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In this chapter you will learn about:

•	 How to define a population for sampling purposes
•	 How to select the size and shape for a plot configuration
•	 Distinguishing among simple random, systematic, stratified, and 

cluster sampling designs
•	 Methods for constructing sampling design
•	 Estimating population means and variances
•	 Estimating sampling errors 
•	 Special considerations for tropical forest inventories

Abstract
National forest assessments (NFA) are 
best conducted with sufficiently accurate 
and scientifically defensible estimates of 
forest attributes.  This section discusses the 
statistical design of the sampling plan for a 
forest inventory including the process used to 
define the population to be sampled and the 
selection of a sample intended to satisfy the 
NFA precision requirements.  An experienced 
statistician should be a member of any team 
designing a national forest inventory.  However, 
if such an expert is not available, this section 
provides guidance and recommendations for 
relatively simple sampling designs that reduce 
risk and improve chances for success.

1. Introduction
The sampling design to support the technical 
program supporting a National Forest 
Assessment (NFA) requires a theoretical 
design that must be implemented on the 
ground (see Implementation of an NFA). 

Understanding the basic concepts related to 
statistical design and estimation methods 
are one component of the overall process 
for Information management and Data 
registration for National Forest Assessments.

Objectives
The goal is to estimate the condition of forests 
for an entire nation using data collected from a 
sample of field plots. The basic objectives of an 
NFA are assumed to be fourfold:  (1) to obtain 
national estimates of the total area of forest, 
subdivided by major categories of forest types 
and conditions; the numbers and distributions 
of trees by species and size categories; wood 
volume by tree characteristics; non-wood 
forest products; estimates of change in these 
forest attributes; and indicators of biodiversity; 
(2) to obtain sufficiently precise estimates 
for selected geographic regions such as the 
nation, sub-national areas, provinces or states, 
and municipalities; (3) to collect sufficient 
kinds and amounts of information to satisfy 
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international reporting requirements; and (4) 
to achieve an acceptable compromise between 
cost and the precision and geographic 
resolution of estimates. See Variables typically 
assessed in National Forest Inventories.

Assumptions and simplifying 
constraints
Several assumptions underlie the discussion 
that follows.  First, we assume that expert 
statisticians who are experienced in designing 
natural resource inventories and analyzing the 
data are not available.  Second, we assume that 
ancillary data in the form of maps depicting 
features such as ecological regions, land cover, 
soils, elevation, political and administrative 
boundaries, and transportation systems 
are available.  Third, we assume models for 
predicting attributes such as individual tree 
volumes from basic tree measurements are 
available.  Even with these assumptions, a full 
discussion of all sampling design possibilities 
for an NFA is beyond the scope of this 
section.  Thus, we establish three constraints 
that further limit the discussion.  First, we 
constrain the discussion to relatively simple, 
multipurpose designs that can be used reliably 
with only local expertise.  Second, we constrain 
our discussion to designs that are flexible, yet 
reduce risks of bias and loss of credibility.  
Third, we constrain our discussion to designs 
that feature equal probability samples, or in 
the case of stratified designs, equal probability 
samples within strata.

Why use sampling?
The most precise description of a population 
comes from accurate measurements of each 
member of the population, which is a census. 
However, a census is typically impossible 
because of cost and logistical problems. 
Imagine trying to measure every tree in a 
1-million hectare forest. A sample measures a 
portion of the population, and in forestry, this 
is usually a very small portion. Estimates based 
on data collected from the measured sample 
are then extrapolated to the entire population, 
most of which has not been measured. 

Think of this as “guessing” or “estimating” the 
condition of a population based on sampling a 
few members of that population. If the sample 
is representative of the entire population, then 
the estimate will be accurate and less likely 
to deviate from the true population value. 
Otherwise, estimates will be inaccurate and 
misleading; it will not be apparent that the 
estimates are inaccurate; and the accuracy 
of estimates will not be known because 
the true condition of the whole population 
will not be known. The best that is possible 
is to increase the chances of measuring a 
representative sample. This is done by using 
scientifically defensible rules to select the 
sample, maximizing the number of sample 
units observed or measured, and minimizing 
the errors in measuring each sample (see Data 
quality). It is not difficult to produce data. It is 
much more challenging to produce accurate 
data with known reliability that will be used 
to help make important decisions.

Defining the population
Scientifically defensible estimation of 
population attributes is based on a formal 
body of mathematical theory which must be 
respected if it is to be used to defend the accuracy 
of sample-based estimates.  Careful selections 
of a sampling frame, plot configuration, and 
sampling design are crucial steps in the process 
and cannot be accomplished independently 
of each other.  Each decision has impacts on 
the others.  The mathematical theory begins 
with a precise definition of the population 
for which attributes will be estimated. For 
example, for a municipality of 5-million ha of 
which 1-million ha are forest, the statistical 
population could be described in several 
different but logical ways:

•	 Thousands of tree-stands and non-forest 
polygons

•	 Tens of millions of potential 0.1-ha 
sampling plots

•	 Ten million remotely sensed 30m x 30m 
pixels

•	 Billions of trees
•	 Infinite number of points

http://www.fao.org/forestry/site/11889/en
http://www.fao.org/forestry/site/11889/en
http://www.fao.org/forestry/site/11890/en
http://www.fao.org/forestry/site/11890/en
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See the section on Observation units for 
more details.

There is no one best definition of a 
population for forest inventories. The key 
issue in basic applications of forest sampling is 
to define precisely the geographic boundaries 
of the targeted population, such as all lands, 
both forest and non-forest, within a nation 
that are outside of the geopolitical boundaries 
of urban areas.  It is not uncommon to 
discover that portions of a target population 
cannot be sampled. Examples include areas 
that are remote and inaccessible or unsafe 
to access. These areas should be precisely 
identified in a cartographic form, even though 
the true boundaries might not be obvious, 
and excluded from the sampled population. 
Scientifically defensible estimates must be 
limited to the sampled population only.

Choosing a sampling frame
We distinguish among three terms: 
sampling frame, sampling design, and plot 
configuration.  Sampling frame refers to the 
set of all possible sample units; sampling 
design refers to the selection of a subset of 
sample units to represent the population; and 
plot configuration refers to the size, shape, 
and components of the field plot.  

