for calculating NE\textsubscript{main}

<table>
<thead>
<tr>
<th>Animal category</th>
<th>GLEAM cohorts</th>
<th>(C_{\text{main}}) (MJ\times kg(^{0.75})\times day(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle and Buffaloes, lactating cows</td>
<td>AF</td>
<td>0.386</td>
</tr>
<tr>
<td>Cattle and Buffaloes, non-lactating cows</td>
<td>RF, MF, Mff</td>
<td>0.322(^a)</td>
</tr>
<tr>
<td>Cattle and Buffaloes, bulls</td>
<td>AM, RM, MM, MMf</td>
<td>0.370(^a)</td>
</tr>
<tr>
<td>Goats</td>
<td>AF, AM, MF, MM, RFA, RFB, RMA, RMB</td>
<td>0.315</td>
</tr>
<tr>
<td>Sheep lamb to 1 year</td>
<td>RFA, MF</td>
<td>0.236</td>
</tr>
<tr>
<td>Sheep intact male lambs to 1 year</td>
<td>RMA, MM</td>
<td>0.271</td>
</tr>
<tr>
<td>Sheep older than 1 year</td>
<td>AF, RFB</td>
<td>0.217</td>
</tr>
</tbody>
</table>
Sheep intact males older than 1 year | AM, RMB | 0.250

* Cmain of replacement animals is multiplied by 0.974 (except for goats). This prevents an overestimation of NEmain resulting from using the average live weight for the entire growing period instead of the average of live weights from each day.

3.6.1.2 – Net energy for activity (NEact)

NEact is the net energy required for obtaining food, water and shelter based on the feeding situation and not directly related to the feed quality.

Equation 3.30 – Large ruminants

\[
NE_{act,c} = C_{act,c} \times NE_{main,c}
\]

Where:

- \(NE_{act,c} \) = net energy for animal activity in cohort \(c \), MJ × head\(^{-1}\) × day\(^{-1}\)
- \(C_{act,c} \) = coefficient for \(NE_{act} \) which depends on the animal feeding condition in cohort \(c \), fraction. Values are given in Table 3.9 (IPCC, 2019, Volume 4, Chapter 10, Table 10.5)
- \(NE_{main,c} \) = net energy required by animal for maintenance in cohort \(c \), MJ × head\(^{-1}\) × day\(^{-1}\)

Equation 3.31 – Small ruminants

\[
NE_{act,c} = C_{act,c} \times LW_c
\]

Where:

- \(NE_{act,c} \) = net energy for animal activity in cohort \(c \), MJ × head\(^{-1}\) × day\(^{-1}\)
- \(C_{act,c} \) = coefficient for \(NE_{act} \) which depends on the animal feeding condition in cohort \(c \), MJ × kg\(^{-1}\) × day\(^{-1}\). Values are given in Table 3.9 (IPCC, 2019, Volume 4, Chapter 10, Table 10.5)
- \(LW_c \) = average live weight of the animals in cohort \(c \), kg × head\(^{-1}\)

Table 3.9 Activity coefficients for different feeding situations

<table>
<thead>
<tr>
<th>Situation</th>
<th>Definition</th>
<th>(C_{act})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle and Buffaloes (fraction)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stall</td>
<td>Animals are confined to small area with the result of little to none energy expenditure</td>
<td>0.00</td>
</tr>
<tr>
<td>Grazing</td>
<td>Animals are confined in areas with sufficient forage requiring modest energy expense to acquire feed</td>
<td>0.17(^a)</td>
</tr>
<tr>
<td>Rangeland</td>
<td>Animals graze in open range land or hilly terrain and expend significant energy to acquire feed</td>
<td>0.36(^a)</td>
</tr>
<tr>
<td>Sheep and Goats (MJ × kg(^{-1}) × day(^{-1}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housed ewes</td>
<td>Animals are confined due to pregnancy in the final trimester (50 days)</td>
<td>0.0096</td>
</tr>
<tr>
<td>Grazing flat pasture</td>
<td>Animals walk up to 1 000 meters per day and expend very little energy to acquire feed</td>
<td>0.0107(^a)</td>
</tr>
<tr>
<td>Grazing hilly pasture</td>
<td>Animals walk up to 5 000 meters per day and expend significant energy to acquire feed</td>
<td>0.0240(^a)</td>
</tr>
<tr>
<td>Housed fattening lambs</td>
<td>Animals are housed for fattening.</td>
<td>0.0067</td>
</tr>
<tr>
<td>Lowland goats</td>
<td>Animals walk and graze in lowland pasture</td>
<td>0.019</td>
</tr>
<tr>
<td>Hill and mountain goats</td>
<td>Animals graze in open range land or hilly terrain and expend significant energy to acquire feed</td>
<td>0.024</td>
</tr>
</tbody>
</table>

\(^a\)In order to reflect the proportion of animals grazing, \(C_{act} \) is multiplied by the share of Pasture/Range/Paddock manure management system (MMSpasture).

3.6.1.3 – Net energy for growth (NEgro)

NEgro is the net energy required for growth, that is, for gaining weight. These equations are applied to replacement and fattening animals (both in feedlots and outside feedlots).

Equation 3.32 – Large ruminants

a. \(NE_{gro,cf} \) = 22.02 × (LW\(_{cf}\) / (\(C_{gro} \) × AF\(_{kg}\)))^{0.75} \times DWGF\(^{1.097}\)
b. \(NE_{gro,cm} \) = 22.02 × (LW\(_{cm}\) / (\(C_{gro} \) × AM\(_{kg}\)))^{0.75} \times DWGM\(^{1.097}\)
c. \(NE_{gro,MMF} \) = 22.02 × (MF\(_{kg}\) / (\(C_{gro} \) × LW\(_{ENDF}\)))^{0.75} \times DWGFF\(^{1.097}\)
d. \(NE_{gro,MMF} \) = 22.02 × (MF\(_{kg}\) / (\(C_{gro} \) × LW\(_{ENDM}\)))^{0.75} \times DWGFM\(^{1.097}\)

Where:
NEgro = net energy required by animal for growth in cohort \(c\), MJ×head\(^{-1}\)×day\(^{-1}\)
LW = average live weight of growing animals, kg×head\(^{-1}\)
Cgro = dimensionless coefficient given in Table 3.10
AFkg = average live weight of adult female animals, kg×head\(^{-1}\)
AMkg = average live weight of adult male animals, kg×head\(^{-1}\)
DWGF = average daily growth rate of female animals from calf to adult animal, kg×head\(^{-1}\)×day\(^{-1}\)
DWGM = average daily growth rate of male animals from calf to adult animal, kg×head\(^{-1}\)×day\(^{-1}\)
DWGFF = average daily growth rate of female animals in feedlots, kg×head\(^{-1}\)×day\(^{-1}\)
DWGFM = average daily growth rate of male animals in feedlots, kg×head\(^{-1}\)×day\(^{-1}\)
cf = cohorts of replacement (RF) or fattening female animals (MF)
cm = cohorts of replacement (RM) or fattening male animals (MM)
MFF = cohort of feedlot female animals
MMF = cohort of feedlot male animals

Table 3.10 Constants for calculating \(\text{NE}_\text{gro}\) in large ruminants

<table>
<thead>
<tr>
<th>Animal category</th>
<th>GLEAM cohorts</th>
<th>(C_{\text{gro}}) (dimensionless)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle and Buffaloes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female animals</td>
<td>RF, MF, MFF</td>
<td>0.8</td>
</tr>
<tr>
<td>Male animals</td>
<td>RM, MM, MMF</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Equation 3.33 – Small ruminants

\[
\text{NE}_{\text{gro},c} = (\text{RF1kg} - \text{RFAkg}) \times \left[\left(a + 0.5b(\text{RF1kg} - \text{RFAkg})\right) / 365\right]
\]

Where:

\(\text{NE}_{\text{gro},c}\) = net energy required by animal for growth in cohort \(c\), MJ×head\(^{-1}\)×day\(^{-1}\)
RF1kg = the live bodyweight at the end of the 1-year-old in cohort \(c\), kg×head\(^{-1}\)×day\(^{-1}\)
RFAkg = the live bodyweight in the midst of the 1-year-old in cohort \(c\), kg×head\(^{-1}\)×day\(^{-1}\)
\(a_c, b_c\) = constants given in Table 3.11 for cohort \(c\)

Table 3.11 Constants for calculating \(\text{NE}_\text{gro}\) in small ruminants

<table>
<thead>
<tr>
<th>Animal category</th>
<th>GLEAM cohorts</th>
<th>(a) (MJ×kg(^{-1}))</th>
<th>(b) (MJ×kg(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep and Goats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intact males</td>
<td>RM, RMA, RMB</td>
<td>2.5</td>
<td>0.35</td>
</tr>
<tr>
<td>Castrates (Sheep)</td>
<td>MM</td>
<td>4.4</td>
<td>0.32</td>
</tr>
<tr>
<td>Females (Sheep)</td>
<td>RF, RFA, RFB, MF</td>
<td>2.1</td>
<td>0.45</td>
</tr>
<tr>
<td>Goats (all categories)</td>
<td></td>
<td>5.0</td>
<td>0.33</td>
</tr>
</tbody>
</table>

3.6.1.4 – Net energy for milk production (\(\text{NE}_{\text{lact}}\))

\(\text{NE}_{\text{lact}}\) is the net energy required for milk production. These equations are applied to adult females only.

Equation 3.34 – Large ruminants

\[
\text{NE}_{\text{lact},AF} = \text{Milk} \times (1.47 + 0.40 \times \text{Fat})
\]

Where:

\(\text{NE}_{\text{lact},AF}\) = net energy required by animal for lactation in the adult females cohort \(AF\), MJ×head\(^{-1}\)×day\(^{-1}\)
Milk = daily milk production (assumed to be null for the specialized meat herds), kg milk×cow\(^{-1}\)×day\(^{-1}\)
Fat = fat content of milk, percentage by weight

Equation 3.35 – Small ruminants

\[
\text{NE}_{\text{lact},AF} = \text{Milk} \times EV_{\text{milk}}
\]

Where:
\[N_{\text{E,AF}} = \text{net energy required by animal for lactation in the adult females cohort AF, MJ}\times\text{head}^{-1}\times\text{day}^{-1} \]
\[\text{Milk} = \text{daily milk production (assumed to be null for the specialized meat herds), kg milk\times\text{ewe/doe}^{-1}\times\text{day}^{-1} } \]
\[\text{EV}_{\text{milk}} = \text{net energy to produce 1 kg of milk. A default value of } 4.6 \text{MJ}\times\text{kg milk}^{-1} \text{ is used, assuming a 7% fat content} \]

3.6.1.5 – Net energy for draught power (\(NE_{\text{work}} \))
\[NE_{\text{work}} \] is the net energy required for animal work, used to estimate the energy required for draught power from cattle and buffalo bulls. It is estimated that 10% of a day’s maintenance energy is used per hour of work. The Equation 3.36 is valid only for the herd with BCR >= 0.10.

Equation 3.36
\[NE_{\text{work,AM}} = 0.10 \times NE_{\text{main,AM}} \times \text{Hours} \]

Where:
\[NE_{\text{work,AM}} = \text{net energy required by animal for work in the adult males cohort AM, MJ}\times\text{head}^{-1}\times\text{day}^{-1} \]
\[NE_{\text{main,AM}} = \text{net energy required by animal for maintenance in the adult males cohort AM, MJ}\times\text{head}^{-1}\times\text{day}^{-1} \]
\[\text{Hours} = \text{number of hours of work per day, h}\times\text{head}^{-1}\times\text{day}^{-1} \]

3.6.1.6 – Net energy for production of fibre (\(NE_{\text{fibre}} \))
\[NE_{\text{fibre}} \] is the net energy required by small ruminants for producing fibre such as wool, cashmere and mohair. These equations are applied to adult and fattening animals.

Equation 3.37
\[NE_{\text{fibre,c}} = EV_{\text{fibre}} \times \text{Production}_{\text{fibre,c}} \]

Where:
\[NE_{\text{fibre,c}} = \text{net energy required by animal for fibre production in cohort c, MJ}\times\text{head}^{-1}\times\text{day}^{-1} \]
\[EV_{\text{fibre}} = \text{energy value per kilogram of fibre. Default value of } 24/365 \text{MJ}\times\text{kg fibre}^{-1} \text{ is used} \]
\[\text{Production}_{\text{fibre,c}} = \text{annual production of fibre by animal in cohort c, kg fibre}\times\text{head}^{-1}\times\text{year}^{-1} \]
\[c = \text{cohorts of adult and fattening animals} \]

3.6.1.7 – Net energy for pregnancy (\(NE_{\text{preg}} \))
\[NE_{\text{preg}} \] is the net energy required for pregnancy. For larger ruminants, it is estimated that 10% of \(NE_{\text{main}} \) is needed for a 281-day pregnancy period (Equation 3.38). For small ruminants, this percentage varies depending on the litter size (Equation 3.39). The equation is applied to adult and replacement females only and for goats only to RFB category.

Equation 3.38 – Large ruminants
a. \[NE_{\text{preg,AF}} = NE_{\text{main,AF}} \times 0.1 \times \text{FR} / 100 \]
b. \[NE_{\text{preg,RF}} = NE_{\text{main,RF}} \times 0.1 / (\text{AFC} / 2) \]

Where:
\[NE_{\text{preg,AF}} = \text{net energy required by adult females for pregnancy, MJ}\times\text{head}^{-1}\times\text{day}^{-1} \]
\[NE_{\text{preg,RF}} = \text{net energy required by replacement females for pregnancy, MJ}\times\text{head}^{-1}\times\text{day}^{-1} \]
\[NE_{\text{main,AF}} = \text{net energy required by adult females for maintenance, MJ}\times\text{head}^{-1}\times\text{day}^{-1} \]
\[NE_{\text{main,RF}} = \text{net energy required by replacement females for maintenance, MJ}\times\text{head}^{-1}\times\text{day}^{-1} \]
\[\text{FR} = \text{fertility rate of adult females, percentage} \]
\[\text{AFC} = \text{age at first calving, year} \]

Equation 3.39 – Small ruminants
a. \[NE_{\text{preg,AF}} = NE_{\text{main,AF}} \times (0.077 \times (2 - \text{LITSIZE}) + 0.126 \times (\text{LITSIZE} - 1)) \times (\text{FR} / 100) \]
b. \[NE_{\text{preg,RF}} = NE_{\text{main,RF}} \times 0.077 \]

Where:
$NE_{prog, AF} = \text{net energy required by adult females for pregnancy, MJ} \times \text{head}^{-1} \times \text{day}^{-1}$

$NE_{prog, RF} = \text{net energy required by replacement females for pregnancy, MJ} \times \text{head}^{-1} \times \text{day}^{-1}$

$NE_{main, AF} = \text{net energy required by adult females for maintenance, MJ} \times \text{head}^{-1} \times \text{day}^{-1}$

$NE_{main, RF} = \text{net energy required by replacement females for maintenance, MJ} \times \text{head}^{-1} \times \text{day}^{-1}$

$LITSIZE = \text{litter size, number of lambs/kids per parturition, head}$

$FR = \text{fertility rate of adult females, percentage}$

3.6.1.8 – Ratio of net energy in the feed intake for maintenance to digestible energy (REM)

The ratio of net energy available in the feed intake for maintenance to digestible energy consumed (REM) for ruminant species is calculated following Equation 3.40 below:

Equation 3.40

$$REM_{fg} = 1.123 - \frac{(4.092 \times 10^{-3} \times (DIET_{Dfg}) + (1.126 \times 10^{-5} \times (DIET_{Dfg} / 100)^2) - (25.4 / (DIET_{Dfg} / 100))}{(25.4 / (DIET_{Dfg} / 100))}$$

Where:

- $REM_{fg} = \text{ratio of net energy available in the diet for maintenance to digestible energy for the feeding group } fg$, fraction
- $DIET_{Dfg} = \text{average digestibility of ration for the feeding group } fg$, percentage
- $fg = \text{feeding group as shown in Table 3.2}$

3.6.1.9 – Ratio of net energy available in the feed intake for growth to digestible energy consumed (REG)

The ratio of net energy available in the feed intake for growth to digestible energy consumed (REG) for ruminant species is calculated following Equation 3.41 below:

Equation 3.41

$$REG_{fg} = 1.164 - \frac{(5.160 \times 10^{-3} \times (DIET_{Dfg}) + (1.308 \times 10^{-5} \times (DIET_{Dfg} / 100)^2) - (37.4 / (DIET_{Dfg} / 100))}{(37.4 / (DIET_{Dfg} / 100))}$$

Where:

- $REG_{fg} = \text{ratio of net energy available in the diet for growth to digestible energy consumed for the feeding group } fg$, fraction
- $DIET_{Dfg} = \text{average digestibility of ration for the feeding group } fg$, percentage
- $fg = \text{feeding group as shown in Table 3.2}$

3.6.1.10 – Total gross energy (GE)

The gross energy requirement is based on the amount of net energy requirements and the energy availability of the feed intake as showed in the equation below, using the relevant terms for each species and animal category:

Equation 3.42

$$GE_{tot,c} = \frac{((NE_{main,c} + NE_{act,c} + NE_{act,c} + NE_{work,c} + NE_{preg,c}) / REM_{fg}) + ((NE_{pro,c} + NE_{fibre,c}) / REG_{fg})}{(DIET_{Dfg} / 100)}$$

Where:

- $GE_{tot,c} = \text{total gross energy requirement by animal in cohort } c$, MJ head$^{-1}$ day$^{-1}$
- $NE_{main,c} = \text{net energy required by animal for maintenance in cohort } c$, MJ head$^{-1}$ day$^{-1}$
- $NE_{act,c} = \text{net energy for animal activity in cohort } c$, MJ head$^{-1}$ day$^{-1}$
- $NE_{pro,c} = \text{net energy required by animal for growth in cohort } c$, MJ head$^{-1}$ day$^{-1}$
- $NE_{act,c} = \text{net energy required by animal for lactation in cohort } c$, MJ head$^{-1}$ day$^{-1}$
- $NE_{work,c} = \text{net energy required by animal for work in cohort } c$, MJ head$^{-1}$ day$^{-1}$
- $NE_{fibre,c} = \text{net energy required by animal for fibre production in cohort } c$, MJ head$^{-1}$ day$^{-1}$
- $NE_{preg,c} = \text{net energy required by animal for pregnancy in cohort } c$, MJ head$^{-1}$ day$^{-1}$
- $REM_{fg} = \text{ratio of net energy available in the diet for maintenance to digestible energy consumed for the feeding group } fg$, fraction
- $REG_{fg} = \text{ratio of net energy available in the diet for growth to digestible energy consumed for the feeding group } fg$, fraction
- $fg = \text{feeding group as shown in Table 3.2}$
3.6.2 – Energy requirement of pigs

As the 2006 IPCC guidelines do not include equations for calculating the energy requirement of monogastric species, equations for pigs were derived from NRC (1998). The formulas were adjusted in light of recent farm data supplied (P. Bikker, personal communication, 2011). The model distinguishes four groups with respect their nutrition needs: sows, boars, replacement animals and fattening pigs. The table below summarizes the equations used to estimate the energy requirements for pigs.

Table 3.12 Equations used to estimate ME for pigs

<table>
<thead>
<tr>
<th>Metabolic function</th>
<th>Abbreviation</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>ME<sub>main</sub></td>
<td>Equation 3.43</td>
</tr>
<tr>
<td>Gestation</td>
<td>ME<sub>gest</sub></td>
<td>Equation 3.44</td>
</tr>
<tr>
<td>Lactation</td>
<td>ME<sub>lact</sub></td>
<td>Equation 3.45</td>
</tr>
<tr>
<td>Growth</td>
<td>ME<sub>prot</sub> / ME<sub>fat</sub></td>
<td>Equation 3.46/3.47</td>
</tr>
<tr>
<td>Total energy requirement</td>
<td>ME<sub>tot</sub></td>
<td>Equation 3.48</td>
</tr>
</tbody>
</table>

3.6.2.1 – Energy requirement for maintenance (ME_{main})

ME_{main} is the metabolizable energy requirement for maintenance.

Equation 3.43

\[ME_{\text{main},c} = C_{\text{main}} \times LW_c^{0.75} \times C_{\text{act}} \]

Where:

- \(ME_{\text{main},c} \) = metabolizable energy required by animal for maintenance in cohort \(c \), MJ\(\times \)head\(^{-1}\)\times day\(^{-1}\)
- \(C_{\text{main}} \) = coefficient for maintenance energy requirement, MJ\(\times \)kg\(^{0.75}\)\times day\(^{-1}\). Default value of 0.4435 is used
- \(LW_c \) = average live weight for maintenance energy requirement of the animals in cohort \(c \), kg\times head\(^{-1}\). Values are given in Table 3.13,
- \(C_{\text{act}} \) = dimensionless coefficient for activity that depends on animal feeding condition, with 1.125 for backyard and 1.0 for intermediate and industrial systems

Table 3.13 Average live weight for maintenance energy requirements for pigs

<table>
<thead>
<tr>
<th>Animal cohort</th>
<th>Weight (kg\times animal(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult females (idle)</td>
<td>AFkg</td>
</tr>
<tr>
<td>Adult females (gestation)</td>
<td>AFkg + (LITSIZE \times Ckg + 0.15 \times AFkg) / 2</td>
</tr>
<tr>
<td>Adult females (lactation)</td>
<td>AFkg + (0.15 \times AFkg) / 2</td>
</tr>
<tr>
<td>Adult males</td>
<td>AMkg</td>
</tr>
<tr>
<td>Replacement females</td>
<td>RFkg</td>
</tr>
<tr>
<td>Replacement males</td>
<td>RMkg</td>
</tr>
<tr>
<td>Fattening animals</td>
<td>M2kg</td>
</tr>
</tbody>
</table>

Where:

- LITSIZE = litter size, number of piglets per parturition, heads \times parturition\(^{-1}\)
- Ckg = live weight of piglets at birth, kg\times head\(^{-1}\)
- AFkg = average live weight of adult females, kg\times head\(^{-1}\)
- AMkg = average live weight of adult males, kg\times head\(^{-1}\)
- RFkg = average live weight of replacement females, kg\times head\(^{-1}\)
- RMkg = average live weight of replacement males, kg\times head\(^{-1}\)
- M2kg = average live weight of meat animals, kg\times head\(^{-1}\)
3.6.2.2 – Energy requirement for gestation (ME\textsubscript{gest})

ME\textsubscript{gest} is the metabolizable energy requirement for gestation. This equation is applied only to adult and replacement females. In the second case, only a part of the animals is at reproductive age. Therefore, the energy requirement for this cohort must be corrected by the age at first farrowing of the animals.

Equation 3.44

\[
\text{ME}_{\text{gest},c} = \text{C}_{\text{gest}} \times \text{LITSIZE} \times \text{C}_{\text{adj},c}
\]

Where:

- \(\text{ME}_{\text{gest}}\) = metabolizable energy required by animal for gestation in cohort \(c\), MJ\text{piglet}\text{day}^{-1}\text{head}^{-1}\)
- \(\text{C}_{\text{gest}}\) = coefficient for gestation energy requirement, MJ\text{piglet}^{-2}. Default value of 0.14985 is used
- \(\text{LITSIZE}\) = litter size, number of piglets per parturition, heads\text{piglet}\text{parturition}^{-1}\)
- \(\text{C}_{\text{adj},c}\) = coefficient of adjustment to account for the reproductive part of the cohort \(c\), year. A value of 1 is used for adult females and a value of \(1 / \text{AFCF}\) is used for replacement females (AFCF is the age at parturition based on the daily weight gain, see Section 2.3.2.1).
- \(c\) = cohort of adult or replacement females

3.6.2.3 – Energy requirement for lactation (ME\textsubscript{lact})

ME\textsubscript{lact} is the metabolizable energy requirement for lactation. This equation is applied only to adult and replacement females. In the second case, only a part of the animals is at reproductive age. Therefore, the energy requirement for this cohort must be corrected by the age at first farrowing of the animals.

Equation 3.45

\[
\text{ME}_{\text{lact},c} = \text{LITSIZE} \times (1 - 0.5 \times (\text{DR1} / 100)) \times ((\text{C}_{\text{lact}} \times (\text{Wkg} - \text{Ckg}) \times 1000 / \text{Lact}) - (\text{C}_{\text{wloss}} / \text{C}_{\text{conv}})) \times \text{C}_{\text{adj},c}
\]

Where:

- \(\text{ME}_{\text{lact},c}\) = metabolizable energy required by animal for lactation in cohort \(c\), MJ\text{piglet}\text{day}^{-1}\text{head}^{-1}\)
- \(\text{LITSIZE}\) = litter size, number of lambs/kids per parturition, heads\text{piglet}\text{parturition}^{-1}\)
- \(\text{DR1}\) = death rate of piglets, percentage
- \(\text{C}_{\text{lact}}\) = coefficient for lactation energy requirement, MJ\text{xg live weight}^{-1}. Default value of 0.02059 is used.
- \(\text{Wkg}\) = live weight of piglets at weaning age, kg\text{head}^{-1}\)
- \(\text{Ckg}\) = live weight of piglets at birth, kg\text{head}^{-1}\)
- \(\text{Lact}\) = duration of lactation period, days
- \(\text{C}_{\text{wloss}}\) = coefficient for weight loss from sow due to lactation, MJ\text{piglet}\text{day}^{-1}\text{head}^{-1}. Default value of 0.3766 is used.
- \(\text{C}_{\text{conv}}\) = efficiency for intake to milk energy conversion, fraction. Default value of 0.67 is used.
- \(\text{C}_{\text{adj},c}\) = coefficient of adjustment to account for the reproductive part of the cohort \(c\), year. A value of 1 is used for adult females and a value of \(1 / \text{AFCF}\) is used for replacement females (AFCF is the age at parturition based on the daily weight gain, see Section 2.3.2.1).
- \(c\) = cohort of adult or replacement females

3.6.2.4 – Energy requirement for growth (ME\textsubscript{prot} and ME\textsubscript{fat})

ME\textsubscript{prot} and ME\textsubscript{fat} are the metabolizable energy requirements for the generation, during growth, of proteins and fat, respectively. It is assumed that all growth is either fat or protein tissue. These equations are applied only to replacement and fattening animals.

Equation 3.46

\[
\text{ME}_{\text{prot},c} = \text{DWG}_c \times \text{PTissue} \times \text{Prot} \times \text{C}_{\text{MEprot}}
\]

Where:

- \(\text{ME}_{\text{prot},c}\) = metabolizable energy required for generating new protein in tissues for cohort \(c\), MJ\text{piglet}\text{day}^{-1}\text{head}^{-1}\)
- \(\text{DWG}_c\) = daily weight gain by animal in cohort \(c\), kg\text{head}^{-1}\text{day}^{-1}\)
- \(\text{PTissue}\) = fraction of protein tissue in the daily weight gain, fraction. Default values of 0.60, 0.65 and 0.7 for backyard, intermediate and industrial systems are used, respectively.
Prot = fraction of protein in protein tissue, fraction. Default value of 0.23 is used

CMEprot = metabolizable energy required for protein in protein tissue, MJ×kg protein⁻¹. Default value of 54.0 is used.
c = cohort of replacement and fattening animals

Equation 3.47

\[ME_{fat,c} = DWG_c \times (1 - PTissue) \times Fat \times C_{MEfat} \]

Where:

ME_{fat,c} = metabolizable energy required for generating new fat in adipose tissue for cohort c, MJ×head⁻¹×day⁻¹

DWG_c = daily weight gain by animal in cohort c, kg×head⁻¹×day⁻¹

PTissue = fraction of protein tissue in the daily weight gain, fraction. Default values of 0.60, 0.65 and 0.7 for backyard, intermediate and industrial systems are used, respectively.

Fat = fraction of fat in adipose tissue, fraction. Default value of 0.90 is used

C_{MEfat} = metabolizable energy required for fat in adipose tissue, MJ×kg fat⁻¹. Default value of 52.3 is used.
c = cohort of replacement and fattening animals

3.6.2.5 – Total energy requirement \((ME_{tot}) \)

\(ME_{tot} \) is the total metabolizable energy requirement for each animal in a given cohort.

Equation 3.48

a. \(ME_{tot,AF} = (Gest \times (ME_{main-gestation,AF} + ME_{gest}) + Lact \times (ME_{main-lactation,AF} + ME_{lact}) + Idle \times (ME_{main-idle,AF})) / (Gest + Lact + Idle) \)
b. \(ME_{tot,AM} = ME_{main,AM} \)
c. \(ME_{tot,RF} = (Gest \times (ME_{gest,RF}) + Lact \times (ME_{lact,RF}) + 365 \times AFCF \times (ME_{main,RF} + ME_{prot,RF} + ME_{fat,RF})) / (365 \times AFCF) \)
d. \(ME_{tot,RM} = ME_{main,RM} + ME_{prot,RM} + ME_{fat,RM} \)
e. \(ME_{tot,M2} = ME_{main,M2} + ME_{prot,M2} + ME_{fat,M2} \)

Where:

\(ME_{tot} \) = total metabolizable energy required for a given cohort, MJ×head⁻¹×day⁻¹

\(ME_{main} \) = metabolizable energy required by animal for maintenance for a given cohort, MJ×head⁻¹×day⁻¹. For adult females, the model distinguishes between idle, gestation and lactation periods (see Equation 3.43)

\(ME_{gest} \) = metabolizable energy required by animal for gestation for a given cohort, MJ×head⁻¹×day⁻¹

\(ME_{lact} \) = metabolizable energy required by animal for lactation for a given cohort, MJ×head⁻¹×day⁻¹

\(ME_{prot} \) = metabolizable energy required by animal for generation of new proteins in protein tissue for a given cohort, MJ×head⁻¹×day⁻¹

\(ME_{fat} \) = metabolizable energy required by animal for generation of new fat in adipose tissue for a given cohort, MJ×head⁻¹×day⁻¹

Gest = duration of gestation period, days
Lact = duration of lactation period, days
Idle = duration of idle period, days
AFCF = age at first parturition, year
3.6.3 – Energy requirement of chickens

Equations for chickens were derived from Sakomura (2004). The model partitions the total metabolizable energy intake into maintenance, growth and production. It is assumed that layers and broilers are kept in housing with an ambient temperature that is constant at 20 °C. For backyard systems, the average annual temperature is used in the estimation of energy for maintenance. Table 3.14 summarizes the equations used to estimate the energy requirements for chicken.

<table>
<thead>
<tr>
<th>Metabolic function</th>
<th>Abbreviation</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>ME<sub>main</sub></td>
<td>3.49</td>
</tr>
<tr>
<td>Growth</td>
<td>ME<sub>gro</sub></td>
<td>3.50</td>
</tr>
<tr>
<td>Production</td>
<td>ME<sub>prod</sub></td>
<td>3.51</td>
</tr>
</tbody>
</table>

Table 3.14 Equations used to estimate ME for chickens

Metabolic function

<table>
<thead>
<tr>
<th>Metabolic function</th>
<th>Abbreviation</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total energy requirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backyard production systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproductive hens</td>
<td>ME<sub>tot</sub></td>
<td>3.52a</td>
</tr>
<tr>
<td>Reproductive roosters</td>
<td>ME<sub>tot</sub></td>
<td>3.52b</td>
</tr>
<tr>
<td>Surplus hens when adults (laying eggs)</td>
<td>ME<sub>tot</sub></td>
<td>3.52a</td>
</tr>
<tr>
<td>Growing female and male chicks for replacement</td>
<td>ME<sub>tot</sub></td>
<td>3.52b</td>
</tr>
<tr>
<td>Surplus hens when growing (not laying eggs)</td>
<td>ME<sub>tot</sub></td>
<td>3.52b</td>
</tr>
<tr>
<td>Surplus roosters</td>
<td>ME<sub>tot</sub></td>
<td>3.52b</td>
</tr>
<tr>
<td>Layers production systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproductive hens</td>
<td>ME<sub>tot</sub></td>
<td>3.52a</td>
</tr>
<tr>
<td>Reproductive roosters</td>
<td>ME<sub>tot</sub></td>
<td>3.52b</td>
</tr>
<tr>
<td>Growing female and male chicks for replacement</td>
<td>ME<sub>tot</sub></td>
<td>3.52b</td>
</tr>
<tr>
<td>Surplus roosters</td>
<td>ME<sub>tot</sub></td>
<td>3.52b</td>
</tr>
<tr>
<td>Laying hens (before laying period and during molting period)</td>
<td>ME<sub>tot</sub></td>
<td>3.52b</td>
</tr>
<tr>
<td>Laying hens (during laying period)</td>
<td>ME<sub>tot</sub></td>
<td>3.52a</td>
</tr>
<tr>
<td>Broiler production system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproductive hens</td>
<td>ME<sub>tot</sub></td>
<td>3.52a</td>
</tr>
<tr>
<td>Reproductive roosters</td>
<td>ME<sub>tot</sub></td>
<td>3.52b</td>
</tr>
<tr>
<td>Growing female and male chicks for replacement</td>
<td>ME<sub>tot</sub></td>
<td>3.52b</td>
</tr>
<tr>
<td>Broiler animals</td>
<td>ME<sub>tot</sub></td>
<td>3.52b</td>
</tr>
</tbody>
</table>

3.6.3.1 – Energy requirement for maintenance (ME_{main})

ME_{main} is the metabolizable energy requirement for maintenance.

Equation 3.49

\[
ME_{\text{main},c} = LW_c^{0.75} \times TEMP_{\text{reg},c} \times C_{\text{act}}
\]

Where:

- \(ME_{\text{main},c} \) = metabolizable energy required by animal for maintenance in cohort \(c \), MJ\times head\(^{-1}\)\times day\(^{-1}\)
- \(LW_c \) = average live weight of the animal in cohort \(c \), kg\times head\(^{-1}\).
- \(TEMP_{\text{reg},c} \) = regression function depending on the temperature for cohort \(c \), MJ\times kg\(^{0.75}\)\times day\(^{-1}\). Values are given in Table 3.15.
- \(C_{\text{act}} \) = dimensionless coefficient for activity with a value of 1.25 for backyard and 1.0 for layers and broilers.
3.6.3.2 – Energy requirement for growth (\(\text{ME}_{\text{gro}}\))

\(\text{ME}_{\text{gro}}\) is the metabolizable energy requirement for growth.

Equation 3.50

\[
\text{ME}_{\text{gro},c} = \text{DWG}_c \times 1000 \times C_{\text{gro},c}
\]

Where:

- \(\text{ME}_{\text{gro},c}\) = metabolizable energy required by animal for growth in cohort \(c\), MJ\(\times\)head\(^{-1}\)\(\times\)day\(^{-1}\)
- \(\text{DWG}_c\) = daily weight gain of animals in cohort \(c\), kg\(\times\)head\(^{-1}\)\(\times\)day\(^{-1}\). The DWG for reproductive adults in Broilers is taken from Layers.
- \(C_{\text{gro},c}\) = growth coefficient for cohort \(c\), MJ\(\times\)kg\(^{-1}\). Values are given in Table 3.16.

