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Abstract 

Conserving and utilizing diverse plant genetic resources is crucial for achieving global food 1 

security targets. Accurate phenotyping and genotyping of large sets of plant genetic 2 

resources for food and agriculture (PGRFA) can help characterize the inherent and 3 

enormous diversity of these resources for their better management and efficient utilization 4 

in crop improvement. Modern DNA sequencing and genotyping technologies enabling 5 

simultaneous identification and mapping of thousands of genetic markers in hundreds of 6 

samples have facilitated detailed characterization of large PGRFA collections and breeding 7 

populations across the globe. This has been exemplified by the detailed genetic profiling 8 

of germplasm accessions, breeding lines and varieties belonging to, not only major crops, 9 

but also less studied and so-called orphan crops. Hence, these large-scale sequencing and 10 

genotyping efforts have rendered novel genetic diversity accessible for research and 11 

breeding of crop species. Concurrent developments in plant phenotyping have also greatly 12 

strengthened trait mapping, gene discovery, crop breeding and germplasm management 13 

efforts. However, the high-volume and complexity of phenotypic and genotypic datasets 14 

presents unprecedented challenges with respect to analysis of large data sets, storage, 15 

access and sharing. This thematic background study highlights the major trends in 16 

genotyping and phenotyping of PGRFA since 2010. The key breakthroughs related to 17 

high-density genotyping and large-scale phenotyping of both natural diversity panels and 18 

artificially-created mapping populations are discussed. This review also underscores the 19 

future requirements for the efficient screening and management of PGRFA to accelerate 20 

their sustainable use.    21 
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1. Introduction 

Measurement methods that describe variations in plant phenotypes are the cornerstone of 22 

plant breeding. Plant phenotypes are determined by genetic, environment and genotype by 23 

environment (G×E) interactions. Phenotyping refers to evaluation of “structural, 24 

physiological, and performance-related traits” of plants (Großkinsky et al. 2015). Crop 25 

phenotypic performance involves a complex interaction between genotypes and 26 

environmental factors, which include climate, soil factors, abiotic/biotic factors, and crop 27 

management methods.  28 

Over the past two decades, the characterization and evaluation of PGRFA was conducted 29 

using mainly field-based measurements focused on visually observable morphological 30 

traits with high heritability. Manual measurements that formed the basis of plant 31 

evaluations were cumbersome, time-intensive, destructive and often subjective. 32 

Harnessing the immense potential of PGRFA relies, to a significant extent, on the accuracy 33 

and precision of the methods and tools being used for their phenotypic assessment. To 34 

this end, non-invasive phenotyping systems driven largely by the image and sensor 35 

technologies facilitating accurate and precise measurements in both controlled and field 36 

conditions, are contributing to overcome the bottlenecks of traditional phenotyping 37 

methods.  38 

The idea of using genotype as a screening tool for genetic variations and a surrogate for 39 

variations in external phenotypes has revolutionized crop improvement. Genotyping refers 40 

to a procedure that assays individual’s DNAs to examine their differences at genetic levels. 41 

DNA marker technologies have given great impetus to efforts aimed at genetic screening. 42 

Ease of assaying DNA at reduced cost and greater scales drove the innovations in DNA 43 

marker systems, leading a recent shift from low-throughput PCR-based systems.  44 

Since 2010, DNA marker technologies have witnessed remarkable improvements in terms 45 

of their throughput, accuracy, reproducibility, ease of assaying and cost effectiveness. 46 

Concurrent with evolving technologies in general, and in the DNA sequencing landscape 47 

in particular, methods for identifying and mapping genetic markers in the genome have 48 

also undergone a paradigm shift to support genetic mapping and breeding efforts. The 49 

advent of next generation sequencing (NGS) and third generation sequencing (TGS) 50 

technologies, with their constant refinements in their throughput, scalability, resolution, 51 
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time and cost, has resulted in another rapid increase in both the quantity and quality of 52 

genome assemblies reported for land plants. 53 

Alongside the development of high-density genotyping technologies, the notable 54 

improvements in plant phenotyping capacities, especially in terms of mobility, 55 

affordability, throughput, accuracy, scalability, data storage and analytics, have significantly 56 

enhanced the ability to bridge the gap between genetic information and the phenotypic 57 

manifestations of that information (Zhu et al. 2021). Moreover, the acquisition of high-58 

quality phenotyping data from large samples is of paramount significance to realize the full 59 

potential of cutting-edge genotyping technologies for crop improvement. This thematic 60 

background study highlights the major trends in the adoption of modern genotyping and 61 

phenotyping platforms to facilitate sustainable use of plant genetic resources for food and 62 

agriculture (PGRFA). 63 

2. Advances in large-scale phenotyping of PGRFA 

The latest developments in plant phenotyping, driven largely by the evolving sensor and 64 

imaging technologies, have helped relieve the long-standing “phenotyping bottlenecks” in 65 

plant research and breeding. PGRFA characterization has greatly benefited from the 66 

increased scale and accuracy of advanced plant phenotyping methods and technologies 67 

that can record morphological, physiological and biochemical changes at relatively high 68 

resolutions (Li et al. 2021). Recent developments in robotics, artificial intelligence, 69 

advanced imaging and data analysis have paved the way for the increased adoption of 70 

PGRFA phenotyping in an automated/semi-automated, cost-efficient, non-destructive 71 

and non-invasive fashion (Table 1). 72 

2.1 High-throughput Phenotyping Platforms  73 

The development of high-throughput plant phenotyping platforms (HTPPs), with higher 74 

accuracy and precision, represent a breakthrough in plant biology and genetic research. 75 

Increased understanding of diversity within and among accessions by using high-quality 76 

molecular data and accurate phenotypic values facilitates the selection and use of valuable 77 

genetic variation in crop improvement as well as transforming genebank management 78 

practises. 79 

HTPPs involve the accurate acquisition and analysis of numerous multi-dimensional 80 

phenotypes during various plant growth stages at the organism level, including the cell, 81 
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tissue, organ, individual plant, plot, and field levels (Song et al., 2021). HTPPs employ 82 

multiple advanced sensors (Bohra et al. 2021) and are equipped with data collection 83 

algorithms to perform large-scale phenotyping tasks. The sensors operate on various 84 

technologies that capture images as reflectance, multispectral, hyperspectral, red green and 85 

blue imaging (RGB), light detection and ranging (LiDAR), and infrared imaging.  86 

One example of a High-throughput Phenotyping Platform is TraitMill, developed by the 87 

private company CropDesign, and was among the first automated platforms that allowed 88 

the high-throughput evaluation of yield parameters on transgenic rice lines (Reuzeau et al. 89 

2010). In the public sector, the establishment of the Australian Plant Phenomics Facility 90 

(APPF) pioneered state-of-the-art phenomics technologies involving hyperspectral, 91 

choloryphyll fluorescence and RGB imaging using the platforms PlantScan and TrayScan, 92 

developed by Photon Systems Instruments at the High Resolution Plant Phenomics Center 93 

in Canberra, Australia as part of the Commonwealth Scientific and Industrial Research 94 

Organisation (CSIRO). 95 

2.2 HTPP application and advancements in multi-trait capturing using automated sensors and 96 

computations 97 

Research in different crops has demonstrated the use of sensors in large-scale plant 98 

phenotyping, including maize and sorghum (Shafiekhani et al. 2017), wheat (Deery et al. 99 

2019; Madec et al. 2017), cotton (Andrade-Sanchez et al. 2014), and soybean (Sagan et al. 100 

2019). Sensor systems such as the conveyor belt system, operating on the ‘plant-to-sensor’ 101 

mode, captures images of the crop by keeping plants on a moving belt that passes in front 102 

of a camera stand, ensuring consistent imaging (Li et al. 2021). For example, the conveyor 103 

belt system was used to study the effects of zinc and an arbuscular mycorrhizal fungus on 104 

tomato (Brien et al. 2020). The LemnaTec Field Scanalyzer also uses the ‘sensor-to-plant’ 105 

mode and has been employed to accurately monitor crop performance via measuring plant 106 

height, spike number, and the normalized difference vegetation index (Virlet et al. 2017). 107 

Several studies using the Scanalyzer 3D have also demonstrated the growing potential of 108 

imaging techniques for accurate plant phenotyping (Nguyen et al. 2019).  109 

The Plant Accelerator in Adelaide, Australia, is part of the APPF and is a cutting-edge 110 

plant phenotyping system equipped with multiple sensors that has been used in 111 

phenotyping different crops, including rice (Mazis et al. 2020) and chickpea (Atenio et al. 112 

2017). Other examples employing high-throughput image analysis include the screening of 113 

https://www.frontiersin.org/articles/10.3389/fbioe.2020.623705/full#B25
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biomass accumulation in barley cultivars under drought stress (Neumann et al. 2015) and 114 

the monitoring of water-use dynamics for quantifying leaf water content in maize (Ge et 115 

al. 2016). 116 

Obtaining visual representations of water and other elements within a plant could help in 117 

optimizing the breeding and management strategies in relation to fertilization and 118 

irrigation, breeding trial conductance and stress conditions like drought. The application 119 

of hyperspectral imaging in wheat has led researchers to develop distribution maps for 120 

water and nitrogen content within plants (Bruning et al. 2019). Similarly, digital features 121 

extracted from image data were used for the quantitative measurements of the drought 122 

response in rice and the analysis was extendable to other gramineous crops, such as maize 123 

