TESTOSTERONE

IDENTITY

Chemical name: 17β -hydroxyandrost-4-en-3-one

 Δ -4-androsten-17 β -ol-3-one

Synonyms: trans-testosterone

Structural formula:

R = H, testosterone

 $R = OCCH_2CH_3$, testosterone

propionate

Molecular formula: $C_{19}H_{28}O_2$ (testosterone)

 $C_{22}H_{32}O_3$ (testosterone propionate)

Molecular weight: 288.41 (testosterone)

344.48 (testosterone propionate)

OTHER INFORMATION ON IDENTITY AND PROPERTIES

Pure active ingredient:

Testosterone Testosterone propionate

Description: needles prisms

Melting Point: 155°C 118-122°C

Optical Rotation: $[\alpha]_D^{24} = +109^{\circ}$ $[\alpha]_D^{25} = +83^{\circ}$ to 90° (c=1 in dioxane)

UV_{max}: 238 nm

(Windholz, 1983)

Technical active ingredient:

USP Grade: >97% purity

RESIDUES IN ANIMALS AND THEIR EVALUATION

CONDITIONS OF USE

General:

Testosterone or testosterone propionate are used primarily as growth promotants in cattle in combination with estradiol or esters of estradiol. Administration is by subcutaneous implant in the ear. The ear, along with any residual drug, is discarded at slaughter.

Dosages:

Synovex-H (200 mg testosterone propionate + 20 mg estradiol benzoate) = heifers
Heifer-oid (200 mg testosterone propionate + 20 mg estradiol benzoate) = heifers
Implix BF (200 mg testosterone + 20 mg estradiol) = heifers

RADIOLABELED RESIDUE STUDIES

General:

When administered exogeneously, testosterone enters the same metabolic pathways and is indistinguishable from the endogenously produced molecule. (Hoffman and Evers, 1986)

RESIDUE STUDIES

Non-pregnant and Pregnant Heifers

Concentrations of testosterone were measured in muscle, liver, kidney, and fat from non-pregnant control heifers and non-pregnant heifers implanted with SYNOVEX-H. Samples were taken at slaughter at 30, 61, 90, or 120 days after implantation (see Table I). Testosterone levels were also determined in muscle, liver, kidney, and fat obtained from pregnant heifers (control and implanted with SYNOVEX-H for 61 days). At the time of slaughter, animals were approximately 120, 180, or 240 days of gestation (see Table II).

The results obtained for testosterone in non-pregnant heifers differ from those for the other steroids in that the highest concentrations were found in kidney rather than in fat. (Kushinsky, 1983)

Table I. Testosterone Mean Tissue Concentrations in Heifers Implanted with SYNOVEX-H (ng/kg)

	Tissue			
	Muscle	Liver	Kidney	<u>Fat</u>
Control 30 Days 61 Days 90 Days 120 Days	19 6 ± 7.09 102 * ± 48.1 46.7 * 22.3 56.7 * 34.2 31.3 ± 12.4	34.1 ± 9.98 15.7 _* ± 3.35 22.6 ± 7.89	189 * 91.6 451 * 201 228 * 143 371 * 267 307 * 89.3	$\begin{array}{c} 25 \atop 339 \atop & + \\ 142 \atop & + \\ 115 \atop & + \\ 32.1 \atop & + \\ \end{array} \begin{array}{c} 6.94 \\ 228 \atop & + \\ 104 \atop & + \\ 12.1 \end{array}$

^{*} Significantly higher than controls.

Table II. Testosterone Mean Tissue Concentrations in Pregnant Heifers Implanted with SYNOVEX-H (ng/kg)

	Tissue			
	Muscle	Liver	Kidney	Fat
120-Day Gestation				
Control** 61-Day	267 + 101 357 + 130	$\begin{array}{c} 52.8 \pm 10.1 \\ 37.6 \pm 6.9 \end{array}$	$\begin{array}{cccc} 1513 & \pm & 331 \\ 1856 & \pm & 426 \end{array}$	590 <u>+</u> 176 751 <u>+</u> 198
180-Day Gestation				
Control** 61-Day	343 ± 117 356 ± 81.4	$\begin{array}{c} 121 & \pm & 19.4 \\ 60.6 & \pm & 8.0 \end{array}$	3505 <u>+</u> 1537 1974 <u>+</u> 510*	751 <u>+</u> 174 1047 <u>+</u> 274*
240-Day Gestation				
Control** 61-Day	418 ± 180 370 ± 89	274 <u>+</u> 69.4 90.2 <u>+</u> 8.8	4014 ± 2269 2914 ± 1057	694 <u>+</u> 231 119 <u>+</u> 155*

^{*} Significantly different from synchronized controls.