Table 3.16 Growth coefficient for chickens

<table>
<thead>
<tr>
<th>Animal cohort</th>
<th>(C_{\text{gro}}) (MJ(\times)g(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backyard production systems</td>
<td></td>
</tr>
<tr>
<td>Reproductive adults (AF, AM)</td>
<td>0.0279</td>
</tr>
<tr>
<td>Surplus hens when adults (laying eggs) (MF2)</td>
<td>0.02117</td>
</tr>
<tr>
<td>Growing female and male chicks for replacement (RF, RM)</td>
<td></td>
</tr>
<tr>
<td>Surplus hens when growing (not laying eggs) (MF1)</td>
<td></td>
</tr>
<tr>
<td>Surplus roosters (MM)</td>
<td></td>
</tr>
<tr>
<td>Layers production systems</td>
<td></td>
</tr>
<tr>
<td>Reproductive adults (AF, AM)</td>
<td>0.0279</td>
</tr>
<tr>
<td>Growing female and male chicks for replacement (RF, RM)</td>
<td>0.02117</td>
</tr>
<tr>
<td>Surplus roosters</td>
<td>0.0279</td>
</tr>
<tr>
<td>Laying hens (before laying period) (MF1)</td>
<td></td>
</tr>
<tr>
<td>Laying hens (during laying period) (MF2, MF3, MF4)</td>
<td></td>
</tr>
<tr>
<td>Broiler production system</td>
<td></td>
</tr>
<tr>
<td>Reproductive adults (AF, AM)</td>
<td>0.03185</td>
</tr>
<tr>
<td>Growing female and male chicks for replacement (RF, RM)</td>
<td>0.01045</td>
</tr>
<tr>
<td>Broiler animals (M2)</td>
<td>0.01655</td>
</tr>
</tbody>
</table>

3.6.3.3 – Energy requirement for egg production (\(\text{ME}_{\text{egg}}\))

\(\text{ME}_{\text{egg}}\) is the metabolizable energy requirement for egg production. It applied only to the laying animals, specifically: reproductive females for all systems (AF), laying surplus females for backyard chickens (MF2) and surplus females during the first and second laying period for layers (MF2, MF3, MF4).
Equation 3.51
\[ME_{\text{egg,c}} = 10^{-3} \times \text{EGG}_c \times C_{\text{egg}} \]

Where:
- \(ME_{\text{egg,c}} \) = metabolizable energy required by animal for egg production in cohort \(c \), MJ/head\(^{-1}\)day\(^{-1}\)
- \(\text{EGG}_c \) = egg mass production for cohort \(c \), g egg/animal\(^{-1}\)day\(^{-1}\)
- \(C_{\text{egg}} \) = energy requirement coefficient for egg production, kJ/g egg\(^{-1}\). Default value of 10.03 is used.
- \(c \) = cohorts of laying females

3.6.3.4 – Total energy requirement (\(ME_{\text{tot}} \))

\(ME_{\text{tot}} \) is the total metabolizable energy requirement for each animal in a given cohort.

Equation 3.52
a. \[ME_{\text{tot,c}} = ME_{\text{main,c}} + ME_{\text{gro,c}} + ME_{\text{egg,c}} \]
 for \(c \) = cohorts of laying females
b. \[ME_{\text{tot,c}} = ME_{\text{main,c}} + ME_{\text{gro,c}} \]
 for \(c \) = cohorts other than laying females

Where:
- \(ME_{\text{tot,c}} \) = total metabolizable energy required by the animal in cohort \(c \), MJ/head\(^{-1}\)day\(^{-1}\)
- \(ME_{\text{main,c}} \) = metabolizable energy required by the animal for maintenance in cohort \(c \), MJ/head\(^{-1}\)day\(^{-1}\)
- \(ME_{\text{gro,c}} \) = metabolizable energy required by the animal for growth in cohort \(c \), MJ/head\(^{-1}\)day\(^{-1}\)
- \(ME_{\text{egg,c}} \) = metabolizable energy required by the animal for egg production in cohort \(c \), MJ/head\(^{-1}\)day\(^{-1}\)

3.7 – FEED INTAKE

For each cohort and each species, the feed intake is calculated by dividing the total animal’s energy requirement by the average energy content of the ration following Equation 3.53 and Equation 3.54.

Equation 3.53 - Ruminants
\[DMI_{T,c} = \frac{GE_{\text{tot,T,c}}}{DIET_{\text{GE,T,fg}}} \]

Where:
- \(DMI_{T,c} \) = daily feed intake per animal in cohort \(c \) for species and system \(T \), kg DM/head\(^{-1}\)day\(^{-1}\)
- \(GE_{\text{tot,T,c}} \) = total gross energy requirement by animal in cohort \(c \) for species and system \(T \), MJ/head\(^{-1}\)day\(^{-1}\)
- \(DIET_{\text{GE,T,fg}} \) = average gross energy content of ration for feeding group \(fg \) for species and system \(T \), MJ/kgDM\(^{-1}\)
- \(c \) = animal cohort \(c \) for each ruminant species
- \(fg \) = feeding group as shown in Table 3.2

Equation 3.54 - Monogastrics
\[DMI_{T,c} = \frac{ME_{\text{tot,T,c}}}{DIET_{\text{ME}}} \]

Where:
- \(DMI_{T,c} \) = daily feed intake per animal in cohort \(c \) for species and system \(T \), kg DM/head\(^{-1}\)day\(^{-1}\)
- \(ME_{\text{tot,T,c}} \) = total gross energy requirement by animal in cohort \(c \) for species and system \(T \), MJ/head\(^{-1}\)day\(^{-1}\)
- \(DIET_{\text{ME}} \) = average metabolizable energy content of ration, MJ/head\(^{-1}\)day\(^{-1}\)
- \(c \) = animal cohort \(c \) for each monogastric species
4 CHAPTER 4 – ANIMAL EMISSIONS MODULE

This chapter describes how to estimate emissions at herd level associated with animal production, specifically emissions from enteric fermentation and manure management.

The functions of the ‘Animal emissions’ module are to:

- Calculate the enteric emissions.
- Calculate the methane and the nitrous oxide (N₂O) emissions, plus the ammonia (NH₃), nitrogen oxides (NOₓ) and nitrates (NO₃⁻) flows arising from the manure management.
- Use the estimates on nitrogen flows to calculate the amount of nitrogen excreted by livestock that is available for recycle on pasture and cropland, to be used as input in the “Manure module” (Chapter 5).
- Totalize the feed, enteric and manure management emissions for the whole herd or flock.

For a schematic representation of the animal emissions module, see Figure 4.1.

4.1 – MANURE MANAGEMENT SYSTEMS

Manure management systems (MMS) categories used during manure storage and treatment are described in Table 4.1. Moreover, Table 4.2 reports different categories of use or disposal of manure after the storage and treatment phase. The remaining share of manure that is not used or disposed as per categories listed in Table 4.2 is assumed to be applied to croplands. On a global scale, there is very limited data available on how manure is managed. Consequently, GLEAM relies on various data sources such as national inventory reports, literature and expert knowledge to define the MMS and the share of manure allocated to each system. When possible, data were also gathered at sub-national level, which enhanced the spatial resolution of the data for large countries (Table 4.3). For other countries, existing GLEAM 2.0 data are used. Data on unregulated discharge of manure are obtained from the literature. Regional MMS percentages are summarized in the GLEAM dashboard (https://www.fao.org/gleam/dashboard/en/).

Table 4.1 Manure management systems definitions

<table>
<thead>
<tr>
<th>Manure management system</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic lagoon</td>
<td>A type of liquid, uncovered manure storage with varying lengths of storage (up to a year or greater). Lagoons can both be a tank construction or an earthen basin and are characterized by natural or forced aeration.</td>
</tr>
<tr>
<td>Aerobic processing</td>
<td>Manure is treated through natural or forced aeration processes for oxidation of organic and nitrogenous compounds.</td>
</tr>
<tr>
<td>Burned</td>
<td>Manure is collected and burned, usually as (cooking) fuel.</td>
</tr>
<tr>
<td>Compost</td>
<td>Manure is stored and turned into compost before using it as fertilizer. Often, manure is frequently turned and mixed during composting process.</td>
</tr>
<tr>
<td>Confinement</td>
<td>Manure is allowed to lie as deposited on outdoor confinement areas and is not managed.</td>
</tr>
<tr>
<td>Daily spread</td>
<td>Manure is routinely removed from a confinement facility and applied to cropland or pasture within 24 hours of excretion.</td>
</tr>
<tr>
<td>Deep litter</td>
<td>An in-house system where, as manure accumulates in the stable, bedding material is continuously added to absorb moisture over a production cycle of 6 to 12 months.</td>
</tr>
<tr>
<td>Digester</td>
<td>Also called biogas installation, which converts liquid and solid manure into biogas. As a by-product a digestate is formed which can be used as fertilizer.</td>
</tr>
<tr>
<td>Drylot</td>
<td>A paved or unpaved open confinement without any cover and where manure is stored for several months (up to a year or more) and may be removed periodically.</td>
</tr>
<tr>
<td>Lagoon</td>
<td>A liquid storage system designed to combine waste stabilization and storage. Lagoons can both be a covered tank construction or an earthen basin and are characterized by the creation of an anaerobic environment.</td>
</tr>
<tr>
<td>Liquid</td>
<td>A system where manure as excreted (slurry) is stored in tanks or earthen ponds, sometimes with some addition of water and storage periods of usually less than a year.</td>
</tr>
<tr>
<td>Liquid crust</td>
<td>Same as storage as ‘Liquid’, but with a naturally or artificially formed crust on the top, which reduces gas emissions.</td>
</tr>
<tr>
<td>Manure with litter (poultry)</td>
<td>As manure accumulates in the barn, bedding material is added to absorb the moisture over an entire production cycle. Typically used for poultry breeder flocks and meat type chickens.</td>
</tr>
</tbody>
</table>
Manure without litter (poultry)
Manure is dried as it accumulates and can be similar to an open confinement storage system.

Outdoor Confinement Area
Manure is allowed to lie as deposited on outdoor confinement areas and is not managed.

Pasture + paddock
Manure that is deposited on pasture, grazing land and outdoor confinement areas and not managed.

Pit 1
Manure is collected and stored below a slatted floor in enclosed animal confinement for less than 2 months.

Pit 2
Manure is collected and stored below a slatted floor in enclosed animal confinement for 2 months or more.

Solid storage
Manure is stored, typically for several months, in unconfined piles or stacks.

Thermal drying
Manure (solid) is treated through a drying process and is commonly used to remove volatile contaminants from livestock manure.

<table>
<thead>
<tr>
<th>Manure use or disposal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge</td>
<td>Manure is discharged in the environment. This is done after a period of storage and activities are often not recorded as many regions do not allow for such practices.</td>
</tr>
<tr>
<td>Dumping</td>
<td>Manure is dumped in a (often nearby) river. This can be done after a period of storage and activities are often not recorded as many regions do not allow for such practices.</td>
</tr>
<tr>
<td>Fishpond</td>
<td>Manure is used as fertilizer to increase production of food organisms that are eaten by the fish.</td>
</tr>
<tr>
<td>Incineration</td>
<td>Manure is burned in a controlled incinerator after a certain period of storage.</td>
</tr>
<tr>
<td>Public sewage</td>
<td>Manure enters the public sewage system and further processed at a treatment plant.</td>
</tr>
<tr>
<td>Sold</td>
<td>Solid manure is sold as fertilizer or fuel, usually after a period of storage.</td>
</tr>
</tbody>
</table>

Table 4.2 Categories of use or disposal of manure after the storage and treatment phase

<table>
<thead>
<tr>
<th>Source</th>
<th>Country</th>
<th>Administrative units</th>
<th>Livestock species</th>
<th>Production system</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey</td>
<td>EU</td>
<td>NUTS21</td>
<td>All species</td>
<td>Mixed</td>
<td>Bioteau et al.</td>
</tr>
<tr>
<td>GHG inventory</td>
<td>Australia</td>
<td>State</td>
<td>Cattle, pigs, poultry</td>
<td>Mixed</td>
<td>Australian Government</td>
</tr>
<tr>
<td>Brazil</td>
<td>State</td>
<td>Cattle, pigs</td>
<td>Grassland, mixed</td>
<td>De Lima et al.</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>Country</td>
<td>Cattle, pigs, poultry</td>
<td>Mixed Grassland</td>
<td>NIES</td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>Country</td>
<td>Cattle, pigs, poultry</td>
<td>Mixed</td>
<td>NZ Government</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>Country</td>
<td>All species</td>
<td>Grassland, mixed, feedlot</td>
<td>FOEN</td>
<td></td>
</tr>
<tr>
<td>NH3 inventory</td>
<td>US</td>
<td>State</td>
<td>Cattle, pigs, poultry</td>
<td>Grassland, mixed, feedlot</td>
<td>EPA</td>
</tr>
<tr>
<td>National statistics</td>
<td>Canada</td>
<td>State</td>
<td>Cattle, pigs</td>
<td>Grassland, mixed</td>
<td>Statistics Canada</td>
</tr>
<tr>
<td>Literature</td>
<td>Argentina</td>
<td>Country</td>
<td>All species</td>
<td>Grassland, mixed</td>
<td>Hilbert et al., Methane to Markets</td>
</tr>
<tr>
<td>China</td>
<td>Country</td>
<td>Cattle, poultry</td>
<td>Mixed</td>
<td>Bai et al.; Gao et al.</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Country</td>
<td>Dairy</td>
<td>Mixed</td>
<td>Gupta et al.</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>Country</td>
<td>Ruminants, pigs</td>
<td>Mixed</td>
<td>Mink et al.</td>
<td></td>
</tr>
<tr>
<td>Vietnam</td>
<td>Country</td>
<td>Pigs</td>
<td>Mixed</td>
<td>Thu et al.; Dan et al.</td>
<td></td>
</tr>
</tbody>
</table>

MMSs during the storage and treatment phase can be considered as solid or liquid (Table 4.4). This distinction is required for the estimation of nitrogen flows and emissions through different kinds of compounds during manure management. A special case is constituted by categories “Confinement”, “Daily Spread”, “Pit 1” and “Pit 2”, which can be liquid or solid depending on the species or production system. Table 4.5 shows how to classify these categories in GLEAM.
Table 4.4 Solid or liquid manure management systems

<table>
<thead>
<tr>
<th>Manure management system</th>
<th>Manure type</th>
<th>Manure management system</th>
<th>Manure type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic lagoon</td>
<td>Liquid</td>
<td>Liquid crust</td>
<td>Liquid</td>
</tr>
<tr>
<td>Aerobic processing</td>
<td>Liquid</td>
<td>Manure with litter (poultry)</td>
<td>Solid</td>
</tr>
<tr>
<td>Burned</td>
<td>Solid</td>
<td>Manure without litter (poultry)</td>
<td>Solid</td>
</tr>
<tr>
<td>Compost</td>
<td>Solid</td>
<td>Outdoor Confinement Area</td>
<td>Solid</td>
</tr>
<tr>
<td>Confinement</td>
<td>Table 4.5</td>
<td>Pasture + paddock</td>
<td>Solid</td>
</tr>
<tr>
<td>Dailyspread</td>
<td>Table 4.5</td>
<td>Pit 1</td>
<td>Table 4.5</td>
</tr>
<tr>
<td>Deep litter</td>
<td>Solid</td>
<td>Pit 2</td>
<td>Table 4.5</td>
</tr>
<tr>
<td>Digester</td>
<td>Liquid</td>
<td>Solid storage</td>
<td>Solid</td>
</tr>
<tr>
<td>Dry lot</td>
<td>Solid</td>
<td>Thermal drying</td>
<td>Solid</td>
</tr>
<tr>
<td>Lagoon</td>
<td>Liquid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid</td>
<td>Liquid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4.5 Classification of confinement, daily spread and pit storage categories of MMS

<table>
<thead>
<tr>
<th>Manure management system</th>
<th>Liquid</th>
<th>Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confinement</td>
<td>Cattle (feedlot)</td>
<td>Other cattle, buffalo, small ruminants, pigs, chickens</td>
</tr>
<tr>
<td>Dailyspread</td>
<td>Dairy cattle (mixed), pig</td>
<td>Other cattle (beef), buffalo, small ruminant, poultry</td>
</tr>
<tr>
<td>Pit 1, Pit 2</td>
<td>Cattle, buffalo, small ruminants, pigs,</td>
<td>Chickens</td>
</tr>
</tbody>
</table>
Figure 4.1 Schematic representation of the animal emissions module

- Number of animals
- Average gross energy content of ration
- Feed intake per animal

Gross energy intake by all animals

- Ym, percentage of gross energy converted to CH₄
- Energy content of CH₄

CH₄ from enteric fermentation

- Feed intake per animal
- Average digestibility of ration
- Coefficients for urinary energy content
- Coefficients for feed ash content

Excretion rate of volatile solids per animal

CH₄ emissions from manure management

- Number of animals
- Manure management systems
- CH₄ conversion factors

N₂O from manure management

- Manure management systems
- Emission factors for direct N₂O emissions
- Manure nitrogen available for recycle in agriculture

Nitrogen intake per animal

- Growth rates
- Energy requirements for growth
- Heat parameters for reproduction
- Production of milk or eggs
- Nitrogen content of tissues

Nitrogen excretion per animal

- Fraction of nitrogen volatilized as NH₃ (in house and during manure storage)
- N₂O emission factors from volatilized nitrogen

Total Ammonia or Nitrogen

- Proportion of leached manure nitrogen
- N₂O emission factors from leached nitrogen

Nitrogen lost as NO and NOₓ compounds

Direct N₂O emissions

Volatilized N-NH₃ and indirect N₂O emissions

Leached N-N₂O and indirect N₂O emissions

Total Nitrogen losses

Total N₂O emissions from manure management

- Number of animals
- Conversion factor to N₂O

Intermediate calculations within GLEAM

1 For chickens, the ratio between the average metabolizable energy and gross energy contents of the ration is used in place of digestibility.
4.2 – METHANE EMISSIONS FROM ENTERIC FERMENTATION

Methane is produced during the digestive process in ruminant species and pigs. Emissions from chickens, although present, are negligible. Enteric emissions are closely related to the composition of the diet, particularly to the energy content. An enteric methane conversion factor, \(Y_m \) (percentage of gross energy converted to methane) is used to calculate the methane emissions from enteric fermentation. A Tier 2 approach (IPCC, 2019) is applied for the calculation of enteric CH\(_4\) emissions due to the sensitivity of emissions to diet composition and the relative importance of enteric CH\(_4\) to the overall GHG emissions profile.

Enteric emissions were calculated as follows:

Equation 4.1

\[
\text{CH}_4 \text{-Enteric}_T,c = N_T,c \times 365 \times \text{DIET}_{G,T} \times \text{DMI}_{T,c} \times \left(Y_m T,c / 100 \right) / 55.65
\]

Where:
- \(\text{CH}_4 \text{-Enteric}_T,c \) = methane emissions from enteric fermentation for cohort \(c \), species and system \(T \), kg CH\(_4\)year\(^{-1}\)
- \(N_T,c \) = number of animals in cohort \(c \), species and system \(T \), heads
- \(\text{DIET}_{G,T} \) = average gross energy content of ration for species and system \(T \), MJ\(\times\)kgDM\(^{-1}\)
- \(\text{DMI}_{T,c} \) = daily feed intake per animal in cohort \(c \) for species and system \(T \), kg DM/animal\(^{-1}\)day\(^{-1}\)
- \(Y_m T,c \) = methane conversion factor for cohort \(c \), species and system \(T \), percentage of energy in feed converted into methane. Values are given in Table 4.6
- 55.65 = energy content of methane, MJ\(\times\)kg CH\(_4\)\(^{-1}\)

Table 4.6. Methane conversion factors for different species and cohorts

<table>
<thead>
<tr>
<th>Animal cohort</th>
<th>(Y_m) (% of energy converted into CH(_4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle and Buffaloes</td>
<td></td>
</tr>
<tr>
<td>Cattle (non-feedlot animals)</td>
<td>9.75 – 0.05 × (DIET(_{G,T}))</td>
</tr>
<tr>
<td>Feedlot animals</td>
<td>4</td>
</tr>
<tr>
<td>Buffaloes</td>
<td>9.75 – 0.05 × (DIET(_{G,T}))</td>
</tr>
<tr>
<td>Sheep and Goats</td>
<td></td>
</tr>
<tr>
<td>Adult reproductive animals</td>
<td>9.75 – 0.05 × (DIET(_{G,T}))</td>
</tr>
<tr>
<td>Young replacement and fattening animals</td>
<td>7.75 – 0.05 × (DIET(_{G,T}))</td>
</tr>
<tr>
<td>Pigs</td>
<td></td>
</tr>
<tr>
<td>Adult reproductive animals</td>
<td>1.01</td>
</tr>
<tr>
<td>Replacement and fattening animals</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Where:
- DIET\(_{G,T}\) = average digestibility of ration for the feeding group \(fg \) (See Table 3.2), percentage

4.3 – METHANE EMISSIONS FROM MANURE MANAGEMENT

Methane emissions from manure management were calculated using the IPCC Tier 2 method, which requires the estimation of the excretion rate of volatile solids (VS) per animal and the estimation of the proportion of VS that are converted to CH\(_4\). Methane emissions are calculated following Equation 4.2:

Equation 4.2

\[
\text{CH}_4 \text{-Manure}_T,c = N_T,c \times \left(\left(365 \times \text{VS}_{T,c} \right) \times \left(B_0,T \times 0.67 \times \sum_s (MCF_S / 100) \times \text{MMS}_{S,T,c} \right) \right)
\]

Where:
- \(\text{CH}_4 \text{-Manure}_T,c \) = total methane emissions from manure management for cohort \(c \), species and system \(T \), kg CH\(_4\)year\(^{-1}\)
- \(N_T,c \) = number of animals in cohort \(c \), species and system \(T \), heads
- \(\text{VS}_{T,c} \) = daily volatile solid excreted by animal in cohort \(c \), species and system \(T \), kg VS/animal\(^{-1}\)day\(^{-1}\)
- \(B_0,T \) = maximum methane producing capacity for manure for species and system \(T \), m\(^3\) CH\(_4\)/kg VS\(^{-1}\). Values are taken from updated Table 10.16 of the new IPCC guidelines (IPCC, 2019, Volume 4, Chapter 10).
- \(\text{MCF}_S \) = methane conversion factor for each manure management system \(S \), percentage. Values are taken from updated Table 10.17 of the new IPCC guidelines (IPCC, 2019, Volume 4, Chapter 10). Pit storage
management for chickens’ manure is assumed to have the same MCF used for poultry manure without litter.

\[MMS_{S,T,c} = \frac{\text{share of manure handled by manure management system } S \text{ for species and system } T \text{, for cohort } c, \text{ fraction}}{0.67} = \frac{\text{conversion factor from volume of methane into kg of gas, kg CH}_4\text{m}^{-3}}{\text{conversion factor from volume of methane into kg of gas, kg CH}_4\text{m}^{-3}} \]

GLEAM calculates the VS excretion rate using Equation 4.3 for ruminants, Equation 4.4 for pigs and Equation 4.5 for chicken. All three are based on Equation 10.24 from IPCC (2019).

Equation 4.3 - Ruminants

\[VS_{T,c} = DMI_{T,c} \times (1.04 - (DIET_{DIT,fg} / 100)) \times 0.92 \]

Where:

- \(VS_{T,c} \) = daily volatile solid excreted by animal in cohort \(c \), species and system \(T \), kg VS\times head^{-1}\times day^{-1}
- \(DMI_{T,c} \) = daily feed intake per animal in cohort \(c \) for species and system \(T \), kg DM\times head^{-1}\times day^{-1}
- \(DIET_{DIT} \) = average digestibility of ration for feeding group \(fg \), percentage
- \(fg \) = feeding group as shown in Table 3.2

The formula is a modification of the original IPCC equation. First, the average gross energy content of the ration is used instead of a fixed value of 18.45 MJ\times kg DM^{-1}. Thus, GE / DIET_{GE} equals the daily intake, DMI. Second, it is assumed that Urinary energy is 4% and the Ash content in feed is 8%. Therefore, GE \times (GE + UE) becomes 1.04 and 1 – ASH becomes 0.92.

Equation 4.4 - Pigs

\[VS_{T,c} = DMI_{T,c} \times (1.02 - (DIET_{DIT,T} / 100)) \times 0.94 \]

Where:

- \(VS_{T,c} \) = daily volatile solid excreted by animal in cohort \(c \), species and system \(T \), kg VS\times head^{-1}\times day^{-1}
- \(DMI_{T,c} \) = daily feed intake per animal in cohort \(c \) for species and system \(T \), kg DM\times head^{-1}\times day^{-1}
- \(DIET_{DIT} \) = average digestibility of ration for system \(T \), percentage

It is assumed that urinary energy is 2% and the ash content in feed is 6% (based on IPCC, 2019; Dämmgen et al., 2011). Therefore, GE \times (GE + UE) becomes 1.02 and 1 – ASH becomes 0.94.

Equation 4.5a – Chickens (Backyard and Layers)

\[VS_{T,c} = DMI_{T,c} \times (1.0 - DIET_{ME,T} / DIET_{GE,T}) \times 0.89 \]

Where:

- \(VS_{T,c} \) = daily volatile solid excreted by animal in cohort \(c \), species and system \(T \), kg VS\times head^{-1}\times day^{-1}
- \(DMI_{T,c} \) = daily feed intake per animal in cohort \(c \) for species and system \(T \), kg DM\times head^{-1}\times day^{-1}
- \(DIET_{ME,T} \) = average metabolizable energy content of ration for system \(T \), MJ\times kg DM^{-1}
- \(DIET_{GE,T} \) = average gross energy content of ration for system \(T \), MJ\times kg DM^{-1}

It is assumed that Urinary energy is 0% and the Ash content in feed is 11% (Davies, 2016). Therefore, GE \times (GE + UE) becomes 1 and 1 – ASH becomes 0.89.

Equation 4.5b – Chickens (Broilers)

\[VS_{T,c} = DMI_{T,c} \times (1.0 - DIET_{ME,T} / DIET_{GE,T}) \times 0.95 \]

Where:

- \(VS_{T,c} \) = daily volatile solid excreted by animal in cohort \(c \), species and system \(T \), kg VS\times head^{-1}\times day^{-1}
- \(DMI_{T,c} \) = daily feed intake per animal in cohort \(c \) for species and system \(T \), kg DM\times head^{-1}\times day^{-1}
- \(DIET_{ME,T} \) = average metabolizable energy content of ration for system \(T \), MJ\times kg DM^{-1}
- \(DIET_{GE,T} \) = average gross energy content of ration for system \(T \), MJ\times kg DM^{-1}
It is assumed that Urinary energy is 0% and the Ash content in feed is 5% (Vakili et al., 2015). Therefore, GE × (GE + UE) becomes 1 and 1 – ASH becomes 0.95.

4.4 – NITROGEN FLOWS FROM MANURE MANAGEMENT

The calculation of the flows of NH₃, N₂O, NOₓ and N₂ is based on the EEA (2016). The emissions are calculated based on the fraction of the total ammoniacal nitrogen (TAN) using the framework developed in (Vonk et al., 2018).

Emissions from manure management are estimated at two levels: NH₃ from nitrogen deposited in house or yard (the latter referring to confinement area in the USA), and emissions of nitrogen compounds (NH₃, N₂O, NOₓ, N₂) during manure storage and treatment. Total emissions of N₂O includes both direct emissions and indirect ones arising from volatilization of NH₃, leaching and disposals of manure other than application to cropland. Moreover, all estimated N flows and losses are then used to calculate the total nitrogen available for application to cropland, to be used as input for the Manure module (see Chapter 5).

4.4.1 – Emission factors

The following tables report the emissions factors used to estimate nitrogen lost as NH₃ (Table 4.7), through direct emissions of N₂O (Table 4.8) or as N₂ and NOₓ compounds (Table 4.9). Most of the emission factors are defined by different animal categories, manure types and phases of manure management, and they are all expressed as a proportion of the TAN excreted by animals (see section 4.4.2).

Table 4.7 N-NH₃ emissions factors from manure management systems, proportion of TAN.

<table>
<thead>
<tr>
<th>Livestock</th>
<th>Manure type</th>
<th>EFyard</th>
<th>EFhouse</th>
<th>EFstorage</th>
<th>EFspreading</th>
<th>EFgrazing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy cattle</td>
<td>Slurry</td>
<td>0.30</td>
<td>0.20</td>
<td>0.20</td>
<td>0.55</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Solid</td>
<td>0.30</td>
<td>0.19</td>
<td>0.27</td>
<td>0.79</td>
<td>0.10</td>
</tr>
<tr>
<td>Non-dairy cattle (young cattle, beef, suckling cows)</td>
<td>Slurry</td>
<td>0.53</td>
<td>0.20</td>
<td>0.20</td>
<td>0.55</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Solid</td>
<td>0.53</td>
<td>0.19</td>
<td>0.27</td>
<td>0.79</td>
<td>0.06</td>
</tr>
<tr>
<td>Sheep</td>
<td>Solid</td>
<td>0.75</td>
<td>0.22</td>
<td>0.28</td>
<td>0.90</td>
<td>0.09</td>
</tr>
<tr>
<td>Buffalo</td>
<td>Slurry</td>
<td>NA</td>
<td>0.20</td>
<td>0.17</td>
<td>0.55</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Solid</td>
<td>0.75</td>
<td>0.22</td>
<td>0.28</td>
<td>0.90</td>
<td>0.09</td>
</tr>
<tr>
<td>Goats</td>
<td>Slurry</td>
<td>NA</td>
<td>0.20</td>
<td>0.17</td>
<td>0.55</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Solid</td>
<td>0.75</td>
<td>0.22</td>
<td>0.28</td>
<td>0.90</td>
<td>0.09</td>
</tr>
<tr>
<td>Pigs (fattening)</td>
<td>Slurry</td>
<td>0.28</td>
<td>0.28</td>
<td>0.14</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid</td>
<td>0.28</td>
<td>0.27</td>
<td>0.45</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Pigs (sows and piglets)</td>
<td>Slurry</td>
<td>NA</td>
<td>0.22</td>
<td>0.14</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid</td>
<td>NA</td>
<td>0.25</td>
<td>0.45</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pasture (outdoor)</td>
<td>NA</td>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>Laying hens</td>
<td>Slurry</td>
<td>NA</td>
<td>0.41</td>
<td>0.14</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid</td>
<td>NA</td>
<td>0.41</td>
<td>0.14</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>Broilers</td>
<td>Slurry</td>
<td>NA</td>
<td>0.28</td>
<td>0.17</td>
<td>0.66</td>
<td></td>
</tr>
</tbody>
</table>

Note: For a country (e.g. USA) with a MMS category of confinement area, in house NH₃ emissions for MMSconfinement are calculated using emissions factors from the yard (EFyard). EFhouse is used where EFyard is NA.

Table 4.8 Emission factors for direct N-N₂O emissions by animal species

<table>
<thead>
<tr>
<th>Manure type</th>
<th>Species</th>
<th>EF N-N₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid manure without natural crust & Lagoon</td>
<td>Cattle/Buffalo/Pig</td>
<td>0</td>
</tr>
<tr>
<td>Liquid manure with natural crust</td>
<td>Cattle/Buffalo</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td>0.01 (pit1/pit2/liqcrust)</td>
</tr>
<tr>
<td>Solid manure</td>
<td>Cattle/goats/sheep/Buffalo</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Broilers/Layers</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>Pig</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 4.9 Emission factors for N-N₂ and N-NOₓ by manure type

<table>
<thead>
<tr>
<th>Manure type</th>
<th>EF N-N₂</th>
<th>EF N-NOₓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid manure (slurry)</td>
<td>0.003</td>
<td>0.0001</td>
</tr>
<tr>
<td>Solid manure</td>
<td>0.30</td>
<td>0.01</td>
</tr>
</tbody>
</table>
4.4.2 – Nitrogen excretion and calculation of total ammoniacal nitrogen (TAN)

The sum of the amount of nitrogen in ammonia (NH₃) and ammonium (NH₄⁺) is called total ammoniacal nitrogen (TAN). Gaseous emissions are calculated based on TAN, which depends on the amount of nitrogen excreted by animals, either through urinating and faeces.

4.4.2.1 – Nitrogen excretion rate

GLEAM calculates nitrogen excretion rates following Equations 4.6, which is based on Equation 10.31 to Equation 10.33 from IPCC (2019), as depicted below:

Equation 4.6

\[N_{\text{excretion,}T,c} = 365 \times (\text{DMI}_T \times \text{DIET}_{\text{cont,T}}) - N_{\text{retention,}T,c} \]

Where:

\[N_{\text{excretion,}T,c} = \text{nitrogen excretion per animal in cohort} \ c, \text{species and system} \ T, \text{kg nitrogen animal}^{-1} \text{year}^{-1} \]

\[\text{DMI}_T = \text{daily feed intake per animal in cohort} \ c, \text{species and system} \ T, \text{kg DM\head}^{-1} \text{day}^{-1} \]

\[\text{DIET}_{\text{cont,T}} = \text{average nitrogen content of ration for species and system} \ T, \text{kg N\head}^{-1} \text{DM diet}^{-1} \]

\[N_{\text{retention,}T,c} = \text{daily nitrogen retention per animal in cohort} \ c, \text{species and system} \ T, \text{kg N\head}^{-1} \text{day}^{-1} \]

See Table 4.10.

Table 4.10 Nitrogen retention formulas for species and cohorts

<table>
<thead>
<tr>
<th>Livestock category/cohort</th>
<th>Nitrogen retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruminant species: adult females (AF)</td>
<td>Equation 4.7a</td>
</tr>
<tr>
<td>Ruminant species: adult males (AM)</td>
<td>N retention is assumed to be null</td>
</tr>
<tr>
<td>Ruminant species: other cohorts (RF, RM, MF, MM)</td>
<td>Equation 4.7b</td>
</tr>
<tr>
<td>Pigs: adult females (AF)</td>
<td>Equation 4.8a</td>
</tr>
<tr>
<td>Pigs: adult males (AM)</td>
<td>N retention is assumed to be null</td>
</tr>
<tr>
<td>Pigs: replacement females (RF)</td>
<td>Equation 4.8b</td>
</tr>
<tr>
<td>Pigs: other cohorts (RM, M2)</td>
<td>Equation 4.8c</td>
</tr>
<tr>
<td>Chickens: laying hens (AF, MF2, MF4)</td>
<td>Equation 4.9a</td>
</tr>
<tr>
<td>Chickens: laying hens during the molting period (MF3)</td>
<td>N retention is assumed to be null</td>
</tr>
<tr>
<td>Chickens: other cohorts (AM, RF, RM, MF1, MM, M2)</td>
<td>Equation 4.9b</td>
</tr>
</tbody>
</table>

Equation 4.7 - Ruminants

a. \[N_{\text{retention,}AF} = \frac{(\text{Milk} \times \text{MilkProt}) \times (268 - (7.03 \times \text{NEgro,RF} \div \text{DWG}_{\text{RF}})) \times 10^{-3}}{6.25} \]

b. \[N_{\text{retention,c}} = \frac{\text{DWG}_{\text{c}} \times (268 - (7.03 \times \text{NEgro,c} \div \text{DWG}_{\text{c}})) \times 10^{-3}}{6.25} \]

Where:

\[N_{\text{retention,}AF} = \text{daily nitrogen retention by animal in cohort} \ AF, \text{kg N\head}^{-1} \text{day}^{-1} \]

\[N_{\text{retention,c}} = \text{daily nitrogen retention by animal in cohort} \ c, \text{other than cohort} \ AF, \text{kg N\head}^{-1} \text{day}^{-1} \]

Equation 4.8 - Pigs

a. \[N_{\text{retention,}AF} = \frac{((\text{N}_{\text{LW}} \times \text{LITSIZE} \times \text{FR} \times (\text{Wkg - Ckg}) \div 0.98) + (\text{N}_{\text{LW}} \times \text{LITSIZE} \times \text{FR} \times \text{Ckg})) \div 365}{365} \]

b. \[N_{\text{retention,RF}} = \frac{\text{N}_{\text{LW}} \times \text{DWG}_{\text{c}} \times \text{AFC} \times ((\text{N}_{\text{LW}} \times \text{LITSIZE} \times \text{FR} \times (\text{Wkg - Ckg}) \div 0.98) + (\text{N}_{\text{LW}} \times \text{LITSIZE} \times \text{FR} \times \text{Ckg})) \div 365}{365} \]

72
Where:

\(N_{\text{retention,AF}} \) = daily nitrogen retention by animal in cohort AF, kg N\times head\(^{-1}\times day\(^{-1}\)

\(N_{\text{retention,RF}} \) = daily nitrogen retention by animal in cohort RF, kg N\times head\(^{-1}\times day\(^{-1}\)

\(N_{\text{retention,c}} \) = daily nitrogen retention by animal in cohort c, other than cohort AF and RF, kg N\times head\(^{-1}\times day\(^{-1}\)

\(N_{\text{LW}} \) = average content of nitrogen in live weight, kg N\times kg live weight\(^{-1}\). Default value of 0.028 is used.

UTSIZE = litter size, heads

FR = fertility rate of sows, parturitions \times year\(^{-1}\)

Wkg = live weight of piglet at weaning age, kg\times head\(^{-1}\)

Ckg = live weight of piglets at birth, kg\times head\(^{-1}\)

0.98 = protein digestibility as fraction, fraction

DWG\(_c\) = average daily weight gain for cohort c, kg\times head\(^{-1}\times day\(^{-1}\)

AFCF = age at first parturition, year

c = cohort for animals other than adult males (see Table 4.10).