(Duan et al. 2018). However, a crucial factor in the adoption of HTPPs is the degree of 124 

correlation between the traits measured by sensor systems and the resulting plant 125 

performance in the field (Bai et al. 2019). 126 

Computed tomography (CT) is another method used to provide a thorough evaluation of 127 

the external and internal features encompassing plant morphology and anatomy. In wheat, 128 

3D morphological images created by X-ray micro-CT were used to accurately identify spike 129 

kernels (Liu et al. 2020). Advanced procedures and tools, such as RootAnalyzer (Chopin 130 

et al. 2015) and RootScan (Burton et al. 2013), have also uncovered the diversity of root 131 

traits through the analysis of cross-section images in wheat and maize, respectively. 132 

Portable instruments are widely used to measure crop phenotypic traits owing to the ease 133 

in operation, portability and low cost (Yang et al. 2020). However, their applications for 134 

high-throughput phenotyping are limited by detection scale and efficiency. Mobile 135 

phenotyping systems with multiple sensors have been successfully used to collect plot-136 

level, blur-free phenotypic data in soybean and wheat (Bai et al. 2016). 137 

Monitoring of plant growth and yield in sorghum during the 1998 growing season by a 138 

Cessna 206 aircraft was among the first examples of airborne digital imagery in plant 139 

phenotyping (Yang et al. 2000). Aerial plant phenotyping systems with 3D imaging 140 

generated accurate data in potatoes, capturing plant height and canopy coverage (Xie et al. 141 

2022). Similarly, thermal imaging data from a manned aerial platform (MAP) resulted in 142 

the acquisition of data on canopy temperature covering thousands of research plots, thus, 143 

demonstrating the potential airborne thermography for the rapid measurement of crop 144 

phenotypic traits (Deery et al. 2016). 145 
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Applications of crop phenomics or high-throughput crop phenotyping in different species 146 

were reviewed by Yang et al. (2020). The author reviewed related articles in Web of Science, 147 

which the following order: wheat (30 percent), rice (13 percent), maize (17 percent), 148 

Arabidopsis (13 percent), barley (7 percent), and others (20 percent). A bibliometric analysis 149 

by Costa et al. (2019) based on the publications on plant phenotyping research made over 150 

the last 20 years (1997-2017) showed that majority of the analysed papers (41.8 percent) 151 

were authored by the EU researchers followed by the USA (15.4 percent), Australia (6 152 

percent) and India (5.6 percent). 153 

A dramatic rise in the use of modern plant phenotyping, with more than 90 percent of the 154 

publications available since 2010. Plant phenotyping systems were expanded from 155 

Arabidopsis, a model plant, to real crops over the past two decades. Importantly, the analysis 156 

of the trend highlighted the pressing need to expand the knowledge, infrastructures and 157 

expertise and international collaborations that provides greater opportunities for 158 

participation of the researchers, organizations and countries from the developing world. 159 

2.3 Global, regional and local phenotyping networks  160 

Collaborations among the public and private scientific sectors have resulted in the 161 

formation of plant phenotyping networks that use advanced technologies to monitor plant 162 

growth and development at different levels. One such plant phenotyping network is the 163 

International Plant Phenotyping Network (IPPN) that involves various regional and 164 

national partners: EMPHASIS , European Plant Phenotyping Network (EPPN), North 165 

American Plant Phenotyping Network (NAPPN), Nordic Plant Phenotyping Network 166 

(NPPN), PhenomUK, German Plant Phenotyping Network (DPPN), and the 167 

PHENOME Networks (https://www.plant-phenotyping.org/; https://phenome-168 

networks.com/en/). Other automated phenotyping facilities include the Bellwether 169 

phenotyping platform at the Donald Danforth Plant Science Center, USA and the high-170 

throughput rice phenotyping platform (HRPF; Yang et al. 2014). 171 

3. Advances in genotyping of PGRFA 

Recent advances in genotyping have facilitated rapid generation of high-throughput 172 

marker data in a cost-effective manner. The growing affordability to advanced genotyping 173 

technologies has contributed to DNA analysis of large samples, leading to their 174 

comprehensive genetic characterisation. Enhanced ability to describe genetic differences 175 

https://www.plant-phenotyping.org/
https://emphasis.plant-phenotyping.eu/
https://eppn2020.plant-phenotyping.eu/
https://www.plantphenotyping.org/
https://nordicphenotyping.org/
https://www.phenomuk.net/
https://www.plant-phenotyping.org/
https://phenome-networks.com/en/
https://phenome-networks.com/en/
https://www.danforthcenter.org/our-work/core-facilities/phenotyping/
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in diverse collections and artificial populations has accelerated population genetics studies 176 

and trait mapping and germplasm management efforts.  177 

3.1 High-density single nucleotide polymorphism arrays  178 

The increasing availability of reference genome sequences over the past decade, in 179 

combination with resequencing of multiple genomes, has given a great impetus to the 180 

discovery and application of single nucleotide polymorphism (SNP) markers in plant 181 

genetic research and molecular breeding (Mammadov et al., 2012). The need to genotype 182 

SNPs in large samples for genetic diversity, trait mapping and gene discovery has led to 183 

the establishment of a variety of high-throughput genotyping platforms with varying levels 184 

of multiplexing, such as Illumina GoldenGate, Illumina Infinium BeadChips, and more 185 

recently, the Kompetitive allele specific PCR (KASPTM) assay (Mir et al., 2013). 186 

The identification of large-scale high-quality SNP datasets, following the resequencing of 187 

several genomes in different crop species, has facilitated the development of fixed SNP 188 

arrays for genetic diversity analysis, the construction of high and ultra-high density genetic 189 

maps and the identification of genome-wide marker-trait associations for important 190 

agronomic traits (Thomson et al., 2017). A review by Rasheed et al. (2017) discussed 191 

advances and challenges associated with the development and application of diverse high-192 

throughput genotyping platforms in different crop species. The high cost associated with 193 

the development of crop-specific SNP arrays, along with ascertainment bias towards 194 

variants present in the population, which are involved in array development limits, have 195 

led to the use of fixed arrays for population genetic studies (Geibel et al. 2021). 196 

Recent examples of the establishment of genome-wide SNP arrays in crop plants include 197 

50 thousand in rice (Chen et al. 2014, Singh et al. 2015), 660 thousand (Sun et al. 2020) 198 

and 820 thousand (Winfield et al. 2016) in wheat, 600 thousand in maize (Unterseer et al. 199 

2014), 50 thousand in barley (Bayer et al. 2017), 480 thousand in apple (Bianco et al. 2016), 200 

60 thousand in Brassica (Clarke et al. 2016), 63 thousand (Hulse-Kemp et al. 2015) and 201 

80 thousand (Cai et al. 2017) in cotton, 50 thousand in chickpea (Roorkiwal et al. 2018), 202 

50 thousand in cowpea (Muñoz-Amatriaín et al. 2017), and 58 thousand in groundnut 203 

(Pandey et al. 2017). 204 

3.2 Low-depth whole genome resequencing  205 

Advances in DNA sequencing technologies have paved the way for the adoption of 206 

sequence-based methods for plant genotyping. The sequence-based methods enable the 207 
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simultaneous discovery and the mapping of large numbers of genetic markers within a 208 

short period of time. For instance, Huang et al. (2009) pioneered the research on 209 

demonstrating the utility of sequence-based methods in the genetic mapping of a biparental 210 

population. The study showed that sequencing-based genotyping is 20 times faster in data 211 

collection relative to the traditional PCR-based DNA marker systems and was 35 times 212 

more precise in determining recombination breakpoints. Since then, WGRS has been 213 

employed for understanding genetic diversity, evolutionary and domestication history as 214 

well as functional gene discovery across several crop species (Varshney et al., 2017a, 2017b, 215 

2019). Additionally, WGRS of diverse accessions has allowed high-resolution identification 216 

of gene-trait associations underlying important plant phenotypes through genome-wide 217 

association studies GWAS on rice, chickpea, soybean, pigeon pea, common bean, linseed 218 

and Brassica (see Bohra et al. 2020 and references therein). 219 

Several other methods that use NGS for genotyping have been proposed in recent years, 220 

which include diversity array technology sequencing (DArT-Seq), sequence-based 221 

genotyping (SBG), restriction fragment sequencing (REST-Seq), restriction enzyme site 222 

comparative analysis (RESCAN), and specific-locus amplified fragment sequencing 223 

(SLAF-Seq). Of these GBS, DArT-Seq and SLAF-Seq have dominated the genetic 224 

research in plants over the last decade (Rasheed et al. 2017). 225 

3.3 Moderate to low-density genotyping assays for breeding applications  226 

For the purpose of molecular breeding, customized genotyping platforms that 227 

accommodate a finite number of SNP markers can offer significant cost savings over using 228 

high-density genotyping platforms. One of such genotyping platforms, the KASPTM, 229 

represents a significant improvement in allele-specific PCR and has garnered wide 230 

recognition and application amongst plant scientists for tracking and stacking genomic 231 

loci. The flexibility and efficiency of the KASPTM platform has allowed its widespread use 232 

for varietal identification (Tang et al. 2022) and genomics-assisted breeding (Saxena et al. 233 

