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Abstract

National forest assessments (NFA) are
best conducted with sufficiently accurate
and scientifically defensible estimates of
forest attributes. This section discusses the
statistical design of the sampling plan for a
forest inventory including the process used to
define the population to be sampled and the
selection of a sample intended to satisfy the
NFA precision requirements. An experienced
statistician should be a member of any team
designinganational forestinventory. However,
if such an expert is not available, this section
provides guidance and recommendations for
relatively simple sampling designs that reduce
risk and improve chances for success.

1. Introduction

The sampling design to support the technical
program supporting a National Forest
Assessment (NFA) requires a theoretical
design that must be implemented on the
ground (see Implementation of an NFA).

Methods for constructing sampling design
Estimating population means and variances
Estimating sampling errors

Special considerations for tropical forest inventories

Understanding the basic concepts related to
statistical design and estimation methods
are one component of the overall process
for Information management and Data
registration for National Forest Assessments.

Objectives

The goal is to estimate the condition of forests
for an entire nation using data collected from a
sample of field plots. The basic objectives of an
NFA are assumed to be fourfold: (1) to obtain
national estimates of the total area of forest,
subdivided by major categories of forest types
and conditions; the numbers and distributions
of trees by species and size categories; wood
volume by tree characteristics; non-wood
forest products; estimates of change in these
forest attributes; and indicators of biodiversity;
(2) to obtain sufficiently precise estimates
for selected geographic regions such as the
nation, sub-national areas, provinces or states,
and municipalities; (3) to collect sufficient
kinds and amounts of information to satisfy
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international reporting requirements; and (4)
to achieve an acceptable compromise between
cost and the precision and geographic
resolution of estimates. See Variables typically
assessed in National Forest Inventories.

ASSUMPTIONS AND
CONSTRAINTS

Several assumptions underlie the discussion
that follows. First, we assume that expert
statisticians who are experienced in designing
natural resource inventories and analyzing the
data are not available. Second, we assume that
ancillary data in the form of maps depicting
features such as ecological regions, land cover,
soils, elevation, political and administrative
boundaries, and transportation systems
are available. Third, we assume models for
predicting attributes such as individual tree
volumes from basic tree measurements are
available. Even with these assumptions, a full
discussion of all sampling design possibilities
for an NFA is beyond the scope of this
section. Thus, we establish three constraints
that further limit the discussion. First, we
constrain the discussion to relatively simple,
multipurpose designs that can be used reliably
with onlylocal expertise. Second, we constrain
our discussion to designs that are flexible, yet
reduce risks of bias and loss of credibility.
Third, we constrain our discussion to designs
that feature equal probability samples, or in
the case of stratified designs, equal probability
samples within strata.

SIMPLIFYING

WHY USE SAMPLING?

The most precise description of a population
comes from accurate measurements of each
member of the population, which is a census.
However, a census is typically impossible
because of cost and logistical problems.
Imagine trying to measure every tree in a
1-million hectare forest. A sample measures a
portion of the population, and in forestry, this
is usually a very small portion. Estimates based
on data collected from the measured sample
are then extrapolated to the entire population,
most of which has not been measured.

Think of this as “guessing” or “estimating” the
condition of a population based on sampling a
few members of that population. If the sample
is representative of the entire population, then
the estimate will be accurate and less likely
to deviate from the true population value.
Otherwise, estimates will be inaccurate and
misleading; it will not be apparent that the
estimates are inaccurate; and the accuracy
of estimates will not be known because
the true condition of the whole population
will not be known. The best that is possible
is to increase the chances of measuring a
representative sample. This is done by using
scientifically defensible rules to select the
sample, maximizing the number of sample
units observed or measured, and minimizing
the errors in measuring each sample (see Data
quality). It is not difficult to produce data. It is
much more challenging to produce accurate
data with known reliability that will be used
to help make important decisions.

DEFINING THE POPULATION
Scientifically ~ defensible  estimation of
population attributes is based on a formal
body of mathematical theory which must be
respectedifitistobeusedtodefendtheaccuracy
of sample-based estimates. Careful selections
of a sampling frame, plot configuration, and
sampling design are crucial steps in the process
and cannot be accomplished independently
of each other. Each decision has impacts on
the others. The mathematical theory begins
with a precise definition of the population
for which attributes will be estimated. For
example, for a municipality of 5-million ha of
which 1-million ha are forest, the statistical
population could be described in several
different but logical ways:
« Thousands of tree-stands and non-forest
polygons
o Tens of millions of potential 0.1-ha
sampling plots
o Ten million remotely sensed 30m x 30m
pixels
« Billions of trees
« Infinite number of points
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See the section on Observation units for
more details.

There is no one best definition of a
population for forest inventories. The key
issue in basic applications of forest sampling is
to define precisely the geographic boundaries
of the targeted population, such as all lands,
both forest and non-forest, within a nation
that are outside of the geopolitical boundaries
of urban areas. It is not uncommon to
discover that portions of a target population
cannot be sampled. Examples include areas
that are remote and inaccessible or unsafe
to access. These areas should be precisely
identified in a cartographic form, even though
the true boundaries might not be obvious,
and excluded from the sampled population.
Scientifically defensible estimates must be
limited to the sampled population only.

CHOOSING A SAMPLING FRAME

We  distinguish among three terms:
sampling frame, sampling design, and plot
configuration. Sampling frame refers to the
set of all possible sample units; sampling
design refers to the selection of a subset of
sample units to represent the population; and
plot configuration refers to the size, shape,
and components of the field plot.

