ISOMALT

Prepared at the 69th JECFA (2008), published in FAO JECFA Monographs 5 (2008), superseding specifications prepared at the 46th JECFA (1996), published in the Combined Compendium of Food Additive Specifications, FAO JECFA Monographs 1 (2005). An ADI 'not specified' was established at the 29th JECFA (1985).

SYNONYMS

Hydrogenated isomaltulose; INS No. 953

DEFINITION

A mixture of hydrogenated mono- and disaccharides whose principal components are the disaccharides:

Chemical names

6-O-alpha-D-Glucopyranosyl-D-sorbitol (1,6-GPS) and 1-O-alpha-D-Glucopyranosyl-D-mannitol dihydrate (1,1-GPM)

C.A.S. number

64519-82-0

Chemical formula

6-O-alpha-D-Glucopyranosyl-D-sorbitol: C₁₂H₂₄O₁₁ 1-O-alpha-D-Glucopyranosyl-D-mannitol dihydrate: C₁₂H₂₄O₁₁ · 2H₂O

Structural formula

6-O-alpha-D-Glucopyranosyl-D-sorbitol

1-O-alpha-D-Glucopyranosyl-D-mannitol (without molecules of crystal water)

Formula weight

6-O-alpha-D-Glucopyranosyl-D-sorbitol: 344.32

1-O-alpha-D-Glucopyranosyl-D-mannitol dihydrate: 380.32

Assay Not less than 98% of hydrogenated mono- and disaccharides and not

less than 86% of the mixture of 6-O-alpha-D-glucopyranosyl-D-sorbitol and 1-O-alpha-D-glucopyranosyl-D-mannitol on the anhydrous basis

DESCRIPTION Odourless, white, crystalline slightly hygroscopic substance

FUNCTIONAL USES Sweetener, bulking agent, anticaking agent, glazing agent

CHARACTERISTICS

IDENTIFICATION

Soluble in water, very slightly soluble in ethanol

Thin layer chromatography

(Vol. 4)

Passes test

See description under TESTS

PURITY

Water (Vol. 4) Not more than 7.0% (Karl Fischer Titrimetric Method, "General Methods,

Inorganic Components")

Sulfated ash (Vol. 4) Not more than 0.05%

Test 5 g of the sample (Method I)

D-Mannitol Not more than 3%

See Method of Assay

D-Sorbitol Not more than 6%

See Method of Assay

Reducing sugars (Vol. 4) Not more than 0.3%

Proceed as directed under *Reducing Substances (as glucose)*, Method II (under "General Methods, Organic Components"). The weight of

cuprous oxide shall not exceed 50 mg.

Not more than 2 mg/kg

Proceed as directed under Nickel in Polyols (under "General Methods,

Inorganic Components").

Lead (Vol. 4) Not more than 1 mg/kg

Determine using an AAS/ICP-AES technique appropriate to the specified level. The selection of sample size and method of sample preparation may be based on the principles of the methods described in

Volume 4 (under "General Methods, Metallic Impurities").

TESTS

IDENTIFICATION TESTS

Thin layer chromatography

TLC plates

TLC aluminium foils or plates of approx. 12 cm length and coated with a layer of approx. 0.2 mm, Kieselgel 60 F_{254} , Art. 5554, Merck, or equivalent

Reference solution

Dissolve 500 mg of each of the following sugar alcohols in 100 ml of water: Sorbitol, mannitol, lactitol, maltitol, 1-O-alpha-D-gluco-pyranosyl-D-mannitol (1,1-GPM), and 6-O-alpha-D-glucopyranosyl-D-sorbitol (1,6-GPS)

Test solution

Dissolve 500 mg of sample in 100 ml of water

Solvent A

Isopropanol:n-butanol:aqueous boric acid solution (25 mg/ml):acetic acid:propionic acid (50:30:20:2:16;v/v)

Solvent B

Ethylacetate:pyridine:water:acetic acid:propionic acid (50:50:10:5:5;v/v)

Detecting solutions

I 0.1% Na-metaperiodate in water (w/w)
II ethanol:sulfuric acid:anisaldehyde:acetic acid (90:5:1:1;v/v)

Procedure

Apply approximately $0.3~\mu l$ each of the reference and test solution to the bottom of the TLC plate. Dry the spots in warm air. Develop the plate to a height of 10 cm in a developing chamber containing either solvent A or solvent B. Allow the plate to dry in warm air and dip the plate for up to 3 sec into Detecting solution I.