2021). 234 

4. Application of phenotyping and genotyping for the conservation and 

sustainable use of PGFRA 

The advances in phenomics and genomics have enhanced our capacity to characterize 235 

and use the germplasm collections for trait discovery and varietal improvement. Ready 236 

access to PGRFA, particularly CWR and landraces that contain valuable genetic diversity, 237 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/restriction-enzyme
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is of vital importance to food security and climate adaptation of future crops. This was 238 

evident from elucidation of genetic contributions of GKP 10017, an accession of wild 239 

groundnut (Arachis cardenasii), towards 251 lines and cultivars in 30 countries in 240 

Africa, Asia, Oceania and the Americas. The genetic influence of GKP 10017 improved 241 

the tolerance level of groundnut lines and varieties against various diseases and pest 242 

including root knot nematode, late leaf spot and rust (Bertioli et al. 2021). In this study 243 

establishment of the chromosome-scale genome assembly of GKP 10017 in combination 244 

of diagnostic SNPs and pedigree research facilitated a systematic analysis of the genetic 245 

exchanges following international collaborations. 246 

4.1 Genotyping applied to the conservation and management of PGRFA in genebanks  247 

Genetic marker technologies have been applied for the estimation of diversity in PGRFA 248 

collections (Varshney et al. 2021a; Bohra et al. 2022a, b). As previously mentioned, 249 

advances in DNA sequencing technologies have led to a dramatic shift in the scale of 250 

molecular characterization of germplasm collections and breeding populations. In Table 2, 251 

selected DNA sequencing and genotyping technologies have been summarized, which 252 

facilitated the large-scale profiling of germplasm collections in different crops. For 253 

example, Milner et al. (2019) analysed collections at the Leibniz-Institute of Plant Genetics 254 

and Crop Plant Research (IPK)’s ex situ genebank that encompasses cultivars, landraces 255 

and crop wild relatives by using more than 100,000 SNP markers that were obtained by 256 

the GBS technique. Similarly, Singh et al. (2019) employed DArT-Seq and GBS platforms 257 

to characterize 1,143 Aegilops tauschii accessions from the Wheat Genetics Resource Center 258 

(WGRC) in the United States of America, the International Maize and Wheat 259 

Improvement Center (CIMMYT) in Mexico and Punjab Agricultural University (PAU) in 260 

India. 261 

The past decade has witnessed an increased application of genome sequencing for the in-262 

depth genetic characterization of reference genotypes and large crop germplasm 263 

collections (Box 1). The latest examples using WGRS include cassava [241 accessions 264 

(Ramu et al. 2017) and 388 accessions (Hu et al. 2021)], sunflower (493 accessions, Hübner 265 

et al. 2019), common bean (683 accessions, Wu et al. 2020), chickpea (429 accessions, 266 

Varshney et al. 2019), pigeon pea (292 accessions, Varshney et al., 2017a), pearl millet (994 267 

accessions, Varshney et al. 2017b) and lettuce (445 accessions, Wei et al. 2021). Besides 268 

WGRS, high-density genotyping platforms (GBS, DArT-Seq, SNP arrays, etc.) have also 269 

been employed for the characterization of diverse germplasm across different crop species, 270 
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as exemplified by the 80 000 accessions of wheat (Sansaloni et al. 2020), 2,815 accessions 271 

of maize (Romay et al. 2013), 14 000 accessions of soybean (Bandillo et al. 2015), 1 628 272 

accessions of sorghum (Girma et al. 2020), 10 038 accessions of pepper (Tripodi et al. 273 

2021) and 271 accessions of cassava (Bredeson et al. 2016). 274 

Pairwise identity-by-state (IBS) comparisons following high-density genetic profiling of 275 

germplasm collections can also help identification of near-identical samples in large 276 

collections. This approach was applied to the study of genetic diversity, intra- and inter-277 

populations, of two durum wheat landraces “Russello” and “Timilia” from Sicily (Taranto 278 

et al. 2022). Results showed that the Russello landrace was in fact two genetic groups, 279 

differing in important traits related to gluten quality and adaptation. This study highlighted 280 

that a more in-depth assessment of genetic diversity should be undertaken in future 281 

breeding programs. It also indicated that intra-population genetic diversity should be 282 

considered for conservation and documentation efforts. 283 

Sequencing and genotyping germplasm can significantly contribute towards the 284 

identification of gaps in germplasm collections and mislabelling of biological status in 285 

genebank historical records. This was exemplified by the genome analysis of chickpea 286 

accessions that elucidated a wild-specific allele of the SHATTERPROOF2 homolog, which 287 

assisted in the identification and correction of the mislabelling of the chickpea accession 288 

ICC 16369 (Varshney et al. 2021b). 289 

Furthermore, the development of molecular passport data is used to augment collection 290 

management efforts by identifying different conservation gaps and duplicated accessions 291 

as well as correcting historical passport records. For instance, the analysis of 1 143 292 

Aegilops tauschii accessions from WGRC, CIMMYT and PAU using genome-wide SNPs 293 

has allowed the identification of 564 accessions as unique, thus, revealing more than 294 

50 percent redundancy levels among the Ae. Tauschii collections that were hosted in the 295 

three genebanks (Singh et al. 2019). Similarly, high-density genotyping of the IPK barley 296 

collections data helped in correcting the biological status of Ethiopian accessions from 297 

‘wild’ to ‘landrace’ in the genebank information system (Milner et al. 2019). 298 

4.2. Genotyping applied to the characterization and evaluation for sustainable use of PGRFA  299 

The availability of the high-density sequencing and genotyping data on large germplasm 300 

collections will guide strategies for creation of the diversity sets for their enhanced use in 301 

plant breeding programs. Based on the genome-wide marker information, genomic 302 

http://gbis.ipk-gatersleben.de/
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prediction could support optimizing selection strategies for choosing worthy germplasm 303 

accessions in the absence of phenotypic information. For example, by generating GBS data 304 

on 962 sorghum accessions, Yu et al. (2016) investigated the efficacy of genomic prediction 305 

as a novel and cost-effective strategy for “turbocharging” genebanks. A training set of 299 306 

accessions with information on both its phenotype and genotype was used to assess this 307 

approach. Likewise in wheat, the genomic prediction involving GBS-analysed 7 745 308 

germplasm accessions and 325 cultivars, which enabled the identification of suitable 309 

parents and donors for grain yield and resistance to yellow rust (Schulthess et al. 2022). 310 

Hence, availability of detailed information related to genotype and phenotype of the 311 

accessions would unleash the true breeding potential of each seed stored in the genebank 312 

for future use. 313 

Molecular characterization was applied to several subsets of different crop species in Italy. 314 

Researchers at the Research Centre for Olive, Fruit and Citrus Crops undertook the 315 

molecular assessment of about 400 peach accessions using IPSC 9K SNP array (Micheletti 316 

et al. 2015, Verde et al. 2012). The entire peach collection (about 900 accessions) had also 317 

been characterized using SSR markers. Furthermore, about 400 apple local accessions of 318 

Central Italy were characterized with 20K SNP arrays. Other studies have also focused 319 

on wheat, where a subset of 200 bread wheat accessions was analyzed by SNPs and 320 

phenotyped for relevant agronomic and qualitative traits (Lazzaro et al. 2019, Ormoli et 321 

al. 2015, Talini et al. 2020). 322 

Researchers at the Swiss National Genebank carried out analysis of 502 bread wheat 323 

(Triticum aestivum) and 293 spelt (Triticum aestivum spelta) accessions using a 15K SNP array. 324 

It highlighted the importance of old landraces as promising sources of novel genes (Müller 325 

et al. 2017). Genomic data in combination with expert knowledge considerations 326 

facilitated the development of core collections for apple (Broggini et al. 2022), pear 327 

(Urrestarazu et al. 2019) and chestnut (Pereira-Lorenzo et al. 2020). In France, the 328 

COREPOM project (2011-2014), funded by the Foundation for Research in Biodiversity, 329 

enabled the genetic characterization of various collections of genetic resources of 330 

horticultural crops including apple for developing a core-collection that represents the 331 

cultivated biodiversity at the national scale (Roux-Cuvelier et al. 2021). 332 

In summary, notable advances in plant genotyping and phenotyping capacities over the 333 

last ten years have opened up possibilities of having detailed genotype-phenotype maps of 334 

thousands of accessions to enable the selection of suitable accessions even in the absence 335 
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of phenotypic information. Acquisition of large-scale genotypic and phenotypic 336 

information on germplasm sets may also help develop genetic sequencing and prediction 337 

models to assess the value of a germplasm accession that lacks morphological 338 

characterization data. 339 

4.3 Applying focused identification of germplasm strategy with genotyping 340 

In the context of climate change adaptation, the focused identification of germplasm 341 

strategy (FIGS) enhances the possibilities of finding adaptive traits through customization 342 

of large germplasm collections using an ecogeographic approach (Bohra et al. 2022a, b). 343 

The use of genotyping on subsets identified using FIGS have allowed for the rapid 344 

identification of accessions with traits of interest. For example, Bhullar et al. (2009) 345 

performed allele mining for powdery mildew resistance gene Pm3 in a subset of 1 320 346 

landraces of wheat that was customized by applying FIGS approach on a large genebank 347 

collection of 16 089 accessions. Analysis of wheat germplasm collection using FIGS has 348 

identified subsets for specific traits such as resistances to Russian wheat aphid (El 349 