Equation 4.9 - Chickens

a. \(N_{\text{retention,c}} \) = \(N_{\text{LW}} \times DWG\(_c\) + N_{\text{EGG}} \times 10^{-3} \times EGG \)

for **c** = cohorts of laying females

b. \(N_{\text{retention,c}} \) = \(N_{\text{LW}} \times DWG \)

for **c** = cohorts other than laying and molting females (see table 4.10).

Where:

\(N_{\text{retention,c}} \) = daily nitrogen retention by animal in cohort c, kg N\times head\(^{-1}\times day\(^{-1}\)

\(N_{\text{LW}} \) = average content of nitrogen in live weight, kg N\times kg live weight\(^{-1}\). Default value of 0.028 is used.

DWG = average daily weight gain for cohort c, kg\times head\(^{-1}\times day\(^{-1}\)

N_{\text{EGG}} = average content of nitrogen in eggs, kg N\times kg egg\(^{-1}\). Default value of 0.0185 is used.

EGG = egg mass production, g egg\times head\(^{-1}\times day\(^{-1}\)

4.4.2.2 - Total Ammoniacal Nitrogen (TAN)

The excretion of TAN is calculated as the sum of excretion of urine nitrogen and net mineralized organically bound nitrogen in faeces. The net mineralized organically bound nitrogen is used since TAN can also be immobilized and become organic nitrogen.

Equation 4.10 - Nitrogen in the dung

\(N_{\text{dung,tc}} \) = (DM\(_T\times c\) \times DIET\(_{\text{cont,c}}\)) \times (1- DIET\(_{\text{D1,T,c}}\) / 100)

Where:

\(N_{\text{dung,tc}} \) = nitrogen in dung per animal in cohort c, species and system **T**, kg N animal\(^{-1}\times year\(^{-1}\)

DM\(_T\times c\) = daily feed intake per animal in cohort c, species and system **T**, kg DM\times head\(^{-1}\times day\(^{-1}\)

DIET\(_{\text{cont,c}}\) = average nitrogen content of ration for species and system **T**, kg N\times kg DM diet\(^{-1}\)

DIET\(_{\text{D1,T,c}}\) = average feed ration digestibility per animal in cohort c, species and system **T**, percentage

Equation 4.11 - Nitrogen in the dung mineralized

a. \(N_{\text{dung,liquid,tc}} \) = \(N_{\text{dung,tc}} \times \text{Shaliquid_manure, tc} \times \text{Shareliquid_manure, tc} \)

b. \(N_{\text{dung,solid,tc}} \) = \(N_{\text{dung,tc}} \times \text{Shalsolid_manure, tc} \times \text{Sharesolid_manure, tc} \)

c. \(N_{\text{dung,mobilized (organic),tc}} = (N_{\text{dung,liquid,tc}} \times N_{\text{mineralization-liquid}}) + (N_{\text{dung, solid,tc}} \times N_{\text{mineralization-soil}}) \)

Where:

\(N_{\text{dung,liquid,tc}} \) = nitrogen in liquid dung per animal in cohort c, species and system **T**, kg N animal\(^{-1}\times year\(^{-1}\)

\(N_{\text{dung,solid,tc}} \) = nitrogen in solid dung per animal in cohort c, species and system **T**, kg N animal\(^{-1}\times year\(^{-1}\)
For Feedlots production systems

\[
N_{NH3_house_\text{(liquid)}} = NTAN \times (\text{Share}_{\text{liquid_manure}} \times \text{MMS}_{\text{confinement}}) \times \text{EF}_{NH3_\text{house_\text{(liquid)}}} + \text{MMS}_{\text{confinement}} \times \text{EF}_{NH3_\text{yard_\text{(liquid)}}}
\]

\[
N_{\text{dung_mobilized_organic},T,c} = \text{mineralized nitrogen from organically bound nitrogen in manure per animal in cohort } c, \text{ species and system } T, \text{ kg N animal}^{-1}\text{year}^{-1}
\]

\[
N_{\text{dung},T,c} = \text{nitrogen in dung per animal in cohort } c, \text{ species and system } T, \text{ kg N animal}^{-1}\text{year}^{-1}
\]

\[
\text{Share}_{\text{liquid_manure},T,c} = \text{share of manure stored in liquid MMSs for cohort } c, \text{ species and system } T, \text{ as calculated based on the classification of the MMSs provided in Table 4.4, fraction}
\]

\[
\text{Share}_{\text{solid_manure},T,c} = \text{share of manure stored in solid MMSs for cohort } c, \text{ species and system } T, \text{ as calculated based on the classification of the MMSs provided in Table 4.4, fraction}
\]

\[
N_{\text{mineralization}} = \text{proportion of mineralization of organically bound nitrogen in manure stored in the animal house in liquid manure management system, as reported by Vonk et al. (2018) and in the Table 4.11.}
\]

\[
N_{\text{urine},T,c} = N_{\text{excretion},T,c} - N_{\text{dung},T,c}
\]

\[
E_{\text{NNH3}} = \frac{N_{\text{dung_mobilized_organic},T,c}}{E_{\text{NNH3_yard}}} + \frac{N_{\text{dung},T,c}}{E_{\text{NNH3_yard}}}
\]

\[
N_{\text{TAN},T,c} = N_{\text{urine},T,c} + N_{\text{dung_mobilized_organic},T,c}
\]

\[
N_{\text{TAN},T,c} = \text{total ammoniacal nitrogen excreted per animal in cohort } c, \text{ species and system } T, \text{ kg N animal}^{-1}\text{year}^{-1}
\]

\[
N_{\text{NH3_yard_\text{(liquid)}}} = N_{\text{NH3_yard_\text{(liquid)}}} + N_{\text{NH3_yard_\text{(solid)}}}
\]

4.4.3 - NH3 emissions from manure management systems (First step)

The first step in the estimation of nitrogen volatilized as NH3 from manure management needs to account for two different phases: emissions in the animal housing, before manure collection (Section 4.4.3.1) and emissions during manure storage and treatment (Section 4.4.3.2). The two flows of nitrogen are then summed together (Section 4.4.3.3) to estimate the direct volatilization of nitrogen as NH3 from manure management. A calculation apart is done for NH3 emissions from manure that is daily spread on croplands after collection from animal housing (Section 4.4.3.4), as they need to be included in the nitrogen losses but are properly accounted as emissions allocated to crop production.

4.4.3.1 - NH3 emissions from animal house

The estimation of nitrogen emitted as NH3 from animal housing is based on the emission factors EF_yard and EF_house reported in Table 4.7 and the following equations. It requires separate estimates for liquid (Equation 4.14) and solid (Equation 4.15) manure, before summing them together (Equation 4.16)

Equation 4.14

For Feedlots production systems

\[
N_{\text{NH3_yard_\text{(liquid)}}} = N_{TAN} \times (\text{Share}_{\text{liquid_manure}} \times \text{MMS}_{\text{confinement}}) \times \text{EF}_{NH3_\text{house_\text{(liquid)}}} + \text{MMS}_{\text{confinement}} \times \text{EF}_{NH3_\text{yard_\text{(liquid)}}}
\]
Where:

\[N_{\text{NH}_3_house\,(\text{liquid})} = \text{nitrogen emitted as NH}_3\text{ from manure deposited in house or yard and managed in liquid MMSs per animal in feedlots, kg N-NH}_3\text{ animal}^{-1}\text{year}^{-1} \]

\[N_{\text{TAN}} = \text{total ammoniacal nitrogen excreted per animal in feedlots, kg N animal}^{-1}\text{year}^{-1} \]

\[\text{Share}_{\text{liquid_manure}} = \text{share of manure stored in liquid MMSs, fraction} \]

\[\text{MMS_confinement} = \text{fraction of manure managed as Confinement} \]

\[\text{EF}_\text{NH}_3_house\,(\text{liquid}) = \text{emission factor of N-NH}_3\text{ from manure deposited in house and managed in liquid MMSs, as defined in Table 4.7, kg N-NH}_3\text{ kg N}^{-1}. \]

\[\text{EF}_\text{NH}_3_yard\,(\text{liquid}) = \text{emission factor of N-NH}_3\text{ from manure deposited in the yard and managed in liquid MMSs, as defined in Table 4.7, kg N-NH}_3\text{ kg N}^{-1}. \]

For other production systems

b. \[N_{\text{NH}_3_house\,(\text{liquid}),T,c} = N_{\text{TAN},T,c} \times \text{Share}_{\text{liquid_manure},T,c} \times \text{EF}_\text{NH}_3_house\,(\text{liquid}) \]

Where:

\[N_{\text{NH}_3_house\,(\text{liquid}),T,c} = \text{nitrogen emitted as NH}_3\text{ from manure deposited in house or yard and managed in liquid MMSs per animal in cohort c, species and system T, kg N-NH}_3\text{ animal}^{-1}\text{year}^{-1} \]

\[N_{\text{TAN},T,c} = \text{total ammoniacal nitrogen excreted per animal in cohort c, species and system T, kg N animal}^{-1}\text{year}^{-1} \]

\[\text{Share}_{\text{liquid_manure},T,c} = \text{share of manure stored in liquid MMSs in cohort c, species and system T, fraction} \]

\[\text{EF}_\text{NH}_3_house\,(\text{liquid}) = \text{emission factor of N-NH}_3\text{ from manure deposited in house and managed in liquid MMSs, as defined in Table 4.7, kg N-NH}_3\text{ kg N}^{-1}. \]

Equation 4.15

For feedlots production systems

a. \[N_{\text{NH}_3_house\,(\text{solid})} = N_{\text{TAN}} \times (\text{Share}_{\text{solid_manure}} - \text{MMS_pasture}) \times \text{EF}_\text{NH}_3_house\,(\text{solid}) \]

Where:

\[N_{\text{NH}_3_house\,(\text{solid})} = \text{nitrogen emitted as NH}_3\text{ from manure deposited in house or yard and managed in solid MMSs per animal in feedlots, kg N-NH}_3\text{ animal}^{-1}\text{year}^{-1} \]

\[N_{\text{TAN}} = \text{total ammoniacal nitrogen excreted per animal in feedlots, kg N animal}^{-1}\text{year}^{-1} \]

\[\text{Share}_{\text{solid_manure}} = \text{share of manure stored in solid MMSs, fraction} \]

\[\text{MMS_pasture} = \text{share of manure managed as pasture, fraction} \]

\[\text{EF}_\text{NH}_3_house\,(\text{solid}) = \text{emission factor of N-NH}_3\text{ from manure deposited in house and managed in solid MMSs, as defined in Table 4.7, kg N-NH}_3\text{ kg N}^{-1}. \]

For other production systems

b. \[N_{\text{NH}_3_house\,(\text{solid}),T,c} = N_{\text{TAN},T,c} \times ((\text{Share}_{\text{solid_manure},T,c} - \text{MMS_pasture},T,c - \text{MMS_confinement},T,c) \times \text{EF}_\text{NH}_3_house\,(\text{solid}) + \text{MMS_confinement},T,c \times \text{EF}_\text{NH}_3_yard\,(\text{solid})) \]

Where:

\[N_{\text{NH}_3_house\,(\text{solid}),T,c} = \text{nitrogen emitted as NH}_3\text{ from manure deposited in house or yard and managed in solid MMSs per animal in cohort c, species and system T, kg N-NH}_3\text{ animal}^{-1}\text{year}^{-1} \]

\[N_{\text{TAN},T,c} = \text{total ammoniacal nitrogen excreted per animal in cohort c, species and system T, kg N animal}^{-1}\text{year}^{-1} \]

\[\text{Share}_{\text{solid_manure},T,c} = \text{share of manure stored in solid MMSs in cohort c, species and system T, fraction} \]

\[\text{MMS_pasture},T,c = \text{share of manure managed as Pasture in cohort c, species and system T, fraction} \]

\[\text{MMS_confinement},T,c = \text{share of manure managed as Confinement in cohort c, species and system T, fraction} \]

\[\text{EF}_\text{NH}_3_house\,(\text{solid}) = \text{emission factor of N-NH}_3\text{ from manure deposited in house and managed in solid MMSs, as defined in Table 4.7, kg N-NH}_3\text{ kg N}^{-1}. \]

\[\text{EF}_\text{NH}_3_yard\,(\text{solid}) = \text{emission factor of N-NH}_3\text{ from manure deposited in the yard and managed in solid MMSs, as defined in Table 4.7, kg N-NH}_3\text{ kg N}^{-1}. \]
Equation 4.16
\[N_{NH_3_house,T,c} = N_{NH_3_liquid,T,c} + N_{NH_3_solid,T,c} \]

Where:
\[N_{NH_3_house,T,c} = \text{nitrogen emitted as NH}_3\text{ from manure deposited in house or yard per animal in cohort } c, \text{ species and system } T, \text{ kg N-NH}_3\text{ animal}^{-1}\text{ year}^{-1} \]
\[N_{NH_3_liquid,T,c} = \text{nitrogen emitted as NH}_3\text{ from manure deposited in house or yard and managed in liquid MMSs per animal in cohort } c, \text{ species and system } T, \text{ kg N-NH}_3\text{ animal}^{-1}\text{ year}^{-1} \]
\[N_{NH_3_solid,T,c} = \text{nitrogen emitted as NH}_3\text{ from manure deposited in house or yard and managed in solid MMSs per animal in cohort } c, \text{ species and system } T, \text{ kg N-NH}_3\text{ animal}^{-1}\text{ year}^{-1} \]

4.4.3.2 – NH\textsubscript{3} emissions from manure storage

The estimation of nitrogen emitted as NH\textsubscript{3} from manure storage and treatment is based on the emission factors EF\textsubscript{storage} reported in Table 4.7 and Equation 4.17. The proper emission factor is assigned according to the liquid or solid nature of manure in each MMS, as reported in Table 4.4 and Table 4.5.

Equation 4.17
\[N_{NH_3_storage,T,c} = \Sigma_s \left(\left(N_{TAN,T,c} - N_{NH_3_house,T,c} \right) \times MMS_{S,T,c} \times EF_{NH_3_storage,S} \right) \]

Where:
\[N_{NH_3_storage,T,c} = \text{nitrogen emitted as NH}_3\text{ from manure storage per animal in cohort } c, \text{ species and system } T, \text{ kg N-NH}_3\text{ animal}^{-1}\text{ year}^{-1} \]
\[N_{TAN,T,c} = \text{total ammoniacal nitrogen excreted per animal in cohort } c, \text{ species and system } T, \text{ kg N animal}^{-1}\text{ year}^{-1} \]
\[N_{NH_3_house,T,c} = \text{nitrogen emitted as NH}_3\text{ from manure deposited in house or yard per animal in cohort } c, \text{ species and system } T, \text{ kg N-NH}_3\text{ animal}^{-1}\text{ year}^{-1} \]
\[MMS_{S,T,c} = \text{For each manure management system category } S \text{ in cohort } c, \text{ species and system } T, \text{ except for MMS\textsubscript{daily}, MMS\textsubscript{pature} and MMS\textsubscript{burned}, fraction.} \]
\[EF_{NH_3_storage,S} = \text{emission factor of N-NH}_3\text{ from manure managed in manure management system category } S, \text{ as defined in Table 4.7, kg N-NH}_3\text{ kg N}^{-1}. \]

4.4.3.3 – NH\textsubscript{3} emissions from animal house and manure storage

The total nitrogen initially emitted as NH\textsubscript{3} from animal housing facilities and from manure storage and treatment is calculated following equation 4.18.

Equation 4.18
\[N_{NH_3,T,c} = N_{NH_3_house,T,c} + N_{NH_3_storage,T,c} \]

Where:
\[N_{NH_3,T,c} = \text{nitrogen emitted as NH}_3\text{ per animal in cohort } c, \text{ species and system } T, \text{ kg N-NH}_3\text{ animal}^{-1}\text{ year}^{-1} \]
\[N_{NH_3_house,T,c} = \text{nitrogen emitted as NH}_3\text{ from manure deposited in house or yard per animal in cohort } c, \text{ species and system } T, \text{ kg N-NH}_3\text{ animal}^{-1}\text{ year}^{-1} \]
\[N_{NH_3_storage,T,c} = \text{nitrogen emitted as NH}_3\text{ from manure storage per animal in cohort } c, \text{ kg N-NH}_3\text{ animal}^{-1}\text{ year}^{-1} \]
(See Table 4.5).

4.4.3.4 – NH\textsubscript{3} emissions from daily spread

When the manure is collected from the housing facilities to storage, a part of it is directly spread on agricultural land (cropland or grassland), without any further storage. Thus, the NH\textsubscript{3} emissions of daily spread are only considered “in house”, whereas the NH\textsubscript{3} emissions occurring after the spreading are allocated to feed or crop production. NH\textsubscript{3} emissions occurring during the spreading are calculated in the animal emissions module and reported separately.

Equation 4.19
\[N_{NH_3_daily_spread,T,c} = (N_{TAN,T,c} - N_{NH_3_house,T,c}) \times MMS_{daily,T,c} \times EF_{NH_3_spreading} \]
Where:

\(N_{\text{NH3_daily_spread_T,c}} \) = nitrogen emitted as NH\(_3\) from manure applied to croplands or pastures within 24 hours from excretion, per animal in cohort \(c \), species and system \(T \), kg N-NH\(_3\) animal\(^{-1}\) year\(^{-1}\)

\(N_{\text{TAN_T,c}} \) = total ammoniacal nitrogen excreted per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)

\(N_{\text{NH3_house_T,c}} \) = nitrogen emitted as NH\(_3\) from manure deposited in house or yard per animal in cohort \(c \), species and system \(T \), kg N-NH\(_3\) animal\(^{-1}\) year\(^{-1}\)

\(\text{MMS_daily_T,c} \) = share of manure managed as Daily spread in cohort \(c \), species and system \(T \), fraction

\(\text{EF_NH3_spreading} \) = emission factor of N-NH\(_3\) from manure applied to croplands or pastures within 24 hours from excretion, as defined in Table 4.7, kg N-NH\(_3\) kg N\(^{-1}\).

4.4.4 – \(N_2O \) emissions from manure management systems

Part of the losses of nitrogen as \(N_2O \) emissions from manure storage and treatment follows two separate pathways: 1) the direct emission of \(N_2O \) from manure during storage and treatment (Section 4.4.4.1), and 2) the conversion of part of the volatilized NH\(_3\) (estimated in section 4.4.3.3) to \(N_2O \) (Section 4.4.4.2). The two nitrogen flows are then summed together in Section 4.4.4.3. The proper emission factor from Table 4.8 is assigned according to the liquid or solid nature of manure in each MMS, as reported in Table 4.4 and Table 4.5.

4.4.4.1 – Direct \(N_2O \) emissions

Equation 4.20

\[N_{\text{direct_N2O_T,c}} = N_{\text{TAN_T,c}} \times \sum (\text{MMS}_S_T,c \times \text{EF_N2O_direct_S,T}) \]

Where:

\(N_{\text{direct_N2O_T,c}} \) = direct \(N_2O \) emissions from manure per animal in cohort \(c \), species and system \(T \), kg N-N\(_2\)O animal\(^{-1}\) year\(^{-1}\)

\(N_{\text{TAN_T,c}} \) = total ammoniacal nitrogen excreted per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)

\(\text{MMS}_S_T,c \) = For each manure management system category \(S \) in cohort \(c \), species and system \(T \), except for MMS_daily, MMS_pasture and MMS_burned,\(c \), fraction.

\(\text{EF_N2O_direct_S,T} \) = emission factor for direct N-N\(_2\)O emissions from manure managed in MMS category \(S \) for species and system \(T \), as defined in Table 4.1 and Table 4.8, kg N-N\(_2\)O kg N\(^{-1}\).

4.4.4.2 – Indirect \(N_2O \) emissions

Equation 4.21

\[N_{\text{indirect_N2O_T,c}} = N_{\text{NH3_T,c}} \times \text{EF_N2O_indirect} \]

Where:

\(N_{\text{indirect_N2O_T,c}} \) = nitrogen emitted as indirect \(N_2O \) emissions from manure following atmospheric deposition of NH\(_3\) per animal in cohort \(c \), species and system \(T \), kg N-N\(_2\)O animal\(^{-1}\) year\(^{-1}\)

\(N_{\text{NH3_T,c}} \) = nitrogen emitted as NH\(_3\) per animal in cohort \(c \), species and system \(T \), kg N-NH\(_3\) animal\(^{-1}\) year\(^{-1}\)

\(\text{EF_N2O_indirect} \) = emission factor for indirect N-N\(_2\)O emissions following atmospheric deposition of NH\(_3\) and NO\(_x\), 0.014 kg N-N\(_2\)O/kg N in Wet climates and 0.005 kg N-N\(_2\)O/kg N in Dry climates, kg N-N\(_2\)O kg N\(^{-1}\).

4.4.4.3 – Direct and indirect \(N_2O \) emissions

Equation 4.22

\[N_{\text{N2O_T,c}} = N_{\text{direct_N2O_T,c}} + N_{\text{indirect_N2O_T,c}} \]

Where:

\(N_{\text{N2O_T,c}} \) = nitrogen emitted as \(N_2O \) from manure storage per animal in cohort \(c \), species and system \(T \), kg N-N\(_2\)O animal\(^{-1}\) year\(^{-1}\)

\(N_{\text{direct_N2O_T,c}} \) = direct \(N_2O \) emissions from manure per animal in cohort \(c \), species and system \(T \), kg N-N\(_2\)O animal\(^{-1}\) year\(^{-1}\)

\(N_{\text{indirect_N2O_T,c}} \) = nitrogen emitted as indirect \(N_2O \) emissions from manure following atmospheric deposition of NH\(_3\) per animal in cohort \(c \), species and system \(T \), kg N-N\(_2\)O animal\(^{-1}\) year\(^{-1}\)
4.4.5 – NH₃ emissions from manure (Second step)
The final amount of nitrogen emitted as NH₃ net of indirect N₂O emissions in calculated in Equation 4.23.

Equation 4.23
\[N_{\text{NH₃_final,T,c}} = N_{\text{NH₃,T,c}} - N_{\text{Nindirect N₂O,T,c}} \]

Where:
- \(N_{\text{NH₃_final,T,c}} \) = nitrogen emitted as NH₃ net of indirect N₂O emissions per animal in cohort \(c \), species and system \(T \), kg NH₃ animal⁻¹ year⁻¹
- \(N_{\text{NH₃,T,c}} \) = nitrogen emitted as NH₃ per animal in cohort \(c \), species and system \(T \), kg N-NH₃ animal⁻¹ year⁻¹
- \(N_{\text{Nindirect N₂O,T,c}} \) = nitrogen emitted as indirect N₂O emissions from manure following atmospheric deposition of NH₃ per animal in cohort \(c \), species and system \(T \), kg N-N₂O animal⁻¹ year⁻¹

4.4.6 – NOₓ emissions from manure management

Part of the nitrogen is lost during manure storage and treatment in the form of NOₓ compounds, as calculated in Equation 4.24. The proper emission factor from Table 4.9 is assigned according to the liquid or solid nature of manure in each MMS, as reported in Table 4.4 and Table 4.5.

Equation 4.24
\[N_{\text{NOₓ,T,c}} = N_{\text{TAN,T,c}} \times \sum S (\text{MMS}_{S,T,c} \times \text{EF}_-\text{NOₓ,S}) \]

Where:
- \(N_{\text{NOₓ,T,c}} \) = nitrogen emitted as NOₓ per animal in cohort \(c \), species and system \(T \), kg N-NOₓ animal⁻¹ year⁻¹
- \(N_{\text{TAN,T,c}} \) = total ammoniacal nitrogen excreted per animal in cohort \(c \), species and system \(T \), kg N animal⁻¹ year⁻¹
- \(\text{MMS}_{S,T,c} \) = for each manure management system category \(S \), in cohort \(c \), species and system \(T \), except for MMSdaily, MMSpasture and MMSburned.
- \(\text{EF}_-\text{NOₓ,S} \) = emission factor of N-NOₓ from manure managed in MMS category \(S \), as defined in Table 4.9, kg N-NOₓ kg N⁻¹.

Note: for MMSburned, all nitrogen is lost as NOₓ emissions, however, these flows are allocated to energy production (see N\text{NOₓ_energy}, Section 4.4.15).

4.4.7 – NOₓ emissions from manure burned as fuel

All nitrogen in manure burned as fuel, net of the fraction volitilized as NH₃ in the animal housing facilities, is lost as NOₓ emissions. These emissions need to be accounted to estimate total nitrogen losses but are allocated to energy production (see Section 4.4.15).

Equation 4.25
\[N_{\text{NOₓ_burned,T,c}} = N_{\text{excretion,T,c}} \times \text{MMS}_{\text{burned,T,c}} \times N_{\text{TAN,T,c}} \times \text{MMS}_{\text{burned,T,c}} \times \text{EF}_-\text{NH₃_house(solid)} \]

Where:
- \(N_{\text{NOₓ_burned,T,c}} \) = nitrogen emitted as NOₓ per animal in cohort \(c \), species and system \(T \), kg N-NOₓ animal⁻¹ year⁻¹
- \(N_{\text{excretion,T,c}} \) = nitrogen excretion per animal in cohort \(c \), species and system \(T \), kg N animal⁻¹ year⁻¹
- \(\text{MMS}_{\text{burned,T,c}} \) = share of manure managed as Burned in cohort \(c \), species and system \(T \), fraction
- \(N_{\text{TAN,T,c}} \) = total ammoniacal nitrogen excreted per animal in cohort \(c \), species and system \(T \), kg N animal⁻¹ year⁻¹
- \(\text{EF}_-\text{NH₃_house(solid)} \) = emission factor of N-NH₃ from manure deposited in house and managed in solid MMSs, as defined in Table 4.7, kg N-NH₃ kg N⁻¹.

78
4.4.8 – N_2 emissions from manure management

Part of the nitrogen is lost during manure storage and treatment in the form of NO$_x$ compounds, as calculated in equation 4.26. The proper emission factor from Table 4.9 is assigned according to the liquid or solid nature of manure in each MMS, as reported in Table 4.4 and Table 4.5.

Equation 4.26

$$N_{N_2,T,c} = N_{TAN,T,c} \times \Sigma_S (MMS_{S,T,c} \times EF_{N_2,S})$$

Where:
- $N_{N_2,T,c}$ = total nitrogen emitted as N_2 per animal in cohort c, species and system T, kg N-N_2 animal$^{-1}$ year$^{-1}$
- $N_{TAN,T,c}$ = total ammoniacal nitrogen excreted per animal in cohort c, species and system T, kg N animal$^{-1}$ year$^{-1}$
- $MMS_{S,T,c}$ = for each manure management system category S in cohort c, species and system T, except for MMS$_{daily}$, MMS$_{pasture}$ and MMS$_{burned}$, fraction
- $EF_{N_2,S}$ = emission factor of N-N_2 from manure managed in MMS category S, as defined in Table 4.7, kg N-N_2 kg N$^{-1}$.

4.4.9 – Nitrogen loss from leaching

The amount of nitrogen lost through leaching processes of NO$_x$ during manure storage and treatment is calculated following Equation 4.27.

Equation 4.27

$$N_{leach,T,c} = N_{excretion,T,c} \times \Sigma_S (MMS_{S,T,c} \times \text{Leach}_{S,T,c})$$

Where:
- $N_{leach,T,c}$ = nitrogen lost as NO$_x$ through leaching per animal in cohort c, species and system T, kg N-NO$_x$ animal$^{-1}$ year$^{-1}$
- $N_{excretion,T,c}$ = nitrogen excretion per animal in cohort c, species and system T, kg N animal$^{-1}$ year$^{-1}$
- $MMS_{S,T,c}$ = for each manure management system category S in cohort c, species and system T, except for MMS$_{daily}$, MMS$_{pasture}$ and MMS$_{burned}$, fraction
- Leach$_{S,T,c}$ = proportion of manure nitrogen lost due to leaching from manure management system category S in cohort c, species and system T, based on Table 10.22 (IPCC, 2019, Volume 4, Chapter 10), fraction.

4.4.10 – Total nitrogen losses from animal house and manure storage

The total amount of nitrogen lost through the emissions of different compounds during the storage and treatment of manure is calculated in Equation 4.28. Emissions of NO$_x$ from manure burned as fuel are not included in this calculation, since they are allocated to energy production together with emissions of NO$_x$ from manure incinerated after storage (see Section 4.4.15).

Equation 4.28

$$N_{emissions_{tot},T,c} = N_{N_2O,T,c} + N_{NH_3_final,T,c} + N_{NOx,T,c} + N_{N_2,T,c} + N_{leach,T,c} + N_{NH3_daily_spread,T,c}$$

Where:
- $N_{emissions_{tot},T,c}$ = total nitrogen emissions from manure management per animal in cohort c, species and system T, kg N animal$^{-1}$ year$^{-1}$
- $N_{N_2O,T,c}$ = nitrogen emitted as N$_2$O from manure storage per animal in cohort c, species and system T, kg N-N$_2$O animal$^{-1}$ year$^{-1}$
- $N_{NH_3_final,T,c}$ = nitrogen emitted as NH$_3$ net of indirect N$_2$O emissions per animal in cohort c, species and system T, kg NNH$_3$ animal$^{-1}$ year$^{-1}$
- $N_{NOx,T,c}$ = nitrogen emitted as NO$_x$ per animal in cohort c, species and system T, kg N-NO$_x$ animal$^{-1}$ year$^{-1}$
- $N_{N_2,T,c}$ = nitrogen emitted as N$_2$ per animal in cohort c, species and system T, kg N-N$_2$ animal$^{-1}$ year$^{-1}$
\[N_{\text{incineration},T,c} = \text{nitrogen emitted as NO}_3\text{ from manure incineration per animal in cohort } c, \text{ species and system } T, \text{ kg N-NO}_3\text{ animal}^{-1}\text{ year}^{-1} \]

\[N_{\text{NH}_3\text{ daily spread},T,c} = \text{nitrogen emitted as NH}_3\text{ from manure applied to croplands or pastures within 24 hours from excretion, per animal in cohort } c, \text{ species and system } T, \text{ kg N-NH}_3\text{ animal}^{-1}\text{ year}^{-1} \]

4.4.11 – Organic nitrogen losses from manure discharge

The amount of organic nitrogen lost through discharge of manure into waterbodies after storage and treatment is calculated in Equation 4.29, based on the share of discarded manure, as defined in Table 4.2. These losses of nitrogen are net of emissions arising in animal housing facilities and during manure management.

Equation 4.29

\[N_{\text{discharge},T,c} = (N_{\text{excretion},T,c} - N_{\text{emissions tot},T,c}) \times (1 - MMS_{\text{pasture},T,c} - MMS_{\text{confined},T,c} - MMS_{\text{daily},T,c} - MMS_{\text{burned},T,c}) \times \text{Fraction}_{\text{discharge},T,c} \]

Where:

- \(N_{\text{discharge},T,c} \) = organic nitrogen lost through manure discharge per animal in cohort \(c \), species and system \(T \), kg N-NO\(_3\) animal\(^{-1}\) year\(^{-1}\)
- \(N_{\text{excretion},T,c} \) = nitrogen excretion per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)
- \(N_{\text{emissions tot},T,c} \) = total nitrogen emissions from manure management per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)
- \(MMS_{\text{pasture},T,c} \) = share of manure managed as Pasture in cohort \(c \), species and system \(T \), fraction
- \(MMS_{\text{confined},T,c} \) = share of manure managed as Confinement in cohort \(c \), species and system \(T \), fraction
- \(MMS_{\text{daily},T,c} \) = share of manure managed as Daily spread in cohort \(c \), species and system \(T \), fraction
- \(MMS_{\text{burned},T,c} \) = share of manure managed as Burned in cohort \(c \), species and system \(T \), fraction
- \(\text{Fraction}_{\text{discharge},T,c} \) = proportion of manure discharged into water bodies for cohort \(c \), species and system \(T \), fraction.

4.4.12 – NO\(_x\) loss from incineration

The amount of nitrogen lost as NO\(_x\) compounds through incineration of manure after storage and treatment is calculated in Equation 4.30, based on the share of incinerated manure, as defined in Table 4.2. These losses of nitrogen are net of emissions arising in animal housing facilities and during manure management.

Equation 4.30

\[N_{\text{NO}_x\text{ incineration},T,c} = (N_{\text{excretion},T,c} - N_{\text{emissions tot},T,c}) \times (1 - MMS_{\text{pasture},T,c} - MMS_{\text{confined},T,c} - MMS_{\text{daily},T,c} - MMS_{\text{burned},T,c}) \times \text{Fraction}_{\text{incineration},T,c} \]

Where:

- \(N_{\text{NO}_x\text{ incineration},T,c} \) = nitrogen emitted as NO\(_x\) from manure incineration per animal in cohort \(c \), species and system \(T \), kg N-NO\(_x\) animal\(^{-1}\) year\(^{-1}\)
- \(N_{\text{excretion},T,c} \) = nitrogen excretion per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)
- \(N_{\text{emissions tot},T,c} \) = total nitrogen emissions from manure management per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)
- \(MMS_{\text{pasture},T,c} \) = share of manure managed as Pasture in cohort \(c \), species and system \(T \), fraction
- \(MMS_{\text{confined},T,c} \) = share of manure managed as Confinement in cohort \(c \), species and system \(T \), fraction
- \(MMS_{\text{daily},T,c} \) = share of manure managed as Daily spread in cohort \(c \), species and system \(T \), fraction
- \(MMS_{\text{burned},T,c} \) = share of manure managed as Burned in cohort \(c \), species and system \(T \), fraction
- \(\text{Fraction}_{\text{incineration},T,c} \) = fraction of manure incinerated for cohort \(c \), species and system \(T \), fraction.

Note: most of manure incinerated is used as energy source, thus NO\(_x\) emissions from the incineration are allocated to the energy sector.
4.4.13 – Manure nitrogen disposed of in public sewage

The amount of nitrogen lost through disposal of manure in public sewages after storage and treatment is calculated in Equation 4.31, based on the share of manure disposed as such, as defined in Table 4.2. These losses of nitrogen are net of emissions arising in animal housing facilities and during manure management.

Equation 4.31

\[N_{\text{pubbsewage},T,c} = (N_{\text{excretion},T,c} - N_{\text{emissions_tot},T,c}) \times (1 - \text{MMS}_{\text{pasture},T,c} - \text{MMS}_{\text{confined},T,c} - \text{MMS}_{\text{daily},T,c} - \text{MMS}_{\text{burned},T,c}) \times \text{Fraction}_{\text{pubbsewage},T,c} \]

Where:

- \(N_{\text{pubbsewage},T,c} \) = nitrogen emitted as indirect N\textsubscript{2}O emissions from manure disposed of in public sewage per animal in cohort \(c \), species and system \(T \), kg N-N\textsubscript{2}O animal-1year-1
- \(N_{\text{excretion},T,c} \) = nitrogen excretion per animal in cohort \(c \), species and system \(T \), kg N animal-1year-1
- \(N_{\text{emissions_tot},T,c} \) = total nitrogen emissions from manure management per animal in cohort \(c \), species and system \(T \), kg N animal-1year-1
- \(\text{MMS}_{\text{pasture},T,c} \) = share of manure managed as Pasture in cohort \(c \), species and system \(T \), fraction
- \(\text{MMS}_{\text{confined},T,c} \) = share of manure managed as Confinement in cohort \(c \), species and system \(T \), fraction
- \(\text{MMS}_{\text{daily},T,c} \) = share of manure managed as Daily spread in cohort \(c \), species and system \(T \), fraction
- \(\text{MMS}_{\text{burned},T,c} \) = share of manure managed as Burned in cohort \(c \), species and system \(T \), fraction
- \(\text{Fraction}_{\text{pubbsewage},T,c} \) = share of manure disposed of in public sewage for cohort \(c \), species and system \(T \), fraction.

4.4.14 – Manure nitrogen disposed of in dumping

The amount of nitrogen lost through manure dumping after storage and treatment is calculated in Equation 4.32, based on the share of dumped manure, as defined in Table 4.2. These losses of nitrogen are net of emissions arising in animal housing facilities and during manure management.

