ISOPROPYL CITRATE MIXTURE

Prepared at the 17th JECFA (1973), published in FNP 4 (1978) and in FNP 52 (1992). Metals and arsenic specifications revised at the 61st JECFA (2003). An ADI of 0-14 mg/kg bw was established at the 17th JECFA (1973)

SYNONYMS INS No. 384

DEFINITION

Chemical names

Citric acid mixed ester of 2-propanol. The article of commerce, monoisopropyl citrate mixture, is composed of approximately 38 parts by weight of isopropyl citrate in 62 pars by weight of mono- and diglycerides

Structural formula

$$CH_2$$
—COOR
|
HO—CH—COOR
|
CH₂—COOR

where R is either hydrogen or a isopropyl group. The major component of the 38 parts of isopropyl citrate mixture is monoisopropyl citrate (approximately 25 parts), the remainder being diisopropyl citrate (approximately 9 parts) and triisopropyl citrate (approximately 4 parts)

Approximate composition: Monoisopropyl citrate - 27 parts by weight Diisopropyl citrate - 9 parts by weight Triisopropyl citrate - 2 parts by weight

DESCRIPTION Oil miscible semi-solid material. The commercial product, monoisopropyl citrate mixture, is a viscous, colourless syrup exhibiting some crystallization upon standing, and may be further specified as to saponification value, acid value, citric acid and isopropyl content.

FUNCTIONAL USES Antioxidant, sequestrant

CHARACTERISTICS

IDENTIFICATION

Solubility (Vol. 4) Soluble in water and ethanol

Test for citrateReflux 3 g of sample with 50 ml of sodium hydroxide TS for 1 h, and let
stand to cool. This solution is used for the following tests:
(1) Neutralize the solution with a (1 in 20) sulfuric acid solution, add an
excess of mercuric sulfate TS, heat to boil, and add potassium
permanganate TS. The permanganate colour of the solution disappears,
and a white precipitate forms.
(2) Neutralize the solution with hydrochloric acid, add an excess of calcium
chloride TS, and boil. A white crystalline precipitate is formed which is
insoluble in sodium hydroxide TS, but soluble in dilute hydrochloric acid

	TS.
<u>Test for isopropanol</u>	Reflux 2 g of sample with 50 ml of sodium hydroxide TS for 1 h. Distil off 20 ml. Place 8 g of chromic oxide in a flask, add 15 ml water and 2 ml concentrated sulfuric acid. Provide the flask with a reflux condenser and add 5 ml distillate slowly through the condenser. Reflux for 30 min, then cool and distil off 2 ml. Add 3 ml water and 10 ml mercuric sulfate TS to the distillate. Heat in a boiling water bath for 3 min. A white or yellow precipitate within 3 min indicates the presence of isopropanol.
PURITY	
Acids other than citric acid	Should be absent
Alcohols other than isopropanol	Should be absent
Sulfated ash (Vol. 4)	Not more than 0.3%
<u>Lead</u> (Vol. 4)	Not more than 2 mg/kg Determine using an atomic absorption technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the method described in Volume 4, "Instrumental Methods."