Bouhssini et al. 2010), stem rust (Endresen et al. 2012), yellow or stripe rust (Bari et al. 350 

2014). Similarly, FIGS facilitated identification of sources for resistance to net blotch in 351 

barley (Endresen et al. 2011) and drought adaptation in faba bean (Khazaei et al. 2013).  352 

As discussed by Bohra et al. (2022a), the recent research has underscored the great scope 353 

for the implementation of emerging machine learning algorithms for creation of FIGS 354 

sets to facilitate selection and breeding decisions. A combination of FIGS and core 355 

collection approach has been found to be more effective in creation of objective-driven 356 

core subsets to accelerate utilization of germplasm collection in crop improvement. For 357 

instance, Haupt and Schmid (2020) applied FIGS-informed core collection approach in 358 

> 17 000 soybean accessions from the USDA Soybean Germplasm Collection and 359 

identified two diversity panel of 183 and 366 accessions for future utilization in abiotic 360 

stress adaptation in soybean. 361 

4.4 Direct application of genotyping to crop improvement 362 

The use of PGRFA, particularly the crop wild relatives (CWRs) and landraces, for 363 

broadening the genetic base of breeding programs faces a variety of challenges. Pre-364 

breeding and germplasm enhancement programs provide an avenue to devise strategies 365 

to accelerate PGRFA use for varietal improvement. The identification and introgression 366 

of quantitative trait loci (QTL) in different genetic backgrounds, particularly from wild 367 
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germplasm often results in unpredictable breeding outcomes (Bohra et al. 2022a). There 368 

remains tremendous scope for combining this approach with other breeding methods 369 

such as those involving multiple diverse parents e.g. wild nested association mapping 370 

(NAM) populations in barley (Nice et al. 2017). 371 

The development of multi-parent populations (MPPs) takes advantage of the availability 372 

of cost-effective genotyping in combination with the need for high-resolution trait 373 

mapping has stimulated the efforts to generate such valuable mapping resources across 374 

different crops (Bohra et al. 2020). These MPP s harbouring genes for biotic and abiotic 375 

stress tolerance are important to incorporate yield stability and climate change adaptation 376 

of future cultivars, such as in the case of (Hordeum vulgare L.)  with cases, such as scald, 377 

powdery mildew, leaf rust and Fusarium head blight (Novakazi et al. 2020). 378 

5. Database development to accelerate PGRFA use 

Recent advances in the field of omics, which is a term used to encompass different fields 379 

of biology, such as genomics, transcriptomics, proteomics, metabolomics and phenomics, 380 

have created novel avenues to accelerate PGRFA use by integrating data from multiple 381 

omics platforms. For example, the DivSeek International Network 382 

(https://divseekintl.org/) intends to harness omics and big data technologies with the help 383 

of crop researchers, genebank managers, database and computational experts. There has 384 

been a greater emphasis on providing all germplasm and associated information, such as 385 

seed or propagation materials, passport data, characterization data and evaluation data held 386 

by the genebanks, as open-access to the public for research, breeding and education. 387 

Various types of descriptors of internationally-agreed standards, such as the multi-crop 388 

passport descriptor (MCPD V.2.1; Alercia et al., 2015), have been developed and adopted 389 

to facilitate this exchange of the information related to plant genetic resources. 390 

5.1 Current examples of genetic databases and genebanks providing genetic passport data for PGRFA 391 

The information on several of these subsets can be obtained from online platforms that 392 

store details about PGRFAs from genebanks worldwide. For example, Genesys 393 

(https://www.genesys-pgr.org/) is a global platform providing passport data of about 394 

4 185 326 accessions with 256 subsets, including core and mini-core collections as well as 395 

444 characterization and evaluation sets of 40 crops. This also includes accessions with 396 

specific traits, such as tolerance to biotic and abiotic stresses, photoperiod insensitivity and 397 

quality. Core collections are available for sorghum (2 246 accessions), pearl millet (2 094 398 

https://divseekintl.org/
https://divseekintl.org/
https://www.genesys-pgr.org/
https://www.genesys-pgr.org/
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accessions), soybean (small seeded: 1 466 accessions; large seeded: 111 accessions), 399 

subterranean clover (97 accessions), cassava (629 accessions), whereas mini core 400 

collections have been reported in rice (600 accessions), Oryza glaberrima (350 accessions), 401 

Triticum timopheevii (92 accessions), and A. tauschii (40 accessions), cowpea (376 accessions). 402 

As demonstrated in rice (Kumar et al. 2020), wheat (Pascual et al. 2020) and common bean 403 

(Kuzay et al. 2020), generation of large-scale sequencing and genotyping data in recent 404 

years has facilitated more detailed investigations of the existing diversity panels, which has 405 

in turn allowed optimization of these subsets to have better representations of the genetic 406 

diversity of the crop species. Similarly, the germplasm resource information system 407 

(GRIN)-global (https://www.grin-global.org/) has been developed in a joint effort by the 408 

Global Crop Diversity Trust, Bioversity International, and the Agricultural Research 409 

Service of the United States Department of Agriculture (USDA) that is being used and 410 

evaluated by various national and international genebanks worldwide. 411 

5.2 Characterization and evaluation data 412 

Characterization and evaluation data are made available through the European Search 413 

Catalogue for Plant Genetic Resources (EURISCO), which also provides passport data 414 

related to nearly over 2 million accessions conserved ex situ by about 400 institutes from 415 

43 member countries. Such data will also soon be available through GENBIS, the 416 

NordGen search catalogue (https://www.nordic-baltic-genebanks.org/gringlobal/about). 417 

A number of national genebanks also have searchable databases. For example, molecular 418 

and morphological characterization of diverse accessions of the national PGRFA 419 

genebank of Switzerland is freely available (https://www.pgrel.admin.ch/pgrel/), where 420 

specific traits can be queried and any registered user can create a virtual subset/list for the 421 

desired traits. Similarly, the Government of Poland reported that the characterization and 422 

evaluation data of 83 percent (16 506 accessions) of their national grasses collection has 423 

been made available at the NRI National Centre for Plant Genetic Resources 424 

(https://wyszukiwarka.ihar.edu.pl/pl). 425 

The availability of global and independent information systems enhances the 426 

interoperability among genebank passport, phenotypic and genotypic data for improved 427 

germplasm management and use. In addition, the generation of massive sequencing 428 

information and other omics data on germplasm resources has led to the development of 429 

digital sequence information (DSI), which entails information, inter alia, from DNA and 430 

RNA sequences, protein sequences to metabolites and other macromolecules. It may also 431 

https://www.grin-global.org/
https://www.grin-global.org/
https://www.nordic-baltic-genebanks.org/gringlobal/about
https://www.pgrel.admin.ch/pgrel
https://www.pgrel.admin.ch/pgrel/
https://wyszukiwarka.ihar.edu.pl/pl
https://www.cbd.int/dsi-gr/
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include associated information and traditional knowledge 432 

(http://www.fao.org/3/cc6622en/cc6622en.pdf). Fair and equitable sharing of DSI 433 

arising from germplasm resources remains arguable in the context of biodiversity-related 434 

international instruments, such as the Convention on Biological Diversity (CBD) and the 435 

Nagoya Protocol and International Treaty on Plant Genetic Resources for Food and 436 

Agriculture (ITPGRFA). Therefore, evidence-informed discussions, training programs, 437 

coordinated efforts and favourable policy regimes are needed to address the challenges 438 

associated with access and benefit-sharing arising from germplasm in the current 439 

digitization era, particularly in relation to the developing countries that lag behind in the 440 

utilization of new technologies and the acquisition of biological data. 441 

6. International and national initiatives in PGRFA phenotyping and genotyping 

International collaborations have increasingly used whole genome sequencing approach 442 

and other high-density genotyping platforms for in-depth genetic characterization of the 443 

large crop germplasm collections. High-throughput DNA sequencing has allowed 444 

screening of genetic diversity in large sets of germplasm accessions, unleashing the 445 

potential of “Germplasm genomics” for plant improvement in the post-NGS sequence 446 

era. Sharing of DNAs and associated information is imperative to understand within-447 

species diversity. Recent efforts on genome sequencing of hundreds of diverse accessions 448 

of a species, as witnessed in rice (Wang et al. 2018) and chickpea (Varshney et al. 2021b) 449 

foster strong collaborative environments to leverage phylogenetic research for guiding 450 

future improvement strategies. 451 

The utility of the large germplasm collections was greatly constrained by the lack of 452 

knowledge about the traits for genetic and breeding potential, with <1 percent accessions 453 

used in crop improvement. Searching traits or alleles from large germplasm collections for 454 

breeding is complicated by resource- and labour-intensive nature of knowledge generation 455 

and germplasm management. In this context, acquisition and access to the quality data on 456 

germplasm characterization and evaluation paves the way for creation of trait-specific 457 

collection subsets. There is a need to improve the generation and quality of 458 

characterization and evaluation information, implement mechanisms for documentation 459 

and access to information, so that it can be used in plant breeding programs. Workable 460 

subsets of germplasms capturing sufficient genetic variation have been created for efficient 461 

use in breeding in rice, maize soybean, common bean, chickpea, groundnut, pigeon pea, 462 

cassava, cowpea, bean, sorghum and millets (Guo et al. 2014, Kuzay et al 2020). 463 

http://www.fao.org/3/cc6622en/cc6622en.pdf
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7.  Conclusions 