Some advantages are gained with a sampling 
frame that considers a forest to be an infinite 
population of points. One approach to 
sampling with this sampling frame is to 
use the popular Bitterlich plot which is 
efficient for estimating variables correlated 
with tree size. Alternative point-based plot 
configurations measure a support region and 
impute its attributes to a point. When near a 
boundary or stand edge, a point is more easily 
assigned to one side or the other, whereas 
plots with different designs can straddle edges 
or boundaries. We recommend considering 
the forest population to be an infinite set of 
points and that physical measurements in a 
support region be used to describe conditions 
at a sample point.

Choosing a plot configuration
The plot configuration consists of the plot size 

and shape and determines the variables to be 
measured at each sample plot location. Choices 
for plot configurations include variable 
area plots, fixed area plots, subdivisions of 
plots into subplots, and cluster plots, all of 
which require size and shape considerations.  
Variable area plots using Bitterlich sampling 
are particularly effective for obtaining precise 
estimates of forest attributes related to tree 
size.  Fixed area plots, while not necessarily 
optimal for any particular forest attribute, 
are an excellent compromise when sampling 
is intended to produce estimates of a wide 
variety of forest attributes and tend to be 
more compatible with ancillary data.  Cluster 
sampling reduces travel between plots while 
providing a sufficient number of plots.  The 
optimal shape and size may be addressed using 
sampling simulation and prior information, 
although circular plots are often used in forest 
inventories.  

Issues related to the selection of a plot 
configuration are discussed in the sections on 
Observations units and Optimization of plot 
designs.

Measuring sample plots
The section on Observation and Measurement 
for National Forest Assessments summarizes 
the major considerations relevant to measuring 
sample plots. For more detailed information, 
see the on-line reference Statistical Techniques 
for Sampling and Monitoring Natural Resources 
(Schreuder et al., 2004).  For this section, 
we note two aspects of this issue, the use of 
remotely sensed data for measuring plots and 
temporary versus permanent plots.  

First, remotely sensed data from medium-
resolution satellites and high-altitude aerial 
photography (1:24,000 to 1:60,000 scales) 
provide cost-effective measurements for coarse 
indicators of forest conditions, mostly forest 
area changes. However, most measurements 
of detailed forest conditions are impossible 
with these sensors (see Remote sensing for 
National Forest Assessments).  More detailed 
measurements of forest conditions may be 
obtained with low-altitude aerial photography 

http://www.fao.org/forestry/site/7728/en
http://www.fao.org/forestry/site/7728/en
http://www.fao.org/forestry/site/7728/en
http://www.fao.org/forestry/site/7728/en
http://www.fao.org/forestry/site/11887/en
http://www.fao.org/forestry/site/11887/en
http://www.fs.fed.us/rm/pubs/rmrs_gtr126.pdf
http://www.fs.fed.us/rm/pubs/rmrs_gtr126.pdf
http://www.fao.org/forestry/site/7808/en
http://www.fao.org/forestry/site/7808/en
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and sensors such as lidar. All these sensors 
are currently expensive and have narrow 
fields of view that are not currently capable 
of producing border-to-border coverage of 
an entire nation. However, in principle, these 
sensors could be used to measure a sample of 
locations in a national survey. For example, it 
may be cost efficient to measure a plot initially 
with data from a remote sensor to determine 
if the plot has accessible forest land cover or 
forest land use.  If not, field crew visits to such 
locations may not be warranted.  

Second, estimating changes and trends in a 
nation’s forests is often an important part of 
an NFA.  If the locations of sample plots are 
sufficiently documented, then the same plots 
can be re-measured over time to obtain more 
precise estimates of forest change such as tree 
growth, mortality, harvesting, regeneration, 
and changes in the areas of forest conditions 
and land use categories. (see sections on 
Temporal vs. permanent observations, 
Observation and Measurement, and Change 
assessment for more details).  Remeasurement 
of plots increases estimation efficiency and 
contributes to better understanding of the 
components of change.  However, if permanent 
plots are used, their locations must be very 
accurately documented. This can be done by 
driving a pin into the ground at the center or 
corner of a plot, and carefully documenting 
how to find the pin from a convenient starting 
location, perhaps several kilometers distant.  
The pin should be hidden from normal view to 
keep the plot truly representative of thousands 
of hectares that will never be measured. A 
sample plot will not be representative if it 
receives special treatment such as protection 
from harvesting or other disturbances. An 
obvious pin in the ground could influence 
how the location is treated by other humans.

Although remeasurement of the same 
trees produces the most precise estimates of 
change, this approach is more costly because 
the same plot centers and trees must be 
relocated at the time of each measurement.  
Alternatives for estimating change from 
temporary plots include estimation of 

tree growth from increment borings and 
gross estimation of forest area and volume 
change by comparing independent estimates 
obtained from measurements of different sets 
of temporary plots at different points in time.  
However, harvest, mortality, and regeneration 
are difficult to estimate using data from 
temporary plots. Thus, where possible, we 
recommend the use of permanent plots or a 
combination of permanent and temporary 
plots (e.g. Ranneby et al., 1987).

2. Sampling design
There are two general sampling approaches: 
subjective or purposive sampling and 
probability sampling. Subjective sampling 
attempts to use professional judgment to select 
sample units believed to be representative of 
the entire population. These units are often 
convenient to measure which reduces cost. 
Although data gathered in this way accurately 
describe the conditions on the sampled sites, 
they may not accurately characterize the 
entire population.  Supporters of subjective 
sampling trust the ability of experts to select 
a representative sample and argue that 
this approach is good enough for practical 
purposes. In some simple situations, this may 
be true. But what if a user of the data does 
not have the same confidence in the experts? 
Expensive data can become worthless because 
the sampling design is not defensible under 
scientific criticism. Also, convenient sampling 
sites are often near roads, which are frequently 
associated with unique landforms, land uses, 
management histories, and landscape patterns. 
Are such sites truly representative of the entire 
population? The answer is debatable. It is far 
easier to discredit the accuracy of population 
estimates from a subjective sample than prove 
otherwise. 

