

Global Soil Organic Carbon Sequestration Potential Map GSOCseq

Summary and Conclusions –Isabel Luotto

For each 1km x 1km pixel:

Summary INPUTS

Input data requirements				
Data	Variables	Time series	Units	Туре
Climatic data	Monthly air temperature	1980-2000; 2001-2020 (or until last year available)	°C	Raster
	Monthly evapotranspiration (Penman-Monteith)	1980-2000; 2001-2020 (or until last year available)	mm	Raster
	Monthly precipitation + irrigation	1980-2000; 2001-2020 (or until last year available)	mm	Raster
Soil data	Topsoil clay content (0-30 cm)	-	%	Raster
	Current Soil organic carbon stocks (0-30 cm)	Latest version of national FAO-GSOC map	tC ha ⁻¹	Raster
Land use/cover	Predominant land use/cover, re-classified into: Minimum: 4 default classes required by model: agricultural crops, grassland/shrubland/savannas ; forests; others Optimum: 12 classes defined in the FAO Global Land Cover - SHARE (GLC-SHARE)	Minimum: representative 2000-2020 (or last year available) Optimum: annual land use 2000 to 2020	1-11	Raster
	Monthly vegetation cover. Obtained from national statistics/local expert knowledge; or derived from NDVI or spectral indexes (see section 3.3.4)	Minimum: average 2015- 2020 (or last year available period) Optimum: monthly soil cover 2000 to 2020	0-1	Raster

Summary

Global layers (TerraClimate, ISRIC, ESA, etc.)

National layers when available!

Example

Meta-analysis Local results of SOC changes

Adjust % increment in C inputs (Additional, Non standard products)

Croplands

Adjust % increment in C inputs (Additional, Non standard products)

- Meta-analysis
- Local results of increase in C inputs:
- From published studies
- From Yield and production data (e.g. field trials)

SSM practice

Croplands

Example

Meta-analysis Local results of SOC changes

Adjust % increment in C inputs (Additional, Non standard products)

Standard Products

Non-Standard Products Using modified coefficients

 Units: Clay content (g/kg vs. %); GSOC Map (g C/m2 vs TC/ha); units and sca

 Outliers...can be reprocessed ("euler" vs "lsoda")... Generally <2% points...Run those points with SoilR

- Time (Spin up)! = monthly runs, 500 years ...Can take more than 15 days, specially in countries with large agricultural areas:
 - First run a subset of points
 - Start with standard product (target points in agricultural + grazing lands)
 - Run by provinces/chunks

- Generate target points and run the model for all points
- Subset just to test if the model is working ok

- Check Forward Vector for NA or 0 values
- Start checking the stocks at TO
- Filter Select points with no data and re-run model
 (Isoda vs euler in the scripts 13, 14, 15)
 - Check input layers have data for that areas!

ntial Map GSOCseq

Standard Products: Final and intermediate Products

|_ Maps

- I_National Absolute SOC Sequestration rate Map for the BAU scenario (ISO3CountryCode_ GSOCseq_ASR_BAU_Map030.tiff)
- [_ National Absolute SOC Sequestration rate Map for the SSM1 scenario (Low) (ISO3CountryCode_ GSOCseq_ASR_SSM1_Map030.tiff)
- [_ National Absolute SOC Sequestration rate Map for the SSM2 scenario (Medium)(<u>ISO3CountryCode</u> GSOCseq_ASR_SSM2_Map030.tiff)
- [_ National Absolute SOC Sequestration rate Map for the SSM3 scenario (High)(ISO3CountryCode_ GSOCseq_ASR_SSM3_Map030.tiff)
- |_ National Relative SOC Sequestration rate Map for the SSM1 scenario (Low) (ISO3CountryCode_ GSOCseq_RSR_SSM1_Map030.tiff)
- I_National Relative SOC Sequestration rate Map for the SSM2 scenario (Medium)(ISO3CountryCode_ GSOCseq_RSR_SSM2_Map030.tiff)
- [_ National Relative SOC Sequestration rate Map for the SSM3 scenario (High)(<u>/SO3CountryCode_ GSOCseq_RSR_SSM3_Map030.tiff</u>)
- I_Initial SOC Stocks at T0 (<u>ISO3CountryCode</u> GSOCseq_T0_Map030.tiff)

_ Uncertainty Maps

- |_ Uncertainties: National Absolute SOC Sequestration rates for the BAU scenario (<u>ISO3CountryCode</u> GSOCseq_ASR_BAU_UncertaintyMap030.tiff)
- |_ Uncertainties: National Absolute SOC Sequestration rates for the SSM1 scenario (Low) (<u>ISO3CountryCode_GSOCseq_ASR_SSM1_</u> UncertaintyMap030.tiff)
- [_ Uncertainties: National Absolute SOC Sequestration rates for the SSM2 scenario (Medium)(<u>ISO3CountryCode_</u> GSOCseq_ASR_SSM2_ UncertaintyMap030.tiff)
- |_ Uncertainties: National Absolute SOC Sequestration rates for the SSM3 scenario (High)(<u>ISO3CountryCode_</u> GSOCseq_ASR_SSM3_ UncertaintyMap030.tiff)
- |_ Uncertainties: National Relative SOC Sequestration rates for the SSM1 scenario (Low) (ISO3CountryCode_ GSOCseq_RSR_SSM1_ UncertaintyMap030.tiff)
- |_ Uncertainties: National Relative SOC Sequestration rates for the SSM2 scenario (Medium)(<u>ISO3CountryCode</u>_GSOCseq_RSR_SSM2_UncertaintyMap030.tiff)
- |_ Uncertainties: National Relative SOC Sequestration rates for the SSM3 scenario (High)(<u>//SO3CountryCode_</u> GSOCseq_RSR_SSM3_ UncertaintyMap030.tiff)
- I_ Documents
- **|_ Report** (ISO3CountryCode_Report.doc, docx)