Diversity in phenotypes and genetic architectures of germplasm archived in genebanks 464 

serves as a raw material for selection and breeding. Estimation of this diversity is thus 465 

crucial to accelerate their utilization in research and breeding, while guiding conservation 466 

and management efforts. The progress has been greatly constrained by the challenges 467 

encountered in germplasm characterization efforts through conventional phenotyping and 468 

genotyping methods. The increase in accuracy and scales of both plant phenotyping and 469 

genetic profiling over the last decade has been remarkable. Evolving landscape of 470 

sequencing and genotyping technologies have facilitated low-cost and time-efficient 471 

analysis of large plant DNA samples. The concurrent advances in plant phenotyping 472 

systems have complemented modern genetic profiling technologies for providing new 473 

insights into genomic architecture of germplasm resources. International collaborations 474 

involving multi-disciplinary teams are key to harness the enormous potential of genotyping 475 

and phenotyping advances. 476 

Modern sequencing technologies have massively scaled-up the discovery of genome-wide 477 

variants, including SSR, but more importantly, with the use of SNP markers. With the cost-478 

effectiveness of evolving sequencing and genotyping platforms, it is now possible to 479 

genotype large samples in a cost-effective, automated and accurate manner. Generation of 480 

the large-scale genotypic information in combination with phenotypic and other datasets 481 

provides novel opportunities for incorporating new breeding techniques like GS and 482 

prediction models to guide germplasm selection, conservation and management efforts 483 

(Yu et al. 2016; Schulthess et al. 2022). Equally importantly, detailed characterization of 484 

PGRFA creates novel avenues for the development of manageable subsets of germplasm 485 

accessions for research and breeding.  486 
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Table 1. List of selected high-throughput phenotyping platforms and example studies on different crop species. 

 

HTPPs  Phenotype measured Crops  References  

LemnaTec 
Scanalyzer 3D 

Biomass, leaf water content, plant 
height, width, compactness, drought 
stress, nitrogen content, chlorophyll 
status 

Wheat, barley, 
sorghum, maize, 
chickpea, oak  

Neumann et al. (2015), Chai et al. (2021), 
Mazis et al. (2020), Ge et al. (2016) 

HRPF Drought stress, tiller number Rice Yang et al. (2014), Duan et al. (2018) 

PHENOARCH Growth rate of ear and silk Maize Brichet et al. (2017) 

GLYPH Water use efficiency (WUE), drought 
stress 

Soybean Peirone et al. (2018) 

GiARoots  Root system architecture (RSA)  Rice Galkovskyi et al. (2012) 

DART; Ez-Rhizo; 
DIRT; ROOTNAV 

RSA Legumes and 
cereals   

Atkinson et al. (2019) 

Crop Phenology 
Recording System 
(CPRS)  

Nitrogen content, leaf area index Rice Fukatsu et al. (2012) 

Field Scanalyzer Canopy height, spike number, canopy 
closure, canopy temperature, 
Normalized Difference Vegetation 
Index  (NDVI)  

Wheat Virlet et al. (2017) 

LeasyScan Canopy transpiration, plant height, leaf 
area, WUE 

Peanut, cowpea, 
pearl millet, maize 

Sunil et al. (2018), Vadez et al. (2015) 

Phénofield Water stress, nitrogen stress Wheat Beauchene et al. (2019) 
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Mini-Plot Disease severity Barley Thomas et al. (2018) 

NU-Spidercam Plant height, ground cover, canopy 
temperature 

Soybean, maize Bai et al. (2019) 

BreedVision Moisture content, lodging, tiller 
density or biomass yield 

Wheat Busemeyer et al. (2013) 

Phantom (UAV) Carotenoid content Lettuce Mascarenhas Maciel et al. (2019) 

3DR Solo 
Quadcopter (UAV) 

NDVI, chlorophyll red-edge index 
(CHL), hemispherical-conical 
reflectance factors (HCRF) 

Maize Fawcett et al. (2020) 

Octorotor (UAV) Canopy height, canopy coverage, 
vegetation index 

Rice Wan et al. (2020) 

Matrice 600 Pro 
(UAV) 

Yield Cotton Feng et al. (2020) 

Ebee, UAV Yield Wheat Hu et al. (2020) 

Robinson R44 
Raven helicopter, 
(MAP) 

Canopy temperature Wheat Deery et al. (2016) 

Air Tractor AT-
402B, (MAP) 

Pest severity - Yang and Hoffmann (2015) 

RapidEye, (Satellite)  Nitrogen stress Wheat Basso et al. (2016) 

Fluorescence 
explorer (Satellite) 

Terrestrial vegetation (Photosynthesis) - Drusch et al. (2017) 

Phenomobile Lite Plant height, biomass, ground cover Wheat Jimenez-Berni et al. (2018) 

GPhenoVision Canopy height, width, growth rate, 
projected leaf area, volume, yield 

Cotton Jiang et al. (2018) 

phenoSeeder Seed morphological and chemical 
constituent of seed 

Rapeseed, barley Jahnke et al. (2016) 
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Table 2. Characterization of large germplasm collections using sequencing and high-density genotyping.  

Crop Accessions Genotyping method Reference 

Barley 22 626 Genotyping by sequencing (GBS) Milner et al. (2019) 

Chickpea 3 366 Whole genome resequencing 
(WGRS)  

Varshney et al. (2021b) 

Maize 2 815 GBS Romay et al. (2013) 

Pepper 10 038 GBS Tripodi et al. (2021) 

Rice 3 134 Diversity arrays technology 
sequencing (DArTseq) 

Ndjiondjop et al. (2018) 

Rice 3 010  WGRS  Wang et al. (2018) 

Sorghum 1 628 GBS Girma et al. (2020) 

Soybean 14 000 50K SNP chip Bandillo et al. (2015) 

Wheat 80 000 DArT-seq Sansaloni et al. (2020) 

Wild wheat (Aegilops tauschii) 1 143 GBS Singh et al. (2019) 

Cassava 388 WGRS Hu et al. (2021) 

Common bean 683 WGRS Wu et al. (2020) 

Tomato 838 WGRS Zhou et al. (2022) 

Wheat 8 000 GBS Schulthess et al. (2022) 

Lettuce 445 WGRS Wei et al. (2021) 

Sorghum 400 WGRS Boatwright et al. (2022) 
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Box 1. Developing next-generation genomic resources for key African crops  

In the Africa region, the African Orphan Crops Consortium (AOCC) aims at 

understanding and exploiting the genetic diversity of key crops for providing adapted and 

high-yielding varieties for integration into African farming systems 

(http://africanorphancrops.org/about/). The consortium has started developing genome 

assemblies of 101 crops including okra, onion, amaranth, custard apple, papaya, 

watermelon. A complete list of crops selected for genome sequencing can be found at 

https://africanorphancrops.org/meet-the-crops/. Equally importantly, AOCC via 

African Plant Breeding Academy (AfPBA) initiative, led by UC Davis, focuses on building 

long-term capacity in Africa to efficiently use modern genomic and breeding tools for 

enhancing crop variety development programs.   

  

http://africanorphancrops.org/about/
https://africanorphancrops.org/meet-the-crops/


25 

 

References

Alercia, A., Diulgheroff, S. and Mackay, M. (2015). FAO/Bioversity Multi-Crop Passport 
Descriptors V.2.1 [MCPD V.2.1]. Rome, FAO and Bioversity International, 11 p. 
 
Andrade-Sanchez, P., Gore, M. A., Heun, J. T. et al. (2014) Development and evaluation 
of a field-based high-throughput phenotyping platform. Func. Plant Biol. 41: 68–79. 
 
Atieno, J., Li, Y., Langridge, P. et al. (2017) Exploring genetic variation for salinity 
tolerance in chickpea using image-based phenotyping. Sci. Rep. 7:1-11. 
 
Atkinson, J. A., Pound, M. P., Bennett, M. J. and Wells, D. M. (2019) Uncovering the 
hidden half of plants using new advances in root phenotyping. Curr. Opin. Biotechnol. 55: 
1-8. 
 
Bai, G., Ge, Y., Hussain, W. et al. (2016) A multi-sensor system for high throughput field 
phenotyping in soybean and wheat breeding. Comput. Electron. Agric. 128: 181-192 
 
Bai, G., Ge, Y., Scoby, D. et al. (2019) NU-Spidercam: a large-scale, cable-driven, 
integrated sensing and robotic system for advanced phenotyping, remote sensing, and 
agronomic research. Comp. Electron. Agric. 160: 71–81. 
 
Bandillo, N., Jarquin, D., Song, Q. et al. (2015) A population structure and genome-wide 
association analysis on the USDA soybean germplasm collection. Plant Genome 
8:eplantgenome2015.04.0024.  
 
Bari, A., Street, K., Mackay, M. et al. (2012) Focused identification of germplasm strategy 
(FIGS) detects wheat stem rust resistance linked to environmental variables. Genet. 
Resour. Crop Evol. 59: 1465–1481.  
 
Basso, B., Fiorentino, C., Cammarano, D. and Schulthess, U. (2016) Variable rate nitrogen 
fertilizer response in wheat using remote sensing. Precis. Agric. 17: 168–182. 
 