Probability sampling replaces subjective 
judgments with objective rules based on 
known probabilities of selection for each 
member of a population. For example, assume 
a 1-million ha forest comprises a population of 
10m x 10m plots. There would be 100-million 

http://www.fao.org/forestry/site/13290/en
http://www.fao.org/forestry/site/7728/en
http://www.fao.org/forestry/site/21069/en
http://www.fao.org/forestry/site/21069/en
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of those plots in the population. If one of 
those plots were selected at random, then 
its probability of selection would be 1/100 
000 000. If a simple random sample of 1 000 
plots were selected to estimate conditions in 
the entire 1-million ha population, then each 
member of that population has a probability 
of selection of approximately 1 000/100 000 
000=1/100 000, and each plot measured in 
the sample could be seen as representing 99 
999 other unmeasured plots. The important 
lesson is that probability sampling is an 
objective method with precise rules and a 
mathematical foundation for estimating 
population attributes based on a sample. 
The probability that an expert will select any 
one potential sample plot is unknown, and 
the mathematics of subjective sampling can 
not be applied in a scientifically defensible 
way.  Thus, we recommend probability 
rather than subjective sampling and further 
recommend equal probability sampling in 
which possible sampling unit locations have 
equal probabilities of selection for the sample.

Selecting a probability sampling 
design

Many of the difficulties associated with 
selecting a sampling design arise from two 
factors: first, sampling units are distributed 
in a space and observations of them may be 
spatially correlated, and second, different 
sampling designs have different costs.  Spatial 
correlation among observations of variables 
of interest strongly influences selection of 
sampling designs.  Ecological, climatic, 
and soil factors and forestry management 
practices cause observations from plots that 
are near to each other to be, on average, more 
similar than observations from plots that are 
farther apart. The result is that, in a strict 
sense, construction of a completely optimal 
sampling design is an impossible task because 
the numerous NFA measured and derived 
variables vary quite differently in space.  Thus, 
because optimal sampling designs would be 
different for different variables, optimization 
may require focusing on minimizing the 

standard error of a single important variable 
such as wood volume or on a weighted 
function of the standard errors for a small 
number of variables.  One partial solution is 
to minimize the effects of spatial correlation 
by establishing sampling locations as far apart 
as possible.  This also accommodates the fact 
that sample plot observations that deviate 
more from each other, bring more information 
to the sample.  In forest sampling, this often 
suggests hexagonal sampling designs.  The 
primary sampling costs are attributed to 
traveling to and from the sampling unit 
location and measuring the unit.  These costs, 
in turn depend on the structure of landscape 
and forests, measurements to be taken, and 
topographic, economic and transportations 
conditions.  

A common starting point in selecting 
a sampling design is knowledge of the 
acceptable upper bounds for the standard 
errors of the estimates and an upper bound for 
cost. Optimizing the sampling design, given 
the sampling frame and plot configuration, 
involves selecting a procedure for spatially 
distributing the sampling unit locations in 
such a way that standard errors are minimized 
while not exceeding the total allowable costs.  
Sometimes this will not be possible, and 
compromises may be necessary. 

Simple random sampling
A simple random sample places sample plots 

randomly within the sampled population 
(Figure 1a). By chance, there are spatial clusters 
and voids in the plot distribution; however, 
this remains a valid probability sample.   The 
geographic coordinates for each sample plot 
in a random sample may be selected with a 
random number generator with the allowable 
coordinates restricted to the sampled 
population. Otherwise, no consideration is 
given to safety, difficulty of measuring plots, 
or travel to and from plot locations. This is 
the least risky equal-probability sampling 
design, but it is also usually the least efficient 
with respect to both cost and the precision 
of estimates, partially because of spatial 
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correlation among observations.

Systematic sampling
A systematic sample uses a fixed grid or array 

to assign plots in a regular pattern (Figure 1b). 
The advantage of systematic sampling is that it 
maximizes the average distance between plots 
and therefore minimizes spatial correlation 
among observations and increases statistical 
efficiency. In addition, a systematic sample, 
which is clearly seen to be representative 
in some sense, can be very convincing to 
decision makers who do not have experience 
with sampling.  Systematic samples may be 
based on rectangular grids or hexagonal 
arrays. For example, a sample plot could be 
established at the intersections of a 2km x 
2km grid. A random number is used to select 
the starting point and orientation for this grid, 
but no other random numbers are required. 
This sampling design is common in forestry. 
The greatest risk is that the orientation of 

the grid may, by chance, coincide with or be 
parallel to natural or man-made features such 
as roads or gravel ridges that resulted from 
melting glaciers. For very large geographic 
areas, orientation of gridlines along lines 
of longitude should be avoided.  In higher 
latitudes the converging nature of these 
north-south gridlines may cause sample 
plot locations to be closer together in higher 
latitudes than in lower latitudes.  Sampling 
designs based on hexagonal arrays alleviate 
this problem (White et al., 1992).

Systematic unaligned sampling designs 
combine features of both simple random 
and systematic sampling designs.  With 
these designs, a sample plot is assigned to a 
randomly selected location within each grid 
or array cell (Figure 1c).

  

Figure 1.
(a) simple random sampling design, (b) aligned systematic sampling design, (c) unaligned systematic 
sampling design, (d) unaligned, clustered, systematic sampling design with the same number of plots but 
grouped into clusters.
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Cluster sampling
For practical reasons such as increasing cost 
efficiency and reducing field crew travel, 
sample plots may be organized into clusters, 
thus leading to systematic cluster sampling 
and stratified systematic cluster sampling. In 
systematic cluster sampling, the clusters are 
distributed throughout the population using 
grids or polygons such as hexagons. 

Several questions are relevant when 
planning a cluster-based sampling design: (1) 
what is the spacing between clusters? (2) what 
is shape of the cluster?  (3) what is the number 
of plots per cluster? and (4) what is the sample 
plot configuration?  To answer these questions, 
preliminary information about the spatial 
distribution and correlation of the variables of 
interest is needed. Correlation, as a function 
of distance between field plots, estimated 
using variograms can be used to compare the 
efficiencies of different sampling designs. 