Global Soil Organic Carbon Sequestration Potential Map GSOCseq

7 Final Standard Products with their uncertainties

29 Total products (considering intermediate)

https://fao-gsp.github.io/GSOCseq/annex-ii-quality-assurance-andquality-control.html

Step 1 Check that 29 products have been labeled appropriately and are in the correct format

Step 2 Check the projection and resolution of all products

Step 3 Check that the products were generated for agricultural and grazing areas only

Step 4 Check that all target areas have been included in the process

Step 5 Check for units, range, and outliers

Global Soil Organic Carbon Sequestration Potential Map GSOCseq

Quality Assurance <

 Ø prevention

https://fao-gsp.github.io/GSOCseq/annex-ii-quality-assurance-and-quality-control.html

Final SOC Stocks

- Most of the values should fall between 15-100 t/ha
- Minimum values should be greater than 0 (except for -999 Values, which indicate no data values)
- -999 values should be masked out
- There should not be negative values other than -999
- Maximum values should not exceed 800 t/ha.
- Mean values SOC SSM3 > SSM 2 > SSM 1 > BAU

Global Soil Organic Carbon Sequestration Potential Map GSOCseq

Quality Assurance prevention

https://fao-gsp.github.io/GSOCseq/annex-ii-quality-assurance-and-quality-control.html

Absolute sequestration rates (ASR)

- The expected range for all maps should fall between -4 to +4 t/ha
- ASR BAU: usually most values from -0.5 to + 0.5, with median values near 0 or lower
- ASR SSM1: usually most values -0.4 to + 0.6, with median near 0 or higher (similar to BAU)
- ASR SSM2: usually most values -0.3 to + 0.7
- ASR SSM3: usually most values -0.2 to + 0.8
- -999 and -49.95 Values (-999/20) indicate no data values. Values <= -49.95 should be masked out
- Negative values other than -999 and -49.95 (meaning SOC losses between 2020 and 2040) should not exceed -4
- Maximum values should usually not exceed +4.
- Mean values SSM3 > SSM 2 > SSM 1 > BAU

Global Soil Organic Carbon Sequestration Potential Map GSOCseq

https://fao-gsp.github.io/GSOCseq/annex-ii-quality-assurance-and-quality-control.html

Relative sequestration rates (RSR)

- The expected range should fall between 0 to +4 t C/ha (with most data being distributed between 0 to +1)
- RSR SSM1: usually most values range from 0 to + 0.6, with median near 0 or higher (similar to BAU)
- RSR SSM2: usually most values range from 0 to + 0.7
- RSR SSM3: usually most values range 0 to + 0.8
- -999 and -49.95 Values (-999/20) indicate no data values. Values <= -49.95 will be excluded from Global product
- There should not be negative values other than -999 and -49.95:
- Maximum values should usually not exceed +4.
- Mean SOC values in order of size SSM3 > SSM 2 > SSM 1

Global Soil Organic Carbon Sequestration Potential Map GSOCseq

Quality Control

The Global Soil Organic Carbon Sequestration Potential Map

Following FAO members request, Global Soil Partnership (GSP) has started the GSOCseq initiative to:

Set attainable and evidence based national targets for carbon sequestration; Identify areas that have high SOC sequestration for SSM projects

Enhance National capacities on sustainable soil management, soil data management, digital soil mapping and modelling; as inputs for NDCs and reporting

3

The GSOCseq approach

Technical specifications and country guidelines for Global Soil Organic Carbon Sequestration Potential Map GOCSEQ

1) Technical Specifications and Country guidelines

http://www.fao.org/documents/card/es/c/cb0353en/

2) Technical Manual Global Soil Organic Carbon Sequestration Potential Map GSOCseq

https://www.fao.org/documents/card/en/c/cb2642en/

Contributors and reviewers

Professor Pete Smith – University of Aberdeen

INSII - International Network of Soil Information Institutions

ITPS - Intergovernmental Technical Panel on Soils

4per1000 SCT - 4 per 1000 Scientific and Technical Committee

CIRCASA - (Coordination of International Research Cooperation on Soil Carbon Sequestration in Agriculture)

UNCCD-SPI - The UNCCD Science-Policy Interface

The GSOCseq approach for reporting CSCs in GHGI

- It's important to understand what the GSOCseq approach allows you to report on
 - CO2 emission/removals in non-waterlogged* mineral soils in croplands and grasslands
 - CO2 emission/removals in paddy field soils* (Shirato & Yokozawa, 2005)
- However, the current GSOCseq has the following limitations:
 - × It does not replace the need for ground data as well as the Tier 1 approach (*the results should be validated with local measurements and compared to the results following the Tier 1 approach*)
 - × Further parametrization might be needed (e.g. SOC dynamics in Vulcanic soils)
 - × It cannot report CO2 emission/removal for forests
 - × It does not take into account CH4, NO2 emissions
- Why take part in the GSOCseq initiative?
 - If properly parametrized and complemented superior to Tier 1 local spatially explicit data
 - Access to capacity development in GIS, mapping and modeling
 - Scenario-based modeling and mapping for data-driven policy-making

Food and Agriculture Organization of the United Nations

Thank you!