Bayer, M.M., Rapazote-Flores, P., Ganal, M. et al. (2017) Development and Evaluation of 
a Barley 50k iSelect SNP Array. Front. Plant Sci. 8:1792. 
 
Beauchene, K., Leroy, F., Fournier, A. et al. (2019) Management and characterization of 
abiotic stress via phenofield (R), a high-throughput field phenotyping platform. Front. 
Plant Sci. 10:904.  
 
Bertioli, D.J., Clevenger, J., Godoy, I.J. et al. (2021) Legacy genetics of Arachis cardenasii in 
the peanut crop shows the profound benefits of international seed exchange. Proc. Natl. 
Acad. Sci. U. S. A. 118:e2104899118.  
 
Bhullar, N.K., Street, K., Mackay, M., et al. (2009) Unlocking wheat genetic resources for 
the molecular identification of previously undescribed functional alleles at the Pm3 
resistance locus. Proc. Natl. Acad. Sci. U. S. A. 106:9519-24.  
 
Boatwright, J.L., Sapkota, S., Jin, H. et al. (2022) Sorghum Association Panel whole-
genome sequencing establishes cornerstone resource for dissecting genomic diversity. 
Plant J. 111:888-904.  



26 

 

Bohra, A., Jha, U.C., Godwin, I., and Varshney, R.K. (2020) Genomic interventions for 
sustainable agriculture. Plant Biotechnol. J. 18: 2388-2405 
 
Bohra, A., Kilian, B., Sivasankar, S. et al. (2022a) Reap the crop wild relatives for breeding 
future crops. Trends Biotechnol. 40:412-431. 
 
Bohra, A., Tiwari, A., Kaur, P., et al. (2022b) The key to the future lies in the past: Insights 
from grain legume domestication and improvement should inform future breeding 
strategies. Plant Cell Physiol. 63:1554-1572.  
 
Bohra, A., Satheesh Naik, S.J., Kumari, A. et al. (2021) Integrating phenomics with 
breeding for climate-smart agriculture. In: Omics Technologies for Sustainable Agriculture 
and Global Food Security (Vol II) (Kumar A, Kumar R, Shukla P, Patel HK Eds). Springer, 
Singapore. Pages 1-24. 
 
Bredeson, J.V., Lyons, J.B., Prochnik, S.E. et al. (2016) Sequencing wild and cultivated 
cassava and related species reveals extensive interspecific hybridization and genetic 
diversity. Nat. Biotechnol. 34:562-70. 
 
Brichet, N., Fournier, C., Turc, O. et al. (2017) A robot-assisted imaging pipeline for 
tracking the growths of maize ear and silks in a high-throughput phenotyping platform. 
Plant Methods 13:96.  
 
Brien, C., Jewell, N., Watts-Williams, S. J., Garnett, T. and Berger, B. (2020) Smoothing 
and extraction of traits in the growth analysis of noninvasive phenotypic data. Plant 
Methods 16: 1-21. 
 
Broggini, G.A.L. Kölliker, R., Kellerhals, M. and Studer, B. (2022) Exploiting the Swiss 
Apple Core Collection for breeding tomorrow's apple cultivars. XXXI International 
Horticultural Congress (IHC2022): International Symposium on Conservation and 
Sustainable Use of Horticultural Genetic Resources. Angers, France, August 14-20, 2022 
 
Bruning, B., Liu, H., Brien, C. et al. (2019) The development of hyperspectral distribution 
maps to predict the content and distribution of nitrogen and water in wheat (Triticum 
aestivum). Front Plant Sci. 10: 1380. 
 
Burton, A. L., Brown, K. M. and Lynch, J. P. (2013) Phenotypic diversity of root 
anatomical and architectural traits in Zea species. Crop Sci. 53:1042-1055. 
 
Busemeyer, L., Mentrup, D., Moller, K. et al. (2013) BreedVision–a multi-sensor platform 
for non-destructive field-based phenotyping in plant breeding. Sensors 13:2830–2847. 
 
Cai, C., Zhu, G., Zhang, T. and Guo, W (2017) High-density 80 K SNP array is a powerful 
tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics 18:654. 
 

Chai, Y. N., Ge, Y., Stoerger, V. and Schachtman, D. P. (2021) High‐resolution 
phenotyping of sorghum genotypic and phenotypic responses to low nitrogen and 
synthetic microbial communities. Plant Cell Env. 44:1611-1626. 
 
Chen, H., Xie, W., He, H. et al. (2014) A high-density SNP genotyping array for rice biology 
and molecular breeding. Mol. Plant. 7:541-53. 



27 

 

 
Chopin, J., Laga, H., Huang, C. Y., Heuer, S. & Miklavcic, S. J. (2015) RootAnalyzer: a 
cross-section image analysis tool for automated characterization of root cells and 
tissues. PloS One 10: e0137655. 
 
Clarke, W.E., Higgins, E.E., Plieske, J. et al. (2016) A high-density SNP genotyping array 
for Brassica napus and its ancestral diploid species based on optimised selection of single-
locus markers in the allotetraploid genome. Theor. Appl. Genet. 129: 1887–1899. 
 
Deery, D. M., Rebetzke, G. J., Jimenez-Berni, J. A. et al. (2016) Methodology for high-
throughput field phenotyping of canopy temperature using airborne thermography. Front. 
Plant Sci. 7:1808.  
 
Deery, D. M., Rebetzke, G. J., Jimenez-Berni, J. A. et al. (2019) Evaluation of the 
phenotypic repeatability of canopy temperature in wheat using continuous-terrestrial and 
airborne measurements. Front. Plant Sci. 10:875.  
 
Drusch, M., Moreno, J., Del Bello, U. et al. (2017) The fluorescence EXplorer mission 
concept—ESA’s earth explorer 8. IEEE Trans. Geosci. Remote Sens. 55: 1273–1284.  
Duan, L., Han, J., Guo, Z. et al. (2018) Novel digital features discriminate between drought 
resistant and drought sensitive rice under controlled and field conditions. Front. Plant Sci. 
9:492. 
 
El Bouhssini, M., Street, K., Amri, A. et al. (2011) Sources of resistance in bread wheat to 
Russian wheat aphid (Diuraphis noxia) in Syria using the Focused Identification of 
Germplasm Strategy (FIGS). Plant Breed. 130:96–97 
 
Endresen, D.T.F., Street, K., Mackay, M. et al. (2012) Sources of resistance to stem rust 
(Ug99) in bread wheat and durum wheat identified using focused identification of 
germplasm strategy. Crop Sci. 52:764. 
 
Endresen, D.T.F., Street, K., Mackay, M., Bari, A. and De Pauw, E. (2011) Predictive 
association between biotic stress traits and ecogeographic data for wheat and barley 
landraces. Crop Sci. 51: 2036–2055. 
 
Fawcett, D., Panigada, C., Tagliabue, G. et al. (2020) Multi-scale evaluation of drone-based 
multispectral surface reflectance and vegetation indices in operational conditions. Remote 
Sens. 12:514. 
 
Feng, A., Zhou, J., Vories, E. D., Sudduth, K. A. and Zhang, M. (2020) Yield estimation 
in cotton using UAV-based multi-sensor imagery. Biosyst. Eng. 193: 101–114. 
 
Fukatsu, T., Watanabe, T., Hu, H., Yoichi, H. and Hirafuji, M. (2012) Field monitoring 
support system for the occurrence of Leptocorisa chinensis Dallas (Hemiptera: Alydidae) 
using synthetic attractants, field servers, and image analysis. Comput. Electron. Agric. 
80:8–16. 
 
Galkovskyi, T., Mileyko, Y., Bucksch, A. et al. (2012) GiA Roots: software for the high 
throughput analysis of plant root system architecture. BMC Plant Biol. 12:116. 



28 

 

Ge, Y., Bai, G., Stoerger, V. and Schnable, J. C. (2016) Temporal dynamics of maize plant 
growth, water use, and leaf water content using automated high throughput RGB and 
hyperspectral imaging. Comput. Electron. Agric. 127: 625-632. 
 
Geibel, J., Reimer, C., Weigend, S., Weigend, A., Pook, T., and Simianer, H. (2021) How 
array design creates SNP ascertainment bias. PLoS One 16:e0245178. 
 
Girma, G., Nida, H., Tirfessa, A., et al. (2020) A comprehensive phenotypic and genomic 
characterization of Ethiopian sorghum germplasm defines core collection and reveals rich 
genetic potential in adaptive traits. Plant Genome 13:e20055.  
 
Großkinsky DK, Svensgaard J, Christensen S, Roitsch T (2015) Plant phenomics and the 
need for physiological phenotyping across scales to narrow the genotype-to-phenotype 
knowledge gap. J. Exp. Bot. 66:5429-40. 
 
Guo, Y., Li, Y., Hong, H. and Qiu, L.J. (2014) Establishment of the integrated applied core 
collection and its comparison with mini core collection in soybean (Glycine max). Crop 
J. 2:38-45. 
 
Haupt, M.  and Schmid, K. (2020) Combining focused identification of germplasm and 
core collection strategies to identify genebank accessions for central European soybean 
breeding. Plant Cell Environ. 43:1421-1436.  
 