Some advantages are gained with a sampling
frame that considers a forest to be an infinite
population of points. One approach to
sampling with this sampling frame is to
use the popular Bitterlich plot which is
efficient for estimating variables correlated
with tree size. Alternative point-based plot
configurations measure a support region and
impute its attributes to a point. When near a
boundary or stand edge, a point is more easily
assigned to one side or the other, whereas
plots with different designs can straddle edges
or boundaries. We recommend considering
the forest population to be an infinite set of
points and that physical measurements in a
support region be used to describe conditions
at a sample point.

CHOOSING A PLOT CONFIGURATION
The plot configuration consists of the plot size

and shape and determines the variables to be
measured at each sample plotlocation. Choices
for plot configurations include variable
area plots, fixed area plots, subdivisions of
plots into subplots, and cluster plots, all of
which require size and shape considerations.
Variable area plots using Bitterlich sampling
are particularly effective for obtaining precise
estimates of forest attributes related to tree
size. Fixed area plots, while not necessarily
optimal for any particular forest attribute,
are an excellent compromise when sampling
is intended to produce estimates of a wide
variety of forest attributes and tend to be
more compatible with ancillary data. Cluster
sampling reduces travel between plots while
providing a sufficient number of plots. The
optimal shape and size may be addressed using
sampling simulation and prior information,
although circular plots are often used in forest
inventories.

Issues related to the selection of a plot
configuration are discussed in the sections on
Observations units and Optimization of plot
designs.

MEASURING SAMPLE PLOTS

The section on Observation and Measurement
for National Forest Assessments summarizes
the major considerations relevant to measuring
sample plots. For more detailed information,
see the on-line reference Statistical Techniques
for Sampling and Monitoring Natural Resources
(Schreuder et al.,, 2004). For this section,
we note two aspects of this issue, the use of
remotely sensed data for measuring plots and
temporary versus permanent plots.

First, remotely sensed data from medium-
resolution satellites and high-altitude aerial
photography (1:24,000 to 1:60,000 scales)
provide cost-effective measurements for coarse
indicators of forest conditions, mostly forest
area changes. However, most measurements
of detailed forest conditions are impossible
with these sensors (see Remote sensing for
National Forest Assessments). More detailed
measurements of forest conditions may be
obtained with low-altitude aerial photography
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and sensors such as lidar. All these sensors
are currently expensive and have narrow
fields of view that are not currently capable
of producing border-to-border coverage of
an entire nation. However, in principle, these
sensors could be used to measure a sample of
locations in a national survey. For example, it
may be cost efficient to measure a plot initially
with data from a remote sensor to determine
if the plot has accessible forest land cover or
forest land use. If not, field crew visits to such
locations may not be warranted.

Second, estimating changes and trends in a
nation’s forests is often an important part of
an NFA. If the locations of sample plots are
sufficiently documented, then the same plots
can be re-measured over time to obtain more
precise estimates of forest change such as tree
growth, mortality, harvesting, regeneration,
and changes in the areas of forest conditions
and land use categories. (see sections on
Temporal vs. permanent observations,
Observation and Measurement, and Change
assessment for more details). Remeasurement
of plots increases estimation efficiency and
contributes to better understanding of the
components of change. However, if permanent
plots are used, their locations must be very
accurately documented. This can be done by
driving a pin into the ground at the center or
corner of a plot, and carefully documenting
how to find the pin from a convenient starting
location, perhaps several kilometers distant.
The pin should be hidden from normal view to
keep the plot truly representative of thousands
of hectares that will never be measured. A
sample plot will not be representative if it
receives special treatment such as protection
from harvesting or other disturbances. An
obvious pin in the ground could influence
how the location is treated by other humans.

Although remeasurement of the same
trees produces the most precise estimates of
change, this approach is more costly because
the same plot centers and trees must be
relocated at the time of each measurement.
Alternatives for estimating change from
temporary plots include estimation of

tree growth from increment borings and
gross estimation of forest area and volume
change by comparing independent estimates
obtained from measurements of different sets
of temporary plots at different points in time.
However, harvest, mortality, and regeneration
are difficult to estimate using data from
temporary plots. Thus, where possible, we
recommend the use of permanent plots or a
combination of permanent and temporary
plots (e.g. Ranneby et al., 1987).

2. Sampling design

There are two general sampling approaches:
subjective or purposive sampling and
probability sampling. Subjective sampling
attempts to use professional judgment to select
sample units believed to be representative of
the entire population. These units are often
convenient to measure which reduces cost.
Although data gathered in this way accurately
describe the conditions on the sampled sites,
they may not accurately characterize the
entire population. Supporters of subjective
sampling trust the ability of experts to select
a representative sample and argue that
this approach is good enough for practical
purposes. In some simple situations, this may
be true. But what if a user of the data does
not have the same confidence in the experts?
Expensive data can become worthless because
the sampling design is not defensible under
scientific criticism. Also, convenient sampling
sites are often near roads, which are frequently
associated with unique landforms, land uses,
management histories, and landscape patterns.
Are such sites truly representative of the entire
population? The answer is debatable. It is far
easier to discredit the accuracy of population
estimates from a subjective sample than prove
otherwise.

