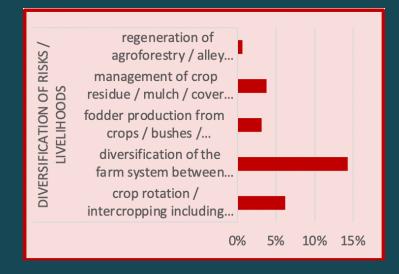
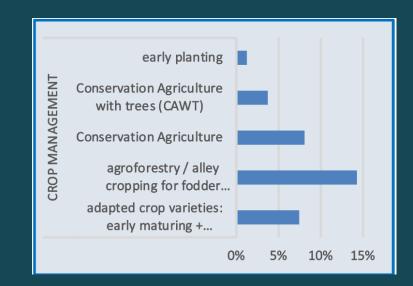
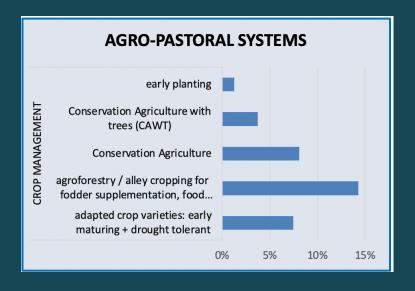
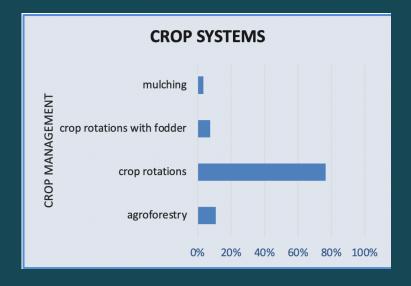

SURVEY RESULTS FOR DRY SUBHUMID DRYLANDS


ADAPTING AGRO-PASTORAL SYSTEMS TO CLIMATE CHANGE REQUIRES SOLUTIONS FOR LANDSCAPE MANAGEMENT, LIVESTOCK AND CROP PRODUCTION



MANAGEMENT PRACTICES RECOMMENDED BY RESPONDENTS:





CROP MANAGEMENT PRACTICES THAT MAKE BEST USE OF RESIDUAL SOIL MOISTURE IN ALL FARM SYSTEMS

CROP MANAGEMENT PRACTICES THAT MAKE BEST USE OF RESIDUAL SOIL MOISTURE

CROP ROTATIONS

•Alternate shallow - and deep-rooted crops to make best use of soil moisture e.g.: millet / soybean - cotton / sunflower / yam / cassava

•Alternate annual legume and cereal crops to produce biomass of the right C/N composition throughout the crop rotation having care of starting from a N enriching crop, following with a more N demanding crop and ending the crop rotation with a less N-demanding crop e.g.: groundnuts / soybean / chickpea / green gram / mucuna - millet / sorghum - maize

•Alternate annual legume / short maturing variety, cereal and root crops or oil crops in order to produce food, sell cash crops and maintain fertility e.g.: cowpea / soybean / groundnut / buckwheat - maize / wheat - cassava / rapeseed

 Intercrop cereals (grown during the rain season) and legumes (grown in the dry season) of species and varieties selected based on residual moisture available
e.g.: maize / short duration cereals (sorghum / millet) + lablab / cowpea / lentil / chickpea / lima bean (for food and fodder)

•Include biennial crops as alley crops or relay crops whenever possible e.g.: pigeon pea relay sown in groundnut (doubled-up legume intercropping system)

•Grow an early maturing / short cycle crop after an irrigated crop to make use of residual soil moisture e.g.: rice - lentils / chickpeas / cover crops - sorghum / millet