Hu, W., Ji, C., Liang, Z., et al. (2021) Resequencing of 388 cassava accessions identifies 
valuable loci and selection for variation in heterozygosity. Genome Biol. 22:316. 
 
Hu, Y., Knapp, S., and Schmidhalter, U. (2020) Advancing high-throughput phenotyping 
of wheat in early selection cycles. Remote Sens. 12:574.  
 
Huang, X., Feng, Q., Qian, Q et al. (2009) High-throughput genotyping by whole-genome 
resequencing. Genome Res. 19:1068-76. 
 
Hübner, S., Bercovich, N., Todesco, M. et al. (2019) Sunflower pan-genome analysis shows 
that hybridization altered gene content and disease resistance. Nat. Plants 5:54-62. 
 
Hulse-Kemp, A.M., Lemm, J., Plieske, J. et al. (2015) Development of a 63K SNP Array 
for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of 
Gossypium spp. G3 5:1187-209.  
 
Jahnke, S., Roussel, J., Hombach, T. et al. (2016) PhenoSeeder - a robot system for 
automated handling and phenotyping of individual seeds. Plant Physiol. 172:1358–1370. 
 
Jiang, Y., Li, C., Robertson, J. S., Sun, S., Xu, R., and Paterson, A. H. (2018) GPhenovision: 
a ground mobile system with multi-modal imaging for field-based high throughput 
phenotyping of cotton. Sci. Rep. 8:1213.  
 
Jimenez-Berni, J. A., Deery, D. M., Rozas-Larraondo, P. et al. (2018) High throughput 
determination of plant height, ground cover, and above-ground biomass in wheat with 
LiDAR. Front. Plant Sci. 9:237.  



29 

 

Kumar, A., Kumar, S., Singh, K.B.M., Prasad, M. and Thakur, J.K. (2020) Designing a 
mini-core collection effectively representing 3004 diverse rice accessions. Plant Commun. 
1:100049.  
 
Kuzay S, Hamilton-Conaty P, Palkovic A, Gepts P (2020) Is the USDA core collection of 
common bean representative of genetic diversity of the species, as assessed by SNP 
diversity? Crop Sci. 60:1398–1414. 
 
Kuzay, S., Hamilton-Conaty, P., Palkovic, A. and Gepts, P. (2020) Is the USDA core 
collection of common bean representative of genetic diversity of the species, as assessed 
by SNP diversity? Crop Sci. 60:1398–1414. 
 
Lazzaro M, Bàrberi P, Dell'Acqua M, et al. (2019) Unraveling diversity in wheat 
competitive ability traits can improve integrated weed management. Agron. Sustain. 
Develop. 39:6.  
 
Li, D., Quan, C., Song, Z. et al. (2021) High-throughput plant phenotyping platform 
(HT3P) as a novel tool for estimating agronomic traits from the lab to the field. Front. 
Bioeng. Biotechnol. 8: 623705. 
 
Liu, W., Liu, C., Jin, J. et al. (2020) High-throughput phenotyping of morphological seed 
and fruit characteristics using X-ray computed tomography. Front. Plant Sci. 11: 601475. 
 
Madec, S., Baret, F., de Solan, B. et al. (2017). High-throughput phenotyping of plant 
height: comparing unmanned aerial vehicles and ground LiDAR estimates. Front. Plant 
Sci. 8:2002.  
 
Mammadov, J., Aggarwal, R., Buyyarapu, R., & Kumpatla, S. (2012) SNP markers and their 
impact on plant breeding. Int. J. Plant Genomics 2012: 728398.  
 
Mascarenhas Maciel, G., Gallis, R.B.D.A., Barbosa, R. L. et al. (2019) Image phenotyping 
of inbred red lettuce lines with genetic diversity regarding carotenoid levels. Int. J. Appl. 
Earth Observ. Geoinform 81: 154–160. 
 
Mazis, A., Choudhury, S. D., Morgan, P. B. et al. (2020) Application of high-throughput 
plant phenotyping for assessing biophysical traits and drought response in two oak species 
under controlled environment. For. Ecol. Manag. 465: 118101. 
 
Micheletti, D., Dettori, M.T., Micali, S. et al. (2015) Whole-genome analysis of diversity 
and SNP-major gene association in peach germplasm. PLoS One 10: e0136803. 
 
Milner, S.G., Jost, M., Taketa, S., et al. (2019) Genebank genomics highlights the diversity 
of a global barley collection. Nat. Genet. 51:319-326. 
 
Mir RR, Hiremath PJ, Riera-Lizarazu O, Varshney RK (2013) Evolving Molecular Marker 
Technologies in Plants: From RFLPs to GBS. In: Lübberstedt T, Varshney RK Eds., 
Diagnostics in Plant Breeding, Springer, Berlin, pp 229-247. 
 
Muñoz-Amatriaín, M., Mirebrahim, H., Xu P. et al. (2017) Genome resources for climate-
resilient cowpea, an essential crop for food security. Plant J. 89:1042-1054. 



30 

 

Ndjiondjop, M.N., Semagn, K., Zhang, J. et al. (2018) Development of species diagnostic 
SNP markers for quality control genotyping in four rice (Oryza L.) species. Mol. Breed. 
38:131. 
 
Neumann, K., Klukas, C., Friedel, S. et al. (2015) Dissecting spatiotemporal biomass 

accumulation in barley under different water regimes using high‐throughput image 
analysis. Plant Cell Env. 38:1980-1996. 
 
Nguyen, G. N., Maharjan, P., Maphosa, L., et al. (2019). A robust automated image-based 
phenotyping method for rapid vegetative screening of wheat germplasm for nitrogen use 
efficiency. Front. Plant Sci. 10: 1372. 
 
Nice, L.M., Steffenson, B.J., Brown-Guedira, G.L. et al. (2016) Development and genetic 
characterization of an advanced backcross-nested association mapping (AB-NAM) 
population of wild × cultivated barley. Genetics 203:1453-67.  
 
Novakazi F, Krusell L, Jensen JD, Orabi J, Jahoor A, Bengtsson T, On Behalf Of The Ppp 
Barley Consortium (2020) You Had Me at "MAGIC"!  Four Barley MAGIC Populations 
Reveal Novel Resistance QTL for Powdery Mildew. Genes (Basel) 11:1512.  
 
Ormoli L., Costa C., Negri S., Perenzin M. and Vaccino P. (2015) Diversity trends in bread 
wheat in Italy during the 20th century assessed by traditional and multivariate approaches. 
Sci. Rep. 5: 8574  
 
Pandey, M.K., Agarwal, G., Kale, S.M. et al. (2017) Development and Evaluation of a High 

Density Genotyping 'Axiom_Arachis' Array with 58 K SNPs for Accelerating Genetics 
and Breeding in Groundnut. Sci. Rep. 7:40577. 
 
Pascual, L., Fernandez, M., Aparicio, N. et al. (2020) Development of a multipurpose core 
collection of bread wheat based on high-throughput genotyping data. Agronomy 10:534 
 
Peirone, L. S., Pereyra Irujo, G. A., Bolton, A., Erreguerena, I., and Aguirrezábal, L. A. 
(2018) Assessing the efficiency of phenotyping early traits in a greenhouse automated 
platform for predicting drought tolerance of soybean in the field. Front. Plant Sci. 9:587.  
 
Pereira-Lorenzo, S., Bischofberger, Y., Conedera, M. et al. (2020) Reservoir of the 
European chestnut diversity in Switzerland. Biodivers. Conserv. 29: 2217-2234.  
 
Ramu, P., Esuma, W., Kawuki, R. et al. (2017) Cassava haplotype map highlights fixation 
of deleterious mutations during clonal propagation. Nat. Genet. 49:959-963. 
 
Rasheed, A., Hao, Y., Xia X. et al. (2017) Crop Breeding Chips and Genotyping Platforms: 
Progress, Challenges, and Perspectives. Mol. Plant 10:1047-1064.  
 
Reuzeau, C., Pen, J., Frankard, V. et al. (2010) TraitMill: a discovery engine for identifying 
yield-enhancement genes in cereals. Mol. Plant Breed. 5:753–759. 
 
Romay, M.C., Millard, M.J., Glaubitz, J.C. et al. (2013) Comprehensive genotyping of the 
USA national maize inbred seed bank. Genome Biol. 14:R55.  



31 

 

Roorkiwal, M., Jain, A., Kale, S.M. et al. (2018) Development and evaluation of high-
density Axiom® CicerSNP Array for high-resolution genetic mapping and breeding 
applications in chickpea. Plant Biotechnol J. 16:890-901.  
 
Roux-Cuvelier, M., Grisoni, M., Bellec, A. et al. (2021) Conservation of horticultural 
genetic resources in France. Chron. Hortic. 61: ffhal03372865ff 
 
Sagan, V., Maimaitijiang, M., Sidike, P. et al. (2019) UAV/Satellite multiscale data fusion 
for crop monitoring and early stress detection. Int. Arch. Photogramm. Remote Sens. 
Spatial Inf. Sci. XLII-2/W13: 715–722.  
 
Sansaloni, C., Franco, J., Santos, B. et al. (2020) Diversity analysis of 80,000 wheat 
accessions reveals consequences and opportunities of selection footprints. Nat. Commun. 
11:4572.  
 