2.1 Stratified sampling
Stratified sampling entails first dividing 

the population into non-overlapping 
subpopulations called strata that together 
comprise the entire population and then 
drawing an independent sample from each 
stratum.  If the sample in each stratum is a 
simple random sample, the whole procedure 
is described as stratified random sampling.  
Numerous reasons may be given as justification 
for stratified sampling (Cochran, 1977; 
Schreuder et al., 1993).  First, stratification is 
used to increase the precision of population 
estimates.  To understand the potential for 
gain in precision that may be achieved with 
stratification, some notation and formulae 
are necessary.  With simple random sampling 
(SRS), the estimate of the population mean is

	  	       ,  [1]

and the estimate of the variance of the mean 
is

 ,		  [2]

where n is the sample size, yi is an 
observation, and 

, 		  [3]

is the sample estimate of the population 
variance.  Cochran (1977) provides basic 
formulae for stratified estimation.  Ignoring 
finite population correction factors and 
estimation errors in stratum weights, an 
unbiased estimator of the population mean 
and variance are,

	  ,	 [4]

and
	  ,	 [5]

where

 ,		 [6]

	 ,	 [7]

are the within stratum means and variances, 
respectively; h=1, 2, …, L denote strata; 
j denotes observations within strata; nh 
denotes the number of sample observations 
within the hth stratum with n1+n2+…+nL=n; 
and Wh is the stratum weight representing 
the proportion of the population in the hth 

stratum. The effects of stratification and 
stratified estimation on precision are often 
assessed using relative efficiency, RE, defined 
as, 

	  ,	 [8]

where RE>1 indicates a beneficial effect. 
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Relative efficiency may be interpreted as the 
increase in the overall sample size that would 
be necessary to achieve the same precision 
using estimation based on simple random 
sampling as is achieved using stratification 
and stratified estimation.  From a quantitative 
perspective, precision gains are realized when 
variances of estimated stratum means are 
substantially less than the variance of the 
overall estimated mean (i.e., 

n
s

n
s

h

h
22

<   ) and/

or when strata with large   
h

h

n
s 2

represent small proportions of the 
population (i.e., when Wh is small). From a 
qualitative perspective, precision gains are 
realized when heterogeneous populations are 
divided into more homogenous 
subpopulations.  This typically means that the 
strata have substantially different means, 
variances, or both.

A second reason for stratification is that it 
may contribute to avoiding bias, depending 
on the estimator selected.  For example, 
NFA field crews generally are granted access 
to plot locations on publicly owned lands. 
However, if permission of private land owners 
is required to measure sample plots on their 
lands, inevitably some private land owners 
will deny access. In extreme cases, the ratio 
of privately owned to publicly owned plots in 
the accessible portion of the sample may be 
considerably less than the ratio of privately 
owned to publicly owned forest lands in the 
population. If the species compositions and/
or management practices are substantially 
different on privately owned and publicly 
owned forest lands, bias may occur. One 
solution is to stratify lands by ownership, thus 
leading to independent sample estimates for 
the two ownership strata (McRoberts, 2003).  

A third reason for stratification is to 
accommodate different sampling protocols or 
different estimation procedures for different 
subpopulations. For example, a substantial 
portion of sampling costs may be attributed to 
travel to and from plot locations. If data from 
remote sensors may be used to determine 
that some plots are located on non-forest 

land, then travel costs may be substantially 
reduced by not sending field crews to these 
plot locations.  As a result of the different 
measurement technique, however, a different 
estimator may be required for these strata.

The greatest benefits of stratified estimation 
are realized when the population is stratified 
and stratum sample sizes are determined 
before sampling is conducted. The process 
of determining stratum sample sizes or, 
equivalently, allocating samples to strata, may 
be accomplished in several different ways and 
for several different purposes.  Frequently 
samples are allocated to strata in proportion 
to some attribute of the strata.  An easily 
implemented approach is to allocate sample 
plots to strata in proportion to strata sizes.  
If simple random or systematic sampling is 
used within strata, then this approach leads to 
equal probability samples within strata which 
may simplify estimation.  However, with this 
approach, the variances of stratum means may 
differ greatly.  If comparably precise estimates 
of stratum means are desired, then samples 
may be allocated to strata in proportion to 
stratum variances.  A potential disadvantage 
of this approach is that good estimates of 
stratum variances are necessary before samples 
are allocated to strata.  Finally, it may be that 
estimates of means for some strata are more 
important than others.  In this case, samples 
may be allocated to strata in proportion to a 
subjective assessment of strata importance.

Often the sampling objectives prohibit 
stratified random sampling.  For example a 
systematic sampling design may be used as a 
means of optimizing the precision of estimates 
for multiple variables simultaneously.  Even 
though the greatest benefits of stratification 
may not be realized for any particular 
variable, the beneficial effects of increasing 
precision and precluding estimation bias may 
still warrant post-sampling stratification and 
stratified estimation.  Thus, even if stratified 
sampling is not used, we recommend 
consideration of post-sampling stratified 
estimation because large increases in precision 
may often be realized with little additional 
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cost or effort.
Almost any source of data can be used 

to create strata as long as two tasks can be 
accomplished in a consistent manner.  First, 
stratum weights, calculated as the proportion 
of the population represented by each stratum, 
must be determined.  Second, each plot must 
be assigned to one and only one stratum.  The 
increasing availability of diverse thematic 
digital data layers opens vast possibilities 
for sources of data that can be used to create 
strata.  In addition, the increasing availability 
of geographic information systems (GIS) 
greatly simplifies accomplishment of the two 
tasks.  One popular choice of stratification 
data is land cover classifications from which 
aggregated forest and non-forest classes may 
be constructed and used as strata (McRoberts, 
2002).  Using a GIS with such a layer greatly 
simplifies the two stratification tasks.   Within 
the GIS, each mapping unit of the land 
cover classification is assigned to a stratum 
based on the class assigned to the mapping 
unit.  Calculation of stratum weights is then 
simply a matter of using GIS functionality to 
determine the total area of all mapping units 
assigned to the same stratum and dividing by 
the total area of the sampled population.  A 
plot is assigned to the stratum of the mapping 
unit containing its centers.  Other choices of 
digital data layers that can be used to create 
strata include, but are not limited to, soil maps, 
climate division maps, ecological provinces, 
administrative boundaries, ownership maps, 
and land management units.