Equation 4.32

\[N_{\text{dumping},T,c} = (N_{\text{excretion},T,c} - N_{\text{emissions_tot},T,c}) \times (1 - \text{MMS}_{\text{pasture},T,c} - \text{MMS}_{\text{confined},T,c} - \text{MMS}_{\text{daily},T,c} - \text{MMS}_{\text{burned},T,c}) \times \text{Fraction}_{\text{dumping},T,c} \]

Where:

- \(N_{\text{dumping},T,c} \) = manure nitrogen disposed of through dumping per animal in cohort \(c \), species and system \(T \), kg N animal-1year-1
- \(N_{\text{excretion},T,c} \) = nitrogen excretion per animal in cohort \(c \), species and system \(T \), kg N animal-1year-1
- \(N_{\text{emissions_tot},T,c} \) = total nitrogen emissions from manure management per animal in cohort \(c \), species and system \(T \), kg N animal-1year-1
- \(\text{MMS}_{\text{pasture},T,c} \) = share of manure managed as Pasture in cohort \(c \), species and system \(T \), fraction
- \(\text{MMS}_{\text{confined},T,c} \) = share of manure managed as Confinement in cohort \(c \), species and system \(T \), fraction
- \(\text{MMS}_{\text{daily},T,c} \) = share of manure managed as Daily spread in cohort \(c \), species and system \(T \), fraction
- \(\text{MMS}_{\text{burned},T,c} \) = share of manure managed as Burned in cohort \(c \), species and system \(T \), fraction
- \(\text{Fraction}_{\text{dumping},T,c} \) = share of manure disposed of in dumping for cohort \(c \), species and system \(T \), fraction.

4.4.15 – NO\textsubscript{x} loss from energy

The amounts of manure nitrogen emitted as NO\textsubscript{x} compounds from the burning of manure as fuel (Section 4.4.7) or from its incineration after storage and treatment can be used to estimate the total manure nitrogen lost in this form for energy production, following Equation 4.33.

Equation 4.33

\[N_{\text{NOX_energy},T,c} = N_{\text{NOX_burned},T,c} + N_{\text{NOX_incineration},T,c} \]

Where:

- \(N_{\text{NOX_energy},T,c} \) = nitrogen emitted as NO\textsubscript{x} through energy production from manure per animal in cohort \(c \), species and system \(T \), kg N-NO\textsubscript{x} animal-1year-1
\[N_{\text{NOx burned},T,c} = \text{nitrogen excretion per animal in cohort } c, \text{ species and system } T, \text{ kg N animal}^{-1} \text{year}^{-1} \]

\[N_{\text{NOx incineration},T,c} = \text{nitrogen emitted as \(NO_x \) from manure incineration per animal in cohort } c, \text{ species and system } T, \text{ kg N-NO}_x \text{ animal}^{-1} \text{year}^{-1} \]

4.4.16 – Additional indirect \(N_2O \) emissions

Additional indirect emissions of \(N_2O \) are produced from nitrogen lost through processes of leaching and dumping or discharge of manure in the environment or in public sewages. These emissions are calculated using the emission factors reported in IPCC (2000, 2019).

4.4.16.1 – \(N_2O \) emissions from nitrogen leaching

The amount of nitrogen lost through leaching (calculated in Section 4.4.9) is used to estimate indirect \(N_2O \) emissions using Equation 4.34.

Equation 4.34

\[N_{N_2O \text{ leaching},T,c} = N_{\text{leach},T,c} \times EF_{N_2O \text{ leaching}} \]

Where:

\[N_{N_2O \text{ leaching},T,c} = \text{nitrogen emitted as indirect \(N_2O \) emissions from manure nitrogen lost through leaching per animal in cohort } c, \text{ species and system } T, \text{ kg N-} \text{N}_2\text{O animal}^{-1} \text{year}^{-1} \]

\[N_{\text{leach},T,c} = \text{nitrogen lost as NO}_3 \text{ through leaching per animal in cohort } c, \text{ species and system } T, \text{ kg N-NO}_3 \text{ animal}^{-1} \text{year}^{-1} \]

\[EF_{N_2O \text{ leaching}} = \text{emission factor for N-} \text{N}_2\text{O emissions from manure nitrogen lost through leaching}, 0.011 \text{ kg N-} \text{N}_2\text{O kg N}^{-1} \]

4.4.16.2 – \(N_2O \) emissions from discharged manure

The amount of nitrogen lost through discharge of manure in the environment (calculated in Section 4.4.11) is used to estimate indirect \(N_2O \) emissions using Equation 4.35.

Equation 4.35

\[N_{N_2O \text{ discharge},T,c} = N_{\text{discharge},T,c} \times EF_{N_2O \text{ discharge}} \]

Where:

\[N_{N_2O \text{ discharge},T,c} = \text{nitrogen emitted as indirect \(N_2O \) emissions from manure discharged per animal in cohort } c, \text{ species and system } T, \text{ kg N-} \text{N}_2\text{O animal}^{-1} \text{year}^{-1} \]

\[N_{\text{discharge},T,c} = \text{organic nitrogen lost through manure discharge per animal in cohort } c, \text{ species and system } T, \text{ kg N-NO}_3 \text{ animal}^{-1} \text{year}^{-1} \]

\[EF_{N_2O \text{ discharge}} = \text{emission factor for N-} \text{N}_2\text{O emissions from manure nitrogen discharged}, 0.01 \text{ kg N-NO}_2-\text{N kg N}^{-1}. \text{ This is equivalent to the sum of the emission factors for rivers (0.0075) and estuaries (0.0025), from IPCC (2000).} \]

4.4.16.3 – \(N_2O \) emissions from public sewage

The amount of nitrogen lost through discharge of manure in public sewages (calculated in Section 4.4.13) is used to estimate indirect \(N_2O \) emissions using Equation 4.36.

Equation 4.36

\[N_{N_2O \text{ PublicSewage},T,c} = N_{\text{pubbsewage},T,c} \times EF_{N_2O \text{ sewage}} \]

Where:

\[N_{N_2O \text{ PublicSewage},T,c} = \text{nitrogen emitted as indirect \(N_2O \) emissions from manure disposed of in public sewage per animal in cohort } c, \text{ species and system } T, \text{ kg N-} \text{N}_2\text{O animal}^{-1} \text{year}^{-1} \]

\[N_{\text{pubbsewage},T,c} = \text{manure nitrogen disposed of in public sewage per animal in cohort } c, \text{ species and system } T, \text{ kg N animal}^{-1} \text{year}^{-1} \]
EF$_{N_2O_sewage}$ = emission factor for indirect N-N$_2$O emissions from manure disposed of in public sewage, 0.01 kg N-N$_2$O kg N$^{-1}$, from IPCC (2000)

4.4.16.4 – N$_2$O emissions from dumping

The amount of nitrogen lost through dumping of manure (calculated in Section 4.4.14) is used to estimate indirect N$_2$O emissions using Equation 4.37.

Equation 4.37

\[
N_{N_2O_dumping,T,c} = N_{dumping,T,c} \times EF_{N_2O_dumping}
\]

Where:

- $N_{N_2O_dumping,T,c}$ = nitrogen emitted as indirect N$_2$O emissions from manure disposed of through dumping per animal in cohort c, species and system T, kg N-N$_2$O animal$^{-1}$ year$^{-1}$
- $N_{dumping,T,c}$ = manure nitrogen disposed of through dumping per animal in cohort c, species and system T, kg N animal$^{-1}$ year$^{-1}$
- $EF_{N_2O_dumping}$ = emission factor for N-N$_2$O emissions from manure disposed of through dumping, 0.2 kg N-N$_2$O kg N$^{-1}$, from IPCC (2000)

4.4.17 – Final manure nitrogen losses

The final amount of nitrogen losses from manure management is calculated summung the emissions of different compounds in house and during manure storage and treatment with the losses from manure burned for energy production, dumped and discharged in public sewages or the environment, following Equation 4.38.

Equation 4.38

\[
N_{losses,T,c} = N_{emissions_tot,T,c} + N_{discharge,T,c} + N_{NOx_energy,T,c} + N_{pubbsewage,T,c} + N_{dumping,T,c}
\]

Where:

- $N_{losses,T,c}$ = total manure nitrogen losses per animal in cohort c, species and system T, kg N animal$^{-1}$ year$^{-1}$
- $N_{emissions_tot,T,c}$ = total nitrogen emissions from manure management per animal in cohort c, species and system T, kg N animal$^{-1}$ year$^{-1}$
- $N_{discharge,T,c}$ = organic nitrogen lost through manure discharge per animal in cohort c, species and system T, kg N-NO$_3$ animal$^{-1}$ year$^{-1}$
- $N_{NOx_energy,T,c}$ = nitrogen emitted as NOx through energy production from manure per animal in cohort c, species and system T, kg N-NO$_3$ animal$^{-1}$ year$^{-1}$
- $N_{pubbsewage,T,c}$ = manure nitrogen disposed of in public sewage per animal in cohort c, species and system T, kg N animal$^{-1}$ year$^{-1}$
- $N_{dumping,T,c}$ = manure nitrogen disposed of through dumping per animal in cohort c, species and system T, kg N animal$^{-1}$ year$^{-1}$

4.4.18 – Manure nitrogen not collected

The nitrogen in manure, net of NH$_3$ emission, that is not collected from animal housing facilities may not be lost in the environment. However, since it’s not recycled, it has to be considered in any analysis of nitrogen use efficiency. It is also required to calculate the amount of manure-nitrogen that is recycled (Section 4.4.19). GLEAM estimate this amount of nitrogen based on Equation 4.39. The proper emission factors are assigned according to the liquid or solid nature of manure in MMS category “Confinement”, as reported in Table 4.5.

Equation 4.39

\[
N_{not\-collected,T,c} = N_{excretion,T,c} \times MMS_{confinement,T,c} - N_{TAN,T,c} \times MMS_{confinement,T,c} \times (EF_{NH3_yard} + EF_{NH3_storage,confinement} + EF_{N_2O_direct,confinement} + EF_{NOx,confinement} + EF_{N_2,confinement} + Leach_{confinement,T,c})
\]

Where:
\(N_{\text{not-collected},T,c} \) = not collected manure nitrogen per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)

\(N_{\text{recrctn},T,c} \) = nitrogen excretion per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)

\(\text{MMS}_\text{Confinement},T,c \) = share of manure managed as Confinement in cohort \(c \), species and system \(T \), fraction

\(N_{\text{ANM},T,c} \) = total ammoniacal nitrogen excreted per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)

\(\text{EF}_\text{NH}_3_\text{yard} \) = emission factor of \(\text{N-NH}_3 \) from manure deposited in the yard and managed in liquid MMSs, as defined in Table 4.1, kg N-NH\(_3\) kg N\(^{-1}\).

\(\text{EF}_\text{NH}_3_\text{storage},\text{Confinement} \) = emission factor of \(\text{N-NH}_3 \) from manure managed as Confinement, as defined in Table 4.6, kg N-NH\(_3\) kg N\(^{-1}\).

\(\text{EF}_\text{N}_2\text{O}_{\text{direct},\text{Confinement},T,c} \) = emission factor for direct \(\text{N-N}_2\text{O} \) emissions from manure managed as Confinement, for species and system \(T \), as defined in Table 4.1, Table 4.5 and Table 4.7, kg N-N\(_2\text{O} \) kg N\(^{-1}\).

\(\text{EF}_\text{NO}_x,\text{Confinement} \) = emission factor of \(\text{N-NO}_x \) from manure managed as Confinement, as defined in Table 4.1, Table 4.5 and Table 4.8, kg N-NO\(_x\) kg N\(^{-1}\).

\(\text{EF}_\text{N}_2\text{O},\text{Confinement} \) = emission factor of \(\text{N-N}_2 \) from manure managed as Confinement, as defined in Table 4.1, Table 4.5 and Table 4.8, kg N-N\(_2\) kg N\(^{-1}\).

\(\text{Leach},\text{Confinement},T,c \) = proportion of manure nitrogen lost due to leaching from manure management as Confinement in cohort \(c \), species and system \(T \), based on Table 10.22 (IPCC, 2019, Volume 4, Chapter 10), fraction.

4.4.19 - Manure nitrogen for recycling

The amount of manure-nitrogen available for recycle, net of losses, is calculated following equation 4.39.

Equation 4.39

\[N_{\text{recycled},T,c} = N_{\text{recrctn},T,c} - N_{\text{losses},T,c} - N_{\text{not-collected},T,c} \]

Where:

\(N_{\text{recycled},T,c} \) = manure nitrogen available for recycling per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)

\(N_{\text{recrctn},T,c} \) = nitrogen excretion per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)

\(N_{\text{losses},T,c} \) = total manure nitrogen losses per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)

\(N_{\text{not-collected},T,c} \) = not collected manure nitrogen per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)

4.4.20 - Manure nitrogen for recycling in agriculture

The amount of manure-nitrogen available for application to croplands is calculated removing the share of manure-nitrogen used in aquaculture from the total available for recycle that is calculated in Section 4.4.19, following Equation 4.40.

Equation 4.40

\[N_{\text{recycled,agr},T,c} = N_{\text{recycled},T,c} - N_{\text{recycled,agr},T,c} \times \text{Fraction}_{\text{fishpond},T,c} \]

Where:

\(N_{\text{recycled,agr},T,c} \) = manure nitrogen available for recycling in agriculture per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)

\(N_{\text{recycled},T,c} \) = manure nitrogen available for recycling per animal in cohort \(c \), species and system \(T \), kg N animal\(^{-1}\) year\(^{-1}\)

\(\text{Fraction}_{\text{fishpond},T,c} \) = proportion of recycled manure used in fishponds from cohort \(c \), species and system \(T \), fraction.

4.4.21 - Summary of manure nitrogen compounds

The following equations summarise the amount of manure nitrogen emitted through several compounds during manure management, specifically \(\text{N-N}_2\text{O} \) (Equation 4.41), \(\text{NH}_3 \) (Equation 4.42), \(\text{NO}_x \) (Equation 4.43), \(\text{NO}_3 \) (Equation 4.44) and \(\text{N}_2 \) (Equation 4.45). While only \(\text{N-N}_2\text{O} \) is required to estimate GHG emissions, the calculation of the nitrogen lost through other compounds can be used for nitrogen use efficiency analysis and the estimation of other impacts on ecosystems and human health.

Equation 4.41
\[N - N_2O_{T,c} = N_{N2O_{leaching,T,c}} + N_{N2O_{Discharge,T,c}} + N_{N2O_{PublicSewage,T,c}} + N_{N2O_{Dumping,T,c}} \]

Where:

\[N - N_2O_{T,c} \quad = \quad \text{total nitrogen emitted as N}_2\text{O from manure management per animal in cohort c, species and system T, kg N-N}_2\text{O animal}^{-1}\text{year}^{-1} \]

\[N_{N2O_{T,c}} \quad = \quad \text{nitrogen emitted as N}_2\text{O from manure storage per animal in cohort c, species and system T, kg N-N}_2\text{O animal}^{-1}\text{year}^{-1} \]

\[N_{N2O_{leaching,T,c}} \quad = \quad \text{nitrogen emitted as indirect N}_2\text{O emissions from manure nitrogen lost through leaching per animal in cohort c, species and system T, kg N-N}_2\text{O animal}^{-1}\text{year}^{-1} \]

\[N_{N2O_{discharge,T,c}} \quad = \quad \text{nitrogen emitted as indirect N}_2\text{O emissions from manure discharged per animal in cohort c, species and system T, kg N-N}_2\text{O animal}^{-1}\text{year}^{-1} \]

\[N_{N2O_{PublicSewage,T,c}} \quad = \quad \text{nitrogen emitted as indirect N}_2\text{O emissions from manure disposed of in public sewage per animal in cohort c, species and system T, kg N-N}_2\text{O animal}^{-1}\text{year}^{-1} \]

\[N_{N2O_{dumping,T,c}} \quad = \quad \text{nitrogen emitted as indirect N}_2\text{O emissions from manure disposed of through dumping per animal in cohort c, species and system T, kg N-N}_2\text{O animal}^{-1}\text{year}^{-1} \]

Equation 4.42

\[N - NH_3_{T,c} = N_{NH3_{final,T,c}} \]

Where:

\[N - NH_3_{T,c} \quad = \quad \text{total nitrogen emitted as NH}_3\text{ from manure management per animal in cohort c, species and system T, kg N-NH}_3\text{ animal}^{-1}\text{year}^{-1} \]

\[N_{NH3_{final,T,c}} \quad = \quad \text{nitrogen emitted as NH}_3\text{ net of indirect N}_2\text{O emissions per animal in cohort c, species and system T, kg N-NH}_3\text{ animal}^{-1}\text{year}^{-1} \]

Equation 4.43

\[N - NOx_{T,c} = N_{NOx_{T,c}} + N_{NOx_{energy,T,c}} \]

Where:

\[N - NOx_{T,c} \quad = \quad \text{total nitrogen emitted as NOx from manure management per animal in cohort c, species and system T, kg N-NOx animal}^{-1}\text{year}^{-1} \]

\[N_{NOx_{T,c}} \quad = \quad \text{nitrogen emitted as NOx per animal in cohort c, species and system T, kg N-NOx animal}^{-1}\text{year}^{-1} \]

\[N_{NOx_{energy,T,c}} \quad = \quad \text{nitrogen emitted as NOx through energy production from manure per animal in cohort c, species and system T, kg N-NOx animal}^{-1}\text{year}^{-1} \]

Equation 4.44

\[N - NO3_{T,c} = N_{leach,T,c} + N_{discharge,T,c} + N_{N2O_{Discharge,T,c}} + N_{N2O_{leaching,T,c}} \]

Where:

\[N - NO3_{T,c} \quad = \quad \text{total nitrogen emitted as NO3 from manure management per animal in cohort c, species and system T, kg N-NO3 animal}^{-1}\text{year}^{-1} \]

\[N_{leach,T,c} \quad = \quad \text{nitrogen lost as NO3 trough leaching per animal in cohort c, species and system T, kg N-NO3 animal}^{-1}\text{year}^{-1} \]

\[N_{discharge,T,c} \quad = \quad \text{organic nitrogen lost through manure discharge per animal in cohort c, species and system T, kg N-NO3 animal}^{-1}\text{year}^{-1} \]

\[N_{N2O_{discharge,T,c}} \quad = \quad \text{nitrogen emitted as indirect N}_2\text{O emissions from manure discharged per animal in cohort c, species and system T, kg N-N}_2\text{O animal}^{-1}\text{year}^{-1} \]

\[N_{N2O_{leaching,T,c}} \quad = \quad \text{nitrogen emitted as indirect N}_2\text{O emissions from manure nitrogen lost through leaching per animal in cohort c, species and system T, kg N-N}_2\text{O animal}^{-1}\text{year}^{-1} \]

Equation 4.45
\[N_{\text{N}_2,T,c} = N_{\text{N}_2,T,c} \]

Where:
\[N_{\text{N}_2,T,c} = \text{total nitrogen emitted as } \text{N}_2 \text{ from manure management per animal in cohort } c, \text{ species and system } T, \text{ kg N-} \text{N}_2 \text{ animal}^{-1} \text{ year}^{-1} \]
\[N_{\text{N}_2,T,c} = \text{total nitrogen emitted as } \text{N}_2 \text{ per animal in cohort } c, \text{ species and system } T, \text{ kg N-} \text{N}_2 \text{ animal}^{-1} \text{ year}^{-1} \]

4.5 – **AGGREGATING GREENHOUSE GAS AT HERD OR FLOCK LEVEL**

The last step of the animal emissions module is to totalize, for the entire herd or flock, the methane emissions related to animal production, both from enteric fermentation (Equation 4.46) and manure management (Equation 4.47) and the nitrous oxide emissions related to manure management (Equation 4.48).

Equation 4.46
\[\text{CH}_4-\text{Enteric},T = \sum_c (\text{CH}_4-\text{Enteric},T,c) \]

Where:
\[\text{CH}_4-\text{Enteric},T = \text{total methane emissions from enteric fermentation for species and system } T, \text{ kg CH}_4\text{ year}^{-1} \]
\[\text{CH}_4-\text{Enteric},T,c = \text{methane emissions from enteric fermentation for species and system } T \text{ and cohort } c, \text{ kg CH}_4\text{ year}^{-1} \]

Equation 4.47
\[\text{CH}_4-\text{Manure},T = \sum_c (\text{CH}_4-\text{Manure},T,c) \]

Where:
\[\text{CH}_4-\text{Manure},T = \text{total methane emissions from manure management for species and system } T, \text{ kg CH}_4\text{ year}^{-1} \]
\[\text{CH}_4-\text{Manure},T,c = \text{methane emissions from manure management for species and system } T \text{ and cohort } c, \text{ kg CH}_4\text{ year}^{-1} \]

Equation 4.48
\[\text{N}_2\text{O}_{\text{manure},T} = 44/28 \times \sum_c (N_{T,c} \times \text{N}-\text{N}_2\text{O}_{T,c}) \]

Where:
\[\text{N}_2\text{O}_{\text{manure},T} = \text{total } \text{N}_2\text{O emitted for species and system } T, \text{ kg N}_2\text{O year}^{-1} \]
\[44 / 28 = \text{conversion factor from N-} \text{N}_2\text{O to } \text{N}_2\text{O emissions.} \]
\[N_{T,c} = \text{number of animals in cohort } c, \text{ species and system } T, \text{ heads} \]
\[\text{N}-\text{N}_2\text{O}_{T,c} = \text{total nitrogen emitted as } \text{N}_2\text{O per animal in cohort } c \text{ for species and system } T, \text{ kg N-} \text{N}_2\text{O animal}^{-1} \text{ year}^{-1} \]
Manure management and application is a key component of crop and livestock production systems. Manure contributes to soil fertility and to nutrient and energy cycles. It is also responsible for emissions of \(\text{N}_2\text{O} \) and \(\text{CH}_4 \). GLEAM estimates GHG emissions from manure storage and management, and from its application on crops used as livestock feed and on pastures.

The function of the ‘Manure’ module is to calculate the rate at which excreted nitrogen is applied and deposited in feed crops’ fields and pastures. Such application and deposition rates are required to estimate \(\text{N}_2\text{O} \) emissions arising from feed production and consumption by the sector, as calculated by the Feed emissions module (Chapter 6). Actual emissions of \(\text{N}_2\text{O} \) (and \(\text{CH}_4 \)) prior to application are calculated in the Animal emissions module (Chapter 4).

We assumed that manure is applied and deposited in the cell where it is produced. At cell level, manure deposited on grazing areas from ruminants is distributed to grasslands and marginal lands. The marginal lands are defined as areas covered by bare soils, sparse or herbaceous vegetation and shrubland. Manure stored in other MMSs prior to its application is distributed at first on available arable lands and the excess is applied on grassland. We define the maximum threshold for manure nitrogen application or deposition as 700 kg N/ha\(^{-1}\) (Gerber et al., 2016). Manure nitrogen in excess is assumed to be a surplus amount that is either lost or not recycled in the reference modelled year.

For a schematic representation of the manure module, see Figure 5.1.

Figure 5.1 Schematic representation of the manure module

Three main surfaces need to be defined for manure application or deposition: 1) cropland, used for the nitrogen available for application from ruminants and monogastrics; 2) grassland, used for the application of the surplus manure not applied on cropland from ruminants and monogastrics and for part of the deposited manure from ruminants; 3) other natural areas, used for part of the deposited manure from ruminants, including bare areas, shrublands and areas with herbaceous or sparse vegetation. The required spatial data of land cover were obtained from ESA (2017).

5.1 – TOTALIZATION OF THE NITROGEN AVAILABLE

The first step is the estimation of the total manure nitrogen available for deposition on pastures by grazing ruminants (Section 5.1.1) and for application to croplands by both ruminant and monogastric species (Section 5.1.2).
5.1.1 – Nitrogen available for deposition by ruminant herd

The amount of manure nitrogen deposited on pastures by grazing ruminants is calculated following Equation 5.1, based on the nitrogen excreted by animals (Section 4.4.2) and the share of manure deposited on pastures.

Equation 5.1
\[N_{\text{available,dep,}T} = \sum_c \left(N_{T,c} \times N_{\text{excretion,}T,c} \times \text{MMS}_{\text{pasture,}T,c} \right) \]

Where:
- \(N_{\text{available,dep,}T} \) = manure nitrogen available for deposition from grazing animals for each ruminant species and system \(T \), kg N
- \(N_{T,c} \) = number of animals in cohort \(c \), for each ruminant species and system \(T \), heads
- \(N_{\text{excretion,}T,c} \) = nitrogen excretion per animal in cohort \(c \), for each ruminant species and system \(T \), kg N N animal \(^{-1}\) year\(^{-1}\)
- \(\text{MMS}_{\text{pasture,}T,c} \) = proportion of manure deposited on pasture per animal in cohort \(c \), for each ruminant species and system \(T \), fraction

5.1.2 – Nitrogen available for application by herd

The amount of manure nitrogen available for application to croplands is calculated following Equation 5.2, based on the manure nitrogen available for recycle in agriculture that is calculated in Section 4.4.20. For ruminants, this amount of nitrogen is net of that deposited on pasture by grazing animals, as calculated in Section 5.1.1.

Equation 5.2
\[N_{\text{available,appl,}T} = \sum_c \left(N_{T,c} \times N_{\text{recycled, agr,}T,c} \right) \]

a. Monogastrics

Where:
- \(N_{\text{available,appl,}T} \) = manure nitrogen available for application for each monogastric species and system \(T \), kg N
- \(N_{T,c} \) = number of animals in cohort \(c \), for each monogastric species and system \(T \), heads
- \(N_{\text{recycled, agr,}T,c} \) = manure nitrogen available for recycling in agriculture per animal in cohort \(c \), for each monogastric species and system \(T \), kg N animal \(^{-1}\) year\(^{-1}\)

b. Ruminants

\[N_{\text{available,appl,}T} = \sum_c \left(N_{T,c} \times N_{\text{recycled, agr,}T,c} \right) - N_{\text{available,dep,}T} \]

Where:
- \(N_{\text{available,appl,}T} \) = manure nitrogen available for application for each ruminant species and system \(T \), kg N
- \(N_{T,c} \) = number of animals in cohort \(c \), for each ruminant species and system \(T \), heads
- \(N_{\text{recycled, agr,}T,c} \) = manure nitrogen available for recycling in agriculture per animal in cohort \(c \), for each ruminant species and system \(T \), kg N animal \(^{-1}\) year\(^{-1}\)
- \(N_{\text{available,dep,}T} \) = manure nitrogen available for deposition from grazing animals for each ruminant species and system \(T \), kg N

5.1.3 – Total nitrogen available for application or deposition

The total manure nitrogen available for application on croplands or deposition on pastures from all modelled livestock species and systems is calculated following Equation 5.3 and Equation 5.4, respectively.

Equation 5.3
\[N_{\text{available,appl,}T} = \sum_T \left(N_{\text{available,appl,}T} \right) \]

Where:
- \(N_{\text{available,appl,}T} \) = total manure nitrogen available for application, kg N
- \(N_{\text{available,appl,}T} \) = manure nitrogen available for application for each species and system \(T \), kg N
Equation 5.4
\[\text{Navailable}_{\text{dep}} = \sum T (\text{Navailable}_{\text{dep}, T}) \]

Where:

\[\text{Navailable}_{\text{dep}} = \text{total manure nitrogen available for deposition from grazing animals, kg N} \]
\[\text{Navailable}_{\text{dep}, T} = \text{manure nitrogen available for deposition from grazing animals for each ruminant species and system } T, \text{ kg N} \]

Nitrogen available for deposition from ruminants needs to be allocated to grassland (Equation 5.5) and other natural areas (Equation 5.6), according to the proportion of available hectares from the two categories. This allocation excludes the nitrogen available for deposition in areas (mostly woodlands) where there is no cover of neither grassland nor the other natural areas considered as marginal lands and that, therefore, remains unassigned and is assumed to be surplus manure nitrogen from deposition.

Equation 5.5
\[\text{Navailable}_{\text{dep, grass}} = \text{Navailable}_{\text{dep}} \times (\text{Grassland}_{\text{ha}} / (\text{Grassland}_{\text{ha}} + \text{OthNat}_{\text{ha}})) \]

Where:

\[\text{Navailable}_{\text{dep, grass}} = \text{total manure nitrogen available for deposition on grassland from grazing animals, kg N} \]
\[\text{Navailable}_{\text{dep}} = \text{total manure nitrogen available for deposition from grazing animals, kg N} \]
\[\text{Grassland}_{\text{ha}} = \text{surface of grassland, calculated from GLC share layers, ha} \]
\[\text{OthNat}_{\text{ha}} = \text{surface of natural areas other than grassland, ha} \]

Equation 5.6
\[\text{Navailable}_{\text{dep, othnat}} = \text{Navailable}_{\text{dep}} \times (\text{OthNat}_{\text{ha}} / (\text{Grassland}_{\text{ha}} + \text{OthNat}_{\text{ha}})) \]

Where:

\[\text{Navailable}_{\text{dep, othnat}} = \text{total manure nitrogen deposited on natural areas other than grassland from grazing animals, kg N} \]
\[\text{Navailable}_{\text{dep}} = \text{total manure nitrogen available for deposition from grazing animals, kg N} \]
\[\text{OthNat}_{\text{ha}} = \text{surface of natural areas other than grassland, ha} \]
\[\text{Grassland}_{\text{ha}} = \text{surface of grassland, ha} \]

5.2 - MANURE-N DEPOSITED ON OTHER NATURAL AREAS FROM RUMINANTS

Estimation of the maximum manure nitrogen deposition allowed on marginal natural areas other than grasslands is based on the assumed maximum thresholds of 700 kg N ha\(^{-1}\) (Gerber et al., 2016), and is calculated following Equation 5.7. This is then used to estimate the actual amount of manure nitrogen deposited, based on the respective availability, following Equation 5.8.

Equation 5.7
\[\text{Nmax}_{\text{othnat}} = \text{OthNat}_{\text{ha}} \times \text{Threshold} \]

Equation 5.8

IF:
\[\text{Navailable}_{\text{dep, othnat}} \leq \text{Nmax}_{\text{othnat}} \]
THEN:
\[\text{Ndeposited}_{\text{othnat}} = \text{Navailable}_{\text{dep, othnat}} \]
ELSE:
\[\text{Ndeposited}_{\text{othnat}} = \text{Nmax}_{\text{othnat}} \]

Where:

\[\text{Nmax}_{\text{othnat}} = \text{maximum amount of manure nitrogen that can be deposited on natural areas other than grassland, kg N} \]
\[\text{OthNat}_{\text{ha}} = \text{surface of natural areas other than grassland, ha} \]
Threshold = maximum amount of nitrogen that can be deposited or applied per hectare, 700 kg N·ha⁻¹; (Gerber et al., 2016)

\(\text{N}_{\text{available appl}} = \text{total manure nitrogen available for deposition on natural areas other than grassland from grazing animals, kg N} \)

\(\text{N}_{\text{deposited appl}} = \text{total manure nitrogen deposited on natural areas other than grassland from grazing animals, kg N} \)

5.3 – MANURE-N APPLIED ON CROPLANDS

At first, all nitrogen available for application from ruminants and monogastrics is used for croplands. Estimation of the maximum manure nitrogen application allowed on croplands is based on the assumed maximum thresholds of 700 kg N·ha⁻¹ (Gerber et al., 2016), and is calculated following Equation 5.9. This is then used to estimate the actual amount of manure nitrogen deposited, based on the respective availability, following Equation 5.10.

Equation 5.9

\[\text{N}_{\text{max cropland}} = \text{Croplands}_\text{ha} \times \text{Threshold} \]

Equation 5.10

IF:

\(\text{N}_{\text{available appl}} \leq \text{N}_{\text{max cropland}} \)

THEN:

\[\text{N}_{\text{applied cropland}} = \text{N}_{\text{available appl}} \]

ELSE:

\[\text{N}_{\text{applied cropland}} = \text{N}_{\text{max cropland}} \]

Where:

\(\text{N}_{\text{max cropland}} = \text{maximum amount of manure nitrogen that can be applied on cropland, kg N} \)

\(\text{Croplands}_\text{ha} = \text{surface of croplands, calculated from GLC share layers, ha} \)

\(\text{Threshold} = \text{maximum amount of nitrogen that can be deposited or applied per hectare, 700 kg N/ha; (Gerber et al., 2016)} \)

\(\text{N}_{\text{available appl}} = \text{total manure nitrogen available for application, kg N} \)

\(\text{N}_{\text{applied cropland}} = \text{total manure nitrogen applied on cropland, kg N} \)

5.4 – MANURE-N APPLIED OR DEPOSITED ON GRASSLANDS

Estimation of the maximum manure nitrogen application or deposition allowed on croplands is based on the assumed maximum thresholds of 700 kg N·ha⁻¹ (Gerber et al., 2016), and is calculated following Equation 5.11.

Equation 5.11

\[\text{N}_{\text{max grass}} = \text{Grassland}_\text{ha} \times \text{Threshold} \]

Where:

\(\text{N}_{\text{max grass}} = \text{maximum amount of manure nitrogen that can be deposited or applied on grassland, kg N} \)

\(\text{Grassland}_\text{ha} = \text{surface of grassland, calculated from GLC share layers, ha} \)

\(\text{Threshold} = \text{maximum amount of nitrogen that can be deposited or applied per hectare, 700 kg N/ha; (Gerber et al., 2016)} \)

Manure nitrogen in excess from the initial application on croplands (Section 5.3) is available for application on grasslands and is calculated following Equation 5.12.

Equation 5.12

\[\text{Navailable appl grass} = \text{Navailable appl} - \text{Napplied cropland} \]

Where:

\(\text{Navailable appl grass} = \text{total manure nitrogen available for application on grassland, kg N} \)

\(\text{Navailable appl} = \text{total manure nitrogen available for application, kg N} \)

\(\text{Napplied cropland} = \text{total manure nitrogen applied on cropland, kg N} \)
In order to keep track of the amount of nitrogen applied or deposited, the maximum amount of nitrogen allowed on grasslands must be allocated to nitrogen deposited (Equation 5.13) or applied (Equation 5.14), according to the proportion of nitrogen available from the two sources for grasslands.

Equation 5.13

\[
N_{\text{max grass dep}} = N_{\text{max grass}} \times \left(\frac{N_{\text{available dep grass}}}{N_{\text{available dep grass}} + N_{\text{available appl grass}}} \right)
\]

Where:

- \(N_{\text{max grass dep}}\) = maximum amount of manure nitrogen that can be deposited on grassland from grazing animals, kg N
- \(N_{\text{max grass}}\) = maximum amount of manure nitrogen that can be deposited or applied on grassland, kg N
- \(N_{\text{available dep grass}}\) = total manure nitrogen available for deposition on grassland from grazing animals, kg N
- \(N_{\text{available appl grass}}\) = total manure nitrogen available for application on grassland, kg N

Equation 5.14

\[
N_{\text{max grass appl}} = N_{\text{max grass}} - N_{\text{max grass dep}}
\]

Where:

- \(N_{\text{max grass appl}}\) = maximum amount of manure nitrogen that can be applied on grassland, kg N
- \(N_{\text{max grass}}\) = maximum amount of manure nitrogen that can be deposited or applied on grassland, kg N
- \(N_{\text{available appl grass}}\) = total manure nitrogen available for application on grassland, kg N
- \(N_{\text{available dep grass}}\) = total manure nitrogen available for deposition on grassland from grazing animals, kg N

5.4.1 – Nitrogen deposited on grassland

The actual amount of manure nitrogen deposited on grassland is based on the respective maximum deposition allowed (Equation 5.13) and availability (Equation 5.5) and is calculated following Equation 5.15.

Equation 5.15

IF:

\[
N_{\text{available dep grass}} \leq N_{\text{max grass dep}}
\]

THEN:

\[
N_{\text{deposited grass}} = N_{\text{available dep grass}}
\]

ELSE:

\[
N_{\text{deposited grass}} = N_{\text{max grass dep}}
\]

Where:

- \(N_{\text{available dep grass}}\) = total manure nitrogen available for deposition on grassland from grazing animals, kg N
- \(N_{\text{max grass dep}}\) = maximum amount of manure nitrogen that can be deposited on grassland from grazing animals, kg N
- \(N_{\text{deposited grass}}\) = total manure nitrogen deposited on grassland from grazing animals, kg N

5.4.2 – Nitrogen applied on grassland

The actual amount of manure nitrogen applied on grassland is based on the respective maximum application allowed (Equation 5.14) and availability (Equation 5.12) and is calculated following Equation 5.16.