Probability sampling replaces subjective
judgments with objective rules based on
known probabilities of selection for each
member of a population. For example, assume
a 1-million ha forest comprises a population of
10m x 10m plots. There would be 100-million
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of those plots in the population. If one of
those plots were selected at random, then
its probability of selection would be 1/100
000 000. If a simple random sample of 1 000
plots were selected to estimate conditions in
the entire 1-million ha population, then each
member of that population has a probability
of selection of approximately 1 000/100 000
000=1/100 000, and each plot measured in
the sample could be seen as representing 99
999 other unmeasured plots. The important
lesson is that probability sampling is an
objective method with precise rules and a
mathematical foundation for estimating
population attributes based on a sample.
The probability that an expert will select any
one potential sample plot is unknown, and
the mathematics of subjective sampling can
not be applied in a scientifically defensible
way.  Thus, we recommend probability
rather than subjective sampling and further
recommend equal probability sampling in
which possible sampling unit locations have
equal probabilities of selection for the sample.

SELECTING A PROBABILITY SAMPLING
DESIGN

Many of the difficulties associated with
selecting a sampling design arise from two
factors: first, sampling units are distributed
in a space and observations of them may be
spatially correlated, and second, different
sampling designs have different costs. Spatial
correlation among observations of variables
of interest strongly influences selection of
sampling designs.  Ecological, climatic,
and soil factors and forestry management
practices cause observations from plots that
are near to each other to be, on average, more
similar than observations from plots that are
farther apart. The result is that, in a strict
sense, construction of a completely optimal
sampling design is an impossible task because
the numerous NFA measured and derived
variables vary quite differently in space. Thus,
because optimal sampling designs would be
different for different variables, optimization
may require focusing on minimizing the

standard error of a single important variable
such as wood volume or on a weighted
function of the standard errors for a small
number of variables. One partial solution is
to minimize the effects of spatial correlation
by establishing sampling locations as far apart
as possible. This also accommodates the fact
that sample plot observations that deviate
more from each other, bring more information
to the sample. In forest sampling, this often
suggests hexagonal sampling designs. The
primary sampling costs are attributed to
traveling to and from the sampling unit
location and measuring the unit. These costs,
in turn depend on the structure of landscape
and forests, measurements to be taken, and
topographic, economic and transportations
conditions.

A common starting point in selecting
a sampling design is knowledge of the
acceptable upper bounds for the standard
errors of the estimates and an upper bound for
cost. Optimizing the sampling design, given
the sampling frame and plot configuration,
involves selecting a procedure for spatially
distributing the sampling unit locations in
such a way that standard errors are minimized
while not exceeding the total allowable costs.
Sometimes this will not be possible, and
compromises may be necessary.

SIMPLE RANDOM SAMPLING

A simple random sample places sample plots
randomly within the sampled population
(Figure 1a). By chance, there are spatial clusters
and voids in the plot distribution; however,
this remains a valid probability sample. The
geographic coordinates for each sample plot
in a random sample may be selected with a
random number generator with the allowable
coordinates restricted to the sampled
population. Otherwise, no consideration is
given to safety, difficulty of measuring plots,
or travel to and from plot locations. This is
the least risky equal-probability sampling
design, but it is also usually the least efficient
with respect to both cost and the precision
of estimates, partially because of spatial



correlation among observations.

SYSTEMATIC SAMPLING

A systematic sample uses a fixed grid or array
to assign plots in a regular pattern (Figure 1b).
The advantage of systematic sampling is that it
maximizes the average distance between plots
and therefore minimizes spatial correlation
among observations and increases statistical
efficiency. In addition, a systematic sample,
which is clearly seen to be representative
in some sense, can be very convincing to
decision makers who do not have experience
with sampling. Systematic samples may be
based on rectangular grids or hexagonal
arrays. For example, a sample plot could be
established at the intersections of a 2km x
2km grid. A random number is used to select
the starting point and orientation for this grid,
but no other random numbers are required.
This sampling design is common in forestry.
The greatest risk is that the orientation of

the grid may, by chance, coincide with or be
parallel to natural or man-made features such
as roads or gravel ridges that resulted from
melting glaciers. For very large geographic
areas, orientation of gridlines along lines
of longitude should be avoided. In higher
latitudes the converging nature of these
north-south gridlines may cause sample
plot locations to be closer together in higher
latitudes than in lower latitudes. Sampling
designs based on hexagonal arrays alleviate
this problem (White et al., 1992).

Systematic unaligned sampling designs
combine features of both simple random
and systematic sampling designs.  With

these designs, a sample plot is assigned to a
randomly selected location within each grid
or array cell (Figure 1c).

Figure 1.

(a) simple random sampling design, (b) aligned systematic sampling design, (c) unaligned systematic
sampling design, (d) unaligned, clustered, systematic sampling design with the same number of plots but

grouped into clusters.



CLUSTER SAMPLING

For practical reasons such as increasing cost
efficiency and reducing field crew travel,
sample plots may be organized into clusters,
thus leading to systematic cluster sampling
and stratified systematic cluster sampling. In
systematic cluster sampling, the clusters are
distributed throughout the population using
grids or polygons such as hexagons.

Several questions are relevant when
planning a cluster-based sampling design: (1)
what is the spacing between clusters? (2) what
is shape of the cluster? (3) what is the number
of plots per cluster? and (4) what is the sample
plot configuration? To answer these questions,
preliminary information about the spatial
distribution and correlation of the variables of
interest is needed. Correlation, as a function
of distance between field plots, estimated
using variograms can be used to compare the
efficiencies of different sampling designs.