2.2 Ratio Estimators and 
Matérn’s Error estimators
Although a discussion of statistical estimators 
is provided in another section or may be 
obtained from the online book, Statistical 
Techniques for Sampling and Monitoring 
Natural Resources (Schreuder et al., 2004), 
we note here the importance of selecting 
estimators that are consistent with the sampling 
design in order to obtain valid variance 
estimates. With systematic and cluster-based 

sampling designs it is particularly important 
that estimators properly account for possible 
spatial correlation among observations.  
Because of their utility with sampling designs 
that must accommodate spatial correlation, 
we provide a brief discussion of Matérn 
estimators (Matérn, 1960).

Because forest inventory estimates are 
frequently either means or totals for either 
area or volume, the relevant derived variables 
in forest inventory are often of the form

  ,			   [9]

where X and Y are expectations of random 
variables, x and y. For example, consider 
estimation of mean forest area per land use 
stratum for sample plots that may intersect 
multiple strata, all within the category of 
forest land. One method for accommodating 
this phenomenon that is particularly useful 
with point sampling is to use the information 
from the center point only. Let xi=1 when the 
center point of the plot belongs to the stratum 
in question and xi=0 otherwise, and let yi =1 
when the center point is on forest land and 
yi=0 otherwise. Then the ratio estimator for 
mean area is

		  [10]

where n is the number of sampling units.  
Let E(.) denote statistical expectation; then,  

 ,		  [11]

means that m is approximately unbiased 
when n is large. 

The estimation of standard errors is 
complicated by spatial correlation that may 
arise from trend-like changes in variables and 
either systematic or cluster sampling. Matérn 
(1947, 1960) suggested the error variance, 
E(m-M)2, as a measure of the reliability of the 

Y
XM =

m
x

y

x
y

i
i

n

i

n= ==

=

1

1
1

M
Y
X

Y
xEmE ==)(



10

estimator and also proposed a variance 
estimator. Let i denote field plots; let r denote 
clusters of field plots; and consider the cluster 
residuals, where zr=xr-myr where 

=
ri

ir xx and =
ri

ir yy  . 
 

Assume that the residuals form a realization 
of a second order stationary (weakly 
stationary) stochastic process. The variance of 
the process can be estimated by means of 
quadratic forms  

s
r s

rrs zzcT = , 

where  crs = csr ,  =
r s

rsc 0  and 

1=
r

rrc  , 
 

where r and s both refer 
to clusters of field plots. Estimators of this 
form are unbiased if the process z is spatially 
uncorrelated and conservative if the process 
is positively correlated (Matérn, 1960). This 
approach has been used in the Swedish and 
Finnish inventories (cf. Ranneby, 1981, see 
also Tomppo et al., 1997, and Heikkinen, 
2006) and is applied by sampling strata as 
follows. Within each stratum, the group g of 
four field plot clusters (r1, r2, r3, r4) 

Figure 2.  
Groups of clusters and clusters of sample plots.

is composed in such a way that each cluster 
belongs to four different groups (Figure 2). 
The deviance of the cluster mean, ȳr , from the 
stratum mean ȳ is computed for each cluster 
r.  Denote zr=(ȳr-ȳ)nr , where n is the number 
of relevant sample points in cluster r (for this 
example, nr=4). The weights  cr1 = cr4 =  cr2= cr3 
= ½ are often used. The quadratic forms can 
then be expressed as Tg = (zr1 - zr2 - zr3 - zr4)

2/4, 
and the resulting standard error estimators for 
each stratum are

 ,		  [12]

where g denotes a group of clusters in the 
stratum, i denotes plots in the stratum, and k 
is the number of clusters in each cluster group 
(for this example, k =1).  The standard error 
estimators for the entire study area can be 
obtained by combining the stratum-specific 
estimators with the usual formula for stratified 
sampling (Eqs. [4] and [5]). This procedure is 
relevant for strata having large numbers of 
field plots, preferably at least several hundred. 

3. Sample size
Determination of sample size is one of the 
most important steps in constructing a 
sampling design.  If the sample is too small, 
then uncertainty will be great; if the sample is 
too large, then the cost will be unnecessarily 
high.  It is possible to quantify the expected 
confidence in future estimates made from a 
valid probability sample. As the number of 
sample plots increases, the variance of the 
estimation error decreases, the precision of the 
estimate increases, and more confidence can 
be placed in the estimate.  Usually, the exact 
value of the estimate is known but not the 
true condition of the forest.  With probability 
samples, the probability that an estimate is 
within a specified distance from the true 
value may be determined.  These are the roles 
of “confidence interval,” an estimated range 
of proportions which is likely to include the 
true, but unknown, proportion of forest, and 
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the “confidence coefficient,” the probability 
that similar confidence intervals constructed 
using different samples will contain the true 
proportion of forest. 

The simplest case is estimating proportions 
with a simple random sample; for example 
estimating the proportion of a nation that is 
forested. Suppose an NFA covers a sampled 
population of 5-million ha and that in a simple 
random sample with n=1 000 plots, 400 are 
forested. The estimated proportion of forest 
is 40%, but what is the level of confidence 
that can be placed in this estimate? Suppose 
a confidence coefficient of 80% is acceptable. 
This means for 80 sample plots, the true, but 
unknown, percentage of forest is within the 
confidence interval. From available tables 
and figures (Czaplewski, 2003), with n=1 000, 
and an estimate of 40% forest, the confidence 
interval is 38.0% to 42.0%. As another 
example, assume a rare forest type exists in 
the population, but the exact amount is not 
known. However, none of this rare forest was 
observed in the simple random sample of 
n=1 000 plots, and the estimated percentage 
of the nation in this rare forest condition is 
0%. For the same 80% confidence coefficient, 
the confidence interval for this estimate is 
0.0% to 0.2%. Thus, the estimate of the area 
of this rare forest type in the entire 5-million 
hectare nation is 0 to 10 000-ha. The final 
example is a 100 000-ha municipality for 
which measurement of a sample of  n=20 of 
the 1 000 plots, revealed that 18 are forested. 
The estimate for this municipality is 90% 
forest cover, with a confidence interval of 
75.5% to 97.3%, or 75 500- to 97 300-ha. 
Other calculations of sample sizes are possible 
with interactive “sample size calculators” that 
are available on the Internet.  These examples 
demonstrate that accurate national estimates 
for common types of forest cover are possible 
with relatively few sample plots. However, 
larger sample sizes are often needed if the 
NFA requires estimates of rare forest types or 
small portions of the nation.  It is the sample 
size that determines the precision of estimates 
in an NFA, not the size of the entire sampled 