Equation 5.16

IF:

\[
N_{\text{available appl grass}} \leq N_{\text{max grass appl}}
\]

THEN:

\[
N_{\text{applied grass}} = N_{\text{available appl grass}}
\]

ELSE:

\[
N_{\text{applied grass}} = N_{\text{max grass appl}}
\]

Where:
Nav_{appl\text{grass}} = \text{total manure nitrogen available for application on grassland, kg N}
N_{max\text{grass appl}} = \text{maximum amount of manure nitrogen that can be applied on grassland, kg N}
N_{appl\text{grass}} = \text{total manure nitrogen applied on grassland, kg N}

5.5 – MANURE-N APPLICATION OR DEPOSITION RATES

This final section of the Manure module reports the calculation required to estimate the manure nitrogen application and deposition rates, to be used as input parameters for the estimation of feed emissions (Chapter 6).

5.5.1 – Total Manure-Nitrogen deposited or applied

The total amount of manure deposited on both grasslands and other marginal natural areas is calculated following Equation 5.17.

Equation 5.17

\[\text{N}_{\text{deposited}} = \text{N}_{\text{deposited grass}} + \text{N}_{\text{deposited\text{othnat}}} \]

Where:
- \(\text{N}_{\text{deposited}} \) = total manure nitrogen deposited on grassland or other natural areas from grazing animals, kg N
- \(\text{N}_{\text{deposited grass}} \) = total manure nitrogen deposited on grassland from grazing animals, kg N
- \(\text{N}_{\text{deposited\text{othnat}}} \) = total manure nitrogen deposited on natural areas other than grassland from grazing animals, kg N

Similarly, Equation 5.18 is used to estimate the total manure nitrogen applied on both grasslands and croplands.

Equation 5.18

\[\text{N}_{\text{applied}} = \text{N}_{\text{applied grass}} + \text{N}_{\text{applied\text{cropland}}} \]

Where:
- \(\text{N}_{\text{applied}} \) = total manure nitrogen deposited on grassland or other natural areas from grazing animals, kg N
- \(\text{N}_{\text{applied grass}} \) = total manure nitrogen applied on grassland, kg N
- \(\text{N}_{\text{applied\text{cropland}}} \) = total manure nitrogen applied on cropland, kg N

5.5.2 – Surfaces

The hectares of agricultural area available for the calculation of deposition and application rates are calculated following Equation 5.21 and Equation 5.22, respectively. To this purpose, however, hectares of grassland need to be allocated between nitrogen deposited and applied, following Equation 5.19 and Equation 5.20, respectively.

Equation 5.19

\[\text{Grassland}_{\text{ha dep}} = \text{Grassland}_{\text{ha}} \times \left(\frac{\text{N}_{\text{deposited grass}}}{\text{N}_{\text{deposited grass}} + \text{N}_{\text{applied grass}}} \right) \]

Where:
- \(\text{Grassland}_{\text{ha dep}} \) = surface of grassland allocated to manure deposition from grazing animals, ha
- \(\text{Grassland}_{\text{ha}} \) = surface of grassland, calculated from GLC share layers, ha
- \(\text{N}_{\text{deposited grass}} \) = total manure nitrogen deposited on grassland from grazing animals, kg N
- \(\text{N}_{\text{applied grass}} \) = total manure nitrogen applied on grassland, kg N

Equation 5.20

\[\text{Grassland}_{\text{ha appl}} = \text{Grassland}_{\text{ha}} \times \left(\frac{\text{N}_{\text{applied grass}}}{\text{N}_{\text{deposited grass}} + \text{N}_{\text{applied grass}}} \right) \]

Where:
- \(\text{Grassland}_{\text{ha appl}} \) = surface of grassland allocated to manure application, ha
- \(\text{Grassland}_{\text{ha}} \) = surface of grassland, calculated from GLC share layers, ha
- \(\text{N}_{\text{applied grass}} \) = total manure nitrogen applied on grassland, kg N
- \(\text{N}_{\text{deposited grass}} \) = total manure nitrogen deposited on grassland from grazing animals, kg N
Equation 5.21
\[\text{HA}_{\text{dep}} = \text{Grassland}_{\text{ha}}_{\text{dep}} + \text{OthNat}_{\text{ha}} \]

Where:
\[\text{HA}_{\text{dep}} = \text{surface of grassland or other natural areas receiving manure nitrogen deposition from grazing animals, ha} \]
\[\text{Grassland}_{\text{ha}}_{\text{dep}} = \text{surface of grassland allocated to manure deposition from grazing animals, ha} \]
\[\text{OthNat}_{\text{ha}} = \text{surface of natural areas other than grassland, ha} \]

Equation 5.22
\[\text{HA}_{\text{appl}} = \text{Grassland}_{\text{ha}}_{\text{appl}} + \text{Cropland}_{\text{ha}} \]

Where:
\[\text{HA}_{\text{appl}} = \text{surface of grassland or other natural areas receiving manure application, ha} \]
\[\text{Grassland}_{\text{ha}}_{\text{appl}} = \text{surface of grassland allocated to manure application, ha} \]
\[\text{Cropland}_{\text{ha}} = \text{surface of croplands, calculated from GLC share layers, ha} \]

5.5.3 – Manure-Nitrogen deposition and application rates

Once the total amount of manure nitrogen either deposited during grazing or applied after a phase of storage is calculated, (Section 5.5.1), as well as the respective hectares of agricultural area available (Section 5.5.2), the manure nitrogen deposition and application rates can be calculated, following Equation 5.23 and Equation 5.24, respectively.

Equation 5.23
\[N_{\text{depha}} = \frac{N_{\text{deposited}}}{\text{HA}_{\text{dep}}} \]

Where:
\[N_{\text{depha}} = \text{manure nitrogen deposition rate on grassland or other natural areas from grazing animals, kg N ha}^{-1} \]
\[N_{\text{deposited}} = \text{total manure nitrogen deposited on grassland or other natural areas from grazing animals, kg N} \]
\[\text{HA}_{\text{dep}} = \text{surface of grassland or other natural areas receiving manure nitrogen deposition from grazing animals, ha} \]

Equation 5.24
\[N_{\text{applha}} = \frac{N_{\text{applied}}}{\text{HA}_{\text{appl}}} \]

Where:
\[N_{\text{applha}} = \text{manure nitrogen application rate on grassland or cropland, kg N ha}^{-1} \]
\[N_{\text{applied}} = \text{total manure nitrogen deposited on grassland or other natural areas from grazing animals, kg N} \]
\[\text{HA}_{\text{appl}} = \text{surface of grassland or other natural areas receiving manure application, ha} \]
6 CHAPTER 6 – FEED EMISSIONS MODULE

Emissions associated with feed production arise from different sources and include different GHGs. First, emissions of carbon dioxide are associated with the production of synthetic fertilizers and pesticides, energy consumption for tillage, crop management, harvest and storage and, in the case of some feed materials such as by-products, with processing. For some crops emissions include the transport and the energy used in blending and pelleting.

Second, nitrous oxide emissions derive from nitrogen inputs, such as fertilizer application, manure application and deposition, nitrogen from crop residues, biological fixation and natural deposition, in the form of direct and indirect emissions, through volatilization and leaching. Finally, methane emissions can arise from the cultivation of rice used as feed.

The functions of the ‘Feed emissions’ module are to:

- Calculate the GHG emissions related to feed production.
- Calculate the total emissions related to the feed consumption.
- Totalize the feed emissions for the whole herd or flock.
Figure 6.1 Schematic representation of the feed emissions module

- Application rates of synthetic fertilizers and pesticides
- Emission factors for synthetic fertilizers and pesticides
- Feed yields
- Emission factors for field operations
- Feed yields
- Emission factors for feed processing
- Emission factors for feed transport
- Emission factor for blending of concentrate feed
- Share of concentrate in the ration
- Emission factors for land-use change

- Nitrogen from crop residues
- Nitrogen from manure application
- Nitrogen from manure deposition
- Nitrogen from synthetic fertilizer application
- Nitrogen from biological fixation
- Nitrogen from atmospheric deposition
- Crop nitrogen yields
- Emission factors
- Slope
- Precipitation
- Land cover

- Intermediate calculations within GLEAM
- Input data from literature, existing databases and expert knowledge

- Composition of the feed ration
- Feed intake per animal
- Number of animals

- Nitrogen from synthetic fertilizer application
- Feed intake per animal
- Nitrogen content of feed
- Crop nitrogen yields

- Conversion factor to N$_2$O

- Area requirement for the production of N intake (ha / head)

- Number of animals

- Emission factors for CH$_4$ from rice

- CH$_4$ emissions from feed consumption (kg CH$_4$)
6.1 – CARBON DIOXIDE AND METHANE EMISSIONS

6.1.1 – Carbon dioxide emissions

6.1.1.1 – Synthetic N, P and K fertilization and pesticides manufacture

Crop-specific data on nitrogen synthetic fertilizer applications at national level were obtained by dividing the total fertilizer consumption for each crop from the International Fertilizer Association (IFA; Heffer et al., 2017) by the harvested area from FAOSTAT for the main fertilizer-consuming countries. Other data on synthetic fertilizer were obtained from the Common Agricultural Policy Regionalised Impact model (CAPRI) for Europe (Leip et al., 2011), and from Swaney et al. (2018) for the United States at a subnational level. For Australia, data were obtained from Navarro et al. (2016). For the rest of the world we used FAOSTAT data. For the nitrogen fertilizer applied to the grassland, we used data from IFA and the literature (Lassaletta et al., 2014). Synthetic phosphorus and potassium fertilizer, as well as pesticides application rates were defined at a national level, based on the LEAP database (LEAP, 2015). CO₂ emissions related to the manufacture and transport of fertilizers and pesticides were calculated using Equation 6.1:

Equation 6.1

\[
\begin{align*}
\text{a. } \text{CO}_2\text{NFERTHA}_i &= \text{NFERTHA}_i \times \text{EF}_{\text{NFERT}} \\
\text{b. } \text{CO}_2\text{PFERTHA}_i &= \text{PFERTHA}_i \times \text{EF}_{\text{PFERT}} \\
\text{c. } \text{CO}_2\text{KERTHA}_i &= \text{KERTHA}_i \times \text{EF}_{\text{KERT}} \\
\text{d. } \text{CO}_2\text{PESTHA}_i &= \text{PESTHA}_i \times \text{EF}_{\text{PEST}}
\end{align*}
\]

Where:

\[
\begin{align*}
\text{CO}_2\text{H}_A &= \text{carbon dioxide emissions from product } i \text{ (N, P, K fertilizer or pesticides) manufacturing for feed material } i, \text{ kg } \text{CO}_2\text{ha}^{-1} \\
\text{HA}_i &= \text{application rate of product } i \text{ (N, P, K fertilizer or pesticides) for feed material } i, \text{ kg Nha}^{-1} \\
\text{EF}_i &= \text{regional emission factor of } N, P, K \text{ fertilizer manufacture or global emission factor for pesticides manufacture, kg } \text{CO}_2\text{kg product}^{-1}.
\end{align*}
\]

For feed items that are internationally traded, weighted average emissions per hectare are calculated for each country, based on the national emissions of the feed producing countries (including domestic production) and the trade matrices described in Section 3.1.

6.1.1.2 – Field operations

Energy is used on-farm for a variety of field operations required for crop cultivation, such as: ploughing, seedbed preparation, sowing, fertilization (lime, organic and synthetic fertilizer application), pesticide spraying, weed control, irrigation and harvesting. Data on the type and amount of energy required and emissions associated per hectare of each feed crop were taken from literature review, existing databases (LEAP, 2015), expert knowledge and surveys (Table S.6.1 and Table S.6.2; Supplement S1). Field operations are undertaken using non-mechanized power sources, i.e. human or animal labour, in some countries. To reflect this variation, the emissions per hectare were adjusted according to the proportion of the field operations undertaken using non-mechanized power sources for each feed material (Table S.6.3 and Table S.6.4; Supplement S1).

6.1.1.3 – Feed transport and processing

Forage, local feeds and swill, by definition, are transported over minimal distances and therefore emissions for transport are set to zero. Non-local feeds for monogastrics and by-products and concentrate for ruminants are assumed to be transported between 100 km and 700 km by road to their place of processing. To account for the distances of sea transport for the international trade for each of these feed items, a weighted sea travel distance was calculated using FAO bilateral trade data (FAOSTAT, 2021) and the sea distance data set from Bertoli et al. (2016). Emissions from processing arise from the energy consumed in activities such as milling, crushing and heating, which are used to process whole crop materials into specific products. For each feed materials, data on energy consumption for processing activities and emissions associated with such activities and transport methods were taken from literature review, existing databases and expert knowledge (Table S.6.5 and Table S.6.6; Supplement S1).
6.1.1.4 – Blending and transport of concentrate feed

In addition, energy is used in feed mills for blending concentrate feed materials, in some cases for transforming the blended materials into pellets, and to transport them to their point of sale. It was assumed that an average of 186 MJ of electricity and 188 MJ of gas were required to blend 1 000 kg of DM, and that the average transport distance was 200 km, which results in an emission factor of 0.0786 kg CO₂-eq·kg concentrate feed⁻¹. Therefore, emissions from blending and transport of concentrate feed are calculated as follows:

Equation 6.2 - Ruminants
\[\text{CO₂kg}^{\text{blend,i,c,T}} = \text{EFblend} \times \text{CONC}_{fg,T} \times \text{CF}_{i,T} \]

for \(i = 16 \) to 27 from Table 3.2

Where:
- \(\text{CO₂kg}^{\text{blend,i,c,T}} \) = total carbon dioxide emissions from blending and transport of concentrate feed per kg of dry matter for feed material \(i \), cohort \(c \), species and system \(T \), kg CO₂·kg DM⁻¹.
- \(\text{EFblend} \) = emission factor for blending and transport of concentrate feed, kg CO₂·kg DM⁻¹. Default value of 0.0786.
- \(\text{CONC}_{fg,T} \) = fraction of concentrates in the diet for the feeding group \(fg \), species and system \(T \), fraction.
- \(\text{CF}_{i,T} \) = fraction of feed material \(i \) in the composition of concentrate feed for species and system \(T \), fraction.

Equation 6.3 - Monogastrics
\[\text{CO₂kg}^{\text{blend,i,c,T}} = \text{EFblend} \times \text{FEED}_{i,T} \]

for \(i = 21 \) to 42 from Table 3.6

Where:
- \(\text{CO₂kg}^{\text{blend,i,c,T}} \) = total carbon dioxide emissions from blending and transport of concentrate feed per kg of dry matter for feed material \(i \), cohort \(c \), species and system \(T \), kg CO₂·kg DM⁻¹.
- \(\text{EFblend} \) = emission factor for blending and transport of concentrate feed, kg CO₂·kg DM⁻¹. Default value of 0.0786.
- \(\text{FEED}_{i,T} \) = fraction of feed material \(i \) in the ration of species and system \(T \), fraction. Described in Section 3.3.5.

6.1.1.5 – GHG emissions arising from the production of non-crop feed materials

Default values of 1.4, 3.6 and 0.08 kg CO₂-eq·kg·feed⁻¹ for fishmeal, synthetic additives and limestone were used, respectively. Emissions for leaves and swill were assumed to be null.

6.1.1.6 – Land-use change for feed crops and pasture expansion

Land-use change is a highly complex process. It results from the interaction of multiple drivers which may be direct or indirect and can involve numerous transitions, such as clearing, grazing, cultivation, abandonment and secondary forest re-growth, across scales, from local to global.

The IPCC issued a special report in 2019 on climate and land, highlighting the critical connections between tropical rainforests and global cycles of energy, water, and carbon and it estimates that land-use change contributes a net 1.6 ± 0.8 Gt CO₂ per year to the atmosphere. The debate surrounding the key drivers of deforestation is ongoing and so is the attribution of GHG emissions to these drivers. Many studies have highlighted the magnitude and policy importance of pollution embodied in trade for individual countries or small groups of countries. Furthermore, the flow of pollution through international trade flows has the ability to undermine environmental policies, particularly for global pollutants.

In this version of GLEAM it has been decided to scale up the estimation of emissions associated to land use change adopting the model by Pendrill et al. (2020). It quantified how much and where deforestation occurs from the expansion of croplands and pasture and what products are grown on this converted land.

The expansion of feed crops is focused on pasture, soybean and palm oil production. Indeed, if we look at recent satellite data we find that in 2019, the world lost 5.4 million hectares to deforestation, with Brazil and Indonesia accounting for 52% of it (1.8 million hectares came from Brazil and 1 million hectares from Indonesia). The expansion of pasture for beef production, croplands for soy and palm oil, and increasingly conversion of primary forest to tree plantations for paper and pulp have been the key drivers of this.
The emission factors for each crop for the producer country provided by Pendrill et al. (2020) were then divided by the total production of that crop from FAOSTAT in 2015 obtaining kgCO\textsubscript{2}/kgDM-1. Land use change emissions from pasture expansion were entirely allocated to beef production.

Furthermore, for Brazil we have decided to follow an even more accurate approach. Thus, net CO\textsubscript{2} emissions from land use change for soybean and pasture in Brazil were calculated following a combined method from Trase (2020) and Pendrill et al. (2020).

In a first step, land use change for soybean and pasture was obtained at the pixel level using classified images (30 m resolution) following Trase (2020) and the data sources listed in Table 6.1, but with a slight adaptation for GLEAM to express emissions from land use change for the year 2015. We used an allocation period of 3 years between a past deforestation event and the new land use together with a lag period of 1 year between deforestation and the establishment of soybean. While we did not include a lag period between deforestation and the pasture land use, we considered that pasture could be used by cattle in the 3 years leading up to 2015 and therefore could account for multiple years of land use change. More specifically:

- If a same pixel classified as “soybean” in 2015 was classified as “deforestation” between 2012 and 2014, then the deforestation event was allocated to soybean in that pixel;
- If a same pixel classified as “pasture” in 2015 was classified as “deforestation” between 2013 and 2015, then the deforestation event was allocated to pasture in that pixel. We then repeated the calculation for pixels classified as “pasture” in 2014 (with deforestation between 2012 and 2014), and 2013 (with deforestation between 2011 and 2013) to account for multiple years of pasture use by cattle.

These per-pixel results were then aggregated at the Brazilian municipality level to provide an estimate of deforestation for soybean in 2015. In the case of deforestation for pasture in 2015, per-pixel results were aggregated both at the Brazilian municipality level and summed across 2013, 2014 and 20151.

In a second step, net CO\textsubscript{2} emissions (tonnes CO\textsubscript{2}) from land use change for soybean and pasture in 2015 were obtained following Equation using the results obtained above for each Brazilian municipality:

\[
\text{CO}_2\text{net} = \text{CO}_2\text{gross} - \text{new vegetation stock} + \text{change in soil organic carbon}
\]

where CO\textsubscript{2}gross (tonnes CO\textsubscript{2}) represents the above- and below-ground CO\textsubscript{2} loss from land use change (see above) derived using the carbon stocks from MCTI (2016). The new vegetation stock (tonnes CO\textsubscript{2}) is the carbon stock in the new land use (soybean or pasture) obtained by multiplying the total area of the new land use by the factors of 17.23 tonnes CO\textsubscript{2} per hectare (4.7 tonnes C per hectare) for soybean (IPCC, 2019), and 22 tonnes CO\textsubscript{2} per hectare (6 tonnes C per hectare) for pasture (European Union, 2010). Finally, the change in soil organic carbon (tonnes CO\textsubscript{2}) is obtained by multiplying the total land area converted to the new land use (soybean or pasture) with factors of 84 tonnes CO\textsubscript{2} per hectare for soybean and 33 tonnes CO\textsubscript{2} per hectare for pasture (respectively 23 and 9 tonnes C per hectare) (Don et al., 2011).

1 In cases where a pixel was classified both as “soybean” and “pasture” in the same year (due to differences observed in classification methods of the datasets listed in Table 1) we interpreted the pixel as “soybean”.

98
Table 6.1 List of datasets used to derive deforestation for soybean and pasture in Brazil and associated net CO$_2$ emissions in 2015.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Data Source</th>
<th>Year(s) of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasture extent</td>
<td>MapBiomas vs. 4.0 — class 15</td>
<td>2013–2015</td>
</tr>
<tr>
<td></td>
<td>www.mapbiomas.org/en</td>
<td></td>
</tr>
<tr>
<td>Soybean extent</td>
<td>GlobalLand Analysis & Discovery (GLAD) University of Maryland: https://glad.umd.edu/</td>
<td>2015</td>
</tr>
<tr>
<td>Deforestation</td>
<td>INPE Prodes Amazon</td>
<td>2011–2015</td>
</tr>
<tr>
<td></td>
<td>INPE Prodes Cerrado</td>
<td>2011–2015</td>
</tr>
<tr>
<td></td>
<td>SOS-Mata Atlantica: www.sosma.org.br</td>
<td>2011–2015</td>
</tr>
<tr>
<td></td>
<td>SOS-Pantanal: www.sospantanal.org.br</td>
<td>2011–2015</td>
</tr>
</tbody>
</table>

*Forthcoming publication

Finally, in order to account for the international trade of feed items, average emission factors for LUC associated with the production and import of soy products and palm kernel cake were calculated, for each importing country, based on the emission factors of the exporting ones and the trade matrices described in Section 3.1.
6.1.2 – Methane emissions from rice used for feed

Rice differs from all the other feed crops in that it produces significant amounts of CH₄. These emissions per hectare are highly variable and depend on the water regime during and prior to cultivation, and the nature of the organic amendments. The average CH₄ flux per hectare of rice was calculated for each country using the IPCC Tier 1 methodology (IPCC, 2019, Volume 4, Chapter 5.5).

6.1.3 – Allocation of carbon dioxide and methane emissions between crop and crop co-products

In order to calculate the emission intensity of each feed material, emissions need to be allocated between the crop and crop co-products, such as crop residues or agro-industrial by-products. To this purpose, three allocation factors are used: 1) the Economic Fraction Allocation (EFA), which defines the crop or co-product value as a fraction of the total value and 3) the second-grade allocation (A2), to account for the low economic value of second-grade crops (feed materials 3, 6 to 14 and 17 from Table 3.2).

The general equations used are as follows:

Equation 6.4

\[a. \quad \text{CO}_2 \text{kg}_{\text{nfer},i} = \frac{\text{CO}_2 \text{NFERTHA}}{\text{DMYG}_{\text{crop},i}} \times \text{FUE}_{\text{crop},i} + \text{DMGY}_{\text{cr},i} \times \text{FUE}_{\text{cr},i} \times \text{EFA}_i \times \text{A}_2\]

\[b. \quad \text{CO}_2 \text{kg}_{\text{Pfer},i} = \frac{\text{CO}_2 \text{PFERTHA}}{\text{DMYG}_{\text{crop},i}} \times \text{FUE}_{\text{crop},i} + \text{DMGY}_{\text{cr},i} \times \text{FUE}_{\text{cr},i} \times \text{EFA}_i \times \text{A}_2\]

\[c. \quad \text{CO}_2 \text{kg}_{\text{Kfer},i} = \frac{\text{CO}_2 \text{KFERTHA}}{\text{DMYG}_{\text{crop},i}} \times \text{FUE}_{\text{crop},i} + \text{DMGY}_{\text{cr},i} \times \text{FUE}_{\text{cr},i} \times \text{EFA}_i \times \text{A}_2\]

\[d. \quad \text{CO}_2 \text{kg}_{\text{pest},i} = \frac{\text{CO}_2 \text{PESTHA}}{\text{DMYG}_{\text{crop},i}} \times \text{FUE}_{\text{crop},i} + \text{DMGY}_{\text{cr},i} \times \text{FUE}_{\text{cr},i} \times \text{EFA}_i \times \text{A}_2\]

\[e. \quad \text{CO}_2 \text{kg}_{\text{crop},i} = \frac{\text{CO}_2 \text{CROPpha}}{\text{DMYG}_{\text{crop},i}} \times \text{FUE}_{\text{crop},i} + \text{DMGY}_{\text{cr},i} \times \text{FUE}_{\text{cr},i} \times \text{EFA}_i \times \text{A}_2\]

\[f. \quad \text{CO}_2 \text{kg}_{\text{proc},i} = \frac{\text{CO}_2 \text{PRCkg}}{\text{EFA}_i} \times \text{A}_2\]

\[g. \quad \text{CO}_2 \text{kg}_{\text{LUC},i} = \frac{\text{CO}_2 \text{LUCkg}}{\text{EFA}_i} \times \text{A}_2\]

\[h. \quad \text{CH}_4 \text{kg}_{i} = \frac{\text{CH}_4 \text{ha}_{i}}{\text{DMYG}_{\text{crop},i}} \times \text{FUE}_{\text{crop},i} + \text{DMGY}_{\text{cr},i} \times \text{FUE}_{\text{cr},i} \times \text{EFA}_i \times \text{A}_2\]

Where:

\[\text{CO}_2 \text{kg}_{\text{nfer},i} = \text{total carbon dioxide emissions from nitrogen fertilizer manufacturing per kilogram of dry matter of feed material } i, \text{ kg } \text{CO}_2\text{kg} \text{DM}^{-1}\]

\[\text{CO}_2 \text{kg}_{\text{Pfer},i} = \text{total carbon dioxide emissions from P fertilizer manufacturing per kilogram of dry matter of feed material } i, \text{ kg } \text{CO}_2\text{kg} \text{DM}^{-1}\]

\[\text{CO}_2 \text{kg}_{\text{Kfer},i} = \text{total carbon dioxide emissions from K fertilizer manufacturing per kilogram of dry matter of feed material } i, \text{ kg } \text{CO}_2\text{kg} \text{DM}^{-1}\]

\[\text{CO}_2 \text{kg}_{\text{pest},i} = \text{total carbon dioxide emissions from pesticides manufacturing per kilogram of dry matter of feed material } i, \text{ kg } \text{CO}_2\text{kg} \text{DM}^{-1}\]

\[\text{CO}_2 \text{kg}_{\text{crop},i} = \text{total carbon dioxide emissions from field operations per kilogram of dry matter of feed material } i, \text{ kg } \text{CO}_2\text{kg} \text{DM}^{-1}\]

\[\text{CO}_2 \text{kg}_{\text{proc},i} = \text{total carbon dioxide emissions from transport and processing per kilogram of dry matter of feed material } i, \text{ kg } \text{CO}_2\text{kg} \text{DM}^{-1}\]

\[\text{CO}_2 \text{kg}_{\text{LUC},i} = \text{total carbon dioxide emissions from land-use change per kilogram of dry matter of feed material } i, \text{ kg } \text{CO}_2\text{kg} \text{DM}^{-1}\]

\[\text{CH}_4 \text{kg}_{i} = \text{total methane emissions per kilogram of dry matter of feed material } i, \text{ kg } \text{CH}_4\text{kg} \text{DM}^{-1}\]

\[\text{CO}_2 \text{NFERTHA}_{i} = \text{carbon dioxide emissions from nitrogen fertilizer manufacturing per hectare of feed material } i, \text{ kg } \text{CO}_2\text{ha}^{-1}. \text{ Described in Section 6.1.1.1}\]

\[\text{CO}_2 \text{PFERTHA}_{i} = \text{carbon dioxide emissions from P fertilizer manufacturing per hectare of feed material } i, \text{ kg } \text{CO}_2\text{ha}^{-1}. \text{ Described in Section 6.1.1.1}\]

\[\text{CO}_2 \text{KFERTHA}_{i} = \text{carbon dioxide emissions from K fertilizer manufacturing per hectare of feed material } i, \text{ kg } \text{CO}_2\text{ha}^{-1}. \text{ Described in Section 6.1.1.1}\]

\[\text{CO}_2 \text{PESTHA}_{i} = \text{carbon dioxide emissions from pesticides manufacturing per hectare of feed material } i, \text{ kg } \text{CO}_2\text{ha}^{-1}. \text{ Described in Section 6.1.1.1}\]

\[\text{CO}_2 \text{CROPpha}_{i} = \text{carbon dioxide emissions from field operations per hectare of feed material } i, \text{ kg } \text{CO}_2\text{ha}^{-1}. \text{ Described in Section 6.1.1.2}\]
For most of the feed materials, the default MFA factors are shown in Tables 3.4 (for ruminant species) and Table 3.7 (for monogastric species). For crop residues or grains (whose crop residues are used either as feed or for bedding), dry matter yields and FUE are used to determine the MFA factors, as shown in Equation 6.10.a (for crop residues) and Equation 6.10.b (for grains):

Equation 6.5

a. \[
\text{MFA}_i = \frac{\text{DMGY}_{cr,i} \times \text{FUE}_{cr,i}}{\text{DMGY}_{crop,i} \times \text{FUE}_{crop,i} + \text{DMGY}_{cr,i} \times \text{FUE}_{cr,i}}
\]

for \(i = 4, 13 \) and 16 from Table 3.14 (for monogastric species)

b. \[
\text{MFA}_i = \frac{\text{DMGY}_{crop,i} \times \text{FUE}_{crop,i}}{\text{DMGY}_{crop,i} \times \text{FUE}_{crop,i} + \text{DMGY}_{cr,i} \times \text{FUE}_{cr,i}}
\]

for \(i = 3, 6 \) to 11, 15, 21, 23, and 25 to 28 from Table 3.14

Where:

- \(\text{MFA}_i \) = mass fraction allocation, i.e. crop or crop residues mass as a fraction of the total mass (crop and crop residues) for feed material \(i \), fraction
- \(\text{DMGY}_{crop,i} \) = crop gross dry matter yield for feed material \(i \), kg DM/ha
- \(\text{DMGY}_{cr,i} \) = crop residues gross dry matter yield for feed material \(i \), kg DM/ha
- \(\text{FUE}_{crop,i} \) = crop feed use efficiency for feed material \(i \), i.e. fraction of the gross yield of the crop that is effectively used as feed, fraction. Values are given in Table 6.2 and Table 6.3 for ruminant and monogastric species, respectively.
- \(\text{FUE}_{cr,i} \) = crop residues feed use efficiency for feed material \(i \), i.e. fraction of the gross yield of the crop residues that is effectively used as feed, fraction. Values are given in Table 6.2 and Table 6.3 for ruminant and monogastric species, respectively.

If no crop residues are used for feed or bedding, dry matter yield and mass fraction allocation of the residues are assumed to be zero, effectively allocating 100% of the emissions to the crop. As for MFA, the EFA factors are default values for many feed materials (Table 6.2 and Table 6.3 for ruminant and monogastric species, respectively), but for grains and crop residues they are calculated as follows:
Equation 6.6

a. \(\text{EFA}_i = \frac{(\text{DMGY}_{\text{crop}, i} \times \text{FUE}_{\text{crop}, i} \times \text{VR}_{\text{crop}, i})}{(\text{DMGY}_{\text{crop}, i} \times \text{FUE}_{\text{crop}, i} \times \text{VR}_{\text{crop}, i} + \text{DMGY}_{\text{cr}, i} \times \text{FUE}_{\text{cr}, i} \times \text{VR}_{\text{cr}, i})} \)

for \(i = 9 \) to 15 from Table 3.2 (for ruminant species)

for \(i = 4, 13 \) and 16 from Table 3.14 (for monogastric species)

b. \(\text{EFA}_i = \frac{(\text{DMGY}_{\text{crop}, i} \times \text{FUE}_{\text{crop}, i} \times \text{VR}_{\text{crop}, i})}{(\text{DMGY}_{\text{crop}, i} \times \text{FUE}_{\text{crop}, i} \times \text{VR}_{\text{crop}, i} + \text{DMGY}_{\text{cr}, i} \times \text{FUE}_{\text{cr}, i} \times \text{VR}_{\text{cr}, i})} \)

for \(i = 3, 6 \) to 11, 15, 21, 23, and 25 to 28 from Table 3.14

Where:

- \(\text{EFA}_i \): economic fraction allocation, i.e. crop or crop residues value as a fraction of the total value (of the crop and crop residues) for feed material \(i \), fraction
- \(\text{DMGY}_{\text{crop}, i} \): crop gross dry matter yield for feed material \(i \), kg DM×ha\(^{-1}\)
- \(\text{DMGY}_{\text{cr}, i} \): crop residues gross dry matter yield for feed material \(i \), kg DM×ha\(^{-1}\)
- \(\text{FUE}_{\text{crop}, i} \): crop feed use efficiency for feed material \(i \), i.e. fraction of the gross yield of the crop that is effectively used as feed, fraction. Values are given in Table 6.2 and Table 6.3 for ruminant and monogastric species, respectively.
- \(\text{FUE}_{\text{cr}, i} \): crop residues feed use efficiency for feed material \(i \), i.e. fraction of the gross yield of the crop residues that is effectively used as feed, fraction. Values are given in Table 6.2 and Table 6.3 for ruminant and monogastric species, respectively.
- \(\text{VR}_{\text{crop}, i} \): value ratio of the crop per mass unit of crop and crop residues for feed material \(i \), fraction. The price ratio can be used, if available. Otherwise, the digestibility of crop and crop residues can be used as a proxy of their respective value. Values are given in Table 6.2 and Table 6.3 for ruminant and monogastric species, respectively.
- \(\text{VR}_{\text{cr}, i} \): value ratio of the crop residues per mass unit of crop and crop residues for feed material \(i \), fraction. The price ratio can be used, if available. Otherwise, the digestibility of crop and crop residues can be used as a proxy of their respective value. Values are given in Table 6.2 and Table 6.3 for ruminant and monogastric species, respectively.