2.1 Stratified sampling

Stratified sampling entails first dividing
the population into non-overlapping
subpopulations called strata that together
comprise the entire population and then
drawing an independent sample from each
stratum. If the sample in each stratum is a
simple random sample, the whole procedure
is described as stratified random sampling.
Numerous reasons may be given as justification
for stratified sampling (Cochran, 1977;
Schreuder et al., 1993). First, stratification is
used to increase the precision of population
estimates. To understand the potential for
gain in precision that may be achieved with
stratification, some notation and formulae
are necessary. With simple random sampling
(SRS), the estimate of the population mean is
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and the estimate of the variance of the mean
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is the sample estimate of the population
variance. Cochran (1977) provides basic
formulae for stratified estimation. Ignoring
finite population correction factors and
estimation errors in stratum weights, an
unbiased estimator of the population mean
and variance are,
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are the within stratum means and variances,
respectively; h=1, 2, ..., L denote strata;
j denotes observations within strata; nh
denotes the number of sample observations
within the hth stratum with n +n_+...+n =n;
and W, is the stratum weight representing
the proportion of the population in the h™
stratum. The effects of stratification and
stratified estimation on precision are often
assessed using relative efficiency, RE, defined
as,
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where RE>1 indicates a beneficial effect.



Relative efficiency may be interpreted as the
increase in the overall sample size that would
be necessary to achieve the same precision
using estimation based on simple random
sampling as is achieved using stratification
and stratified estimation. From a quantitative
perspective, precision gains are realized when
variances of estimated stratum means are
substantially less than the variance of the

) and/
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or when strata with large .
represent small proportions of the
population (i.e., when W, is small). From a
qualitative perspective, precision gains are
realized when heterogeneous populations are
divided into more homogenous
subpopulations. This typically means that the
strata have substantially different means,
variances, or both.

A second reason for stratification is that it
may contribute to avoiding bias, depending
on the estimator selected. For example,
NFA field crews generally are granted access
to plot locations on publicly owned lands.
However, if permission of private land owners
is required to measure sample plots on their
lands, inevitably some private land owners
will deny access. In extreme cases, the ratio
of privately owned to publicly owned plots in
the accessible portion of the sample may be
considerably less than the ratio of privately
owned to publicly owned forest lands in the
population. If the species compositions and/
or management practices are substantially
different on privately owned and publicly
owned forest lands, bias may occur. One
solution is to stratify lands by ownership, thus
leading to independent sample estimates for
the two ownership strata (McRoberts, 2003).

A third reason for stratification is to
accommodate different sampling protocols or
different estimation procedures for different
subpopulations. For example, a substantial
portion of sampling costs may be attributed to
travel to and from plot locations. If data from
remote sensors may be used to determine
that some plots are located on non-forest

land, then travel costs may be substantially
reduced by not sending field crews to these
plot locations. As a result of the different
measurement technique, however, a different
estimator may be required for these strata.
The greatest benefits of stratified estimation
are realized when the population is stratified
and stratum sample sizes are determined
before sampling is conducted. The process
of determining stratum sample sizes or,
equivalently, allocating samples to strata, may
be accomplished in several different ways and
for several different purposes. Frequently
samples are allocated to strata in proportion
to some attribute of the strata. An easily
implemented approach is to allocate sample
plots to strata in proportion to strata sizes.
If simple random or systematic sampling is
used within strata, then this approach leads to
equal probability samples within strata which
may simplify estimation. However, with this
approach, the variances of stratum means may
differ greatly. If comparably precise estimates
of stratum means are desired, then samples
may be allocated to strata in proportion to
stratum variances. A potential disadvantage
of this approach is that good estimates of
stratum variances are necessary before samples
are allocated to strata. Finally, it may be that
estimates of means for some strata are more
important than others. In this case, samples
may be allocated to strata in proportion to a
subjective assessment of strata importance.
Often the sampling objectives prohibit
stratified random sampling. For example a
systematic sampling design may be used as a
means of optimizing the precision of estimates
for multiple variables simultaneously. Even
though the greatest benefits of stratification
may not be realized for any particular
variable, the beneficial effects of increasing
precision and precluding estimation bias may
still warrant post-sampling stratification and
stratified estimation. Thus, even if stratified
sampling is not used, we recommend
consideration of post-sampling stratified
estimation because large increases in precision
may often be realized with little additional



cost or effort.

Almost any source of data can be used
to create strata as long as two tasks can be
accomplished in a consistent manner. First,
stratum weights, calculated as the proportion
of the population represented by each stratum,
must be determined. Second, each plot must
be assigned to one and only one stratum. The
increasing availability of diverse thematic
digital data layers opens vast possibilities
for sources of data that can be used to create
strata. In addition, the increasing availability
of geographic information systems (GIS)
greatly simplifies accomplishment of the two
tasks. One popular choice of stratification
data is land cover classifications from which
aggregated forest and non-forest classes may
be constructed and used as strata (McRoberts,
2002). Using a GIS with such a layer greatly
simplifies the two stratification tasks. Within
the GIS, each mapping unit of the land
cover classification is assigned to a stratum
based on the class assigned to the mapping
unit. Calculation of stratum weights is then
simply a matter of using GIS functionality to
determine the total area of all mapping units
assigned to the same stratum and dividing by
the total area of the sampled population. A
plot is assigned to the stratum of the mapping
unit containing its centers. Other choices of
digital data layers that can be used to create
strata include, but are not limited to, soil maps,
climate division maps, ecological provinces,
administrative boundaries, ownership maps,
and land management units.

2.2 Ratio Estimators and
Matérn’s Error estimators

Although a discussion of statistical estimators
is provided in another section or may be
obtained from the online book, Statistical
Techniques for Sampling and Monitoring
Natural Resources (Schreuder et al., 2004),
we note here the importance of selecting
estimators thatare consistent with the sampling
design in order to obtain valid variance
estimates. With systematic and cluster-based

sampling designs it is particularly important
that estimators properly account for possible
spatial correlation among observations.
Because of their utility with sampling designs
that must accommodate spatial correlation,
we provide a brief discussion of Matérn
estimators (Matérn, 1960).