Dry the plate in hot air. Note: The plate should be completely dry on both sides. Dip the plate in Detecting solution II up to 3 sec and dry in hot air until coloured spots become visible. Optionally, the background colour may be brightened in warm steam.

The approximate R_f values and colours of the spots on the TLC-plate of the substances specified above are described as "Compound / Colour / Solvent $A(R_f)$ / Solvent $B(R_f)$ ". See below.

mannitol / reddish (light) / 0.36 / 0.40 sorbitol / brown / 0.36 / 0.36 GPM / blue-grey / 0.28 / 0.16 GPS / blue-grey / 0.25 / 0.13 maltitol / green / 0.26 / 0.22 lactitol / olive-green / 0.23 / 0.14

The R_f values may vary slightly depending on the commercial source of the silica gel plates.

The principal spots in the chromatogram obtained from a test solution of isomalt are similar in R_f value and colour to GPM and GPS.

PURITY TESTS

METHOD OF ASSAY

Internal standard solution

Dissolve suitable quantities of phenyl-ß-D-glucopyranoside and maltitol in water to obtain a solution of about 1 mg phenyl-ß-D-glucopyranoside and 50 mg maltitol per g water.

Standard solutions

Dissolve accurately weighed quantities of 1-O-alpha-D-glucopyranosyl-D-mannitol (1,1-GPM) and 6-O-alpha-D-glucopyranosyl-D-sorbitol (1,6-GPS), calculated as dry substance, in water to obtain two separate solutions having a concentration of about 50 mg per g each. Also prepare an aqueous standard solution containing approx. 1 mg mannitol and 1 mg sorbitol per g.

Sample solution

Dissolve an accurately weighed quantity of the sample (approx. 1 g) in water to obtain a concentration of about 10 g per 100 g.

Procedure

Pipet 100.0 mg of standard solution or sample solution into a glass tube fitted with a screw cap and add 100.0 mg of internal standard solution. Remove the water by lyophilization and dissolve the residue in 1.0 ml of pyridine. Add 4 mg O-benzyl-hydroxylamine hydrochloride, and cap the tube and set it aside for 12 h at room temperature. Then, add 1 ml of N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) and heat to 80° for 12 h shaking occasionally and allow to cool. Inject 1 µl portions of these solutions directly into a gas chromatograph under the following operating conditions:

- Column: Fused silica HT-8 (25 m x 0.22 mm x 0.25 µm), or equivalent
- Injector: Programmed temperature vaporizer: 30°; 270°/min to 300° (49 min)
- Detector: Flame ionization detector: 360°
- Temperature program: 80° (3 min); 10°/min to 210°; 5°/min to 350° (6 min)
- Carrier gas: Helium
- Flow rate: initial flow rate: approx. 1 ml/min at 80° and 1 atm; split flow: 25 ml/min

Approximate retention times

Hydrogenated monosaccharides:

Mannitol 19.5 min

Sorbitol 19.6 min

Internal standards:

Phenyl-ß-D-glucopyranoside 26.8 min

Maltitol 33.5 min

Hydrogenated disaccharides (32 - 36 min)

1,1-GPS 33.9 min

1,1-GPM 34.5 min 1,6-GPS 34.6 min

Calculate the percentages of the individual components, w_l , in the sample according to the following formula:

$$W_{I} (\%) = \frac{a_{I} \times m_{s}}{F_{I} \times a_{s} \times m_{ISOMALT}} \times 100$$

where

 a_l = peak area of component I (μ V·s) a_S = peak area of internal standard (μ V·s) m_S = mass of internal standard used for derivatization (mg d.s.) $m_{ISOMALT}$ = mass of sample used for derivatization (mg d.s.) F_l = relative response factor f_l/f_S f_l = response factor of component I: f_l =(a_l/m_l)x(100/% purity) f_S = response factor of internal standard: f_S =(a_S/m_S)x(100/% purity) m_l , m_S = mass of component I or internal standard used for derivatization of standard sample (mg d.s.)

(NOTE: Use maltitol as internal standard for the calculation of hydrogenated disaccharides (e.g. 1,1-GPM, 1,6-GPS) and phenyl-ß-D-glucoside for the calculation of hydrogenated monosaccharides (mannitol, sorbitol). For the total of other saccharides (hydrogenated or not), subtract the sum of 1,1-GPM, 1,6-GPS, sorbitol and mannitol from 100%.)