Saxena, R.K., Hake, A., Bohra, A., et al. (2021) A diagnostic marker kit for fusarium wilt 
and sterility mosaic diseases resistance in pigeonpea. Theor. Appl. Genet. 134: 367–379 
 
Schulthess, A.W., Kale, S.M. et al. (2022) Genomics-informed prebreeding unlocks the 
diversity in genebanks for wheat improvement. Nat. Genet. 54:1544-1552.  
 
Shafiekhani, A., Kadam, S., Fritschi, F. B., and Desouza, G. N. (2017) Vinobot and 
vinoculer: two robotic platforms for high-throughput field phenotyping. Sensors 17:214.  
 

Singh, N., Jayaswal, P.K., Panda, K. et al. (2015) Single-copy gene based 50 K SNP chip 
for genetic studies and molecular breeding in rice. Sci. Rep. 5:11600. 
 
Singh, N., Wu, S., Raupp, W.J., et al. (2019) Efficient curation of genebanks using next 
generation sequencing reveals substantial duplication of germplasm accessions. Sci. Rep. 
9:650.  
 
Song, P., Wang, J., Guo, X., Yang, W., & Zhao, C. (2021). High-throughput phenotyping: 
Breaking through the bottleneck in future crop breeding. Crop J. 9 : 633-645.  
 
Sun, C., Dong, Z., Zhao, L. et al. (2020) The Wheat 660K SNP array demonstrates great 
potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 18:1354-
1360.  
 
Sunil, N., Rekha, B., Yathish, K., Sehkar, J., and Vadez, V. (2018) LeasyScan-an efficient 
phenotyping platform for identification of pre-breeding genetic stocks in maize. Maize J. 
7: 16–22. 
 

Talini, R.F., Brandolini, A., Miculan, M. et al. (2020) Genome‐wide association study of 
agronomic and quality traits in a world collection of the wild wheat relative Triticum urartu. 
Plant J. 102: 555-568.  
 
Tang, W., Lin, J., Wang, Y., et al. (2022) Selection and Validation of 48 KASP Markers for 
Variety Identification and Breeding Guidance in Conventional and Hybrid Rice (Oryza 
sativa L.). Rice 15:48. 



32 

 

Taranto, F., Di Serio, E., Miazzi, M.M. et al. (2022) Intra- and inter-population genetic 
diversity of “Russello” and “Timilia” landraces from Sicily: A proxy towards the 
identification of favorable alleles in durum wheat. Agronomy 12:1326. 
 
Thomas, S., Behmann, J., Steier, A. et al. (2018) Quantitative assessment of disease severity 
and rating of barley cultivars based on hyperspectral imaging in a non-invasive, automated 
phenotyping platform. Plant Methods 14:45.  
 
Thomson, M.J., Singh, N., Dwiyanti, M.S. et al. (2017) Large-scale deployment of a rice 
6 K SNP array for genetics and breeding applications. Rice, 10: 40. 
https://doi.org/10.1186/s12284-017-0181-2 
 
Tripodi, P., Rabanus-Wallace, M.T. Barchi, L. et al. (2021) Global range expansion history 
of pepper (Capsicum spp.) revealed by over 10,000 genebank accessions. Proc. Natl. Acad. 
Sci. U S A 118 :e2104315118. 
 
Unterseer, S., Bauer, E., Haberer, G. (2014) A powerful tool for genome analysis in maize: 
development and evaluation of the high density 600 k SNP genotyping array. BMC 
Genomics 15:823. 
 
Vadez, V., Kholova, J., Hummel, G. et al. (2015) LeasyScan: a novel concept combining 
3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant 
water budget. J. Exp. Bot. 66: 5581–5593.  
 
Varshney, R.K., Bohra, A., Yu, J. et al. (2021a) Designing future crops: genomics-assisted 
breeding comes of age. Trends Plant Sci. 26: 631-649 
 
Varshney, R.K., Roorkiwal, M., Sun, S. et al. (2021b) A chickpea genetic variation map 
based on the sequencing of 3,366 genomes. Nature 599(7886):622-627.  
 
Varshney, R.K., Saxena, R.K., Upadhyaya, H.D. et al. (2017a) Whole-genome resequencing 
of 292 pigeonpea accessions identifies genomic regions associated with domestication and 
agronomic traits. Nat. Genet. 49:1082-1088.  
 
Varshney, R.K., Shi, C., Thudi, M., et al (2017b) Pearl millet genome sequence provides a 
resource to improve agronomic traits in arid environments. Nat. Biotechnol. 35:969-976. 
 
Varshney, R.K., Thudi, M., Roorkiwal, M. et al. (2019) Resequencing of 429 chickpea 
accessions from 45 countries provides insights into genome diversity, domestication and 
agronomic traits. Nat. Genet. 51:857-864.  
 
Verde, I., Bassil, N., Scalabrin, S. et al.  (2012) Development and evaluation of a 9K SNP 
array for peach by internationally coordinated SNP detection and validation in breeding 
germplasm. PLoS One 7: e35668. 
 
Virlet, N., Sabermanesh, K., Sadeghi-Tehran, P., and Hawkesford, M.J. (2017) Field 
Scanalyzer: an automated robotic field phenotyping platform for detailed crop monitoring. 
Funct. Plant Biol. 44:143–153. 
 

https://doi.org/10.1186/s12284-017-0181-2


33 

 

Wan, L., Cen, H., Zhu, J. et al. (2020) Grain yield prediction of rice using multi-temporal 
UAV-based RGB and multispectral images and model transfer – a case study of small 
farmlands in the South of China. Agric. Forest Meteorol. 291:108096.  
 
Wang, W., Mauleon, R., Hu, Z. et al. (2018) Genomic variation in 3,010 diverse accessions 
of Asian cultivated rice. Nature 557(7703):43-49. 
 
Wei, T., van Treuren, R., Liu, X. et al. (2021) Whole-genome resequencing of 445 Lactuca 
accessions reveals the domestication history of cultivated lettuce. Nat. Genet. 53:752-760. 
 
Winfield, M.O., Allen, A.M., Burridge, A.J. et al. (2016) High-density SNP genotyping array 
for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 14:1195-
206. 
 
Wu, J., Wang, L., Fu, J., et al. (2020) Resequencing of 683 common bean genotypes 
identifies yield component trait associations across a north–south cline. Nat. Genet. 
52:118-125. 
 
Xie, J., Zhou, Z., Zhang, H. et al. (2022) Combining canopy coverage and plant height 
from UAV-based RGB images to estimate spraying volume on potato. Sustainability 
14:6473. 
 
Yang C., Everitt, J.H., Bradford, J.M. and Escobar, D.E. (2000) Mapping grain sorghum 
growth and yield variations using airborne multispectral digital imagery. Trans. ASAE 43: 
1927–1938 
 
Yang, C. and Hoffmann, W. C. (2015) Low-cost single-camera imaging system for aerial 
applicators. J. Appl. Remote Sens. 9:096064.  
 
Yang, W., Feng, H., Zhang, X., et al. (2020) Crop phenomics and high-throughput 
phenotyping: past decades, current challenges, and future perspectives. Mol. Plant 13:187-
214. 
 
Yang, W., Guo, Z., Huang, C. et al. (2014) Combining high-throughput phenotyping and 
genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun. 
5:1-9. 
 
Yu, X., Li, X., Guo, T. et al. (2016) Genomic prediction contributing to a promising global 
strategy to turbocharge gene banks. Nat. Plants 2:1615 
 
Zhou, Y., Zhang, Z., Bao, Z. et al. (2022) Graph pangenome captures missing heritability 
and empowers tomato breeding. Nature 606:527-534. 
 
Zhu, Y., Sun, G., Ding, G. et al. (2021) Large-scale field phenotyping using backpack 
LiDAR and CropQuant-3D to measure structural variation in wheat. Plant Physiol. 
187:716-738.  
  



34 

 

Annex: Glossary of Terms 
 
Crop Wild Relatives (CWRs):  Close relatives of cultivated species, representing a rich 
source of genetic diversity for crop improvement.  
 
Diversity Panel: A collection comprising accessions representing a diverse population of 
a species. 

Digital Sequence Information (DSI): A placeholder term that covers nucleotide 
sequence data (DNA/RNA) to other omics information (transcriptomes, proteins and 
metabolites) associated with genetic resources. 

Focused Identification of Germplasm Strategy (FIGS): An approach that efficiently 
identifies suitable germplasm with desirable traits e.g., disease and pest resistance and 
adaptation traits by using geographic and agro-climatic information. 
 
Genome-wide association studies (GWAS): An approach that tests association of a 
genetic marker with traits of interest from a diverse set of genetic material. 
 
High-throughput phenotyping: Automated and non-invasive methods that record 
precise and accurate measurements on hundreds of plants at different levels of biological 
organization. 
 
KASPTM: A high precision technology used for genotyping individuals based on 
polymerase chain reaction specific to an SNP or indel. The assay uses two allele-specific 
forward primers and one common reverse primer for genotyping.  
 
Landrace: A heterogenous form of domesticated species that is well adapted to local 
environments.    
 
Nested association mapping (NAM): A multi-parent strategy for dissection of complex 
traits that uses series of interconnected RILs derived from crossing a common parent with 
diverse founders. 
 
Next generation sequencing (NGS): A group of high throughput technologies that 
enables sequencing of millions of small fragments of DNA in a highly paralleled fashion.  