Because forest inventory estimates are
frequently either means or totals for either
area or volume, the relevant derived variables
in forest inventory are often of the form

M= [9]

where X and Y are expectations of random
variables, x and y. For example, consider
estimation of mean forest area per land use
stratum for sample plots that may intersect
multiple strata, all within the category of
forest land. One method for accommodating
this phenomenon that is particularly useful
with point sampling is to use the information
from the center point only. Let x=1 when the
center point of the plot belongs to the stratum
in question and xi=0 otherwise, and let yi =1
when the center point is on forest land and
yi=0 otherwise. Then the ratio estimator for
mean area is
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where n is the number of sampling units.
Let E(.) denote statistical expectation; then,

Emy=—=== , [11]
(m) -

means that m is approximately unbiased
when n is large.

The estimation of standard errors is
complicated by spatial correlation that may
arise from trend-like changes in variables and
either systematic or cluster sampling. Matérn
(1947, 1960) suggested the error variance,
E(m-M)?, as a measure of the reliability of the



estimator and also proposed a variance
estimator. Let i denote field plots; let r denote
clusters of field plots; and consider the cluster
residuals, where zZ=x-my where

Xr=2xi and yr=zyi
er er

Assume that the residuals form a realization
of a second order stationary (weakly
stationary) stochastic process. The variance of
the process can be estimated by means of

quadratic forms [ = E E CcC z2Z
rsTr— s
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where r and s both refer
to clusters of field plots. Estimators of this
form are unbiased if the process z is spatially
uncorrelated and conservative if the process
is positively correlated (Matérn, 1960). This
approach has been used in the Swedish and
Finnish inventories (cf. Ranneby, 1981, see
also Tomppo et al., 1997, and Heikkinen,
2006) and is applied by sampling strata as
follows. Within each stratum, the group g of
four field plot clusters (r, r, 7, ,)
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Figure 2.

Groups of clusters and clusters of sample plots.
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is composed in such a way that each cluster
belongs to four different groups (Figure 2).
The deviance of the cluster mean, y_, from the
stratum mean y is computed for each cluster
r. Denote zr=(j -y)n_, where n is the number
of relevant sample points in cluster r (for this
example, n =4). The weights ¢ =c = c =c,
= 5 are often used. The quadratic forms can
then be expressedas Tg=(z -z ,-z,-7 )*/4
and the resulting standard error estimators for
each stratum are

] V‘Z T, | -
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where g denotes a group of clusters in the
stratum, i denotes plots in the stratum, and k
is the number of clusters in each cluster group
(for this example, k =1). The standard error
estimators for the entire study area can be
obtained by combining the stratum-specific
estimators with the usual formula for stratified
sampling (Egs. [4] and [5]). This procedure is
relevant for strata having large numbers of
field plots, preferably at least several hundred.

A

3. Sample size

Determination of sample size is one of the
most important steps in constructing a
sampling design. If the sample is too small,
then uncertainty will be great; if the sample is
too large, then the cost will be unnecessarily
high. It is possible to quantify the expected
confidence in future estimates made from a
valid probability sample. As the number of
sample plots increases, the variance of the
estimation error decreases, the precision of the
estimate increases, and more confidence can
be placed in the estimate. Usually, the exact
value of the estimate is known but not the
true condition of the forest. With probability
samples, the probability that an estimate is
within a specified distance from the true
value may be determined. These are the roles
of “confidence interval,” an estimated range
of proportions which is likely to include the
true, but unknown, proportion of forest, and



the “confidence coefficient,” the probability
that similar confidence intervals constructed
using different samples will contain the true
proportion of forest.

The simplest case is estimating proportions
with a simple random sample; for example
estimating the proportion of a nation that is
forested. Suppose an NFA covers a sampled
population of 5-million ha and that in a simple
random sample with n=1 000 plots, 400 are
forested. The estimated proportion of forest
is 40%, but what is the level of confidence
that can be placed in this estimate? Suppose
a confidence coefficient of 80% is acceptable.
This means for 80 sample plots, the true, but
unknown, percentage of forest is within the
confidence interval. From available tables
and figures (Czaplewski, 2003), with n=1 000,
and an estimate of 40% forest, the confidence
interval is 38.0% to 42.0%. As another
example, assume a rare forest type exists in
the population, but the exact amount is not
known. However, none of this rare forest was
observed in the simple random sample of
n=1 000 plots, and the estimated percentage
of the nation in this rare forest condition is
0%. For the same 80% confidence coefhicient,
the confidence interval for this estimate is
0.0% to 0.2%. Thus, the estimate of the area
of this rare forest type in the entire 5-million
hectare nation is 0 to 10 000-ha. The final
example is a 100 000-ha municipality for
which measurement of a sample of n=20 of
the 1 000 plots, revealed that 18 are forested.
The estimate for this municipality is 90%
forest cover, with a confidence interval of
75.5% to 97.3%, or 75 500- to 97 300-ha.
Other calculations of sample sizes are possible
with interactive “sample size calculators” that
are available on the Internet. These examples
demonstrate that accurate national estimates
for common types of forest cover are possible
with relatively few sample plots. However,
larger sample sizes are often needed if the
NFA requires estimates of rare forest types or
small portions of the nation. It is the sample
size that determines the precision of estimates
in an NFA, not the size of the entire sampled

population.