An allocation factor of 0.2 (A2 in Equation 6.4) is used for second-grade crops, effectively reducing the emissions associated to their production in a roughly proportionate way to their economic value. Clearly, the relative value could potentially vary for different crops and locations depending on supply and demand, or the extent to which there is a market for second-grade crops and the price of alternative feedstuffs.
Table 6.2 Parameters for allocation of emissions to feed materials of ruminant species

<table>
<thead>
<tr>
<th>Number</th>
<th>Material</th>
<th>FUEcrop</th>
<th>FUEcp</th>
<th>EFA</th>
<th>VRcrop</th>
<th>VRcp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roughages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>GRASSF</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>GRASSH</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>GRASSH2</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>GRASSLEGF</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>GRASSLEGH</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>ALFALFAH</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>7</td>
<td>GRAINSIL</td>
<td>1</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>8</td>
<td>MAIZE SIL</td>
<td>1</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>9</td>
<td>RSTRAW</td>
<td>1</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>Equation 6.6<sup>a</sup></td>
<td>0.66</td>
<td>0.34</td>
</tr>
<tr>
<td>10</td>
<td>WSTRAW</td>
<td>1</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>Equation 6.6<sup>a</sup></td>
<td>0.67</td>
<td>0.33</td>
</tr>
<tr>
<td>11</td>
<td>BSTRAW</td>
<td>1</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>Equation 6.6<sup>a</sup></td>
<td>0.67</td>
<td>0.33</td>
</tr>
<tr>
<td>12</td>
<td>ZSTOVER</td>
<td>1</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>Equation 6.6<sup>a</sup></td>
<td>0.61</td>
<td>0.39</td>
</tr>
<tr>
<td>13</td>
<td>MSTOVER</td>
<td>1</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>Equation 6.6<sup>a</sup></td>
<td>0.63</td>
<td>0.37</td>
</tr>
<tr>
<td>14</td>
<td>SSTOVER</td>
<td>1</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>Equation 6.6<sup>a</sup></td>
<td>0.63</td>
<td>0.37</td>
</tr>
<tr>
<td>15</td>
<td>TOPS</td>
<td>1</td>
<td>Table S.3.2 (Supplement S1)<sup>a</sup></td>
<td>Equation 6.6<sup>a</sup></td>
<td>0.55</td>
<td>0.45</td>
</tr>
<tr>
<td>16</td>
<td>LEAVES</td>
<td>Table 3.3</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>17</td>
<td>FDDRBEET</td>
<td>Table 3.3</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cereals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>GRAINS</td>
<td>Table 3.3</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>19</td>
<td>CORN</td>
<td>Table 3.3</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By-products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>MLOSOY</td>
<td>Table 3.3</td>
<td>NA</td>
<td>0.72</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>21</td>
<td>MLRAPE</td>
<td>Table 3.3</td>
<td>NA</td>
<td>0.28</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>22</td>
<td>MLCTTN</td>
<td>Table 3.3</td>
<td>NA</td>
<td>0.23</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>23</td>
<td>PKEXP</td>
<td>Table 3.3</td>
<td>NA</td>
<td>0.01</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>24</td>
<td>MZGLTM</td>
<td>Table 3.3</td>
<td>NA</td>
<td>0.10</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>25</td>
<td>MZGLTF</td>
<td>Table 3.3</td>
<td>NA</td>
<td>0.06</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>26</td>
<td>BPULP</td>
<td>Table 3.3</td>
<td>NA</td>
<td>0.11</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>27</td>
<td>MOLASSIS</td>
<td>Table 3.3</td>
<td>NA</td>
<td>0.06</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>28</td>
<td>GRNBYDRY</td>
<td>Table 3.3</td>
<td>NA</td>
<td>0.04</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>29</td>
<td>GRNBYWET</td>
<td>Table 3.3</td>
<td>NA</td>
<td>0.08</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

* For these feed materials the FUE is spatially explicit.
Table 6.3 Parameters for allocation of emissions to feed materials of monogastric species

<table>
<thead>
<tr>
<th>Number</th>
<th>Material</th>
<th>FUEcrop</th>
<th>FUEcr</th>
<th>EFA</th>
<th>VRcrop</th>
<th>VRcr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SWILL</td>
<td>Table 3.6</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>GRASSF</td>
<td>Table 3.6</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>PULSES</td>
<td>Table 3.6</td>
<td>0.90</td>
<td>Equation 6.6b</td>
<td>0.67</td>
<td>0.33</td>
</tr>
<tr>
<td>4</td>
<td>PSTRAW</td>
<td>1</td>
<td></td>
<td>Table 3.15</td>
<td>Equation 6.6b</td>
<td>0.67</td>
</tr>
<tr>
<td>5</td>
<td>CASSAVA</td>
<td>Table 3.6</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>6</td>
<td>WHEAT</td>
<td>Table 3.6</td>
<td>0.70a</td>
<td>Equation 6.6b</td>
<td>0.67c</td>
<td>0.33d</td>
</tr>
<tr>
<td>7</td>
<td>BARLEY</td>
<td>Table 3.6</td>
<td>0.90</td>
<td>Equation 6.6b</td>
<td>0.80</td>
<td>0.20</td>
</tr>
<tr>
<td>8</td>
<td>MILLET</td>
<td>Table 3.6</td>
<td>0.70</td>
<td>Equation 6.6b</td>
<td>0.61</td>
<td>0.39</td>
</tr>
<tr>
<td>9</td>
<td>RICE</td>
<td>Table 3.6</td>
<td>0.70</td>
<td>Equation 6.6b</td>
<td>0.68</td>
<td>0.32</td>
</tr>
<tr>
<td>10</td>
<td>SORGHUM</td>
<td>Table 3.6</td>
<td>0.70</td>
<td>Equation 6.6b</td>
<td>0.61</td>
<td>0.39</td>
</tr>
<tr>
<td>11</td>
<td>SOY</td>
<td>Table 3.6</td>
<td>NA</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>12</td>
<td>TOPS</td>
<td>1</td>
<td></td>
<td>Table 3.15</td>
<td>Equation 6.6b</td>
<td>0.52</td>
</tr>
<tr>
<td>13</td>
<td>LEAVES</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>14</td>
<td>BNFRUIT</td>
<td>Table 3.6</td>
<td>0.50</td>
<td>Equation 6.6b</td>
<td>0.67</td>
<td>0.33</td>
</tr>
<tr>
<td>15</td>
<td>BNSTEM</td>
<td>1</td>
<td></td>
<td>Table 3.15</td>
<td>Equation 6.6b</td>
<td>0.67</td>
</tr>
<tr>
<td>16</td>
<td>MLOILSDS</td>
<td>Table 3.6</td>
<td>NA</td>
<td>0.72</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>17</td>
<td>MLCTTN</td>
<td>Table 3.6</td>
<td>NA</td>
<td>0.30</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>18</td>
<td>MLRAPE</td>
<td>Table 3.6</td>
<td>NA</td>
<td>0.23</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>19</td>
<td>PKEXP</td>
<td>Table 3.6</td>
<td>NA</td>
<td>0.28</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>20</td>
<td>MLRAPE</td>
<td>Table 3.6</td>
<td>NA</td>
<td>0.03</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>21</td>
<td>MLOILSDS</td>
<td>Table 3.6</td>
<td>NA</td>
<td>0.28</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>22</td>
<td>FISHMEAL</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>23</td>
<td>MOLASSES</td>
<td>Table 3.6</td>
<td>NA</td>
<td>0.06</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>24</td>
<td>GRNBYDLY</td>
<td>Table 3.6</td>
<td>NA</td>
<td>0.04</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>25</td>
<td>GRNBYWET</td>
<td>Table 3.6</td>
<td>NA</td>
<td>0.08</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>26</td>
<td>SYNTHETIC</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>27</td>
<td>LIMESTONE</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

* The value is 0.90 for industrialized countries.
* The value is null for industrialized countries.
* The value is 0.80 for industrialized countries.
* The value is 0.20 for industrialized countries.
* The value is 1 for industrialized countries.
* The value is null for industrialized countries.
6.1.4 – Carbone dioxide and methane emission from feed consumption

Before totalizing emissions at herd or flock level (see Section 6.1.5), emissions related to feed consumption must be totalized by cohort. This is done by combining the emissions for each feed material (see Section 6.1.3) and the average feed dry matter intake per animal of each cohort (see Section 3.7) as shown in Equation 6.7.

Equation 6.7

a. $\text{CO}_2_{\text{Feed},T,c} = 365 \times N_{T,c} \times \text{DMI}_{T,c} \times \sum_i (\text{CO}_2_{\text{kg blend}},i,c,T) + (\text{CO}_2_{\text{kg Nfert}},i,T,c) \times \text{FEED}_{i,T,c}$

b. $\text{CO}_2_{\text{LUC},T,c} = 365 \times N_{T,c} \times \text{DMI}_{T,c} \times \sum_i (\text{CO}_2_{\text{kg LUC}},i) \times \text{FEED}_{i,T,c}$

c. $\text{CH}_4_{\text{Feed},T,c} = 365 \times N_{T,c} \times \text{DMI}_{T,c} \times \sum_i (\text{CH}_4_{\text{kg}},i) \times \text{FEED}_{i,T,c}$

Where:

- $\text{CO}_2_{\text{Feed},T,c}$ = carbon dioxide emissions from energy use associated with feed consumption of cohort c, species and system T, kg CO$_2$·year$^{-1}$
- $\text{CO}_2_{\text{LUC},T,c}$ = carbon dioxide emissions from land-use change associated with feed consumption of cohort c, species and system T, kg CO$_2$·year$^{-1}$
- $\text{CH}_4_{\text{Feed},T,c}$ = methane emissions from feed consumption of cohort c, species and system T, kg CO$_2$·year$^{-1}$
- $N_{T,c}$ = number of animals in cohort c, species and system T, head
- $\text{DMI}_{T,c}$ = daily feed intake per animal in cohort c for species and system T, kg DM·head$^{-1}$·day$^{-1}$
- $\text{FEED}_{i,T,c}$ = fraction of feed material i in the ration of cohort c, species and system T, fraction
- $\text{CO}_2_{\text{kg blend}},i,c,T$ = total carbon dioxide emissions from blending and transport of concentrate feed per kg of dry matter for feed material i, cohort c, species and system T, kg CO$_2$·kg DM$^{-1}$
- $\text{CO}_2_{\text{kg Nfert}},i,T,c$ = total carbon dioxide emissions from nitrogen fertilizer manufacturing per kilogram of dry matter of feed material i, cohort c, species and system T, kg CO$_2$·kg DM$^{-1}$
- $\text{CO}_2_{\text{kg P fert}},i,T,c$ = total carbon dioxide emissions from P fertilizer manufacturing per kilogram of dry matter of feed material i, cohort c, species and system T, kg CO$_2$·kg DM$^{-1}$
- $\text{CO}_2_{\text{kg K fert}},i,T,c$ = total carbon dioxide emissions from K fertilizer manufacturing per kilogram of dry matter of feed material i, cohort c, species and system T, kg CO$_2$·kg DM$^{-1}$
- $\text{CO}_2_{\text{kg pest}},i,T,c$ = total carbon dioxide emissions from pesticides manufacturing per kilogram of dry matter of feed material i, cohort c, species and system T, kg CO$_2$·kg DM$^{-1}$
- $\text{CO}_2_{\text{kg crop}},i,T,c$ = total carbon dioxide emissions from field operations per kilogram of dry matter of feed material i, cohort c, species and system T, kg CO$_2$·kg DM$^{-1}$
- $\text{CO}_2_{\text{kg proc}},i,T,c$ = total carbon dioxide emissions from transport and processing per kilogram of dry matter of feed material i, cohort c, species and system T, kg CO$_2$·kg DM$^{-1}$
- $\text{CO}_2_{\text{kg non-crop}},i,T,c$ = total carbon dioxide emissions from the production of non-crop feed material i per kg of dry matter, kg CO$_2$·kg DM$^{-1}$
- $\text{CO}_2_{\text{kg LUC}},i,T,c$ = total carbon dioxide emissions from land-use change per kilogram of dry matter of feed material i, kg CO$_2$·kg DM$^{-1}$

1 Methane emissions related to feed (due to emission from paddy rice cultivation) are only applicable to monogastric species.
\[CH_4,kg = \text{total methane emissions per kilogram of dry matter of feed material } i, \text{ kg } CH_4 \times \text{kg DM}^{-1} \]

6.1.5 Totalizing carbon dioxide and methane emissions at herd of flock level

The last step is to totalize, for the entire herd or flock, the emissions related to feed consumption.

Equation 6.8

a. \(CO_2_{\text{feed},T} = \sum_c (CO_2_{\text{feed},T,c}) \)

b. \(CO_2_{\text{feed-LUC},T} = \sum_c (CO_2_{\text{feed-LUC},T,c}) \)

d. \(CH_4_{\text{feed},T} = \sum_c (CH_4_{\text{feed},T,c})^2 \)

Where:

- \(CO_2_{\text{feed},T} = \text{total carbon dioxide emissions from energy use associated with feed consumption of species and system } T, \text{ kg } CO_2 \times \text{year}^{-1} \)
- \(CO_2_{\text{feed},T,c} = \text{carbon dioxide emissions from feed consumption of cohort } c, \text{ species and system } T, \text{ kg } CO_2 \times \text{year}^{-1} \)
- \(CO_2_{\text{feed-LUC},T} = \text{total carbon dioxide emissions from land-use change associated with feed consumption of species and system } T, \text{ kg } CO_2 \times \text{year}^{-1} \)
- \(CH_4_{\text{feed},T} = \text{total methane emissions from feed consumption of species and system } T, \text{ kg } CH_4 \times \text{year}^{-1} \)
- \(CH_4_{\text{feed},T,c} = \text{methane emissions from feed consumption of cohort } c, \text{ species and system } T, \text{ kg } CO_2 \times \text{year}^{-1} \)

\[\text{Methane emissions related to feed (due to emission from paddy rice cultivation) are only applicable to monogastric species.} \]
6.2 – NITROUS OXIDE EMISSIONS

The emissions of nitrous oxide from cropping arise from the following main sources of nitrogen inputs: 1) manure applied on crops or deposited on pastures, 2) synthetic fertilizers, 3) crop residues, 4) biological fixation and 5) atmospheric deposition (Uwizeye et al., 2020). From all these nitrogen sources, nitrous oxide can be released through direct emissions and indirect ones from volatilization, runoff and leaching processes. All were calculated using the methodology described in Uwizeye et al. (2020), updated where possible with emissions factors from IPCC (2019). This methodology, which is different than the one used to estimate the emissions of carbon dioxide and methane described in Section 6.1, incorporates of a stepwise approach that takes into account the nitrogen mass balance associated to the production of each feed item, allowing for a purely biophysical allocation of emissions to feed materials.

6.2.1 – Total nitrogen output

Equation 6.9 is used to calculate the total output of nitrogen per hectare of each crop used as a source of feed items. This estimate takes into account the nitrogen content of both the above-ground (crop and crop residues) and below-ground biomass of the plant.

Equation 6.9

$$\text{total_output_ha}_i = \left(\text{DMYG}_{\text{crop},i} \times \text{Ncont}_{\text{crop},i} + \text{DMYG}_{\text{cr},i} \times \text{Ncont}_{\text{cr},i}\right) + \left(\text{R}_{\text{BG-BIO},i} \times \left(\text{DMYG}_{\text{crop},i} + \text{DMYG}_{\text{cr},i}\right) \times \text{Ncont}_{\text{bg},i}\right)/1000$$

Where:

- total_output_ha = total nitrogen output per hectare associated with the production of feed item i, representing the nitrogen yield of the whole plant, as calculated following the IPCC, kg N ha\(^{-1}\) (IPCC, 2019)
- DMYG\(_{\text{crop},i}\) = crop gross dry matter yield for feed material i, kg DM ha\(^{-1}\)
- Ncont\(_{\text{crop},i}\) = nitrogen content of the main crop associated with the production of feed item i, g N kg DM\(^{-1}\)
- DMYG\(_{\text{cr},i}\) = crop residue gross dry matter yield associated with the production of feed item i, kg DM ha\(^{-1}\)
- Ncont\(_{\text{cr},i}\) = nitrogen content of the crop residue associated with the production of feed item i, g N kg DM\(^{-1}\)
- R\(_{\text{BG-BIO},i}\) = fraction of below-ground residues to above ground biomass (DMYG\(_{\text{cr},i} + \text{DMYG}_{\text{crop},i}\)) for feed material i, fraction. Values are given in Table S.6.7 and Table S.6.8 (Supplement S1).
- Ncont\(_{\text{bg},i}\) = nitrogen content of the below-ground biomass associated with the production of feed item i, g N kg DM\(^{-1}\)

6.2.2 – Total nitrogen input

In order to estimate nitrogen losses and emissions associated with feed production, the total nitrogen input per hectare of each required crop is calculated summing several nitrogen inputs.

Nitrogen from manure deposition or application per hectare is calculated in the Manure module (Chapter 5), as defined in Section 5.5.3. The deposition rate (N\(_{\text{dep},i}\), Equation 5.23) is used for fresh grass items fed to ruminants, while the application rate (N\(_{\text{app},i}\), Equation 5.24) for all other feed items.

Nitrogen from the decomposition of crop residues was calculated using data about crop yields and a modified version of formulae from IPCC (IPCC, 2019, Volume 4, Chapter 11, Table 11.2, Equation 11.6), following Equation 6.10:

Equation 6.10

$$\text{Ncr}_i = \left(\text{DMYG}_{\text{cr},i} \times \text{N}_{\text{AG},i} \times (1 - \text{FracRemove})\right) + \left(\text{R}_{\text{BG-BIO},i} \times \left(\text{DMYG}_{\text{cr},i} + \text{DMYG}_{\text{crop},i}\right) \times \text{N}_{\text{BG},i}\right)$$

Where:

- Ncr\(_i\) = nitrogen input from crop residues per hectare for feed item i, kg N ha\(^{-1}\)
- DMYGcr\(_i\) = crop gross dry matter yield for feed material i, kg DM ha\(^{-1}\)
- DMYGcrop\(_i\) = crop residues gross dry matter yield of feed material i, kg DM ha\(^{-1}\)
- N\(_{\text{AG},i}\) = nitrogen content of above-ground residues for feed material i, kg N kg DM\(^{-1}\). Values are given in Table S.6.7 and Table S.6.8 (Supplement S1).
FracRemove\textsubscript{i} = fraction of above-ground residues of feed material \textsubscript{i} removed annually for purposes such as feed, bedding and construction, fraction. A default value of 0.45 is used with the exception of few countries, whose values are given in Table S.6.9 (Supplement S1).

\(R_{\text{BG-BIO},i} \) = fraction of below-ground residues to above ground biomass (DMYGcr\textsubscript{i} + DMYGcrop\textsubscript{i}) for feed material \textsubscript{i}, fraction. Values are given in Table S.6.7 and Table S.6.8 (Supplement S1).

\(N_{\text{BG},i} \) = nitrogen content of below-ground residues for feed material \textsubscript{i}, kg N kg DM-1. Values are given in Table S.6.8 (Supplement S1).

Application rates of nitrogen from synthetic fertilizer were defined at national or subnational level, as described in Section 6.1.1.1. Moreover, spatially explicit data about average atmospheric deposition of nitrogen were obtained from Dentener (2006).

Biological nitrogen fixation (BNF) for legumes and rapeseed was estimated as a fraction of the total nitrogen output of the plant biomass based on the LEAP guidelines (2018), following Equation 6.11. For other non-legumes crops, default values from Herridge et al. (2008) and Peoples et al. (2009) were used. A summary of the parameters used to estimate BNF is reported in Table 6.4.

Equation 6.11

\[
\text{BNF}_i = \text{total_output}_{\text{ha},i} \times \text{Ndfa}_i
\]

Where:

- \(\text{BNF}_i \): nitrogen input per hectare from biological nitrogen fixation for feed item \textsubscript{i}, kg N ha-1 for feed item \textsubscript{i}, kg N ha-1
- \(\text{total_output}_{\text{ha},i} \): total nitrogen output per hectare associated with the production of feed item \textsubscript{i}, representing the nitrogen yield of the whole plant, as calculated following Equation 6.9, kg N ha-1
- \(\text{Ndfa}_i \): fraction of the whole plant nitrogen content derived from the biological nitrogen fixation for feed item \textsubscript{i}, as defined in Table 6.4, fraction

Table 6.4 Parameters for the estimation of biological nitrogen fixation by crop type

<table>
<thead>
<tr>
<th>Crop type</th>
<th>Ndfa (%)</th>
<th>Default BNF (kg N/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legumes</td>
<td>80</td>
<td>NA</td>
</tr>
<tr>
<td>Pulses</td>
<td>57</td>
<td>NA</td>
</tr>
<tr>
<td>Rapeseed</td>
<td>68</td>
<td>NA</td>
</tr>
<tr>
<td>Soybean</td>
<td>50-80</td>
<td>NA</td>
</tr>
<tr>
<td>Cereals</td>
<td>NA</td>
<td>5</td>
</tr>
<tr>
<td>Cotton</td>
<td>NA</td>
<td>5</td>
</tr>
<tr>
<td>Grass</td>
<td>NA</td>
<td>10</td>
</tr>
<tr>
<td>Oil palm</td>
<td>NA</td>
<td>5</td>
</tr>
<tr>
<td>Sugar beet</td>
<td>NA</td>
<td>5</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>NA</td>
<td>25</td>
</tr>
</tbody>
</table>

Finally, the total nitrogen input per hectare associated with the production of each feed item is calculated following Equation 6.12:

Equation 6.12

\[
\text{total_input}_{\text{ha},i} = \text{NFERTHA}_i + \text{Ncr}_i + \text{Nmanure}_i + \text{Nad}_i + \text{BNF}_i
\]

Where:

- \(\text{total_input}_{\text{ha},i} \): total nitrogen inputs per hectare associated with the production of feed item \textsubscript{i}, kg N ha-1
- \(\text{NFERTHA}_i \): nitrogen input from synthetic fertilizers per hectare for feed item \textsubscript{i}, kg N ha-1
- \(\text{Ncr}_i \): nitrogen input from crop residues per hectare for feed item \textsubscript{i}, kg N ha-1
\[N_{\text{manure}_i} = \text{nitrogen input per hectare from manure deposition or application for feed item } i; \text{ values are calculated in the Manure module and correspond to Ndephe (Equation 5.23) for fresh grass items fed to ruminants and Napplha (Equation 5.24) for other feed items, kg N ha}^{-1} \]

\[N_{\text{ad}_i} = \text{nitrogen input per hectare from an atmospheric natural deposition for feed item } i, \text{ kg N ha}^{-1} \]

\[\text{BNF}_i = \text{nitrogen input per hectare from biological nitrogen fixation for feed item } i, \text{ kg N ha}^{-1} \]

6.2.3 – Nitrogen losses from surface soil

This section defines the estimate of nitrogen losses from surface soil per hectare associated with each feed material, which occur through three main pathways: 1) direct emissions of \(\text{N}_2\text{O} \), 2) volatilization of \(\text{NH}_3 \) and 3) direct runoff of organic nitrogen.

6.2.3.1 – Direct nitrogen loss as \(\text{N}_2\text{O} \)

The amount of nitrogen directly emitted as \(\text{N}_2\text{O} \) per hectare of each crop is calculated following Equation 6.13:

Equation 6.13

a. Grass

\[\text{dir}_N\text{N}_2\text{O}_i\text{_loss} = \text{NFERTHA}_i \times \text{EF}_\text{dir}_\text{syn} + \text{Ncr}_i \times \text{EF}_\text{dir}_\text{org} + \text{Nmanure}_i \times \text{EF}_\text{dir}_\text{grass} \]

b. Rice

\[\text{dir}_N\text{N}_2\text{O}_i\text{_loss} = (\text{NFERTHA}_i + \text{Ncr}_i + \text{Nmanure}_i) \times \text{EF}_\text{dir}_\text{rice} \]

c. Other Crops

\[\text{dir}_N\text{N}_2\text{O}_i\text{_loss} = \text{NFERTHA}_i \times \text{EF}_\text{dir}_\text{syn} + (\text{Ncr}_i + \text{Nmanure}_i) \times \text{EF}_\text{dir}_\text{org} \]

Where:

\[\text{NFERTHA}_i = \text{nitrogen input from synthetic fertilizers per hectare for feed item } i, \text{ kg N ha}^{-1} \]

\[\text{EF}_\text{dir}_\text{syn} = \text{direct N}_2\text{O emission factor for synthetic nitrogen inputs in crops other than rice: 0.016 in wet climates; 0.005 in dry climates} \]

\[\text{Ncr}_i = \text{nitrogen input from crop residues per hectare for feed item } i, \text{ kg N ha}^{-1} \]

\[\text{Nmanure}_i = \text{nitrogen input per hectare from manure deposition or application for feed item } i; \text{ values are calculated in the Manure module and correspond to Ndephe for fresh grass items fed to ruminants and Napplha for other feed items, kg N ha}^{-1} \]

\[\text{EF}_\text{dir}_\text{grass} = \text{direct N}_2\text{O emission factor for manure nitrogen input in grass: 0.006 in wet climates; 0.002 in dry climates} \]

\[\text{EF}_\text{dir}_\text{org} = \text{direct N}_2\text{O emission factor for organic nitrogen inputs in crops other than grass and rice: 0.006 in wet climates, 0.005 in dry climates} \]

6.2.3.2 – Nitrogen loss as volatilized \(\text{NH}_3 \)

The amount of nitrogen volatilized as \(\text{NH}_3 \) per hectare of each crop is calculated following Equation 6.14:

Equation 6.14

\[\text{vol}_N\text{NH}_3_i\text{_loss} = \text{NFERTHA}_i \times 0.11 + (\text{Nmanure}_i + \text{Ncr}_i) \times 0.21 \]

Where:

\[\text{vol}_N\text{NH}_3_i\text{_loss} = \text{volatilized N}_3\text{NH}_3 \text{ emissions per hectare associated with the production of feed item } i, \text{ kg N- NH}_3 \text{ ha}^{-1} \]

\[\text{NFERTHA}_i = \text{nitrogen input from synthetic fertilizers per hectare for feed item } i, \text{ kg N ha}^{-1} \]

\[\text{Nmanure}_i = \text{nitrogen input per hectare from manure deposition or application for feed item } i; \text{ values are calculated in the Manure module and correspond to Ndephe for fresh grass items fed to ruminants and Napplha for other feed items, kg N ha}^{-1} \]

\[\text{Ncr}_i = \text{nitrogen input from crop residues per hectare for feed item } i, \text{ kg N ha}^{-1} \]

6.2.3.3 – Direct Runoff of organic nitrogen and \(\text{NO}_3 \)

As a first step, the estimate of the amount of organic nitrogen lost through surface runoff requires the calculation of a surface runoff fraction. This is estimated based on Velthof et al. (2009a) and is expressed as a fraction of the nitrogen input on soil

\[\text{SFR}_i = \text{Surface runoff fraction for feed item } i \]

\[\text{SFR}_i = \frac{\text{vol}_N\text{manure}_i - \text{vol}_N\text{Ncr}_i}{\text{vol}_N\text{manure}_i} \]
from synthetic fertilizers and manure. The fraction is calculated using Equation 6.15 and is based on the following environmental variables:

- Slope (based on Farr et al., 2007)
- Precipitation (Hijmans et al., 2005)
- Land cover (ESA, 2017)

Equation 6.15

\[
\text{runoff} = \text{LF}_{\text{surface runoff, max}} \times f_u \times f_p / 100
\]

Where:

- runoff = runoff fraction of the nitrogen inputs via fertilizer and manure application and deposition
- \(\text{LF}_{\text{surface runoff, max}} \) = the maximum runoff fraction for different slope classes, based on Reuter et al. (2007) and reported in Table 6.4.
- \(f_u \) = reduction factor for land cover (\(f_{u\text{cropland}} = 1, f_{u\text{grassland}} = 0.25 \)) obtained from FAO (Latham et al., 2014)
- \(f_p \) = reduction factor for precipitation based on Harris et al. (2014) reported in Table 6.5.

Table 6.5 Maximum runoff fraction for different slope classes (Reuter et al., 2007)

<table>
<thead>
<tr>
<th>Slope</th>
<th>(\text{LF}_{\text{surface runoff, max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level (dominant slope ranging from 0 to 8%)</td>
<td>10%</td>
</tr>
<tr>
<td>Sloping (dominant slope ranging from 8 to 15%)</td>
<td>20%</td>
</tr>
<tr>
<td>Moderately steep (dominant slope ranging from 15 to 25%)</td>
<td>35%</td>
</tr>
<tr>
<td>Steep (dominant slope over 25%)</td>
<td>50%</td>
</tr>
</tbody>
</table>

Table 6.6 Reduction factor for different precipitation classes (Harris et al., 2014)

<table>
<thead>
<tr>
<th>Precipitation surplus, mm</th>
<th>(f_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>300</td>
<td>1</td>
</tr>
<tr>
<td>100-300</td>
<td>0.75</td>
</tr>
<tr>
<td>50-100</td>
<td>0.50</td>
</tr>
<tr>
<td><50</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Once the fraction of surface runoff is calculated, it can be applied to the nitrogen inputs from synthetic fertilizers and manure application or deposition per hectare associated to the production of each feed item, following Equation 6.16:

Equation 6.16

\[
n_{\text{runoff}} = (\text{NFERTHA}_i + \text{Nmanure}_i) \times \text{runoff}
\]

Where:

- \(n_{\text{runoff}} \) = losses of organic nitrogen through runoff per hectare associated with the production of feed item \(i \), kg N ha\(^{-1}\)
- \(\text{NFERTHA}_i \) = nitrogen input from synthetic fertilizers per hectare for feed item \(i \), kg N ha\(^{-1}\)
- \(\text{Nmanure}_i \) = nitrogen input per hectare from manure deposition or application for feed item \(i \); values are calculated in the Manure module and correspond to Ndepha for fresh grass items fed to ruminants and NapPlha for other feed items, kg N ha\(^{-1}\)
- runoff = runoff fraction of the nitrogen applied via fertilizer and manure (including grazing)

6.2.3.4 – Total nitrogen loss from surface soil

The total amount of nitrogen losses from surface soil per hectare associated with each feed material is calculated following Equation 6.17:

Equation 6.17

\[
\text{surface loss}_{\text{crop, ha}} = \text{dir}_N - \text{N}_2\text{O}_i + \text{vol}_N - \text{NH}_3\text{loss}_i + n_{\text{runoff}}
\]
Where:

- \(\text{surface_loss_crop_ha} = \) total nitrogen losses from surface soil per hectare associated with the production of feed item \(i \), kg N ha\(^{-1}\)
- \(\text{dir_N-N_2O_loss_crop} = \) direct N-N\(_2\)O emissions per hectare associated with the production of feed item \(i \), kg N-N\(_2\)O ha\(^{-1}\)
- \(\text{vol_N-NH_3_loss} = \) volatilized N-NH\(_3\) emissions per hectare associated with the production of feed item \(i \), kg N-N\(_3\) ha\(^{-1}\)
- \(n_runoff = \) losses of organic nitrogen through runoff per hectare associated with the production of feed item \(i \), kg N ha\(^{-1}\)

6.2.4 – Organic nitrogen stock

The following section reports the calculation used to estimate the stock of organic nitrogen in soil per hectare, net of the surface losses and emissions described in Section 6.2.3 and of mineralization processes. The stock of organic nitrogen is required to calculate any potential surplus in soil (Section 6.2.5), which in turn is required to estimate losses from leaching processes (Section 6.2.6) and their associated indirect emissions of N\(_2\)O. The stock of organic nitrogen in soil is calculated separately for nitrogen inputs from manure (Section 6.2.4.1) and crop residues (Section 6.2.4.2). The following calculation are based on Dollé and Smati (2005) and Velthof et al. (2009b).

6.2.4.1 – Nitrogen stock in manure

The stock of organic nitrogen in soil, originated from manure deposition or application is calculated following Equation 6.18:

Equation 6.18

\[\text{stock_manure}_i = (N\text{manure}_i - (N\text{manure}_i \times \text{runoff} + N\text{manure}_i \times (\text{EF_dir_grass} + 0.21))) \times \text{miner_f_grass} \]

Equation 6.18

\[\text{stock_manure}_i = (N\text{manure}_i - (N\text{manure}_i \times \text{runoff} + N\text{manure}_i \times (\text{EF_dir_org} + 0.21))) \times \text{miner_f_crop} \]

Equation 6.18

\[\text{stock_manure}_i = (N\text{manure}_i - (N\text{manure}_i \times \text{runoff} + N\text{manure}_i \times (\text{EF_dir_org} + 0.21))) \times \text{miner_f_crop} \]

Where:

- \(\text{stock_manure}_i = \) nitrogen stock in manure inputs per hectare associated with the production of feed item \(i \), kg N ha\(^{-1}\)
- \(N\text{manure}_i = \) nitrogen input per hectare from manure deposition or application for feed item \(i \); values are calculated in the Manure module and correspond to Ndepha for fresh grass items fed to ruminants and Napplha for other feed items, kg N ha\(^{-1}\)
- \(\text{runoff} = \) runoff fraction of the nitrogen applied via fertilizer and manure (including grazing)
- \(\text{EF_dir_grass} = \) direct N\(_2\)O emission factor for manure nitrogen input in grass: 0.006 in wet climates and 0.002 in dry climate (IPCC, 2019)
- \(\text{EF_dir_org} = \) direct N\(_2\)O emission factor for organic nitrogen inputs in crops other than grass and rice: 0.006 in wet climates, 0.005 in dry climates
- \(\text{miner_f_grass} = \) share of non-mineralized organic nitrogen in grasslands, 0.1, fraction
- \(\text{miner_f_crop} = \) share of non-mineralized organic nitrogen in cultivated soils, 0.3, fraction

6.2.4.2 – Nitrogen stock in residues

The stock of organic nitrogen in soil, originated from crop residues decomposition is calculated following Equation 6.19:

Equation 6.19

\[\text{stock_resid}_i = (N\text{cr}_i - N\text{cr}_i \times (\text{EF_dir_org} + 0.21)) \times \text{miner_f_grass} \]

Equation 6.19

\[\text{stock_resid}_i = (N\text{cr}_i - N\text{cr}_i \times (0.004 + 0.21)) \times \text{miner_f_crop} \]

Equation 6.19

\[\text{stock_resid}_i = (N\text{cr}_i - N\text{cr}_i \times (0.004 + 0.21)) \times \text{miner_f_crop} \]

Where:

- \(\text{stock_resid}_i = \) nitrogen stock in manure inputs per hectare associated with the production of feed item \(i \), kg N ha\(^{-1}\)
- \(N\text{cr}_i = \) nitrogen input per hectare from manure application to feed item \(i \), kg N ha\(^{-1}\)
- \(\text{EF_dir_org} = \) direct N\(_2\)O emission factor for organic nitrogen inputs in crops other than grass and rice: 0.006 in wet climates, 0.005 in dry climates
- \(\text{miner_f_grass} = \) share of non-mineralized organic nitrogen in grasslands, 0.1, fraction
- \(\text{miner_f_crop} = \) share of non-mineralized organic nitrogen in cultivated soils, 0.3, fraction
Where:

\[
\begin{align*}
stock_{\text{resid},i} & = \text{nitrogen stock in inputs from residues per hectare associated with the production of feed item } i, \text{ kg N ha}^{-1} \\
N_{cr,i} & = \text{nitrogen input from crop residues per hectare for feed item } i, \text{ kg N ha}^{-1} \\
runoff & = \text{runoff fraction of the nitrogen applied via fertilizer and manure (including grazing)} \\
EF_{\text{dir.org}} & = \text{direct N}_2\text{O emission factor for organic nitrogen inputs in crops other than grass and rice: 0.006 in wet climates, 0.005 in dry climates} \\
miner_{f,\text{grass}} & = \text{share of non-mineralized organic nitrogen in grasslands, 0.1, fraction} \\
miner_{f,\text{crop}} & = \text{share of non-mineralized organic nitrogen in cultivated soils, 0.3, fraction}
\end{align*}
\]

6.2.4.3 – Total organic nitrogen stock

The total stock of organic nitrogen in soil, from both crop residues decomposition and manure application or deposition is calculated following Equation 6.20:

Equation 6.20

\[
\text{organic_stock}_i = \text{stock_manure}_i + \text{stock_resid}_i
\]

Where:

\[
\begin{align*}
\text{organic_stock}_i & = \text{total organic nitrogen stock in soil per hectare associated with the production of feed item } i, \text{ kg N ha}^{-1} \\
\text{stock_manure}_i & = \text{nitrogen stock in manure inputs per hectare associated with the production of feed item } i, \text{ kg N ha}^{-1} \\
\text{stock_resid}_i & = \text{nitrogen stock in inputs from residues per hectare associated with the production of feed item } i, \text{ kg N ha}^{-1}
\end{align*}
\]

6.2.5 – Nitrogen surplus

Any potential surplus of nitrogen per hectare of soil associated to each feed material can be calculated from the estimates of total inputs to soil (Section 6.2.2), total outputs in the plant biomass (6.2.1), surface nitrogen losses (Section 6.2.3) and stock of organic nitrogen (Section 6.2.4), following Equation 6.21. This surplus of nitrogen is required to calculate the nitrogen losses from leaching processes (Section 6.2.6) and their associated indirect emissions of N\(_2\)O.

Equation 6.21

\[
\text{surplus}_i = \text{total_input}_ha_i - \text{surface_loss_crop}_ha_i - \text{organic_stock}_i - \text{total_output}_ha_i
\]

Where:

\[
\begin{align*}
\text{surplus}_i & = \text{nitrogen surplus in soil per hectare associated with the production of feed item } i, \text{ kg N ha}^{-1} \\
\text{total_input}_ha_i & = \text{total nitrogen inputs per hectare associated with the production of feed item } i, \text{ kg N ha}^{-1} \\
\text{surface_loss_crop}_ha_i & = \text{total nitrogen losses from surface soil per hectare associated with the production of feed item } i, \text{ kg N ha}^{-1} \\
\text{organic_stock}_i & = \text{total organic nitrogen stock in soil per hectare associated with the production of feed item } i, \text{ kg N ha}^{-1} \\
\text{total_output}_ha_i & = \text{total nitrogen output per hectare associated with the production of feed item } i, \text{ representing the nitrogen yield of the whole plant, as calculated following the IPCC guidelines, kg N ha}^{-1}
\end{align*}
\]

6.2.6 – Leaching in soil and total nitrogen losses

The amount of nitrogen lost through leaching processes depends on the potential availability of a surplus of nitrogen in soil, as calculated in Section 6.2.5, and it can be estimated following Equation 6.22:

Equation 6.22

If \(\text{surplus}_i > 0\)

\[
\text{Soil_leaching}_i = \text{surplus}_i \times \text{leaching} + (\text{surplus}_i \times (1 - \text{leaching})) \times 70/100
\]

Note: 70% of surplus will be lost via leaching (Velthof et al. 2009b)

If \(\text{surplus}_i \leq 0\)

\[
\text{Soil_leaching}_i = 0
\]
Where:
\[
\begin{align*}
\text{soil}_\text{leaching},_i &= \text{nitrogen lost through leaching per hectare associated with the production of feed item } i, \text{ kg N ha}^{-1} \\
\text{surplus}_i &= \text{nitrogen surplus in soil per hectare associated with the production of feed item } i, \text{ kg N ha}^{-1} \\
\text{leaching} &= \text{proportion of nitrogen lost through leaching, 0.1, fraction}
\end{align*}
\]

6.2.7 - Total N-N₂O emissions per hectare

Once the nitrogen lost through leaching processes is calculated, the total amount of nitrogen emitted as N₂O can be estimated. This requires the calculation of indirect N₂O emissions from volatilized NH₃ (Equation 6.23) and from organic nitrogen lost through leaching and runoff (Equation 6.24). Finally, this flows can be summed together with direct N₂O emissions to estimate the total nitrogen emitted as N₂O, per hectare associated with the production of each feed material (Equation 6.25).