population.
Determining the required sample size 

requires an estimate of the standard deviation 
of the differences between individual plot-
level values and their average value. This 
standard deviation may be estimated with 
a pilot study or inventory that measures a 
small sample of forest plots to determine 
the variability among them. For example, 
assume the pilot inventory includes 60 plots, 
and wood volume is measured on each plot. 
Further, suppose that the mean volume is 
=100 m3/ha, the variance among plots is  
=2 500 m6/ha2, and the standard deviation 
is  =50 m3/ha. If observations from the 
pilot plots are normally distributed, about 
1/6th of the plots will have (100-50)=50 m3/
ha or less, and another 1/6th of the 60 plots 
have 100+50=150 m3/ha or more. Assume 
the precision requirement for the NFA is 
to estimate mean wood volume per hectare 
to within a ±5% “tolerance” or “maximum 
allowable difference” (Dmax=0.05) with a 66% 
confidence coefficient. The required sample 
size n is approximately 100 sample plots.

	  
,[15]

If this NFA precision requirement is for 
the entire nation, then 100 sample plots are 
sufficient. If this NFA accuracy precision is for 
each of 10 sub-national units, then a total of 
1 000 sample plots is necessary. Sample sizes 
increase greatly as the acceptable tolerance 
becomes smaller. A tolerance of ±1% would 
require the sample size to increase from 
n=100 to n=2 500 sample plots (Eq. 15) in this 
example. The required sample size increases 
for larger confidence coefficients. For example, 
it requires four-times more sample plots to 
improve precision from a 66% confidence 
coefficient to the 95% level. More exact and 
detailed calculations of required sample sizes 
are possible with the interactive “sample size 
calculators” that are available on the internet.
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4.  Comparing sampling designs
An effective way to compare sampling designs 
is via simulation if a forest area model is 
available. The model may be obtained from 
a previous inventory or from satellite image-
based estimation of variables of interest. 
An example of the standard errors obtained 
from sampling designs for estimating mean 
growing stock volume is shown in Figure 3. 
The test site is in North Finland and has land 
area of 6.47 million hectares, forest land area 
of 4.19 million hectares, and mean volume on 
forest land of 52.7 m3/ha. 

A pixel level, border-to-border forest map 
has been produced using field data from the 
preceding inventory, satellite images, and 
digital map data (Tomppo & Halme, 2004; 
Tomppo, 2004). Satellite images of different 
resolution provide one information source, in 
addition to existing maps.  In addition, a pilot 
inventory may be used to collect information 
for planning the final sampling design. 
Representative sub-areas can be selected from 
the population where pilot inventories may be 
conducted.  However, these pilot inventories 
must be acknowledged and accepted as less 
than optimal. In addition, new sampling 
designs can be created using information 
from previous inventories as has been the case 
in countries where forest inventories have 
been conducted since the 1920s and 1930s 
(e.g., Ilvessalo, 1927).

Figure  (3).  Standard errors based on sampling sim-
ulations with different distances between field plots 
and with numbers of plots per cluster ranging from 9 
to 17.  The distance between clusters is 10 km. (Figure 
from Tomppo, et al. 2001; constructed by Helena 
Henttonen)

5. Sampling considerations for 
tropical forest inventories
In recent years, concern for the effects of 
climate change and actions to mitigate those 
effects have motivated intense interest in 
forest inventories in tropical countries for 
purposes of estimating carbon and carbon 
change.  Such inventories, often characterized 
as monitoring, reporting, and verification 
(MRV) systems when targeted to UNFCCC 
REDD (Reduction of Emissions from 
Deforestation and Forest Degradation) 
purposes, are similar to national forest 
inventories (NFI) although the MRV emphasis 
may be restricted to biomass-related variables 
and the MRV population of interest may be 
restricted to lands that are subject to human-
induced greenhouse gas emissions.  However, 
because of the similarities between MRVs 
and NFIs, tropical developing countries often 
design their NFIs so that they can also serve 
as MRVs or they design their MRVs in such a 
manner that they can easily be extended to a 
complete NFI.  Thus, the guidance articulated 
below pertains equally to MRVs as to NFIs.

By definition, a monitoring program includes 
emphasis on change and trends.  In addition, 
in recent years NFIs have come to place 
increased emphasis on change and trends.  
Therefore, selection of plot configurations, 
sampling designs, and perhaps stratification 
schemes are driven at least partially by the 
desire to estimate change.

Plot configuration
Selection of a plot configuration is based on 
multiple general principles, many of which 
are the same for boreal, temporal, and tropical 
inventories, although some are also different.  
Precise estimation of change is known to 
be more difficult than precise estimation of 
current conditions, particularly when the 
change is only for a small area. However, 
the precision of change estimates can be 
increased by remeasuring the same plots on 
successive occasions.  In addition, the land 
area of interest could be stratified for variance 
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reduction purposes using a variable related to 
the likelihood of change. Thus, the emphasis 
on estimation of change in tropical inventories 
argues in favor of a relatively large proportion 
of permanent plots which, in turn, argues in 
favor of marking or determining the locations 
of trees so they can be relocated for successive 
inventories.  Although establishment 
and measurement of a temporary plot 
is less expensive than establishment 
and measurement of a permanent plot, 
establishment and measurement of different 
temporary plots on two occasions is not 
necessarily less expensive than establishment, 
measurement, and remeasurement of a single 
permanent plot.