Determining the required sample size
requires an estimate of the standard deviation
of the differences between individual plot-
level values and their average value. This
standard deviation may be estimated with
a pilot study or inventory that measures a
small sample of forest plots to determine
the variability among them. For example,
assume the pilot inventory includes 60 plots,
and wood volume is measured on each plot.
Further, suppose that the mean volume is
=100 m3/ha, the variance among plots is
=2 500 mé6/ha2, and the standard deviation
is =50 m3/ha. If observations from the
pilot plots are normally distributed, about
1/6th of the plots will have (100-50)=50 m3/
ha or less, and another 1/6th of the 60 plots
have 100+50=150 m3/ha or more. Assume
the precision requirement for the NFA is
to estimate mean wood volume per hectare
to within a +5% “tolerance” or “maximum
allowable difference” (Dmax=0.05) with a 66%
confidence coefficient. The required sample
size n is approximately 100 sample plots.

If this NFA precision requirement is for
the entire nation, then 100 sample plots are
sufficient. If this NFA accuracy precision is for
each of 10 sub-national units, then a total of
1 000 sample plots is necessary. Sample sizes
increase greatly as the acceptable tolerance
becomes smaller. A tolerance of +1% would
require the sample size to increase from
n=100 to n=2 500 sample plots (Eq. 15) in this
example. The required sample size increases
forlarger confidence coefficients. For example,
it requires four-times more sample plots to
improve precision from a 66% confidence
coefficient to the 95% level. More exact and
detailed calculations of required sample sizes
are possible with the interactive “sample size
calculators” that are available on the internet.
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4. Comparing sampling designs

An effective way to compare sampling designs
is via simulation if a forest area model is
available. The model may be obtained from
a previous inventory or from satellite image-
based estimation of variables of interest.
An example of the standard errors obtained
from sampling designs for estimating mean
growing stock volume is shown in Figure 3.
The test site is in North Finland and has land
area of 6.47 million hectares, forest land area
of 4.19 million hectares, and mean volume on
forest land of 52.7 m3/ha.

A pixel level, border-to-border forest map
has been produced using field data from the
preceding inventory, satellite images, and
digital map data (Tomppo & Halme, 2004;
Tomppo, 2004). Satellite images of different
resolution provide one information source, in
addition to existing maps. In addition, a pilot
inventory may be used to collect information
for planning the final sampling design.
Representative sub-areas can be selected from
the population where pilot inventories may be
conducted. However, these pilot inventories
must be acknowledged and accepted as less
than optimal. In addition, new sampling
designs can be created using information
from previous inventories as has been the case
in countries where forest inventories have
been conducted since the 1920s and 1930s
(e.g., Ilvessalo, 1927).
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Figure (3). Standard errors based on sampling sim-
ulations with different distances between field plots
and with numbers of plots per cluster ranging from 9
to 17. The distance between clusters is 10 km. (Figure
from Tomppo, et al. 2001; constructed by Helena
Henttonen)
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5. Sampling considerations for
tropical forest inventories

In recent years, concern for the effects of
climate change and actions to mitigate those
effects have motivated intense interest in
forest inventories in tropical countries for
purposes of estimating carbon and carbon
change. Such inventories, often characterized
as monitoring, reporting, and verification
(MRV) systems when targeted to UNFCCC
REDD (Reduction of Emissions from
Deforestation and Forest Degradation)
purposes, are similar to national forest
inventories (NFI) although the MRV emphasis
may be restricted to biomass-related variables
and the MRV population of interest may be
restricted to lands that are subject to human-
induced greenhouse gas emissions. However,
because of the similarities between MRVs
and NFIs, tropical developing countries often
design their NFIs so that they can also serve
as MRVs or they design their MRVs in such a
manner that they can easily be extended to a
complete NFI. Thus, the guidance articulated
below pertains equally to MRVs as to NFIs.

Bydefinition,a monitoring programincludes
emphasis on change and trends. In addition,
in recent years NFIs have come to place
increased emphasis on change and trends.
Therefore, selection of plot configurations,
sampling designs, and perhaps stratification
schemes are driven at least partially by the
desire to estimate change.

PLOT CONFIGURATION

Selection of a plot configuration is based on
multiple general principles, many of which
are the same for boreal, temporal, and tropical
inventories, although some are also different.
Precise estimation of change is known to
be more difficult than precise estimation of
current conditions, particularly when the
change is only for a small area. However,
the precision of change estimates can be
increased by remeasuring the same plots on
successive occasions. In addition, the land
area of interest could be stratified for variance



reduction purposes using a variable related to
the likelihood of change. Thus, the emphasis
on estimation of change in tropical inventories
argues in favor of a relatively large proportion
of permanent plots which, in turn, argues in
favor of marking or determining the locations
of trees so they can be relocated for successive
inventories. Although  establishment
and measurement of a temporary plot
is less expensive than establishment
and measurement of a permanent plot,
establishment and measurement of different
temporary plots on two occasions is not
necessarily less expensive than establishment,
measurement, and remeasurement of a single
permanent plot.

Although no strong consensus exists
regarding plot shape, circular plots are often
preferred because they require only single
control points, the plot centers. Rectangular
plots require four control points, one at each
corner. In addition, for a given plot area, a
circular plot has a smaller perimeter meaning
that fewer decisions will be necessary as to
whether particular trees are or are not on
the plot. Also, determining coordinates for
individual trees, which may be necessary
for assessing their change, may be easier
for circular plots which have only a single
control point than for rectangular plots which
have four control points. However, if tree
densities are exceptionally large, long, narrow,
rectangular plots may be a more feasible
alternative.