CROP ROTATIONS FOR FODDER PRODUCTION

•Include high biomass producing food crops in the rotation in order to produce food and use the crop residue as fodder

e.g.: barley - field pea

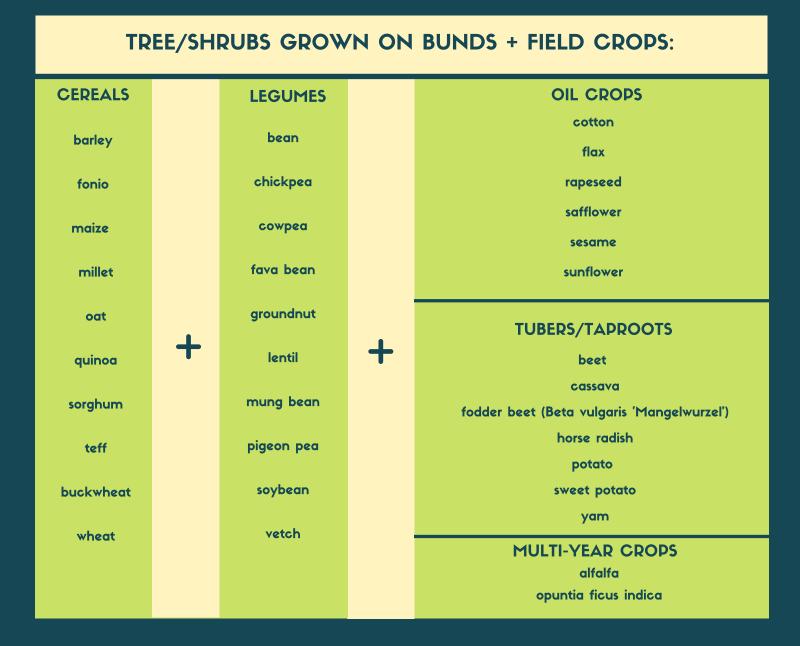
Include fodder crops as intercrops

e.g.: triticale + pea / ryegrass / ryegrass + clover / cereals + Italian sainfoin / cereals + faba bean

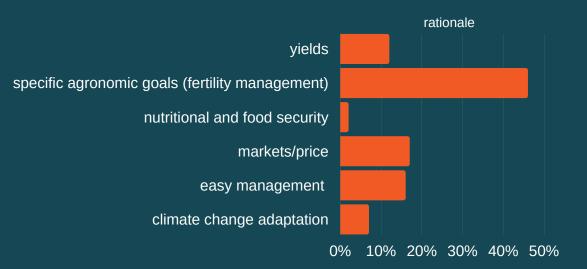
Include fodder crops as strip crops to diversify the farm system and achieve fast soil cover for erosion control:

e.g.: fodder grass (e.g. Cenchrus ciliaris / Brachiaria) + legume food crop (e.g. mung bean / cowpea / beans / groundnut / lablab) / legume fodder crop (e.g. common vetch) + cereal (e.g. millet)

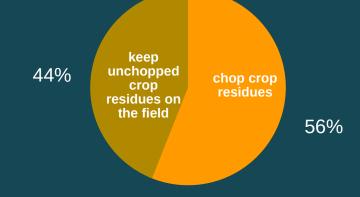
Include multi-year fodder crops


e.g.: wheat / teff / sorghum - clover / alfalfa

DIVERSIFIED CROP SYSTEMS WITH MULTIPURPOSE AGROFORESTRY SPECIES ARE SUCCESSFUL ADAPTATION MEASURES

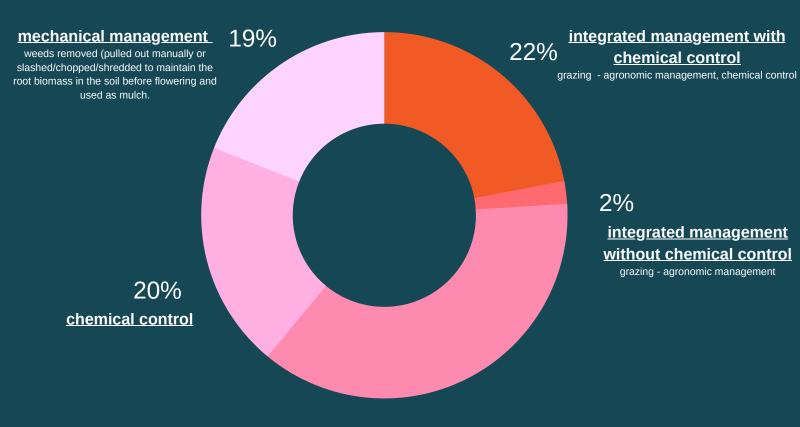

AGROFORESTRY SYSTEMS

- Multipurpose agroforestry systems help supplement feed production in areas where water is limited agroforestry leguminous species
 e.g.: Acacia raddiana / A. Senegal / A. nilotica / pigeonpea / Tipuana tipu / Chamaecytisus proliferus ssp.palmensis / Prosopis cineraria / Sesbania spp.) + cereals/ vegetables(e.g. rice / onion) + mulch and carry (e.g.Dodonaea viscosa)
- Agroforestry species to produce biomass e.g.: Azadirachta indica / Opuntia ficus-indica) + legumes to supplement forage
- Multi-storey food crops e.g. plantain + yam