Female Calves

Nine female calves were implanted with 20 mg estradiol and 200 mg testosterone at three weeks of age. Three animals were sacrificed at each of three withholding times: 15, 30 and 50 days. Two female calves served as controls. The concentrations of testosterone as determined by a RIA procedure are in Table III. (Roberts and Cameron, 1986)

Table III. Testosterone Mean Tissue Concentrations in Female Calves Treated with Implix BF (ng/kg)

	Tissue			
	Muscle	Liver	Kidney	Fat
Control 15 Day 30 Day 50 Day	$ \begin{array}{r} 6 \pm .3 \\ 360 \pm 58 \\ 245 \pm 28 \\ 225 \pm 87 \end{array} $	$ \begin{array}{rrrr} 108 & \pm & 18 \\ 196 & \pm & 104 \\ 66 & \pm & 7 \\ 71 & \pm & 22 \end{array} $	$\begin{array}{r} 96 \pm 53 \\ 588 \pm 153 \\ 564 \pm 125 \\ 515 \pm 117 \end{array}$	$ \begin{array}{r} 22 \pm 1 \\ 1027 \pm 620 \\ 1258 \pm 600 \\ 750 \pm 157 \end{array} $

Bulls, Heifers and Female Veal Calves

Free and conjugated testosterone were determined in the tissues of bulls and feedlot heifers by RIA. In addition, tissue levels for free and conjugated testosterone were determined in female veal calves implanted with 20 mg estradiol and 200 mg of testosterone. (Hoffman and Rattenberger, 1977)

^{**} Control pregnant heifers were synchronized with fenprostalene.

Table IV. Testosterone Mean Tissue Concentrations of Untreated and Treated Cattle (ng/kg)

Type of Animal	Muscle	Liver	<u>Kidney</u>	<u>Fat</u>
Bull Heifer Female veal calf Female veal calf, untreated ¹	535 ± 525 92 ± 29 16 ± 13 70 ± 43	749 ± 405 193 ± 101 39 ± 18 47 ± 12	2783 ± 2192 595 ± 650 256 ± 110 685 ± 54	$ \begin{array}{r} 10,950 \pm 8683 \\ 250 \pm 64 \\ 178 \pm 118 \\ 340 \pm 265 \end{array} $

¹ Withholding period of 77 days.

APPRAISAL

Residues occur in the edible tissues of non-pregnant and pregnant heifers and female calves. Although not a component of implants that are used in bulls, endogenous levels of testosterone have been determined in the tissues of bulls.

Thirty days after implantation of testosterone and estradiol-17ß in non-pregnant heifers, mean levels of testosterone in fat had increased from 26 to 340 ng/kg, in muscle from 20 to 100 ng/kg, in liver from 13 to 34 ng/kg, and in kidney from 190 to 450 ng/kg. These levels then progressively decreased to reach levels expected for the endogenous hormone only at 130 days. The maximum levels of testosterone in all tissues of treated heifers are less than the levels found in untreated pregnant heifers. In kidney, this difference is of the order of 3 to 8-fold depending on the length of pregnancy. Similar differences are seen in the kidney of treated heifers and untreated bulls; however, the difference in the fat of treated heifers and untreated bulls is approximately 30-fold.

Testosterone is normally produced in all mammalian species. When heifers are treated in accordance with good animal husbandry practice, the levels of residues in edible tissues about twofold, but these levels are extremely low when compared with the amounts of testosterone normally produced by human beings. The daily production rate of testosterone in human beings is given in Table V (Farber and Arcos, 1983). Even in prepubertal girls, the amount of endogenous testosterone produced daily is almost a thousand times the amount of testosterone that would be ingested in a 500 g portion of meat derived from a treated animal (40 ng).

Table V. Testosterone Production Rate in Humans

Women	mg/day
Non-pregnant	0.24
Late pregnant	0.32
Postmenopausal	0.14
Prepubertal girls	0.032
<u>Men</u>	
Adult	6.48
Prepubertal boys	0.065

REFERENCES

- Farber, T.M. and Arcos, M. (1983). A regulatory approach to the use of anabolic agents. In: Meissonnier, E. (ed.) Anabolics in Animal Production, Office International des Epizooties, Paris, pp. 289-296.
- Hoffmann, B. and Evers, P. (1986). Anabolic agents with sex hormone-like activities: Problems of residues. In: Rico, A.G. (ed.), Drug Residues in Animals, Academic Press, New York, pp. 111-146.
- Hoffman, B. and Rattenberger, E. (1977). Testosterone concentrations in tissue from veal calves, bulls and heifers and in milk samples. J. Anim. Sci. 46, 635-641.
- Kushinsky, S. (1983). Safety aspects of the use of cattle implants containing natural steroids. Presented at: International Symposium on the Safety of Evaluation of Animal Drug Residues, West Berlin. Submitted to FAO by Syntex (U.S.A.) Inc., Palo Alto, CA, USA.
- Roberts, N.L. and Cameron, D.M. (1986). Steroid levels in tissues of veal calves following implantation with Implix BM/BF and/or Revalor lactose. Unpublished report No. RSL/686 from Huntingdon Research Centre, Huntingdon, Cambridgeshire, England. Submitted to FAO by Roussel-UCLAF, Romainville, France.
- Windholz, M., ed. (1983). The Merck Index 10th edition. Merck and Co. Rahway, N.J.