For purposes of logistical efficiency,
monitoring and inventory programs typically
configure plots in clusters. Because of
expected access problems, configuring plots
in clusters may be even more crucial for
tropical programs. Thus, individual plot size
and the number of plots within clusters are
subject to multiple important considerations
all of which are generally related to logistical,
cost, and precision considerations (Tomppo
et al., 2010a, 2011; Scott, 1993). First, plots
should be small enough and few enough
within clusters so that a field crew can
measure the entire cluster in a single day. The

greatest proportion of the cost of measuring
a plot in boreal and temporal forests is travel
to and from the plot location; this proportion
is likely to be even greater for tropical forests
for which many regions are remote and
nearly inaccessible. Thus, greater efficiency
is achieved if field crews are not required to
return to the same plot location on multiple
days. Second, plot features such as radius for
circular plots or lengths for rectangular plots
must be measured on a horizontal plane, not
along irregular terrain. Because measurement
on ahorizontal plane is more difficult for larger
plots, particularly in hilly and mountainous
terrain, smaller plots are again preferable.
Third, establishment of permanent rather
than temporary plots to facilitate estimation
of change usually requires either marking
or determining coordinates for individual
trees. The latter approach is more difficult for
large plots in dense tropical forests because
more trees will be located between the tree of
interest and control points. An argument in
favor of larger plots for tropical inventories
is that tropical forests are typically more
diverse than boreal and temperate forests,
meaning that the total area inventoried at
each sampling location should be greater to
capture the greater diversity. However, this
greater size could be achieved by increasing
the number of small plots in the same plot
cluster. This approach is cost efficient when
the spatial correlations among observations of
the variables of interest are large but decrease
with increasing distance.

Greater sampling efficiency is also achieved
by using small subplots for measurement of
smaller diameter trees. For circular plots, the
subplots are usually nested, i.e., they are in the
form of concentric circles, all with the same
center. The particular sizes of the subplots
and the diameter thresholds corresponding to
the subplots should be based on the expected
number of trees to be found on the subplots,
the expected similarities of trees, and the
travel time between subplots of the same plot
or plots in the same cluster.
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Finally, the remote and mostly inaccessible
nature of many tropical forests means that
inventories may have to rely on a combination
of plot and remotely sensed data. Thus,
remote sensing considerations may be
necessary when selecting a plot configuration.
As examples, a plot should be large enough
to constitute an adequate sample of the trees
on the ground element corresponding to
the remotely sensed element (e.g., satellite
image pixel, lidar footprint) that contains the
ground element center. In addition, a desire
to align different plots in the same cluster
with different remotely sensed elements may
require that distances between plots be at least
as great as the dimensions of the remotely
sensed elements.

SAMPLING DESIGN
Selection of a sampling design for a tropical
forest inventory entails consideration of
multiple principles, also. First, spatial balance
is generally a preferred feature of sampling
designs, meaning that large geographic
regions of the population do not remain
unsampled. Spatial balance is often achieved
by incorporating a systematic component
into the sampling design. The systematic
component may be in form of a network of
perpendicular grid lines or a tessellation
of the population into regular polygons.
Spatially aligned designs establish plots at grid
intersections or centers of polygons, whereas
spatially unaligned designs establish plots at
random locations within the rectangles formed
by the grid lines or the regular polygons.
Remote sensing considerations may also
be appropriate when selecting a sampling
design. For example, tropical forests are often
characterized as having relatively few days
without cloud cover. Thus, cloud-free imagery
for satellite-based sensors such as Landsat or
SPOT may be difficult to obtain. Lidar data,
which are currently acquired from airborne
platforms and use laser techniques, are often
proposed as an alternative. In addition, laser
pulses penetrate forest canopies and produce
useful information for estimating volume,
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biomass, and the carbon content of trees.
If plots are located at the intersections of
perpendicular grids, acquisition of lidar data
from airborne platforms in strips is facilitated
because straight flight lines can be used.

Finally, when constructing grid networks
and tessellations, consideration should be
given to use of equal area projections. If not,
then plots located at greater distances from
the equator will represent less population
area than plots located closer to the equator.
Although weighting schemes can be used
with unequal area projections, they are often
complex and bothersome.

As previously noted, the greatest proportion
of the cost of measuring a plot is the travel to
and from the plot location; this proportion
may be very large in tropical forests with
remote and inaccessible regions (Tomppo
et al, 2010a, 2011). Thus, cost efficiency
dictates that plots be established in clusters
rather than singly. Multiple approaches to
cluster sampling are popular. One approach
is to configure a plot as multiple subplots in
a regular pattern and in close proximity to
each other (McRoberts et al., 2005). With
this approach, the data for all subplots may be
aggregated and attributed to the plot center. A
second approach is to establish plots in clusters
configured as rectangles, half-rectangles, or
other geographic shapes (Tomppo, 2006). A
third approach is two-stage cluster sampling.
With this approach, primary sampling units
such as polygons in the form of large rectangles
are first randomly selected, and then multiple
secondary sampling units in the form of plots
are established within the selected polygons
at randomly selected locations. When using
cluster sampling, consideration should
be given to the spatial correlation among
observations for plots within the same cluster.
If distances between pairs of plots are less
than the range of spatial correlation, then
observations will tend to be similar and the
sampling will tend to be less efficient.



STRATIFICATION

Stratified approaches to sampling are used for
multiplereasonsbut primarilyto vary sampling
intensities to accommodate selected criteria.
For example, for an MRV which emphasizes
geographic regions subject to human-induced
carbon emissions, lesser sampling intensities
may be acceptable for remote, inaccessible
regions that are less likely to be developed or
harvested. In addition, the cost associated
with greater sampling intensities in remote
regions may be prohibitive. Nevertheless,
sampling, albeit with lesser intensities, must
be conducted in these regions to achieve
spatial balance.