A DIVERSIFIED CROP ROTATION ENSURES FOOD, BIOMASS AND SOIL FERTILITY. HERE IS HOW RESPONDENTS SUGGEST TO BUILD IT:

AGRONOMIC GOALS ARE THE MAIN DRIVERS THAT INFLUENCE CROP SYSTEMS

MOST RESPONDENTS KEEP CROP RESIDUE UNCHOPPED IN THE FIELD



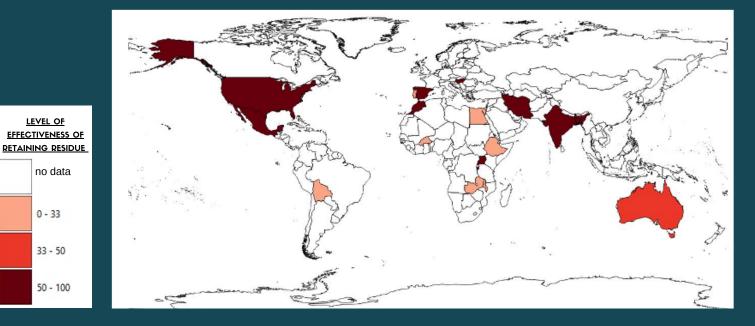
IN CROP-BASED SYSTEMS, USING MECHANIZED NO-TILL REQUIRES ADJUSTMENTS TO THE EQUIPMENT TO IMPROVE PENETRATION THROUGH CROP RESIDUE.

CROP - BASED SYSTEMS			
CROP RESIDUE MANAGEMENT	leaving standing residue (stubble)	AND	installing the bar in front of the tractor to press down the standing stalk and ease the movement of the seeder
	distributing the residue uniformly		if crop residue is wet: removing it from drilling line through stubble rakes, and using a double disk no-till seeder (with disks of different diameter) to cut through the residues and avoid seed-residue contact
			if crop residue is dry/comminuted and mineralized by soil organisms (including termites): residue can be easily cut through using planters with good residue cutting ability (e.g. Happy Seeder)
	rolling cover crop towards planting direction with a sharp rolling crimper mounted before the farrow opener		
	aerial/drone seeding of clay coated seeds		

IN CROP-LIVESTOCK SYSTEMS, ADJUSTMENTS TO THE MECHANIZED NO-TILL EQUIPMENT IS NOT NEEDED BECAUSE LIVESTOCK TRAMPLING AND GRAZING REDUCE CROP RESIDUE WHILE RETURNING MANURE AND URINE.

RECOMMENDED PRACTICES FOR WEED MANAGEMENT

37%


agronomic management In addition to high quality seeds, cover crops/mulch and crop rotations this includes narrow spacing of main crops, intercrops (e.g. beans in maize) and cover crops (e.g. sorghum)

RESULTS ON THE FEASIBILITY AND EFFECTIVENESS OF CROP RESIDUE THAT NEEDS TO BE PRODUCED TO ACCOMMODATE BOTH FEED REMOVAL AND SOIL HEALTH NEEDS

MAP SHOWS WHERE RESPONDENTS INDICATE THAT RETAINING 5 T/HA/YEAR OF CROP RESIDUE (EQUIVALENT TO 2.5 T OF CARBON/HA/YEAR IN THE CASE OF MAIZE STOVER) IS ATTAINABLE IN DRY SUB-HUMID AREAS

MAP SHOWS WHERE RESPONDENTS INDICATE THAT APPLYING 5 T/HA/YEAR OF CROP RESIDUE IS SUFFICIENT TO MAINTAIN SOIL ORGANIC CARBON (SOC) STOCKS IN DRY SUB-HUMID AREAS