Equation 6.23

\[\text{Indirect}_\text{N-N₂O}_\text{vol}_i = \text{vol}_\text{N-NH₃}_\text{loss}_i \times \text{EF}_\text{vol}\]

Where:
\[
\begin{align*}
\text{Indirect}_\text{N-N₂O}_\text{vol}_i &= \text{indirect N₂O emission from volatilized NH₃ per hectare associated with the production of feed item } i, \text{ kg N-N₂O ha}^{-1} \\
\text{vol}_\text{N-NH₃}_\text{loss}_i &= \text{volatilized N-NH₃ emissions per hectare associated with the production of feed item } i, \text{ kg N-NH₃ ha}^{-1} \\
\text{EF}_\text{vol} &= \text{indirect N₂O emission factor from volatilized NH₃, 0.014 in Wet climates; 0.005 in dry climates}
\end{align*}
\]

Equation 6.24

\[\text{Indirect}_\text{N-N₂O}_\text{leaching}_i = \{\text{soil}_\text{leaching}_i + \text{n}_\text{runoff}_i\} \times 0.011\]

Where:
\[
\begin{align*}
\text{Indirect}_\text{N-N₂O}_\text{leaching}_i &= \text{indirect N₂O emissions from nitrogen loss through leaching per hectare associated with the production of feed item } i, \text{ kg N-N₂O ha}^{-1} \\
\text{soil}_\text{leaching}_i &= \text{nitrogen lost through leaching per hectare associated with the production of feed item } i, \text{ kg N ha}^{-1} \\
\text{n}_\text{runoff}_i &= \text{losses of organic nitrogen through runoff per hectare associated with the production of feed item } i, \text{ kg N ha}^{-1}
\end{align*}
\]

Equation 6.25

\[\text{Total}_\text{N-N₂O}_\text{emissions}_i = \text{dir}_\text{N-N₂O}_\text{loss}_i + \text{Indirect}_\text{N-N₂O}_\text{vol}_i + \text{Indirect}_\text{N-N₂O}_\text{leaching}_i\]

Where:
\[
\begin{align*}
\text{Total}_\text{N-N₂O}_\text{emissions}_i &= \text{total N-N₂O emissions per hectare associated with the production of feed item } i, \text{ kg N-N₂O ha}^{-1} \\
\text{dir}_\text{N-N₂O}_\text{loss}_i &= \text{direct N-N₂O emissions per hectare associated with the production of feed item } i, \text{ kg N-N₂O ha}^{-1} \\
\text{Indirect}_\text{N-N₂O}_\text{vol}_i &= \text{indirect N₂O emission from volatilized NH₃ per hectare associated with the production of feed item } i, \text{ kg N-N₂O ha}^{-1} \\
\text{Indirect}_\text{N-N₂O}_\text{leaching}_i &= \text{indirect N-N₂O emissions from nitrogen loss through leaching per hectare associated with the production of feed item } i, \text{ kg N-N₂O ha}^{-1}
\end{align*}
\]

6.2.8 - Allocation and total nitrous oxide from feed production

In order to calculate the N₂O emissions associated to the production of feed consumed by livestock, some final steps are still needed. As a first thing, it is necessary to estimate the amount of nitrogen intake consumed by animals from each feed material considered (Section 6.2.8.1), as well as the total surface associated with its production (Section 6.2.8.3). The latter can then be multiplied by the emission per hectare previously calculated, to estimate the total emissions arising from feed production (Section 6.2.8.4). To this purpose, it is also necessary to allocate the estimated emissions to the specific part of the original plant that is consumed as feed by animals. This allocation is based on nitrogen mass fractions, as described in Section 6.2.8.3.
6.2.8.1 – Nitrogen feed intake by feed component
The calculation of the annual nitrogen intake from each feed material per head is calculated based on the feed ration, the nitrogen content of the respective feed item and the daily feed intake previously calculated (see Chapter 3), following Equation 6.26:

Equation 6.26

\[
\text{Total_N_intake}_{i,T,c} = \text{DMI}_{T,c} \times 365 \times \text{FEED}_{i,T,c} \times \text{Ncont}_i/1000
\]

Where:
- \(\text{Total_N_intake}_{i,T,c}\): total nitrogen intake from feed item \(i\) by animals in cohort \(c\) for species and system \(T\), kg N head\(^{-1}\)
- \(\text{DMI}_{T,c}\): daily feed intake per animal in cohort \(c\) for species and system \(T\), kg DM\(\times\)head\(^{-1}\)\(\times\)day\(^{-1}\)
- \(\text{FEED}_{i,T,c}\): fraction of feed material \(i\) in the ration of animals in cohort \(c\) for species and system \(T\), fraction
- \(\text{Ncont}_i\): nitrogen content of feed item \(i\), g N kg DM\(^{-1}\)

6.2.8.2 – Area requirement
Once the total nitrogen intake from each feed material is calculated, it can be used to estimate the agricultural area required for its production, dividing the intake by the respective nitrogen yield in one year, following Equation 6.27. The latter can be calculated multiplying the total nitrogen output of the plant biomass per hectare (Section 6.2.1) by the fraction of said output that is actually consumed as feed. Such nitrogen fraction is calculated following Equation 6.28:

Equation 6.27

\[
\text{area}_{i,T,c} = \frac{\text{Total_N_intake}_{i,T,c}}{(\text{total_output_ha}_i \times \text{FracN}_i)}
\]

Where:
- \(\text{area}_{i,T,c}\): area required for the production of the total nitrogen intake from feed item \(i\) by animals in cohort \(c\) for species and system \(T\), ha head\(^{-1}\)
- \(\text{Total_N_intake}_{i,T,c}\): total nitrogen intake from feed item \(i\) by animals in cohort \(c\) for species and system \(T\), kg N
- \(\text{total_output_ha}_i\): total nitrogen output per hectare associated with the production of feed item \(i\), representing the nitrogen yield of the whole plant, as calculated following Equation 6.9, kg N ha\(^{-1}\)
- \(\text{FracN}_i\): fraction of the total nitrogen output associated with the production of feed item \(i\) available for consumption as feed, as calculated in Equation 6.28, fraction

Equation 6.28

a. For grass
\[
\text{FracN}_{\text{grass}} = \left(\frac{\text{Ncont}_{\text{grass}} \times \text{DMYG}_{\text{grass}}}{1000}\right) / \text{total_output_ha}_{\text{grass}}
\]

Note: for GRASS feed items, FUE is not considered to account for the grazing of different species on the same pastures, avoiding overestimation of the required area in later calculations.

b. For crops
\[
\text{FracN}_i = \left(\frac{\text{Ncont}_{i} \times \text{DMYG}_{i} \times \text{FUE}_i}{1000}\right) / \text{total_output_ha}_i
\]

c. For crop residues
\[
\text{FracN}_i = \left(\frac{\text{Ncont}_{cr,j} \times \text{DMYG}_{cr,j} \times \text{FUE}_i}{1000}\right) / \text{total_output_ha}_i
\]

d. For by-products
\[
\text{FracN}_i = \left(\frac{\text{Ncont}_{by-prod,j} \times \text{DMYG}_{i} \times \text{MFA} \times \text{FUE}_i}{1000}\right) / \text{total_output_ha}_i
\]

Where:
- \(\text{FracN}_{\text{grass}}\): fraction of the total nitrogen output of grass available for consumption as feed, fraction
- \(\text{Ncont}_{\text{grass}}\): nitrogen content of the grass feed item, g N kg DM\(^{-1}\)
- \(\text{DMYG}_{\text{grass}}\): gross dry matter yield of feed item grass, kg DM ha\(^{-1}\)
- \(\text{output_ha}_{\text{grass}}\): total nitrogen output per hectare associated with feed item grass, representing the nitrogen yield of the whole plant, as calculated following the IPCC guidelines, kg N ha\(^{-1}\)
- \(\text{FracN}_i\): fraction of the total nitrogen output associated with the production of feed item \(i\) available for consumption as feed, fraction
\(N_{\text{cont}_\text{crop},i} \) = nitrogen content of the main crop associated with the production of feed item \(i \), g N kg DM \(^{-1} \)

\(\text{DMY}_{\text{crop},i} \) = crop gross dry matter yield associated with the production of feed item \(i \), kg DM ha\(^{-1} \)

\(\text{FUE}_i \) = feed use efficiency for feed material \(i \), i.e. fraction of the gross yield that is effectively used as feed, fraction

\(\text{total}_\text{output}_\text{ha}_i \) = total nitrogen output per hectare associated with the production of feed item \(i \), representing the nitrogen yield of the whole plant, as calculated following Equation 6.9, kg N ha\(^{-1} \)

\(N_{\text{cont}_{r,i}} \) = nitrogen content of the crop residue associated with the production of feed item \(i \), g N kg DM \(^{-1} \)

\(\text{DMY}_{\text{Gr},i} \) = crop residue gross dry matter yield associated with the production of feed item \(i \), kg DM ha\(^{-1} \)

\(N_{\text{cont}_{by-prod},i} \) = nitrogen content of the main by product associated with the production of feed item \(i \), g N kg DM \(^{-1} \)

6.2.8.3 – Allocation factors by feed component

Emissions of nitrogen as N\(_2\)O per hectare of crop production need to be allocated to the specific feed item consumed by animals. This is done using allocation factors that take into account the amount of nitrogen consumed by animals as actual feed item in respect to the nitrogen output available from the relative crop; similarly to what is done for CO\(_2\) and CH\(_4\), this allocation is needed to avoid double counting of emissions associated with the production of “complementary” feed items when aggregating results (e.g. the same area could be used to produce the grain consumed by monogastrics and the crop residues consumed by ruminants). The allocation factors per feed material are calculated following Equation 6.29:

Equation 6.29

\[\text{ALLOC}_{i,T,c} = \frac{\text{Total}_i \text{N intake}_{i,T,c}}{(\text{total}_\text{output}_\text{ha}_i \cdot N_{\text{r,i})} \times \text{area}_{i,T,c}} \]

Where:

\(\text{ALLOC}_{i,T,c} \) = allocation factor taking into account the amount of nitrogen consumed as feed by animals in cohort \(c \), species and system \(T \), in respect to the nitrogen output available from the relative crop for feed item \(i \), fraction

\(\text{Total}_i \text{N intake}_{i,T,c} \) = total nitrogen intake from feed item \(i \) by animals in cohort \(c \) for species and system \(T \), kg N head\(^{-1} \)

\(\text{total}_\text{output}_\text{ha}_i \) = total nitrogen output per hectare associated with the production of feed item \(i \), representing the nitrogen yield of the whole plant, as calculated following Equation 6.9, kg N ha\(^{-1} \)

\(N_{\text{r,i}} \) = nitrogen input from crop residues per hectare for feed item \(i \), kg N ha\(^{-1} \)

\(\text{area}_{i,T,c} \) = area required for the production of the total nitrogen intake from feed item \(i \) by animals in cohort \(c \) for species and system \(T \), ha\times head\(^{-1} \)

Note 1: allocation is not used (ALLOC = 1) for the following feed items: Ruminants feed items 1, 2, 3, 4, 5, 6 (feed 16 is already excluded from the analysis); Monogastrics feed item 2 (feeds 1, 14, 37, 41 and 42 are already excluded from the analysis).

Note 2: for banana fruit and stem and palm cake (monogastric feed items 15, 16 and 32), the nitrogen in crop residues are default global values and are therefore excluded from the equation, resulting in the following: \(\text{ALLOC} = \frac{\text{Total}_i \text{N intake}}{(\text{total}_\text{output}_\text{ha}_i \times \text{area}} \).

Note 3: a correction is required to set the resulting allocation factor for pulses straw (monogastric feed item 4) to a maximum value of 1, to avoid errors related to the combination of yield productivity and fragmentation values.

6.2.8.4 – Total allocated nitrous oxide emissions

Finally, the nitrogen lost as N\(_2\)O per hectare of feed production can be used in conjunction with the estimated area requirements and allocation factors to calculate the total N\(_2\)O emissions associated to feed consumption at herd or flock level, following Equation 6.30:

Equation 6.30

\[\text{N}_2\text{O}_{\text{Feed},T} = \sum_c \left[(\text{Total}_i \text{N}_2\text{O emissions}_i \times \text{area}_{i,T,c} \times \text{ALLOC}_{i,T,c} \times N_{\text{r},i}) \right] \times 44/28 \]

Where:

\(\text{N}_2\text{O}_{\text{Feed},T} \) = total nitrous oxide emissions associated with feed consumption of animals in species and system \(T \), kg N\(_2\)O year\(^{-1} \)

\(\text{Total}_i \text{N}_2\text{O emissions}_i \) = total N\(_2\)O emissions per hectare associated with the production of feed item \(i \), kg N\(_2\)O ha\(^{-1} \)

\(\text{area}_{i,T,c} \) = area required for the production of the total nitrogen intake from feed item \(i \) by animals in cohort \(c \) for species and system \(T \), ha\times head\(^{-1} \)
ALLOC\textsubscript{i} = allocation factor taking into account the amount of nitrogen consumed as feed by animals in cohort \(c \), species and system \(T \), in respect to the nitrogen output available from the relative crop for feed item \(i \), fraction

\(N_{T,c} \) = number of animals in cohort \(c \), species and system \(T \), head

44 / 28 = conversion factor from N-N\textsubscript{2}O to N\textsubscript{2}O emissions
7 CHAPTER 7 – EMISSIONS FROM ENERGY USE

This chapter presents the approach and coefficients applied in GLEAM for estimating the GHG emissions from the direct, non-feed related on-farm energy use and embedded energy in farm buildings and equipment.

7.1 – EMISSIONS FROM CAPITAL GOODS – INDIRECT ENERGY USE

Capital goods including machinery, tools and equipment, buildings such animal housing, forage and manure storage are a means of production. Though not often considered in LCAs, capital goods carry with them embodied emissions associated with manufacture and maintenance. These emissions are primarily caused by the energy used to extract and process typical materials that make up capital goods such as steel, concrete or wood. The quantification of embedded energy in capital goods covered in GLEAM includes farm buildings (animal housing, feed and manure storage facilities) and farm equipment such as milking and cooling equipment, tractors and irrigation systems. To determine the effective annual energy requirement, the total embodied energy of the capital energy inputs are discounted and a 20 years straight-line depreciation for buildings, 10 years for machinery and equipment and 30 years for irrigation systems are assumed.

For ruminant species, different levels of housing are defined with varying degrees of quality. In a further step, these types are distributed across the production systems (grassland and mixed), AEZs (arid, humid and temperate), country grouping based on the level of economic development based on literature research, and expert knowledge. Table S.7.1 and Table S.7.2 (Supplement S1) present the average emission factors for ruminant species.

For monogastric species, three different levels of housing were defined with varying degrees of quality. Emissions related to each type were calculated using the embodied energy use from the Swiss Centre for Life Cycle Inventories database – EcoInvent. Table S.7.3 and Table S.7.4 (Supplement S1) present the average emission factors for pigs and chickens, respectively.

7.2 – EMISSIONS RELATED TO ON-FARM ENERGY USE – DIRECT ENERGY USE

Direct on-farm energy includes the emissions arising from energy use on-farm required for livestock production. Energy that is used in feed production and transport is not included, as these emissions are included in the feed category. Energy is required for a variety of purposes such as lighting, ventilation, washing, cooling, heating, milking, and others. Table S.7.5 to Table S.7.7 (Supplement S1) present emission factors from direct energy use based on literature research and existing databases.
8 CHAPTER 8 – POST-FARM EMISSIONS

In addition to the emissions related to the production of primary products (meat, milk and eggs) along the production chain up to the farm gate boundary, GLEAM calculates emissions that are related to post-farm activities. These include a) the emissions related to the transport of raw livestock commodities (meat, milk and eggs) to a processing center, b) emissions related the processing of raw commodities into livestock products, c) emissions related to the packaging of those products.

8.1 – EMISSIONS FROM TRANSPORT TO PROCESSING PLANTS

The food sector is transport-intensive—large quantities of food are transported in large volumes and over long distances. This transport can sometimes be of significance but, in terms of the overall contribution to the life cycle carbon footprint of a product, most LCA studies have found that the contribution of transport is relatively small. The carbon implications of food transport are not only a question of distance. A number of other variables, such as transport mode, efficiency of transport loads and the condition of infrastructure (road quality), fuel type, are important determinants of the carbon intensity of products.

Emissions factors from transporting animal products from the farm to processing plants were based on ECTA (2019) and are calculated following Equation 8.1.

\[
EF_{\text{TRANS}_{FP}} = D_{FP} \times EF_{\text{road}}
\]

Where:
- \(EF_{\text{TRANS}_{FP}} \) = emission factor for product transport from farm to slaughter/processing plant, kg CO\(_2\)-eq/kg CW\(^{-1}\)/kg CO\(_2\)-eq/kg milk\(^{-1}\)/kg CO\(_2\)-eq/kg egg\(^{-1}\)
- \(D_{FP} \) = average distance between the farm and the slaughter/processing plant, km. A value of 50 km was assumed as a default distance from places of production to primary processing.
- \(EF_{\text{road}} \) = emission factor for road transport, 0.095 kg CO\(_2\)/ (kg \times km) as defined in ECTA (2019).

8.2 – PROCESSING AND PACKAGING

To estimate emissions related to processing and packaging of animal products we used emission factors from Poore and Nemecek (2018). These are based on a meta-analysis of 38,700 commercial farms in 119 countries with a median reference year of 2017 and summarize emission factors for 40 food items (including animal products). The relevant emission factors for processing and packaging for different GLEAM commodities are summarized in Table 8.1.

<table>
<thead>
<tr>
<th>Product</th>
<th>EFPROC</th>
<th>EFPACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine Meat (beef herd)</td>
<td>1.269</td>
<td>0.247</td>
</tr>
<tr>
<td>Bovine Meat (dairy herd)</td>
<td>1.108</td>
<td>0.268</td>
</tr>
<tr>
<td>Lamb & Mutton</td>
<td>1.111</td>
<td>0.251</td>
</tr>
<tr>
<td>Pig Meat</td>
<td>0.284</td>
<td>0.296</td>
</tr>
<tr>
<td>Poultry Meat</td>
<td>0.440</td>
<td>0.212</td>
</tr>
<tr>
<td>Milk</td>
<td>0.149</td>
<td>0.097</td>
</tr>
<tr>
<td>Eggs</td>
<td>-</td>
<td>0.161</td>
</tr>
</tbody>
</table>

Not all animals produced are slaughtered in slaughter plants/abattoirs: slaughtering may also take place on-farm or may be carried out by local butchers within the vicinity of production, so that the quantities taken into account for the above calculations are reduced. For industrialized countries, it was assumed that 98% of the animals are slaughtered in slaughterhouses. In developing countries, the share of animals transported to slaughter plants varied between 15% and 75% based on the
assumption that slaughtering infrastructure is generally lacking and that animals are often slaughtered in closer proximity to where they are raised, with slaughter being carried out by local butchers or household slaughter.

For milk, the fraction of primary products used directly for consumption was estimated from FAOSTAT commodity balance sheets (FAOSTAT, 2018), as the sum of all dairy products over the total milk supply in a country (expressed in milk equivalents). The processing fraction is generally higher in high income countries where milk is processed to other products before consumption.

For eggs, it was assumed that all eggs produced by intensive layers were sent to grading and packaging plants. For Backyard chickens, instead, the share of graded and packaged eggs was assumed to be negligible and set to zero.

8.3 – TOTAL POST-FARM EMISSION FACTORS

Total emission factors from post-farm are calculated using Equation 8.2.

Equation 8.2

\[
EFPF_p = (EFTRANS_p + EFPROC_p + EFPACK_p) \times \text{Share}_\text{proc}_p
\]

Where:

- \(EFPF_p\) = post-farm emission factor for product \(p\), \(\text{kg CO}_2\text{-eq} \times \text{kg} \text{CW}^{-1} / \text{kg CO}_2\text{-eq} \times \text{kg milk}^{-1} / \text{kg CO}_2\text{-eq} \times \text{kg egg}^{-1}\)
- \(EFTRANS_p\) = emission factor for product transport, \(\text{kg CO}_2\text{-eq} \times \text{kg} \text{CW}^{-1} / \text{kg CO}_2\text{-eq} \times \text{kg milk}^{-1} / \text{kg CO}_2\text{-eq} \times \text{kg egg}^{-1}\)
- \(EFPROC_p\) = emission factor for processing of product \(p\), \(\text{kg CO}_2\text{-eq} \times \text{kg} \text{CW}^{-1} / \text{kg CO}_2\text{-eq} \times \text{kg milk}^{-1} / \text{kg CO}_2\text{-eq} \times \text{kg egg}^{-1}\)
- \(EFPACK_p\) = emission factor for packaging of product \(p\), \(\text{kg CO}_2\text{-eq} \times \text{kg} \text{CW}^{-1} / \text{kg CO}_2\text{-eq} \times \text{kg milk}^{-1} / \text{kg CO}_2\text{-eq} \times \text{kg egg}^{-1}\)
- \(\text{Share}_\text{proc}_p\) = Share of processed product \(p\), fraction
9 CHAPTER 9 – ALLOCATION MODULE

One of the principles of LCA methodology is to allocate emissions among different products and outputs. The approach used in GLEAM to allocate emissions is described in the following sections.

The functions of the ‘Allocation’ module are:

- Calculate the total livestock production;
- Calculate the total emissions and the emission intensity of each commodity.

For a schematic representation of the allocation module, see Figure 9.1 and Figure 9.2
Figure 9.1 Schematic representation of the allocation module for ruminant species

- **CO₂ EMISSIONS (kg CO₂)**
 - CO₂ emissions from feed consumption
 - CO₂ emissions from on-farm direct and indirect energy use

- **N₂O EMISSIONS (kg N₂O)**
 - N₂O emissions from feed consumption
 - N₂O emissions from manure management

- **CH₄ EMISSIONS (kg CH₄)**
 - CH₄ emissions from feed consumption
 - CH₄ emissions from enteric fermentation
 - CH₄ emissions from manure management

Emission allocated to burned manure (kg CO₂-eq)

Ratio of meat or milk on total protein production (Fraction)

TOTAL EMISSIONS

From cradle to grave (kg CO₂-eq)

Post-farm emissions for meat (kg CO₂-eq)

MEAT EMISSIONS (kg CO₂-eq)

MEAT EMISSION INTENSITY (kg CO₂-eq / kg protein)

Number of working animals

Animal energy required for labor

N₂O & CH₄ from manure burned as fuel

Number of animals producing fibers

Total animal energy requirement

Animal energy required for fibers

Intermediate calculations within GLEAM

* Input data from literature, existing databases and expert knowledge

MILK EMISSIONS (kg CO₂-eq)

MILK EMISSION INTENSITY (kg CO₂-eq / kg protein)

POST-FARM EMISSIONS FOR MILK (kg CO₂-eq)

Number of milking animals

Number of slaughtered animals

Slaughter weights

Dressing percentages

Protein content of meat

Protein content of milk

MEAT EMISSIONS

MEAT EMISSION INTENSITY (kg CO₂-eq / kg protein)

Number of working animals

Animal energy required for labor

N₂O & CH₄ from manure burned as fuel

Number of animals producing fibers

Total animal energy requirement

Animal energy required for fibers

Intermediate calculations within GLEAM

* Input data from literature, existing databases and expert knowledge

LARGE RUMINANTS

SMALL RUMINANTS

* Post-farm emissions for meat (kg CO₂-eq)

* Post-farm emissions for milk (kg CO₂-eq)
Figure 9.2 Schematic representation of the allocation module for monogastric species

CO₂ EMISSIONS (kg CO₂):
- CO₂ emissions from feed consumption
- CO₂ emissions from on-farm direct and indirect energy use

N₂O EMISSIONS (kg N₂O):
- N₂O emissions from feed consumption
- N₂O emissions from manure management

CH₄ EMISSIONS (kg CH₄):
- CH₄ emissions from feed consumption
- CH₄ emissions from enteric fermentation
- CH₄ emissions from manure management

TOTAL EMISSIONS
- From cradle to grave (kg CO₂-eq)

MEAT EMISSIONS
- (kg CO₂-eq)

MEAT EMISSION INTENSITY
- (kg CO₂-eq / kg protein)

EGGS EMISSIONS
- (kg CO₂-eq)

EGGS EMISSION INTENSITY
- (kg CO₂-eq / kg protein)

* Intermediate calculations within GLEAM
* Input data from literature, existing databases and expert knowledge
9.1 – TOTAL LIVESTOCK PRODUCTION

This section describes the equations used to calculate the total amount of animal commodities produced by each species and production system, namely meat, milk, eggs, and fibre. All commodities, except fibre, are expressed in terms of protein to allow emission intensities comparison and aggregation between them.

9.1.1 – Production of milk

Total milk production is calculated based on average milk production per animal and number of milking animals. Total milk is then converted into amount of protein.

Equation 9.1
\[
\text{MILKTOT}_{\text{prot},T} = \text{AF}_T \times \text{MILK}_{\text{yield},T} \times \text{MILK}_{\text{prot},T}
\]

Where:
- \(\text{MILKTOT}_{\text{prot},T}\) = total amount of milk protein produced by species and production system \(T\), kg protein \(\times\) year\(^{-1}\)
- \(\text{AF}_T\) = milking animals by species and production system \(T\), heads
- \(\text{MILK}_{\text{yield},T}\) = average milk production per milking animal of species and production system \(T\), kg milk \(\times\) head\(^{-1}\) \(\times\) year\(^{-1}\)
- \(\text{MILK}_{\text{prot},T}\) = average milk protein content of species and production system \(T\), fraction

9.1.2 – Production of meat

Total meat production is calculated from the total number of animals that leave the herd for slaughter and average live weights. Live weight production is then expressed in total amount of protein using dressing percentage data, bone-free-meat to carcass weight ratio and average protein content in meat.

Equation 9.2
\[
\text{MEATTOT}_{\text{prot},T} = \text{BFM}_T \times \text{MEAT}_{\text{prot},T} \times \sum_c (N_{\text{exit},T,c} \times \text{LW}_{T,c} \times \text{DP}_T / 100)
\]

Where:
- \(\text{MEATTOT}_{\text{prot},T}\) = total amount of meat protein produced by species and production system \(T\), kg protein
- \(\text{BFM}_T\) = bone-free-meat to carcass weight ratio for species and production system \(T\), fraction. Values are shown in Table 9.1.
- \(\text{MEAT}_{\text{prot},T}\) = average fraction of protein in meat of species and production system \(T\), fraction. Values are shown in Table 9.1.
- \(N_{\text{exit},T,c}\) = number of animals slaughtered by species and production system \(T\) and cohort \(c\), heads
- \(\text{LW}_{T,c}\) = live weight of slaughtered animals by species and production system \(T\) and cohort \(c\), kg LW \(\times\) animal\(^{-1}\) \(\times\) year\(^{-1}\)
- \(\text{DP}_T\) = dressing percentage of species and production system \(T\), percentage. Values are given in Table S.9.1 (Supplement S1).

Table 9.1 Bone-free-meat to carcass weight ratio and protein content

<table>
<thead>
<tr>
<th>Species</th>
<th>BFM (fraction)</th>
<th>MEATprot (kg protein (\times) kg meat(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large ruminants</td>
<td>0.75</td>
<td>0.2113</td>
</tr>
<tr>
<td>Sheep</td>
<td>0.70</td>
<td>0.2013</td>
</tr>
<tr>
<td>Goats</td>
<td>0.70</td>
<td>0.1920</td>
</tr>
<tr>
<td>Pigs</td>
<td>0.65</td>
<td>0.2020</td>
</tr>
<tr>
<td>Chickens</td>
<td>0.75</td>
<td>0.1900</td>
</tr>
</tbody>
</table>
9.1.3 – Production of eggs

Total egg production is calculated from the backyard and layer systems exclusively following Equation 9.3.

Equation 9.3

\[
\text{EGGTOT}_{\text{prot}, T} = 10^3 \times \text{EGG}_{\text{prot}} \times \text{EGGwght}_T \times \text{EGGSyear}_T \times N_{\text{Hens}, T}
\]

Where:
- \(\text{EGGTOT}_{\text{prot}, T} \) = total amount of egg protein produced by production system \(T \), kg protein\text{year}^{-1}
- \(\text{EGG}_{\text{prot}} \) = average protein fraction in eggs, fraction. Default value of 0.1240 was used.
- \(\text{EGGwght}_T \) = average egg weight for production system \(T \), g\text{egg}^{-1}
- \(\text{EGGSyear}_T \) = annual laid eggs per hen per production system \(T \), eggs\text{hen}^{-1}\text{year}^{-1}. In the case of laying hens used for reproduction (AF) in the Backyard production system, \(\text{EGGSyear} \) is replaced by the variable \(\text{EGGconsAF} \), representing the annual number of laid eggs per hen available for human consumption, as defined in Table 2.18 and Section 2.4.2.1.
- \(N_{\text{Hens}, T} \) = number of laying hens in production system \(T \), heads.

For the Layers production system, laying hens used for reproduction (AF) are excluded, since it is assumed that all eggs laid by this cohort in industrial systems are used exclusively for reproduction.

9.1.4 – Production of fibre

The production of fibers comprises three fibers: wool for sheep, cashmere and mohair for goats. The total production is calculated combining the number of reproductive and surplus animals producing fibre with the yield of product per animal from FAOSTAT.

It is assumed that all reproductive and surplus animals produce wool, as shown in Equation 9.4.

Equation 9.4 - Wool

\[
\text{WOOLTOT}_T = \text{WOOL}_{\text{yield}, T} \times \sum_c (N_{T,c})
\]

Where:
- \(\text{WOOLTOT}_T \) = total amount of wool produced by system \(T \), kg\text{year}^{-1}
- \(\text{WOOL}_{\text{yield}, T} \) = average wool production per producing animal in system \(T \), kg\text{head}^{-1}\text{year}^{-1}
- \(c \) = cohort of reproductive (AF, AM) or surplus (MF, MM) animals
- \(N_{T,c} \) = number of animals in system \(T \) and cohort \(c \), heads.

For goats, it is assumed that only a fraction of the animals produce cashmere or mohair. This fraction was obtained at national level from FAOSTAT. Cashmere and mohair production occurs in a few select countries. The total production of cashmere and mohair is calculated as follows:

Equation 9.5 – cashmere and mohair

a. \(\text{CSHTOT}_T = \text{CSH}_{\text{yield}, T} \times \sum_c (N_{T,c}) \times \text{CSHratio} \)

b. \(\text{MHRTOT}_T = \text{MHR}_{\text{yield}, T} \times \sum_c (N_{T,c}) \times \text{MHRratio} \)

Where:
- \(\text{CSHTOT}_T \) = total amount of cashmere produced by system \(T \), kg\text{year}^{-1}
- \(\text{MHRTOT}_T \) = total amount of mohair produced by system \(T \), kg\text{year}^{-1}
- \(\text{CSH}_{\text{yield}, T} \) = average cashmere production per producing animal in system \(T \), kg\text{head}^{-1}\text{year}^{-1}
- \(\text{MHR}_{\text{yield}, T} \) = average mohair production per producing animal in system \(T \), kg\text{head}^{-1}\text{year}^{-1}
- \(N_{T,c} \) = number of animals in system \(T \) and cohort \(c \), heads.
- \(\text{CSHratio} \) = ratio of goats producing cashmere, fraction
- \(\text{MHRratio} \) = ratio of goats producing mohair, fraction
- \(c \) = cohort of reproductive (AF, AM) or surplus (MF, MM) animals.
9.2 – AGGREGATION OF TOTAL EMISSIONS

The total emissions from different stages of the supply chain, calculated with the methods described in the previous chapters are aggregated to estimate the total amount of emissions for each species and production system. These total emissions are then allocated to the different co-products from each supply chain, following the allocation methods described in Section 9.3. Post-farm gate emissions are allocated directly to the respective product in the allocation phase.

Emissions from the three greenhouse gases are summed up. Methane and nitrous oxide emissions are converted into carbon dioxide equivalent (CO\textsubscript{2}-eq) using the 100-years Global Warming Potential (GWP\textsubscript{100}) values from the AR6 IPCC report (Forster et al., 2021). The GWP\textsubscript{100} is the measure of the ability of a certain gas to trap heat in the atmosphere compared to that of a similar mass of carbon dioxide, over a period of 100 years. Equation 9.6 is used to aggregate the total emissions arising from the whole supply chain of each species and production system.

Equation 9.6

\[
\text{GHGTOT}_T = \text{CO}_2\text{-Feed,}_T + \text{CO}_2\text{-Feed-LUC,}_T + (\text{N}_2\text{O\text{-Feed,}_T + N}_2\text{O-Manure,}_T) \times \text{GWP}_{100}\text{-N}_2\text{O} + (\text{CH}_4\text{-Feed,}_T + \text{CH}_4\text{-Enteric,}_T + \text{CH}_4\text{-Manure,}_T) \times \text{GWP}_{100}\text{-CH}_4 + \text{GHG}_{nrgd,}_T + \text{GHG}_{nrg,}_T
\]

Where:
- \(\text{GHGTOT}_T\) = total emission from species and system \(T\) (excluding post-farm emissions), kg CO\textsubscript{2}-eq\textperiodcentered year-1
- \(\text{CO}_2\text{-Feed,}_T\) = total carbon dioxide emissions from energy use associated with feed consumption of species and system \(T\), kg CO\textsubscript{2}\textperiodcentered year-1
- \(\text{CO}_2\text{-Feed-LUC,}_T\) = total carbon dioxide emissions from land-use change associated with feed consumption of species and system \(T\), kg CO\textsubscript{2}\textperiodcentered year-1
- \(\text{N}_2\text{O\text{-Feed,}_T}\) = total nitrous oxide emissions associated with feed consumption of species and system \(T\), kg N\textsubscript{2}O\textperiodcentered year-1
- \(\text{N}_2\text{O-Manure,}_T\) = total nitrous oxide emissions from manure management for species and system \(T\), kg N\textsubscript{2}O\textperiodcentered year-1
- \(\text{CH}_4\text{-Feed,}_T\) = total methane emissions from feed consumption of species and system \(T\), kg CH\textsubscript{4}\textperiodcentered year-1. Monogastric species only.
- \(\text{CH}_4\text{-Enteric,}_T\) = total methane emissions from enteric fermentation for species and system \(T\), kg CH\textsubscript{4}\textperiodcentered year-1
- \(\text{CH}_4\text{-Manure,}_T\) = total methane emissions from manure management for species and system \(T\), kg CH\textsubscript{4}\textperiodcentered year-1
- \(\text{GHG}_{nrgd,}_T\) = total emissions from on-farm direct use of energy for species and system \(T\), kg CO\textsubscript{2}-eq\textperiodcentered year-1
- \(\text{GHG}_{nrg,}_T\) = total emissions from use of energy embedded in manufacture and maintenance of farm capital goods for species and system \(T\), kg CO\textsubscript{2}-eq\textperiodcentered year-1
- \(\text{GWP}_{100\text{-N}_2\text{O}}\) = global warming potential of nitrous oxide for 100 years’ horizon, kg CO\textsubscript{2}-eq\textperiodcentered kg N\textsubscript{2}O.
- \(\text{GWP}_{100\text{-CH}_4}\) = global warming potential of methane 100 years’ horizon, kg CO\textsubscript{2}-eq\textperiodcentered kg CH\textsubscript{4}.