Although no strong consensus exists 
regarding plot shape, circular plots are often 
preferred because they require only single 
control points, the plot centers.  Rectangular 
plots require four control points, one at each 
corner.  In addition, for a given plot area, a 
circular plot has a smaller perimeter meaning 
that fewer decisions will be necessary as to 
whether particular trees are or are not on 
the plot.  Also, determining coordinates for 
individual trees, which may be necessary 
for assessing their change, may be easier 
for circular plots which have only a single 
control point than for rectangular plots which 
have four control points.  However, if tree 
densities are exceptionally large, long, narrow, 
rectangular plots may be a more feasible 
alternative.

For purposes of logistical efficiency, 
monitoring and inventory programs typically 
configure plots in clusters.  Because of 
expected access problems, configuring plots 
in clusters may be even more crucial for 
tropical programs.  Thus, individual plot size 
and the number of plots within clusters are 
subject to multiple important considerations 
all of which are generally related to logistical, 
cost, and precision considerations (Tomppo 
et al., 2010a, 2011; Scott, 1993).  First, plots 
should be small enough and few enough 
within clusters so that a field crew can 
measure the entire cluster in a single day.  The 

greatest proportion of the cost of measuring 
a plot in boreal and temporal forests is travel 
to and from the plot location; this proportion 
is likely to be even greater for tropical forests 
for which many regions are remote and 
nearly inaccessible.  Thus, greater efficiency 
is achieved if field crews are not required to 
return to the same plot location on multiple 
days.  Second, plot features such as radius for 
circular plots or lengths for rectangular plots 
must be measured on a horizontal plane, not 
along irregular terrain. Because measurement 
on a horizontal plane is more difficult for larger 
plots, particularly in hilly and mountainous 
terrain, smaller plots are again preferable.  
Third, establishment of permanent rather 
than temporary plots to facilitate estimation 
of change usually requires either marking 
or determining coordinates for individual 
trees.  The latter approach is more difficult for 
large plots in dense tropical forests because 
more trees will be located between the tree of 
interest and control points. An argument in 
favor of larger plots for tropical inventories 
is that tropical forests are typically more 
diverse than boreal and temperate forests, 
meaning that the total area inventoried at 
each sampling location should be greater to 
capture the greater diversity.  However, this 
greater size could be achieved by increasing 
the number of small plots in the same plot 
cluster. This approach is cost efficient when 
the spatial correlations among observations of 
the variables of interest are large but decrease 
with increasing distance.

Greater sampling efficiency is also achieved 
by using small subplots for measurement of 
smaller diameter trees.  For circular plots, the 
subplots are usually nested, i.e., they are in the 
form of concentric circles, all with the same 
center.  The particular sizes of the subplots 
and the diameter thresholds corresponding to 
the subplots should be based on the expected 
number of trees to be found on the subplots, 
the expected similarities of trees, and the 
travel time between subplots of the same plot 
or plots in the same cluster.
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Finally, the remote and mostly inaccessible 
nature of many tropical forests means that 
inventories may have to rely on a combination 
of plot and remotely sensed data.  Thus, 
remote sensing considerations may be 
necessary when selecting a plot configuration.  
As examples, a plot should be large enough 
to constitute an adequate sample of the trees 
on the ground element corresponding to 
the remotely sensed element (e.g., satellite 
image pixel, lidar footprint) that contains the 
ground element center.  In addition, a desire 
to align different plots in the same cluster 
with different remotely sensed elements may 
require that distances between plots be at least 
as great as the dimensions of the remotely 
sensed elements.  

Sampling design
Selection of a sampling design for a tropical 
forest inventory entails consideration of 
multiple principles, also.  First, spatial balance 
is generally a preferred feature of sampling 
designs, meaning that large geographic 
regions of the population do not remain 
unsampled.  Spatial balance is often achieved 
by incorporating a systematic component 
into the sampling design.  The systematic 
component may be in form of a network of 
perpendicular grid lines or a tessellation 
of the population into regular polygons.  
Spatially aligned designs establish plots at grid 
intersections or centers of polygons, whereas 
spatially unaligned designs establish plots at 
random locations within the rectangles formed 
by the grid lines or the regular polygons.  

Remote sensing considerations may also 
be appropriate when selecting a sampling 
design.  For example, tropical forests are often 
characterized as having relatively few days 
without cloud cover.  Thus, cloud-free imagery 
for satellite-based sensors such as Landsat or 
SPOT may be difficult to obtain.  Lidar data, 
which are currently acquired from airborne 
platforms and use laser techniques, are often 
proposed as an alternative.  In addition, laser 
pulses penetrate forest canopies and produce 
useful information for estimating volume, 

biomass, and the carbon content of trees.  
If plots are located at the intersections of 
perpendicular grids, acquisition of lidar data 
from airborne platforms in strips is facilitated 
because straight flight lines can be used.   

Finally, when constructing grid networks 
and tessellations, consideration should be 
given to use of equal area projections.  If not, 
then plots located at greater distances from 
the equator will represent less population 
area than plots located closer to the equator.  
Although weighting schemes can be used 
with unequal area projections, they are often 
complex and bothersome.

As previously noted, the greatest proportion 
of the cost of measuring a plot is the travel to 
and from the plot location; this proportion 
may be very large in tropical forests with 
remote and inaccessible regions (Tomppo 
et al., 2010a, 2011).  Thus, cost efficiency 
dictates that plots be established in clusters 
rather than singly.  Multiple approaches to 
cluster sampling are popular.  One approach 
is to configure a plot as multiple subplots in 
a regular pattern and in close proximity to 
each other (McRoberts et al., 2005).  With 
this approach, the data for all subplots may be 
aggregated and attributed to the plot center.  A 
second approach is to establish plots in clusters 
configured as rectangles, half-rectangles, or 
other geographic shapes (Tomppo, 2006).  A 
third approach is two-stage cluster sampling.  
With this approach, primary sampling units 
such as polygons in the form of large rectangles 
are first randomly selected, and then multiple 
secondary sampling units in the form of plots 
are established within the selected polygons 
at randomly selected locations.  When using 
cluster sampling, consideration should 
be given to the spatial correlation among 
observations for plots within the same cluster.  
If distances between pairs of plots are less 
than the range of spatial correlation, then 
observations will tend to be similar and the 
sampling will tend to be less efficient.
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Stratification
Stratified approaches to sampling are used for 
multiple reasons but primarily to vary sampling 
intensities to accommodate selected criteria.   
For example, for an MRV which emphasizes 
geographic regions subject to human-induced 
carbon emissions, lesser sampling intensities 
may be acceptable for remote, inaccessible 
regions that are less likely to be developed or 
harvested.  In addition, the cost associated 
with greater sampling intensities in remote 
regions may be prohibitive.  Nevertheless, 
sampling, albeit with lesser intensities, must 
be conducted in these regions to achieve 
spatial balance.  