Multiple principles also guide stratified
approaches to sampling. First, strata with
stable boundaries are generally preferable.
Otherwise, changes to boundaries of strata
with different sampling intensities lead to
different sampling inclusion probabilities and
complicate estimation. In addition, stratified
estimation requires that a plot be assigned
to one and only one stratum. If the stratum
to which a plot is assigned changes between
measurements, then difficulties arise as to the
stratum to which a plot change observation
should be assigned. Thus, strata defined
by topography, climatic zones, biomes, or
political boundaries may be preferable to
strata defined by forest attributes such as
density or perhaps forest type.

Stratifiedsamplingismostoftenimplemented
using one of three plot allocation schemes.
With equal allocation, the same number of
plots is allocated to all strata, regardless of
strata sizes. This scheme is preferred if the
objective is estimates for individual strata.
With optimal allocation, sampling intensities
selected for strata are based on optimization
criteria such as measurement costs and/or
within-stratum variation of observations
of variables of interests such as volume or
biomass, or their likely changes. Greater
sampling intensities are selected for strata with
greater variation and/or lesser measurement
costs. With proportional allocation, sampling
intensities selected for strata are proportional

to strata sizes. Cochran (1977) provides
a comprehensive discussion regarding
alternative strategies. For tropical countries
with large remote and nearly inaccessible
regions, some form of optimal allocation
will usually be necessary to mitigate the
excessive costs associated with sampling these
regions. Proportional and optimal allocation
can be easily implemented using sampling
designs based on networks of perpendicular
grid lines. With proportional allocation,
plots or plot clusters are established at grid
intersections without regard to the stratum
associated with the grid intersection. With
optimal allocation, sampling intensities can be
increased or decreased for different strata by
selection of grid intersections at which plots
are established. For example, if the sampling
intensity is to be reduced by a factor of four,
plots can be established at the intersections of
only every second grid line in each direction.

CASE STUDY - TANZANIA

For a sampling design for Tanzania, Tomppo
et al. (2010a) used double sampling for
stratification and optimal allocation of plots
to strata. The first-phase sample consisted of
an office assessment of a dense grid of field
plots for assignment to volume and cost
classes. Based on these assessments, strata
were constructed using predicted cluster-level
average volume of growing stock and
estimated cost to measure a plot cluster.
Volume classes were based on volume

predictions  using  satellite  imagery,
observations for ground plots outside
Tanzania, and robust models whose

predictions were calibrated using areal volume
estimates for Tanzania. Neyman allocation
(Cochran, 1977) was used to select boundaries
for the volume classes so as to maximize the
precision of the overall volume estimate
assuming a fixed sample size. Cost classes
were based on GIS analyses and local expert
opinion of the number of days (one, two, more
than two) necessary to measure a plot cluster.
Selection of the class intervals, which affects
the gain that can beachieved with stratification,
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requires greater investigation. The second-
phase sample consists of field measurement of
plots where within-strata sampling intensities
were selected using optimal allocation
(Cochran, 1977). With optimal allocation,
sampling intensities are proportional to the

quantity O, / A/Cp  where o, s the

within-stratum  standard deviation for
observations of the variable of interest (mean
growing stock volume) and ch is the average
cost in terms of measurement time for a plot
cluster in stratum h. More details concerning
the sampling design can be found in Tomppo
et al. (2010a).

In the tropics, use of available vegetation
maps to delineate land into forest and non-
forest is sometimes appealing. However, if
plot clusters are not established on delineated
non-forest land in the same manner as on
delineated forest land, map errors could
contribute to bias because forest land
erroneously delineated as non-forest land will
not be sampled. However, the costs associated
with sampling delineated non-forest land can
be decreased by allocating lesser sampling
intensities to these lands. In addition, field
measurement of plot clusters entirely outside
forest and without growing stock can often be
avoided by assessing such clusters with land
use information obtained from other reliable
sources such as was proposed for Brazil
(Tomppo, 2009).

The lack of transportation routes, other than
rivers, presents a special challenge for tropical
forest inventories such as in the Amazonian
Biome. For example, roads may be available
only a part of the year, approximately six
months in Amazonian Biome. In addition,
some forests may be designated for nature
conservation purposes or for the sole use of
indigenous peoples. Stratification based on
relevant variables such as the likelihood of
changes and measurement costs promote
both cost efficiency and adherence to sound
statistical inventory principles.
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6. Summary

Construction of an appropriate sampling
design for an NFA, NFI, or MRV is a crucial
step if estimates are to be sufficiently precise
and scientifically defensible. One of the first
steps in this process is to define the target
population and select a sampling frame.
We recommend an infinite population
sampling frame in which observations and
measurements of a field plot support area are
attributed to the point at the field plot center.
Because inventories often are expected to
produce estimates of change, werecommended
that the sampling design include at least some
permanent plots. The next step is to distribute
the field plots throughout the population to
be sampled. We have presented information
on and discussed several popular sampling
designs: simple random sampling, stratified
sampling, systematic sampling, and cluster
sampling. If the sampling design includes
a systematic component, we recommend
caution when using rectangular grids for
target populations with large north-south
components. Although the selection of the
particular sampling design depends on a
variety of considerations, we recommend that
if stratified sampling is not used, consideration
be given to post-sampling stratification and
stratified estimation.  Finally, additional
information on these and more complex
sampling design issues is available in the
reference material.
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