Total post-farm emissions are calculated separately using the emission factors from Section 8.3, following Equation 9.7:

Equation 9.7

a. \(\text{GHG\text{-PFmeat,}_T}\) = \(\text{EFPPFmeat,}_T \times (\text{MEATTOT}_{\text{prot,}_T} / (\text{BFM}_T \times \text{MEAT}_{\text{prot,}_T}))\)

b. \(\text{GHG\text{-PFmilk,}_T}\) = \(\text{EFPPFmilk,}_T \times (\text{MILKTOT}_{\text{prot,}_T} / \text{MILK}_{\text{prot,}_T})\)

b. \(\text{GHG\text{-PFeggs,}_T}\) = \(\text{EFPPFeggs,}_T \times (\text{EGGTOT}_{\text{prot,}_T} / \text{EGG}_{\text{prot,}_T})\)

Where:
- \(\text{GHG\text{-PFmeat,}_T}\) = total post-farm emissions for meat of species and system \(T\), kg CO\textsubscript{2}-eq\textperiodcentered year-1
- \(\text{GHG\text{-PFmilk,}_T}\) = total post-farm emissions for milk of species and system \(T\), kg CO\textsubscript{2}-eq\textperiodcentered year-1
- \(\text{GHG\text{-PFeggs,}_T}\) = total post-farm emissions for eggs of species and system \(T\), kg CO\textsubscript{2}-eq\textperiodcentered year-1
- \(\text{EFPPFmeat,}_T\) = post-farm emission factor for meat of species and system \(T\), kg CO\textsubscript{2}-eq\textperiodcentered kg CW-1. Emissions for backyard systems of monogastrics are assumed to be null.
- \(\text{EFPPFmilk,}_T\) = post-farm emission factor for milk of species and system \(T\), kg CO\textsubscript{2}-eq\textperiodcentered kg milk-1
- \(\text{EFPPFeggs,}_T\) = post-farm emission factor for eggs of species and system \(T\), kg CO\textsubscript{2}-eq\textperiodcentered kg egg-1. Emissions for backyard chickens are assumed to be null.
- \(\text{MEATTOT}_{\text{prot,}_T}\) = total amount of meat protein produced by species and production system \(T\), kg protein
BFM,\textsubscript{T} = bone-free-meat to carcass weight ratio for species and production system \(T \), fraction. Values are shown in Table 9.1.

\text{MEAT\textsubscript{prot,T}} = average fraction of protein in meat of species and production system \(T \), fraction. Values are shown in Table 9.1.

MILK\textsubscript{prot,T} = total amount of milk protein produced by species and production system \(T \), kg protein-year-1

\text{MILK\textsubscript{prot,T}} = average milk protein content of species and production system \(T \), fraction

\text{EGG\textsubscript{prot,T}} = total amount of egg protein produced by production system \(T \), kg protein-year-1

\text{EGG\textsubscript{prot}} = average protein fraction in eggs, fraction. Default value of 0.1240 was used.

9.3 – ALLOCATION OF EMISSIONS AND EMISSION INTENSITIES

9.3.1 – Allocation in ruminant species

Emissions in ruminant herds are allocated between edible commodities, i.e. meat and milk, and non-edible ones, namely manure used as fuel and draught power from large ruminants (cattle and buffaloes) and fibres for small ruminants. Emissions related to non-edible commodities are calculated first and deducted from the total emissions, before these are attributed to meat and milk.

As a first step, \(CH_4 \) from manure burned for fuel are calculated applying Equation 4.2 to the manure management system “burned for fuel” only. Therefore, these emissions are deducted from the rest of the manure emissions and allocated to fuel. The remaining emissions from manure are allocated to the other commodities.

To allocate emissions to draught power services, total emissions from draught animals alone are calculated. Then, a fraction of these emissions is allocated to draught power using as allocation factor the ratio of the net energy required for labor to the total net energy required by these animals. The remaining part of the emissions from draught animals is then allocated entirely to meat.

Similarly, the allocation of emissions to fibres is based on the relative share of the net energy required by animals that is used to produce them. The specific energy requirements from animals are calculated following the equations presented in Section 3.6.1. Once part of the emissions is allocated to fibre production, the remaining ones are allocated entirely to edible commodities.

The emissions from pasture expansion are allocated to cattle beef and dairy sector grassland based systems only (with the exclusion of feedlots system), accordingly to the share of animals in each system.

The remaining emissions are allocated between milk and meat using the proportions of proteins production from the two products as allocation factor. Once those emissions are allocated, the respective post-farm emissions are added to the final amount of each commodity. Table 9.2 and Table 9.3 show an example calculation of emission allocation for large and small ruminant herds, respectively.

A specific allocation is also required for feedlot systems of cattle. Emissions from surplus animals in feedlots are, in fact, allocated entirely to meat. However, on a yearly base, animals spend in feedlots only a certain amount of days, during what is called the “finishing” phase, while they spend the rest of the year (the “rearing” phase) outside of feedlots, in the respective native system (either grassland based or mixed, from both dairy and beef specialized herds). Therefore, the specific emission profile associated with feedlot production must be allocated only to the finishing phase, while the emission intensity per head of feedlot animals during the rearing phase is assumed to be equal to that of the surplus animals in the respective system of origin. Specifically, the total emissions from the rearing phase are calculated, at national level, multiplying the average daily emissions per head of surplus animal, in non-feedlot systems, by the number of days of the rearing phase and the number of animals going to feedlots in one year. Similarly, the total emissions from the finishing phase are calculated multiplying the daily emissions from feedlot animals by the number of days that they spend in feedlots. Finally, the emissions from the two phases are summed together to calculate the total emissions from feedlot animals. Table 9.4 shows an example calculation of allocation of emissions from rearing and finishing phases to feedlot systems. The same approach can be used to allocate both the total emissions and those from specific emission sources.
Table 9.2 Example of allocation between products from cattle dairy production

<table>
<thead>
<tr>
<th></th>
<th>Animals involved in both meat and milk production (milking cows, reproductive males and replacement animals)</th>
<th>Draught males</th>
<th>Surplus animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total emissions – post-farm excluded (kg CO₂-eq)</td>
<td>1 800 000</td>
<td>120 000</td>
<td>255 000</td>
</tr>
<tr>
<td>Total emissions from manure burned as fuel (kg CO₂-eq)</td>
<td>100 000</td>
<td>10 000</td>
<td>15 000</td>
</tr>
<tr>
<td>Ratio of net energy for labor to the total net energy requirement</td>
<td>-</td>
<td>0.6</td>
<td>-</td>
</tr>
<tr>
<td>Total emissions allocated to draught power (kg CO₂-eq)</td>
<td>= (1 800 000 – 100,000) = 1 700 000</td>
<td>= (120 000 – 10 000) × 0.6 = 66 000</td>
<td>-</td>
</tr>
<tr>
<td>Total emission allocated to meat and milk (kg CO₂-eq)</td>
<td>= 1 800 000 – 10,000 – 66,000 = 1 200 000</td>
<td>= 215 000 – 15 000 = 200 000</td>
<td>-</td>
</tr>
<tr>
<td>Total protein (kg)</td>
<td>Milk: 18 000</td>
<td>Meat: 500</td>
<td>Meat: 2 000</td>
</tr>
<tr>
<td>Fraction of milk protein</td>
<td>0.92</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fraction of meat protein</td>
<td>0.08</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Post-farm emissions (kg CO₂-eq)</td>
<td>Milk: 54 000</td>
<td>Meat: 24 000</td>
<td>-</td>
</tr>
<tr>
<td>Emission intensity of milk (kg CO₂-eq/kg protein⁻¹)</td>
<td>= ((1 700 000 × 0.92) + 54 000) / 18 000 = 89.9</td>
<td>= (1 700 000 × 0.08) + 44 000 + 200 000 + 24 000 / (1 500 + 500 + 2 000) = 101.0</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 9.3 Example of allocation between products from sheep dairy production

<table>
<thead>
<tr>
<th></th>
<th>Animals involved in meat, milk and fibre production (reproductive animals)</th>
<th>Animals involved in meat and milk production (replacement animals)</th>
<th>Animals involved in meat and fibre production only (surplus animals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total emissions – post-farm excluded (kg CO₂-eq)</td>
<td>50 000</td>
<td>30 000</td>
<td>20 000</td>
</tr>
<tr>
<td>Ratio of net energy for wool to the total net energy requirement</td>
<td>0.2</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>Total protein (kg)</td>
<td>Milk: 500</td>
<td>Meat: 50</td>
<td>Meat: 200</td>
</tr>
<tr>
<td>Fraction of milk protein</td>
<td>0.91</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fraction of meat protein</td>
<td>0.09</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total emission allocated to wool (kg CO₂-eq)</td>
<td>= 50 000 × 0.2 = 10 000</td>
<td>-</td>
<td>= 20 000 × 0.3 = 6 000</td>
</tr>
<tr>
<td>Total emission allocated to meat and milk (kg CO₂-eq)</td>
<td>= 50 000 – 10 000 = 40 000</td>
<td>30 000</td>
<td>= 20 000 – 6 000 = 14 000</td>
</tr>
<tr>
<td>Post-farm emissions (kg CO₂-eq)</td>
<td>Milk: 1 500</td>
<td>Meat: 1 250</td>
<td></td>
</tr>
<tr>
<td>Emission intensity of milk (kg CO₂-eq/kg protein⁻¹)</td>
<td>= (((40 000 + 30 000) × 0.91) + 1 500) / 500 = 130.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission intensity of meat (kg CO₂-eq/kg protein⁻¹)</td>
<td>= (((40 000 + 30 000) × 0.09) + 14 000 + 1 250) / (50 + 200) = 86.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9.4 Example of allocation of emissions from rearing and finishing phases to feedlot systems

<table>
<thead>
<tr>
<th></th>
<th>Grassland based system</th>
<th>Mixed farming system</th>
<th>Feedlot system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily emissions per surplus animal (kg CO₂-equiv/animal/day)</td>
<td>2.7</td>
<td>2.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Number of surplus animals (heads)</td>
<td>50</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>Length of the finishing phase (days)</td>
<td>245</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Total emissions from the rearing phase (kg CO₂-equiv)</td>
<td>= (2.7 × 50 + 2.5 × 100) / (50 + 100) × 245 = 125 767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total emissions from the finishing phase (kg CO₂-equiv)</td>
<td>-</td>
<td>-</td>
<td>= 1.6 × 120 × 200 = 38 400</td>
</tr>
<tr>
<td>Total emissions allocated to feedlots (kg CO₂-equiv)</td>
<td>-</td>
<td>-</td>
<td>= 125 767 + 38 400 = 164 167</td>
</tr>
</tbody>
</table>

9.3.2 – Allocation in monogastric species

Emissions for monogastrics are also allocated between edible products, i.e. meat and eggs, in the case of backyard and layers chickens. For pigs and broilers, all emissions are allocated to meat.

For backyard chickens and layers, the first step is to calculate the specific emissions that are from all animals required for egg production, namely laying hens, reproductive males and replacement animals. In a subsequent step, these emissions are allocated on the basis of the amount of egg and meat protein output, while emissions from the remaining part of the flock are allocated entirely to meat. The respective post-farm emissions are added to the final amount of each commodity. Table 9.5 presents a calculation example.

Table 9.5 Example of allocation between edible products for chickens

<table>
<thead>
<tr>
<th></th>
<th>Animals involved in egg and meat production</th>
<th>Animals involved only in meat production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total emissions (kg CO₂-equiv)</td>
<td>50 000</td>
<td>39 000</td>
</tr>
<tr>
<td>Total protein (kg)</td>
<td>Eggs: 800</td>
<td>Meat: 500</td>
</tr>
<tr>
<td>Total emission allocated to eggs (kg CO₂-equiv)</td>
<td>= 50 000 × (800 / (800 + 200)) = 40 000</td>
<td>-</td>
</tr>
<tr>
<td>Total emission allocated to meat (kg CO₂-equiv)</td>
<td>= 50 000 × (200 / (800 + 200)) = 10 000</td>
<td>39 000</td>
</tr>
<tr>
<td>Post-farm emissions (kg CO₂-equiv)</td>
<td>Eggs: 1,200</td>
<td>Meat: 840</td>
</tr>
<tr>
<td>Emission intensity of eggs (kg CO₂-equiv/kg protein)</td>
<td>= (40 000 + 1 200) / 800 = 51.5</td>
<td></td>
</tr>
<tr>
<td>Emission intensity of meat (kg CO₂-equiv/kg protein)</td>
<td>= (10 000 + 39 000 + 840) / (200 + 500) = 71.2</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Agribenchmark, 2013. Feedlot analysis. CANFAX. Available at: http://www.canfax.ca/Samples/Feedlot%20COP%20Analysis.pdf

Bertoli, S., Goujon, M., & Santoni, O. 2016. The CERDI-seadistance database. 11.shs.hal.science/halshs-01288748/file/2016.07.pdf

EUROSTAT. 2010. Number of farms and heads of animals by LSU. ec.europa.eu/eurostat

https://www.fertilizer.org/images/Library_Downloads/2017_IFA_AgCom_17_134%20rev_FUBC%20assessment%202014.pdf

NASA Socioeconomic Data and Applications Center (SEDAC). doi.org/10.7927/H4PN93PB

Stichting CVB: https://www.cvbdiervoeding.nl

APPENDIX A – COUNTRY LISTS

TABLE A1 – GLEAM country list and classification

<table>
<thead>
<tr>
<th>Region and country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATIN AMERICA AND THE CARIBBEAN (LAC)</td>
<td></td>
</tr>
<tr>
<td>Antigua and Barbuda</td>
<td>Guyana</td>
</tr>
<tr>
<td>Argentina</td>
<td>Haiti</td>
</tr>
<tr>
<td>Bahamas</td>
<td>Honduras</td>
</tr>
<tr>
<td>Barbados</td>
<td>Jamaica</td>
</tr>
<tr>
<td>Belize</td>
<td>Martinique</td>
</tr>
<tr>
<td>Bolivia (Plurinational State of)</td>
<td>Mexico</td>
</tr>
<tr>
<td>Brazil</td>
<td>Nicaragua</td>
</tr>
<tr>
<td>Chile</td>
<td>Panama</td>
</tr>
<tr>
<td>Colombia</td>
<td>Paraguay</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Peru</td>
</tr>
<tr>
<td>Cuba</td>
<td>Puerto Rico</td>
</tr>
<tr>
<td>Dominica</td>
<td>Saint Kitts and Nevis</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Saint Vincent and the Grenadines</td>
</tr>
<tr>
<td>El Salvador</td>
<td>Suriname</td>
</tr>
<tr>
<td>French Guiana</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>Grenada</td>
<td>Uruguay</td>
</tr>
<tr>
<td>Guadeloupe</td>
<td>Venezuela</td>
</tr>
<tr>
<td>Guatemala</td>
<td></td>
</tr>
<tr>
<td>SUB-SAHARAN AFRICA (SSA)</td>
<td></td>
</tr>
<tr>
<td>Angola</td>
<td>Lesotho</td>
</tr>
<tr>
<td>Benin</td>
<td>Liberia</td>
</tr>
<tr>
<td>Botswana</td>
<td>Madagascar</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Malawi</td>
</tr>
<tr>
<td>Burundi</td>
<td>Mali</td>
</tr>
<tr>
<td>Cabo Verde</td>
<td>Mauritania</td>
</tr>
<tr>
<td>Cameroon</td>
<td>Mauritius</td>
</tr>
<tr>
<td>Central African Republic</td>
<td>Mozambique</td>
</tr>
<tr>
<td>Chad</td>
<td>Namibia</td>
</tr>
<tr>
<td>Comoros</td>
<td>Niger</td>
</tr>
<tr>
<td>Congo</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>Réunion</td>
</tr>
<tr>
<td>Democratic Republic of the Congo</td>
<td>Rwanda</td>
</tr>
<tr>
<td>Djibouti</td>
<td>São Tome and Principe</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>Senegal</td>
</tr>
<tr>
<td>Eritrea</td>
<td>Seychelles</td>
</tr>
<tr>
<td>Eswatini</td>
<td>Sierra Leone</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>Somalia</td>
</tr>
<tr>
<td>Gabon</td>
<td>South Africa</td>
</tr>
<tr>
<td>Gambia</td>
<td>Togo</td>
</tr>
<tr>
<td>Ghana</td>
<td>Uganda</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>United Republic of Tanzania</td>
</tr>
<tr>
<td>Guinea</td>
<td>Zambia</td>
</tr>
<tr>
<td>Kenya</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>NEAR EAST AND NORTH AFRICA (NENA)</td>
<td></td>
</tr>
<tr>
<td>Algeria</td>
<td>Oman</td>
</tr>
<tr>
<td>Armenia</td>
<td>Palestine</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>Qatar</td>
</tr>
<tr>
<td>Region</td>
<td>Countries</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Bahrain</td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Cyprus</td>
<td>South Sudan</td>
</tr>
<tr>
<td>Egypt</td>
<td>Sudan</td>
</tr>
<tr>
<td>Georgia</td>
<td>Syrian Arab Republic</td>
</tr>
<tr>
<td>Iraq</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>Israel</td>
<td>Tunisia</td>
</tr>
<tr>
<td>Jordan</td>
<td>Türkiye</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>Kuwait</td>
<td>United Arab Emirates</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Western Sahara</td>
</tr>
<tr>
<td>Libya</td>
<td>Yemen</td>
</tr>
<tr>
<td>Morocco</td>
<td></td>
</tr>
<tr>
<td>SOUTH ASIA (SA)</td>
<td></td>
</tr>
<tr>
<td>Afghanistan</td>
<td>Maldives</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>Nepal</td>
</tr>
<tr>
<td>Bhutan</td>
<td>Pakistan</td>
</tr>
<tr>
<td>India</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>Iran, Islamic Republic of</td>
<td></td>
</tr>
<tr>
<td>EASTERN EUROPE (EE)</td>
<td></td>
</tr>
<tr>
<td>Belarus</td>
<td>Poland</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Romania</td>
</tr>
<tr>
<td>Czechia</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Hungary</td>
<td>Ukraine</td>
</tr>
<tr>
<td>Moldova, Republic of</td>
<td></td>
</tr>
<tr>
<td>RUSSIAN FEDERATION (RUS)</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>EAST ASIA AND SOUTH-EAST ASIA (ESEA)</td>
<td></td>
</tr>
<tr>
<td>Brunei Darussalam</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Cambodia</td>
<td>Mongolia</td>
</tr>
<tr>
<td>China</td>
<td>Myanmar</td>
</tr>
<tr>
<td>China, Hong Kong SAR</td>
<td>Philippines</td>
</tr>
<tr>
<td>China, Macao SAR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>China, Taiwan Province of</td>
<td>Singapore</td>
</tr>
<tr>
<td>Democratic People’s Republic of Korea</td>
<td>Thailand</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Timor-Leste</td>
</tr>
<tr>
<td>Japan</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>Lao People’s Democratic Republic</td>
<td></td>
</tr>
<tr>
<td>OCEANIA (OCE)</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Cook Islands</td>
<td>Niue</td>
</tr>
<tr>
<td>Fiji</td>
<td>Palau</td>
</tr>
<tr>
<td>French Polynesia</td>
<td>Papua New Guinea</td>
</tr>
<tr>
<td>Kiribati</td>
<td>Samoa</td>
</tr>
<tr>
<td>Marshall Islands</td>
<td>Solomon Islands</td>
</tr>
<tr>
<td>Micronesia, Federated States of</td>
<td>Tonga</td>
</tr>
<tr>
<td>Nauru</td>
<td>Tuvalu</td>
</tr>
<tr>
<td>New Caledonia</td>
<td>Vanuatu</td>
</tr>
<tr>
<td>WESTERN EUROPE (WE)</td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>Austria</td>
<td>Lithuania</td>
</tr>
<tr>
<td>Belgium</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>Malta</td>
</tr>
<tr>
<td>Croatia</td>
<td>Montenegro</td>
</tr>
<tr>
<td>Denmark</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Estonia</td>
<td>North Macedonia</td>
</tr>
<tr>
<td>Faroe Islands</td>
<td>Norway</td>
</tr>
<tr>
<td>Finland</td>
<td>Portugal</td>
</tr>
<tr>
<td>France</td>
<td>Serbia</td>
</tr>
<tr>
<td>Germany</td>
<td>Slovenia</td>
</tr>
<tr>
<td>Greece</td>
<td>Spain</td>
</tr>
<tr>
<td>Region and country</td>
<td>AFRICA</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Algeria</td>
<td>Malawi</td>
</tr>
<tr>
<td>Angola</td>
<td>Mali</td>
</tr>
<tr>
<td>Benin</td>
<td>Mauritania</td>
</tr>
<tr>
<td>Botswana</td>
<td>Mauritius</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Morocco</td>
</tr>
<tr>
<td>Burundi</td>
<td>Mozambique</td>
</tr>
<tr>
<td>Cabo Verde</td>
<td>Namibia</td>
</tr>
<tr>
<td>Cameroon</td>
<td>Niger</td>
</tr>
<tr>
<td>Central African Republic</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Chad</td>
<td>Réunion</td>
</tr>
<tr>
<td>Comoros</td>
<td>Rwanda</td>
</tr>
<tr>
<td>Congo</td>
<td>São Tome and Principe</td>
</tr>
<tr>
<td>Côte d'Ivoire</td>
<td>Senegal</td>
</tr>
<tr>
<td>Democratic Republic of the Congo</td>
<td>Seychelles</td>
</tr>
<tr>
<td>Djibouti</td>
<td>Sierra Leone</td>
</tr>
<tr>
<td>Egypt</td>
<td>Somalia</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>South Africa</td>
</tr>
<tr>
<td>Eritrea</td>
<td>South Sudan</td>
</tr>
<tr>
<td>Eswatini</td>
<td>Sudan</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>Togo</td>
</tr>
<tr>
<td>Gabon</td>
<td>Tunisia</td>
</tr>
<tr>
<td>Gambia</td>
<td>Uganda</td>
</tr>
<tr>
<td>Ghana</td>
<td>United Republic of Tanzania</td>
</tr>
<tr>
<td>Guinea</td>
<td>Zambia</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>Kenya</td>
<td>Lesotho</td>
</tr>
<tr>
<td>Lesotho</td>
<td>Liberia</td>
</tr>
<tr>
<td>Liberia</td>
<td>Libya</td>
</tr>
<tr>
<td>Libya</td>
<td>Madagascar</td>
</tr>
<tr>
<td>Madagascar</td>
<td></td>
</tr>
<tr>
<td>ASIA</td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>Sweden</td>
</tr>
<tr>
<td>Ireland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Italy</td>
<td>United Kingdom of Great Britain and Northern Ireland</td>
</tr>
<tr>
<td>Latvia</td>
<td>United States of America</td>
</tr>
<tr>
<td>NORTH AMERICA (NA)</td>
<td>Canada</td>
</tr>
</tbody>
</table>

TABLE A2—FAOSTAT country list and classification
<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>Lebanon</td>
</tr>
<tr>
<td>Armenia</td>
<td>Malaysia</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>Maldives</td>
</tr>
<tr>
<td>Bahrain</td>
<td>Mongolia</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>Myanmar</td>
</tr>
<tr>
<td>Bhutan</td>
<td>Nepal</td>
</tr>
<tr>
<td>Brunei Darussalam</td>
<td>Oman</td>
</tr>
<tr>
<td>Cambodia</td>
<td>Pakistan</td>
</tr>
<tr>
<td>China</td>
<td>Palestine</td>
</tr>
<tr>
<td>China, Hong Kong SAR</td>
<td>Philippines</td>
</tr>
<tr>
<td>China, Macao SAR</td>
<td>Qatar</td>
</tr>
<tr>
<td>China, Taiwan Province of</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Democratic People's Republic of</td>
<td>Singapore</td>
</tr>
<tr>
<td>Georgia</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>India</td>
<td>Syrian Arab Republic</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>Iran, Islamic Republic of</td>
<td>Thailand</td>
</tr>
<tr>
<td>Iraq</td>
<td>Timor-Leste</td>
</tr>
<tr>
<td>Israel</td>
<td>Türkiye</td>
</tr>
<tr>
<td>Japan</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>Jordan</td>
<td>United Arab Emirates</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>Kuwait</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Yemen</td>
</tr>
<tr>
<td>Lao People's Democratic Republic</td>
<td></td>
</tr>
<tr>
<td>AUSTRALIA and NEW ZEALAND</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>New Zealand</td>
</tr>
<tr>
<td>CARIBBEAN</td>
<td></td>
</tr>
<tr>
<td>Antigua and Barbuda</td>
<td>Haiti</td>
</tr>
<tr>
<td>Bahamas</td>
<td>Jamaica</td>
</tr>
<tr>
<td>Barbados</td>
<td>Martinique</td>
</tr>
<tr>
<td>Cuba</td>
<td>Puerto Rico</td>
</tr>
<tr>
<td>Dominica</td>
<td>Saint Kitts and Nevis</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>Grenada</td>
<td>Saint Vincent and the Grenadines</td>
</tr>
<tr>
<td>Guadeloupe</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>CENTRAL AMERICA</td>
<td></td>
</tr>
<tr>
<td>Belize</td>
<td>Honduras</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Mexico</td>
</tr>
<tr>
<td>El Salvador</td>
<td>Nicaragua</td>
</tr>
<tr>
<td>Guatemala</td>
<td>Panama</td>
</tr>
<tr>
<td>CENTRAL ASIA</td>
<td></td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>Tajikistan</td>
<td></td>
</tr>
<tr>
<td>EASTERN AFRICA</td>
<td></td>
</tr>
<tr>
<td>Burundi</td>
<td>Mozambique</td>
</tr>
<tr>
<td>Comoros</td>
<td>Réunion</td>
</tr>
<tr>
<td>Djibouti</td>
<td>Rwanda</td>
</tr>
<tr>
<td>Eritrea</td>
<td>Seychelles</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>Somalia</td>
</tr>
<tr>
<td>Kenya</td>
<td>Uganda</td>
</tr>
<tr>
<td>Madagascar</td>
<td>United Republic of Tanzania</td>
</tr>
<tr>
<td>Malawi</td>
<td>Zambia</td>
</tr>
<tr>
<td>Mauritius</td>
<td>Zimbabwe</td>
</tr>
<tr>
<td>EASTERN ASIA</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>China, Hong Kong SAR</td>
<td>Japan</td>
</tr>
<tr>
<td>China, Macao SAR</td>
<td>Mongolia</td>
</tr>
<tr>
<td>China, Taiwan Province of</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>EASTERN EUROPE</td>
<td></td>
</tr>
<tr>
<td>Belarus</td>
<td>Poland</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgaria</td>
<td>Romania</td>
</tr>
<tr>
<td>Czechia</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>Hungary</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Moldova, Republic of</td>
<td>Ukraine</td>
</tr>
</tbody>
</table>

EUROPE

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>Lithuania</td>
</tr>
<tr>
<td>Austria</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>Belarus</td>
<td>Malta</td>
</tr>
<tr>
<td>Belgium</td>
<td>Moldova, Republic of</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>Montenegro</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Croatia</td>
<td>North Macedonia</td>
</tr>
<tr>
<td>Czechia</td>
<td>Norway</td>
</tr>
<tr>
<td>Denmark</td>
<td>Poland</td>
</tr>
<tr>
<td>Estonia</td>
<td>Portugal</td>
</tr>
<tr>
<td>Faroe Islands</td>
<td>Romania</td>
</tr>
<tr>
<td>Finland</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>France</td>
<td>Serbia</td>
</tr>
<tr>
<td>Germany</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Greece</td>
<td>Slovenia</td>
</tr>
<tr>
<td>Hungary</td>
<td>Spain</td>
</tr>
<tr>
<td>Iceland</td>
<td>Sweden</td>
</tr>
<tr>
<td>Ireland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Italy</td>
<td>Ukraine</td>
</tr>
<tr>
<td>Latvia</td>
<td>United Kingdom of Great Britain and Northern Ireland</td>
</tr>
</tbody>
</table>

EUROPEAN UNION (EU27)

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Italy</td>
</tr>
<tr>
<td>Belgium</td>
<td>Latvia</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>Lithuania</td>
</tr>
<tr>
<td>Croatia</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Malta</td>
</tr>
<tr>
<td>Czechia</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Denmark</td>
<td>Poland</td>
</tr>
<tr>
<td>Estonia</td>
<td>Portugal</td>
</tr>
<tr>
<td>Finland</td>
<td>Romania</td>
</tr>
<tr>
<td>France</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Germany</td>
<td>Slovenia</td>
</tr>
<tr>
<td>Greece</td>
<td>Spain</td>
</tr>
<tr>
<td>Hungary</td>
<td>Sweden</td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
</tr>
</tbody>
</table>

MELANESIA

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiji</td>
<td>Solomon Islands</td>
</tr>
<tr>
<td>New Caledonia</td>
<td>Vanuatu</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td></td>
</tr>
</tbody>
</table>

MICRONESIA

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiribati</td>
<td>Micronesia (Federated States of)</td>
</tr>
<tr>
<td>Marshall Islands</td>
<td>Nauru</td>
</tr>
</tbody>
</table>

MIDDLE AFRICA

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angola</td>
<td>Democratic Republic of the Congo</td>
</tr>
<tr>
<td>Cameroon</td>
<td>Equatorial Guinea</td>
</tr>
<tr>
<td>Central African Republic</td>
<td>Gabon</td>
</tr>
<tr>
<td>Chad</td>
<td>Sao Tome and Principe</td>
</tr>
<tr>
<td>Congo</td>
<td></td>
</tr>
</tbody>
</table>

NORTHERN AFRICA

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>South Sudan</td>
</tr>
<tr>
<td>Egypt</td>
<td>Sudan</td>
</tr>
<tr>
<td>Libya</td>
<td>Tunisia</td>
</tr>
<tr>
<td>Morocco</td>
<td>Western Sahara</td>
</tr>
</tbody>
</table>

NORTHERN AMERICA

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>United States of America</td>
</tr>
</tbody>
</table>

NORTHERN EUROPE

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>Latvia</td>
</tr>
<tr>
<td>Estonia</td>
<td>Lithuania</td>
</tr>
<tr>
<td>Country</td>
<td>Region</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Faroe Islands</td>
<td>Norway</td>
</tr>
<tr>
<td>Finland</td>
<td>Sweden</td>
</tr>
<tr>
<td>Iceland</td>
<td>United Kingdom of Great Britain and Northern Ireland</td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
</tr>
<tr>
<td>OCEANIA</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Cook Islands</td>
<td>Niue</td>
</tr>
<tr>
<td>Fiji</td>
<td>Papua New Guinea</td>
</tr>
<tr>
<td>French Polynesia</td>
<td>Samoa</td>
</tr>
<tr>
<td>Kiribati</td>
<td>Solomon Islands</td>
</tr>
<tr>
<td>Marshall Islands</td>
<td>Tokelau</td>
</tr>
<tr>
<td>Micronesia, Federated States of</td>
<td>Tonga</td>
</tr>
<tr>
<td>Nauru</td>
<td>Tuvalu</td>
</tr>
<tr>
<td>New Caledonia</td>
<td>Vanuatu</td>
</tr>
<tr>
<td>OECD</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>Japan</td>
</tr>
<tr>
<td>Austria</td>
<td>Latvia</td>
</tr>
<tr>
<td>Belgium</td>
<td>Lithuania</td>
</tr>
<tr>
<td>Canada</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>Chile</td>
<td>Mexico</td>
</tr>
<tr>
<td>Colombia</td>
<td>Netherlands</td>
</tr>
<tr>
<td>Comoros</td>
<td>New Zealand</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Norway</td>
</tr>
<tr>
<td>Czechia</td>
<td>Poland</td>
</tr>
<tr>
<td>Denmark</td>
<td>Portugal</td>
</tr>
<tr>
<td>Estonia</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>Finland</td>
<td>Slovakia</td>
</tr>
<tr>
<td>France</td>
<td>Slovenia</td>
</tr>
<tr>
<td>Germany</td>
<td>Spain</td>
</tr>
<tr>
<td>Greece</td>
<td>Sweden</td>
</tr>
<tr>
<td>Hungary</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Iceland</td>
<td>Türkiye</td>
</tr>
<tr>
<td>Ireland</td>
<td>United Kingdom of Great Britain and Northern Ireland</td>
</tr>
<tr>
<td>Israel</td>
<td>United States of America</td>
</tr>
<tr>
<td>ITALY</td>
<td></td>
</tr>
<tr>
<td>POLYNESIA</td>
<td></td>
</tr>
<tr>
<td>Cook Islands</td>
<td>Tokelau</td>
</tr>
<tr>
<td>French Polynesia</td>
<td>Tonga</td>
</tr>
<tr>
<td>Niue</td>
<td>Tuvalu</td>
</tr>
<tr>
<td>Samoa</td>
<td></td>
</tr>
<tr>
<td>SOUTH AMERICA</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>Guyana</td>
</tr>
<tr>
<td>Bolivia (Plurinational State of)</td>
<td>Paraguay</td>
</tr>
<tr>
<td>Brazil</td>
<td>Peru</td>
</tr>
<tr>
<td>Chile</td>
<td>Suriname</td>
</tr>
<tr>
<td>Colombia</td>
<td>Uruguay</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Venezuela (Bolivarian Republic of)</td>
</tr>
<tr>
<td>French Guiana</td>
<td></td>
</tr>
<tr>
<td>SOUTH EASTERN ASIA</td>
<td></td>
</tr>
<tr>
<td>Brunei Darussalam</td>
<td>Philippines</td>
</tr>
<tr>
<td>Cambodia</td>
<td>Singapore</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Thailand</td>
</tr>
<tr>
<td>Lao People’s Democratic Republic Indonesia</td>
<td>Timor-Leste</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>Myanmar</td>
<td></td>
</tr>
<tr>
<td>SOUTHERN AFRICA</td>
<td></td>
</tr>
<tr>
<td>Botswana</td>
<td>Namibia</td>
</tr>
<tr>
<td>Eswatini</td>
<td>South Africa</td>
</tr>
<tr>
<td>Lesotho</td>
<td></td>
</tr>
<tr>
<td>SOUTHERN ASIA</td>
<td></td>
</tr>
<tr>
<td>Afghanistan</td>
<td>Maldives</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>Nepal</td>
</tr>
<tr>
<td>Bhutan</td>
<td>Pakistan</td>
</tr>
<tr>
<td>Country</td>
<td>Country</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>India</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>Iran, Islamic Republic of</td>
<td></td>
</tr>
<tr>
<td>SOUTHERN EUROPE</td>
<td></td>
</tr>
<tr>
<td>Albania</td>
<td>Montenegro</td>
</tr>
<tr>
<td>Bosnia and Herzegovina</td>
<td>North Macedonia</td>
</tr>
<tr>
<td>Croatia</td>
<td>Portugal</td>
</tr>
<tr>
<td>Greece</td>
<td>Serbia</td>
</tr>
<tr>
<td>Italy</td>
<td>Slovenia</td>
</tr>
<tr>
<td>Malta</td>
<td>Spain</td>
</tr>
<tr>
<td>WESTERN AFRICA</td>
<td></td>
</tr>
<tr>
<td>Benin</td>
<td>Liberia</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>Mali</td>
</tr>
<tr>
<td>Cabo Verde</td>
<td>Mauritania</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>Niger</td>
</tr>
<tr>
<td>Gambia</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Ghana</td>
<td>Senegal</td>
</tr>
<tr>
<td>Guinea</td>
<td>Sierra Leone</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>Togo</td>
</tr>
<tr>
<td>WESTERN ASIA</td>
<td></td>
</tr>
<tr>
<td>Armenia</td>
<td>Lebanon</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>Oman</td>
</tr>
<tr>
<td>Bahrain</td>
<td>Palestine</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Qatar</td>
</tr>
<tr>
<td>Georgia</td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Iraq</td>
<td>Syrian Arab Republic</td>
</tr>
<tr>
<td>Israel</td>
<td>Türkiye</td>
</tr>
<tr>
<td>Jordan</td>
<td>United Arab Emirates</td>
</tr>
<tr>
<td>Kuwait</td>
<td>Yemen</td>
</tr>
<tr>
<td>WESTERN EUROPE</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>Belgium</td>
<td>Netherlands</td>
</tr>
<tr>
<td>France</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
</tr>
</tbody>
</table>