Multiple principles also guide stratified 
approaches to sampling.  First, strata with 
stable boundaries are generally preferable.  
Otherwise, changes to boundaries of strata 
with different sampling intensities lead to 
different sampling inclusion probabilities and 
complicate estimation.  In addition, stratified 
estimation requires that a plot be assigned 
to one and only one stratum.  If the stratum 
to which a plot is assigned changes between 
measurements, then difficulties arise as to the 
stratum to which a plot change observation 
should be assigned.  Thus, strata defined 
by topography, climatic zones, biomes, or 
political boundaries may be preferable to 
strata defined by forest attributes such as 
density or perhaps forest type.

Stratified sampling is most often implemented 
using one of three plot allocation schemes.   
With equal allocation, the same number of 
plots is allocated to all strata, regardless of 
strata sizes.  This scheme is preferred if the 
objective is estimates for individual strata.  
With optimal allocation, sampling intensities 
selected for strata are based on optimization 
criteria such as measurement costs and/or 
within-stratum variation of observations 
of variables of interests such as volume or 
biomass, or their likely changes.  Greater 
sampling intensities are selected for strata with 
greater variation and/or lesser measurement 
costs. With proportional allocation, sampling 
intensities selected for strata are proportional 

to strata sizes.  Cochran (1977) provides 
a comprehensive discussion regarding 
alternative strategies. For tropical countries 
with large remote and nearly inaccessible 
regions, some form of optimal allocation 
will usually be necessary to mitigate the 
excessive costs associated with sampling these 
regions.  Proportional and optimal allocation 
can be easily implemented using sampling 
designs based on networks of perpendicular 
grid lines.  With proportional allocation, 
plots or plot clusters are established at grid 
intersections without regard to the stratum 
associated with the grid intersection.  With 
optimal allocation, sampling intensities can be 
increased or decreased for different strata by 
selection of grid intersections at which plots 
are established.  For example, if the sampling 
intensity is to be reduced by a factor of four, 
plots can be established at the intersections of 
only every second grid line in each direction.

Case study - Tanzania
For a sampling design for Tanzania, Tomppo 
et al. (2010a) used double sampling for 
stratification and optimal allocation of plots 
to strata. The first-phase sample consisted of 
an office assessment of a dense grid of field 
plots for assignment to volume and cost 
classes.   Based on these assessments, strata 
were constructed using predicted cluster-level 
average volume of growing stock and 
estimated cost to measure a plot cluster.  
Volume classes were based on volume 
predictions using satellite imagery, 
observations for ground plots outside 
Tanzania, and robust models whose 
predictions were calibrated using areal volume 
estimates for Tanzania.  Neyman allocation 
(Cochran, 1977) was used to select boundaries 
for the volume classes so as to maximize the 
precision of the overall volume estimate 
assuming a fixed sample size.  Cost classes 
were based on GIS analyses and  local expert 
opinion of the number of days (one, two, more 
than two) necessary to measure a plot cluster. 
Selection of the class intervals, which affects 
the gain that can be achieved with stratification, 
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requires greater investigation.  The second-
phase sample consists of field measurement of 
plots where within-strata sampling intensities 
were selected using optimal allocation 
(Cochran, 1977).   With optimal allocation, 
sampling intensities are proportional to the 

quantity hh c  where h  is the 
 
within-stratum standard deviation for 
observations of the variable of interest (mean 
growing stock volume) and ch is the average 
cost in terms of measurement time for a plot 
cluster in stratum h.  More details concerning 
the sampling design can be found in Tomppo 
et al. (2010a).

In the tropics, use of available vegetation 
maps to delineate land into forest and non-
forest is sometimes appealing. However, if 
plot clusters are not established on delineated 
non-forest land in the same manner as on 
delineated forest land, map errors could 
contribute to bias because forest land 
erroneously delineated as non-forest land will 
not be sampled.  However, the costs associated 
with sampling delineated non-forest land can 
be decreased by allocating lesser sampling 
intensities to these lands.  In addition, field 
measurement of plot clusters entirely outside 
forest and without growing stock can often be 
avoided by assessing such clusters with land 
use information obtained from other reliable 
sources such as was proposed for Brazil 
(Tomppo, 2009). 

The lack of transportation routes, other than 
rivers, presents a special challenge for tropical 
forest inventories such as in the Amazonian 
Biome.  For example, roads may be available 
only a part of the year, approximately six 
months in Amazonian Biome. In addition, 
some forests may be designated for nature 
conservation purposes or for the sole use of 
indigenous peoples. Stratification based on 
relevant variables such as the likelihood of 
changes and measurement costs promote 
both cost efficiency and adherence to sound 
statistical inventory principles. 

6. Summary
Construction of an appropriate sampling 
design for an NFA, NFI, or MRV is a crucial 
step if estimates are to be sufficiently precise 
and scientifically defensible.  One of the first 
steps in this process is to define the target 
population and select a sampling frame.  
We recommend an infinite population 
sampling frame in which observations and 
measurements of a field plot support area are 
attributed to the point at the field plot center.  
Because inventories often are expected to 
produce estimates of change, we recommended 
that the sampling design include at least some 
permanent plots.  The next step is to distribute 
the field plots throughout the population to 
be sampled.  We have presented information 
on and discussed several popular sampling 
designs: simple random sampling, stratified 
sampling, systematic sampling, and cluster 
sampling.  If the sampling design includes 
a systematic component, we recommend 
caution when using rectangular grids for 
target populations with large north-south 
components.  Although the selection of the 
particular sampling design depends on a 
variety of considerations, we recommend that 
if stratified sampling is not used, consideration 
be given to post-sampling stratification and 
stratified estimation.  Finally, additional 
information on these and more complex 
sampling design issues is available in the 
reference material.
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